悬索桥范文10篇

时间:2023-03-18 23:10:09

悬索桥范文篇1

关键词:悬索桥;自锚式体系;施工;实例

一、前言

一般索桥的主要承重构件主缆都锚固在锚碇上,在少数情况下,为满足特殊的设计要求,也可将主缆直接锚固在加劲梁上,从而取消了庞大的锚碇,变成了自锚式悬索桥。

过去建造的自锚式悬索桥加劲梁大多采用钢结构,如1990年通车的日本此花大桥,韩国永宗悬索桥、美国旧金山——奥克兰海湾新桥、爱沙尼亚穆胡岛桥墩等。2002年7月在大连建成了世界上第一座钢筋混凝土材料的自锚式悬索桥——金石滩金湾桥墩,为该类桥墩型的研究提供了宝贵的经验。此后在吉林、河北、辽宁又有4座钢筋混凝土自锚式悬索桥正在设计和设计和建造中。

自锚式悬索桥有以下的优点:①不需要修建大体积的锚碇,所以特别适用于地质条件很差的地区。

②因受地形限制小,可结合地形灵活布置,既可做成双塔三跨的悬索桥,了可做成单塔双跨的悬索桥。

③对于钢筋混凝土材料的加劲梁,由于需要承受主缆传递的压力,刚度会提高,节省了大量预应力构造及装置,同时也克服了钢在较大轴向力下容易压屈的缺点。

④采用混凝土材料可克服以往自锚式悬索桥用钢量大、建造和后期维护费用高的缺点,能取得很好的经济效益和社会效益。

⑤保留了传统悬索桥的外形,在中小跨径桥梁中是很有竞争力的方案。

⑥由于采用钢筋混凝土材料造价较低,结构合理,桥梁外形美观,所以不公局限于在地基很差、锚碇修建军困难的地区采用。

自锚式悬索桥也不可避免地有其自身的缺点:①由于主缆直接锚固在加劲梁上,梁承受了很大的轴向力,为此需加大梁的截面,对于钢结构的加劲梁则造价明显增加,对于混凝土材料的加劲梁则增加了主梁自重,从而使主缆钢材用量增加,所以采用了这两种材料跨径都会受到限制。

②施工步骤受到了限制,必须在加劲梁、桥塔做好之后再吊装主缆、安装吊索,因此需要搭建大量临时支架以安装加劲梁。所以自锚式悬索桥若跨径增大,其额外的施工费用就会增多。

③锚固区局部受力复杂。

④相对地锚式悬索桥而言,由于主缆非线性的影响,使得吊杆张拉时的施工控制更加复杂。

二、历史回顾

19世纪后半叶,奥地利工程师约瑟夫。朗金和美国工程师查理斯。本德分别独立地构思出自锚式悬索桥的造型。本德在1867年申请了专利,朗金则在1870年在波兰建造了一座小型的铁路自锚式悬索桥。

到20世纪,自锚式悬索桥已经在德国兴起。1915年,德国设计师在科隆的莱茵河上建造了第一座大型自锚式悬索桥——科隆-迪兹桥,当时主要是因为地质条件的限制而使工程师们选择了这种桥型,该桥主跨185m,用木脚手架支撑钢梁直到主缆就位。此后,美国宾夕尼亚州的匹兹堡跨越阿勒格尼河的3座桥和在日本东京修建的清洲桥都受科隆-迪兹桥的影响。虽然科隆-迪兹桥1945年被毁,但原桥台上的钢箱梁仍保存至今。匹兹堡的3座悬索桥比科隆-迪兹桥的跨径要小,但施工技术比科隆-迪兹桥有了很大的进步。科隆-迪兹桥建成后的25年内在德国莱茵河上又修建了4座悬索桥,其中最著名的是1929年建成的科隆-米尔海姆桥,该桥主跨315m,虽然该桥在1945年被毁,但它至仍然保持着自锚式悬索桥的跨径记录。在20世纪30年代,工程师们认为自锚式悬索桥加劲梁的轴力将使该种桥梁的受力性能接近于弹性理论,所以这段时间美国德国修建了许多座自锚式悬索桥。

三、国外现代自锚式悬索桥

1、日本此花大桥

日本此花大桥原名大阪北港连络桥,是现有的最早修建的特大跨径自锚式悬索桥,又是世界上唯一的英国式自锚式悬索桥。1990年通车。

跨径布置为(120+300+120)m,是现有最大跨径的自锚式悬索桥。垂跨比叫大,为1/6,以减小主缆的索力,使能为梁所承受。

该桥采用单主缆,用PWS法施工,包含30束股,每束184丝。仅一个索面,吊索做成倾斜形,构成三角形吊杆,与钢箱加劲梁一起,体现了英国式悬索桥的特点。

钢箱加劲梁为三室箱,梁高3.17m,箱总宽26.5m.由于单索面,按抗扭的需要,箱高较大。塔成呈花瓶形,但下塔柱较矮。人字形上塔柱要在加劲梁节段架设后才能安装。

2韩国永宗大悬索桥

永宗大悬索桥位于韩国汉城仁川国际机场通往汉城市区的高速公路上,是世界上第一座双层行车的公铁两用自锚式县索桥。

跨径布置为125+300+125m,主跨径与日本此花大桥相同。垂跨比为1/5,以减小主缆索力。

塔设计成花瓶形,高104.6m,较美观。采用空中纺线法制索,主缆直径46.7cm.主缆塔处横向间距受塔型限制,公6.6m,而在主跨中部则展宽为35m(与梁宽相同),主缆呈三维空间曲面。

加劲梁三跨连续,其腹板及行驶铁路部分的下层为桁架。梁总高12m,宽35m.上层设6个车道;下设4个车道及双线铁路。加劲梁的上层桥面系为一钢箱,以承受巨大的水平轴力。箱高3m,连同风嘴,总宽41m.梁的施工,分为8个节段,用3000t的海上浮吊架设,全部放在临时排架或塔上,然后安设吊索。

防护体系,加劲梁采用抽湿防护,只要有一个传感器测得相对湿度高于50%时,抽湿系统自动开始一切工作,直至相对湿度降至40%以下。

主缆防护采用S形钢丝缠绕,再设涂装,并采用干燥空气体系,与日本明石海峡大桥相同。

3、美国旧金山——奥克兰海湾新桥

20世纪30年代中期修建的旧金山——奥克兰海湾桥,全长12.8m,是当时世界上最长的、技术水平很高的桥梁,至今人仍为旧金山半岛至东海湾的主干线,车辆繁忙,每天通行近28万车次。设计的地震力很小,其东桥(钢桁架桥)于1989年在里氏7.1度地震烈度时局部坍塌,因此决定修建新海湾桥来代替现有东桥,全长3.6km.新桥每方向有宽25m的桥面,各包括5个车道和一条轻轨铁路。南侧还有宽4.8m的人行道,考虑1500年回归的地震。

主航道桥为自锚式悬索桥,单塔,跨径为385+180m.两主缆直径0.78m,东侧(385m侧)锚固在东墩处的梁上,其素鞍由箱梁支承,并设计成可移动的,以平衡两主缆索力差。西侧(180m侧)主缆通过两分离的索鞍环绕在西墩上,这两个分离索鞍固定在西墩上在施工期间两主缆索力差异采用一项进的座板来平衡。西墩上设计一个预应力帽梁,其重量可以平衡桥梁跨径不对称而在西墩产生的恒载拨力,也用以承受西墩两主缆在运营荷载和地震荷载作用时其素鞍产生的不同应力。塔高160m.主缆不跨越而是固定在单一的索鞍上。塔由4柱组成,沿高度用剪力杆连接。塔柱为钢箱。柱间有间距3m的横隔梁连接。承台高6.5m,支承在13根直径2.5m的钢管桩上,桩内填灌混凝土,桩净长20m,嵌入岩石。

上部结构为两个空心的各向异性版,并将吊杆荷载分布在箱梁上,箱梁间用宽10m、高2.5m、间距30m的横梁连接。该横梁承受吊杆横向72m跨的荷载,保证两箱在荷载、特别是风和地震荷载时的整体作用。吊杆设在两箱的外侧,形成两空间索面,很美观。

4、其它自锚式悬索桥

Sorok岛桥是韩国与Geogcum岛连接本土的桥梁,跨径布置为110m+480m+200m,矢跨比为1:8,加劲梁为钢箱梁,高跨比为1:400,桥塔为H形。1996年哥本哈根的国际桥梁和结构工程协会(LABSE)学术会议论文集中,J.F.Klcin介绍了一种自锚式悬索桥的比较方案,跨径布置为303m+950m+303m,采用单主缆,主跨跨中约200m长的主缆在梁体内部,与梁固结,使结构具有很高的刚度,索夹处设有锚固装置,所以主缆截面沿桥梁是可变化的,这样可大大节省主缆造价。

四、国内自锚式悬索桥

尽管自锚式悬索桥在国处产生发展较早,在国内却很少建造,相关文献也很少,使这种桥型在国内的发展远远落后于国外。2002年在大连建成了世界上第一座加劲梁采用钢筋混凝土材料的自锚式悬索桥,此后大连理工大学桥梁研究所又设计了多座钢筋混凝土自锚式悬索桥,为国内桥梁的建设提供了宝贵的经验。

1大连金石滩金湾悬索桥

金石滩金湾悬索桥是我国,也是世界上第一座钢筋混凝土结构的自锚式悬索桥,位于大连金石滩旅游度假区的滨海路上,横跨帆船港池入海口,已成为当地的一处特殊景观。

金石滩金湾桥主桥为自锚式混凝土悬索桥,它直接把主缆锚固于加劲梁的两端,用加劲梁做成拱形(吊拱体系),用主缆的水平分力来抵搞拱脚的推力,起到了系杆拱桥中系杆的作用。这样既满足了跨中通航的净空要求,同时也使主桥两端高度降低,大大减少了引桥的长度,节省了投资。这种拱度也可使加劲梁刚度增加、挠度减小,从而使该桥在受力和经济上都达到了很好的效果。金湾悬索桥总长198m,其中主桥长108m,引桥长90m,主桥跨径为(24+60+24)m,桥宽10m,矢跨比为1:8,双塔双主缆结构。主桥的加劲梁采用钢筋混凝土边主梁形式,梁高1m,梁段中间浇注横隔梁,引桥为钢筋混凝土连续梁。桥塔为钢筋混凝土门式塔架,塔高27m,塔柱直径为1.5m.主桥的加劲梁及横梁采用50号混凝土。主缆索采用ф7,吊杆采用ф5镀锌高强钢丝,冷铸锚具。基础采用ф1.6m钻孔灌注桩基础。主缆跨过桥塔索鞍,不散开,两端锚固在主梁上,在端部主索套筒内设减震器。梁上吊杆间距为3m.主桥施工主要工序为:钻孔桩基础;浇筑桥墩桥塔;搭设临时支架,支架上浇筑加劲梁;加劲梁达到强度后挂主缆,上索夹,张拉吊杆。

金石滩悬殊索桥采用了新的结构形式,总造价只有498万元,不但取得了良好的经济效益,而且其独特的设计为美丽的海滨城市大连又增添了一处亮丽的风景,同时也为该类桥型的建造提供了宝贵的经验。

2、浙江省平湖市海盐塘桥

海盐塘桥位于浙江省平湖市东湖风景区,上部结构构为自锚式钢筋混凝土悬索桥,主跨跨径组合为(30+70+30)m,全桥长164m;桥面全宽40.0.m;桥梁纵坡为K2.20%.

平湖海盐塘自锚式悬索桥充分利用自锚式悬索桥的受力特性,借鉴了同类桥梁的一些优点,并经过改进。其主要有以下几个特点:主缆锚于梁端,不需要建造昂贵的锚碇;主梁采用了钢筋混凝土箱梁,利用主缆的水平分力,为主梁施加免费预应力,主梁内不再配置预应力钢束;塔顶不设置鞍座,主缆直接锚固在塔顶上。这种桥型结构新颖,造型美观,结构轻巧,构件受力合理,用材经济,造价比同等跨径的预应力混凝土连续梁桥、部分斜拉桥都要低,是一种在中小跨径内非常具有竞争力的桥型。

五、自锚式悬索桥的受力分析

1、受力原理

自锚式悬索桥的上部结构包括:主梁、主缆、吊杆、主塔四部分。传力路径为:桥面重量、车辆荷载等竖向荷载通过吊杆传至主缆承受,主缆承受拉力,而

主缆锚固在梁端,将水平力传递给主梁。由于悬索桥水平力的大小与主缆的矢跨比有关,所以可以通过矢跨比的调整来调节主梁内水平力的大小,一般来讲,

跨度较大时,可以适当增加其矢跨比,以减小主梁内的压力,跨度较小时,可以适当减小其矢跨比,使混凝土主梁内的预压力适当提高。由于主缆在塔顶锚固,为了尽量减少主塔承受的水平力,必须保证边跨主缆内的水平力与中跨主缆产生的水平力基本相等,这可以通过合理的跨径比来调节,也可以通过改变主缆的线形来调节。

另外,自锚式悬索桥中的恒载由主缆来承受,而活载还需要由主梁来承受,所以主梁必须有一定的抗弯刚度,主梁的形式以采用具有一定抗弯刚度的箱形断面较为合适。

2、结构特点

采用自锚式结构体系,和地锚式相比可以不考虑地质条件的影响,而且由于免去了巨大的锚锭,降低了工程造价。采用自锚,将主缆锚固于加劲梁之上,相比同等跨径的其他桥型,更有其特有的曲线线形,外观优雅,而且现代桥梁除了满足自身的结构要求外,也越来越注重景观设计,其发展前途很大。

自锚式悬索桥采用混凝土加劲梁,虽然增加了体系的自重,但也增加了体系的刚度,在一定的跨度允许范围内,使桥梁的安全性指标、适用性指标、经济性指标、美观性指标得到了完美的统一。对结构受力而言,由于采用了自锚体系,将索锚固于主梁上,利用主梁来抵抗水平轴力,对于混凝土这种抗压性能好的材料来说无疑是相当于提供了。免费的。预应力。因此采用的是普通钢筋混凝土结构,节省了大量的预应力器具,而且又由于混凝土材料相对于钢材料的经济性,工程造价大大减少。但是由于混凝土的抗拉、弯的性能较差,所以对其进行受力分析时应综合考虑这个特点。

由于自锚式悬索桥的主缆拉力是传递给桥梁本身,而不是锚锭体,主缆拉力的水平分力在桥梁的上部结构中产生压力,如果两端不受约束的话,其垂直分力将使桥梁的两端产生上拔力。例如金石滩悬索桥桥采用了两种办法来抵抗这种上拔力:一是在锚块处设置拉压支座;二是在主桥和引桥的交接处设置牛腿,从而将引桥的重量压在主梁上。

由于主梁采用混凝土材料,设计和计算时必须计入混凝土的收缩)徐变等因素的影响,这就使得混凝土自锚式悬索桥的设计较钢桥更为复杂。

六、施工工艺

1、主塔施工

悬索桥一般主塔较高,塔身大多采用翻模法分段浇筑,在主塔连结板的部位要注意预留钢筋及模板支撑预埋件。对于索鞍孔道顶部的混凝土要在主缆架设完成后浇筑,以方便索鞍及缆索的施工。主塔的施工控制主要是垂直度监控,每段混凝土施工完毕后,在第二天早晨8:00至9:00间温度相对稳定时,利用全站仪对塔身垂直度进行监控,以便调整塔身混凝土施工,应避免在温度变化剧烈时段进行测试,同时随时观测混凝土质量,及时对混凝土配比进行调整。

2、鞍部施工

检查钢板顶面标高,符合设计要求后清理表面和四周的销孔,吊装就位,对齐销孔使底座与钢板销接。在底座表面进行涂油处理,安装索鞍主体。索鞍由索座、底板、索盖部分组成,索鞍整体吊装和就位困难;可用吊车或卷扬设备分块吊运组装。索鞍安装误差控制在横向轴线误差最大值3mm标高误差最大值3mm.吊装入座后,穿入销钉定位,要求鞍体底面与底座密贴,四周缝隙用黄油填实。

3、主梁浇筑

主梁混凝土的浇筑同普通桥一样,首先梁体标高的控制必须准确,要通过精确的计算预留支架的沉降变形;其次,梁体预埋件的预埋要求有较高的精度,特别是拉杆的预留孔道要有准确的位置及良好的垂直度,以保证在正常的张拉过程中拉杆始终位于孔道的正中心。

主梁浇筑顺序应从两端对称向中间施工,防止偏载产生的支架偏移,施工时以水准仪观测支架沉降值,并详细记录。待成型后立即复测梁体线型,将实际线型与设计线型进行比较,及时反馈信息,以调整下一步施工。

4、索部施工

(1)主缆架设

根据结构特点,主缆架设可以采取在便桥或已浇筑桥面外侧直接展开,用卷扬机配合长臂汽车吊从主梁的侧面起吊安装就位。

缆索的支撑:为避免形成绞,将成圈索放在可以旋转的支架上。在桥面每4-5m,设置索托辊(或敷设草包等柔性材料。),以保证索纵向移动时不会与桥面直接摩擦造成索护套损坏。因锚端重量较大,在牵引过程中采用小车承载索锚端。

缆索的牵引:牵引采用卷扬机,为避免牵钢丝绳过长,索的纵向移动可分段进行,索的移动分三段,分别在二桥塔和索终点共设三台卷扬机。

缆索的起吊:在塔的两侧设置导向滑车,卷扬机固定在引桥桥面上主桥索塔附近,卷扬机配合放索器将索在桥面上展开。主要用吊车起吊,提升时避免索与桥塔侧面相摩擦。当索提升到塔尖时将索吊入索鞍。在主索安装时,在桥侧配置了3台吊机,即锚固区提升吊机、主索塔顶就位吊机和提升倒链。

当拉索锚固端牵引到位时,用锚固区提升吊机安装主索锚具,并一次锚固到设计位置,吊机起重力在5t以上;主索塔顶就位吊机是在两座塔的二侧安置提升高度大于25m时起重力大于45t的汽车吊,用于将主索直接吊上塔顶索鞍就位,在吊装过程中为避免索的损伤,索上吊点采用专用索夹保护;主索在提升到塔顶时,由于主跨的索段比较长,为确保吊机稳定,可在适当的时候用塔上提升倒链协助吊装。

(2)主缆调整

在制作过程中要在缆上进行准确标记。标记点包括锚固点、索夹、索鞍及跨中位置等。安装前按设计要求核对各项控制值,经设计单位同意后进行调整,按照调整后的控制值进行安装,调整一般在夜间温度比较稳定的时间进行。调整工作包括测定跨长、索鞍标高、索鞍预偏量、主索垂直度标高、索鞍位移量以及外界温度,然后计算出各控制点标高。

主缆的调整采用75t千斤顶在锚固区张拉。先调整主跨跨中缆的垂直标高,完成索鞍处固定。调整时应参照主缆上的标记以保证索的调整范围。主跨调整完毕后,边跨根据设计提供的索力将主缆张拉到位。

(3)索夹安装

为避免索夹的扭转,索夹在主索安装完成后进行。首先复核工厂所标示的索夹安装位置,确认后将该处的PE护套剥除。索夹安装采用工作篮作为工作平台,将工作篮安装在主缆上(或同普通悬索桥一样搭设猫道),承载安装人员在其上进行操作。索夹起吊采用汽吊,索夹安装的关键是螺栓的坚固,要分二次进行)索夹安装就位时用扳手预紧,然后用扭力扳手第一次坚固,吊杆索力加载完毕后用扭力扳手第二次紧固。索夹安装顺序是中跨从跨中向塔顶进行,边跨从锚固点附近向塔顶进行。

(4)吊杆安装及加载

吊杆在索夹安装完成后立即安装。小型吊杆采用人工安装,大型吊杆采用吊车配合安装。

由于自锚式悬索桥在荷载的作用下呈现出明显的几何非线性,因此吊杆的加载是一个复杂的过程。主缆相对于主梁而言刚度很小。如果吊杆一次直接锚固到位,无论是张拉设备的行程或者张拉力都很难控制而全桥吊杆同时张拉调整在经济上是不可行的。为了解决这个问题,就必须根据主梁和主缆的刚度、自重采用计算机模拟的办法,得出最佳加载程序。并在施工过程中,通过观测,对张拉力加以修正。

吊索张拉自塔柱和锚头处开始使用8台千斤顶对称张拉。吊索底端冷铸锚具,其锚杯铸有内外螺纹,内螺纹用于连接张拉时的连接杆以便千斤顶作用,外螺纹用螺母连接后将吊杆固定于锚垫板上。由于主缆在自重状态标高较高,导致吊杆在加载之前下锚头处于主梁梁体之内,因此在张拉时需配备临时工作撑脚和连接杆。

第一次张拉施加1/4的设计力将每一根吊杆临时锁定!第二次顺序与第一次相同,按设计力张拉完,然后检测每一根吊杆的实际荷载,最后根据设计力具体对每一根吊杆进行微调。在吊索的张拉过程中,塔顶与鞍座一起发生位移!塔根承受弯矩!这样有可能产生塔根应力超限的危险,为了不让塔根应力超限!张拉一定程度后,根据实际观测及计算分析!进行索鞍顶推,使塔顶回到原来无水平位移时的状态,如此反复后!将每根吊索的张拉力调整至设计值。

施工过程的控制对于自锚式混凝土悬索桥每一道工序的施工均非常重要,尤其在索部施工过程中每一阶段每一根吊索的索力都要及时准确的反馈。吊索张拉时千斤顶的油表读数是一个直观反映,另外利用智能信号采集处理分析仪通过对吊索的振动测出其所受的拉力,两种方法互相检验,确保张拉时每一根吊索的索力与设计相吻合。

七、需要进一步研究的问题

(1)更优越的施工方法的研究。例如将中跨主缆锚固在主梁的底部,用转体施工,从而可以在一定程度上克服施工上的困难,但在跨径较大的情况下,如何保证转体施工时的稳定性,还需要做进一步的研究。

(2)主缆锚固点锚下应力的分布研究。

(3)当主缆外包钢管混凝土时,吊杆在主缆上的锚固方式研究。

(4)吊杆及主缆的合理张拉顺序研究。

(5)新型材料的研究和开发。

(6)受力体系及理论的进一步完善。

八、结论及其发展

(1)通过国内工程时间证明,钢筋混凝土自锚式悬索桥在中小跨径上是一种既经济又美观的桥型,结构的刚度也相对较大,对于中小跨径的公路桥梁和人行桥都适合建造。

(2)对于钢筋混凝土结构的自锚式悬索桥,锚块的设计是一个关键环节,它不但影响结构的整体工作性能,也是影响桥梁的经济效益和美观要求,应给予足够的重视。

(3)自锚式悬索桥主缆的锚固形式是与地锚式的最大不同之处,根据受力大小和锚块构造要求的不同,可采取直接锚固、散开锚固和环绕式锚固等方式。

(4)由于主缆非线性的影响而使吊索张拉时的施工控制变的尤为关键。

悬索桥范文篇2

关键词:悬索桥总体设计

悬索桥适用于大跨度的桥梁结构。桥面是由钢缆和吊索来承受,作为桥面主要结构物的加劲梁的跨度相当于吊索的间距.成为一个小跨度的弹性支承连续梁,所以主跨的大小与加劲梁刚度没有很直接的关系。而作为承受桥面的关键构件的铜缆是由塔支承着并由强大的锚碇锚固着,只有塔和锚碇的稳定才能使钢缆来承受桥面上的各种荷载。因此,悬索桥在适合的地形、水文和地质条件下都可以建造,只是造价比较高。往往适用于其他桥型难以适用的特大跨径桥梁。以目前来说,当主跨超过700m的桥,几乎都是悬索桥(已建成的其他

桥型只有斜拉桥,主跨为890m的多多罗桥和856m的诺曼底桥)。而小于700mm的跨径中,悬索桥和斜拉桥还是有很大的竞争力,有好的地质条件,锚往比较容易建造,如汕头海湾桥和鹅公岩长江大桥;有时有特殊要求,如厦门海沧桥和日本东京湾的彩虹桥.航空的限高和航运要求的通航净空,迫使他们选用悬索桥,因为悬索桥的塔高是斜拉桥的1/2;在施工过程中,悬索桥始终在一个静定稳定结构状态下,容易控制,风险小,也使一些人偏爱悬索桥的原因。表1列出40余座世界大跨度悬索桥的主要尺寸。

桥梁总体设计是一个很复杂的问题,首先要适应地形、水文、地质等自然条件的限制,也要符合桥面交通和通航的使用要求。本文主要以50年代以后建的悬索桥进行分析,因为它们充分吸取Tacoma大桥被风吹毁的教训,以下讨论的参数仅仅是一般情况的参考值,对于有特殊条件和特殊要求不必苛求。

一、跨度比

跨度比是指边孔跨度与主孔跨度的比值。其中对单跨悬索桥而言边孔跨度可视为主塔至锚碇散索鞍处的距离.跨度比受具体桥位处的地形与地质条件制约,每座桥都不同。如三跨悬索桥的跨度比就比单跨悬索桥的大一些,这是为了减少边孔的水中墩并减少主孔跨径。

由以上两表看来,三跨悬索桥跨度比一般在0.25~0.4之间,但世界上最大的悬索桥--明石海峡大桥在0.51。单跨悬索桥跨度比一般在0.2~0.3之间。为了使在恒载条件下,主缆在塔两侧的水平力相等,要求主缆与塔两侧的倾角相等,单跨的悬索桥的边跨主缆是直拉式,因此,一般情况单跨的边主跨比应该比三跨悬索桥小,单跨的边跨跨径与散索鞍位置还有很大的关系。

从结构特性方面来考虑,假设主孔的跨度以及垂跨比等皆为定值,在用钢塔时悬索桥单位桥长所需的钢材重量随跨度比减小而增大;当用钢筋混凝土塔时,跨度比减少增加的延米用钢量很小,当跨度比由0.5~0.3时,增加用钢量约5%,跨度越大时,增加钢用量的百分比越小。

二、垂跨比

悬索桥的垂跨比是指主缆在主孔内的垂度和主孔跨度的比值,垂跨比的大小对主缆中的拉力有很大的影响,因此它在较大程度上影响着主缆的用钢量、结构整体刚度、主孔竖向和横向的挠度。垂跨比与主缆中的拉力和塔承受的压力呈反比。垂跨比与塔的高度也有直接影响,它们呈正比关系。垂跨比越大,悬索桥竖向挠度和横向挠度都加大。一般都在1/10~1/11之间,铁路桥更小一些。

悬索桥的主缆垂跨比除了对结构整体刚度有影响以外,它对结构振动特性也有一定的影响。悬索桥的竖向弯曲固有频率ωb将随垂跨比的加大而减低;悬索桥的扭转固有频率;将随垂跨比的加大而增高;悬索桥扭转与坚弯固有频率比也将随垂跨比的加大而有显著的增大;悬索桥的极惯距<。>将随垂跨比的加大而减小。

三、宽跨比

宽跨比是指桥梁上部结构的梁度(或主缆中心距)与主孔跨度的比值,对于一般桥型的中小跨度而言,可控制在大于1/30左右,有足够的横向刚度。由于桥梁宽度一般由交通要求确定的,对于特大跨度桥梁就很难保证这个要求了。在统计的悬索桥资料中1000m以上跨径的宽跨比都小于1/30,甚至达1/60,虽然有些桥梁为了增加抗风稳定性,在风嘴外侧再增加挑板或在中央分隔加宽并透风。从表面上来看是加了梁宽,但实际是改善气流条件,增加抗风稳定性而不是为了增加横向刚度的。

四、加劲梁的高宽比与高跨比

加劲梁的梁高和梁宽之比与梁高与主孔跨度之比是密切相关的两个指标,由于加劲梁的受力状态是多跨弹性支承连续梁,看来梁高和主孔跨径不是那么密切,但是从风动稳定性来看,还要考虑加劲梁要有足够的抗扭刚度,以抵抗涡激共振的发生。

加劲梁常有桁架式和箱梁式。80年代以前建成的悬索桥以抗架梁为主,它对布置双层桥面的适应性较好,有的下层是铁路,加劲梁的梁高在7.5~14m,高跨比为1/180~1/70。(详见表1)在过去不需要双层交通时,也有用箱梁和板梁断面。特别是Tacoma桥由于采用版梁断面,流线型很差,在不大的风速下被风吹得扭曲失稳而破坏。1966年塞文桥首次采用了箱梁为加劲梁,80年代,英国亨伯桥成功地建成,以后单层桥面的加劲梁多数采用箱梁。加劲梁高一般在2.5~4.5m,箱形梁的高跨比大体在1/400~1/300,为了有比较好的流线型,加劲梁的高宽比一般在1/7~1/11(详见表1)。但是81年建成的亨伯桥和1997年建成的瑞典高海岸桥桥宽都为22m,梁高达4.5~4m。

实际上高宽比和高跨比是存在一定的矛盾的。在桥面宽度确定以后,梁高小一些,断面的流线型可以好一些,有利于风动稳定,但高度太小会导致加劲梁的抗扭刚度削弱太多,容易导致涡振和抖振的发生产生结构疲劳,人感不适及行车不安全。为此还要控制高跨比。在设计中初选加劲梁断面方案后,对于特大桥应做风洞的节段模型试验,修改断面、测定各种参数进行抗风验算和各类风振分析。特别要注意风向带有一定攻角时,加劲梁断面的流线型"钝化",风动稳定性要差一些。对于特大跨度的桥或高风速地区的桥梁,采用如同墨西拿海峡大桥方案,做成左右两个能适应风流线型的桥面系,利用宽的中央分隔带透风解决风动稳定。

五、加劲染的支承体系

悬索桥范文篇3

关键词:悬索桥;焊接工艺;评定标准;对比

焊接工艺评定的目的是为了检验设计接头的可靠性、验证焊接工艺的正确性和评定施焊能力,并将评定结果用于指导生产,以保证产品焊接接头的力学性能,是企业控制焊接质量的不可或缺的措施之一,也是企业综合技术水平的一种体现。对于悬索桥设计制作来说,随着科技的发展,悬索桥朝着大重量、大厚板焊接的方向发展[1]。因此焊接成为了其中一项特别重要的工作,但现在悬索桥制作所涉及的焊接工艺评定标准种类过多,没有统一化,本文对悬索桥制作常用的3种标准进行对比分析,就如何合理、科学的选用焊接工艺评定标准进行探讨研究。

1悬索桥制作常用焊接工艺评定标准

焊接工艺评定试验是在原材料检验合格后,产品在车间制作之前,施工制造单位按照相应的标准要求进行的工艺试验。试验必须能有效的反应产品所用的材料、结构形式和拟采用的焊接工艺。评定在该工艺下对应材料的相应结构的焊接接头的使用性能。悬索桥制作常用的3种焊接工艺评定标准分别为GB/T19869.1—2005《钢、镍及镍合金的焊接工艺评定试验》、JTG/TF50—2011《公路桥涵施工技术规范》和TB10212—2009《铁路钢桥制作规范》。

2焊接工艺评定标准的差异及特点

焊接工艺评定试验通过验证焊接工艺的正确性,并评价施焊能力,最终来保证产品的焊接质量。通常来说,每种结构形式,每个接头都要做试验的话,工作量太大,一般情况下也不可能。焊接工艺评定就是综合各种因素,减少工作量,做到用最少的评定工作量来覆盖整个产品的焊接工艺。这样,一方面对标准的各项规定要清楚掌握,如评定规则、可代替范围、试验要求等;另一方面也要分析产品的结构特点,尤其要注意明显影响焊接接头质量的重要因素,如焊接方法、母材、焊接材料等。2.1焊接工艺评定的通用要求对比焊接工艺评定的通用要求对各种焊接方法都适用,一般包括4项:焊接方法,母材类别,焊后热处理,厚度认可范围。2.1.1焊接方法GB/T19869.1—2005《钢、镍及镍合金的焊接工艺评定试验》明确指明该标准适用于钢材的电弧焊和气焊,以及镍及镍合金的电弧焊。而JTG/TF50—2011《公路桥涵施工技术规范》及TB10212—2009《铁路钢桥制作规范》这两个标准并没有明确指明适用的焊接方法。2.1.2母材类别GB/T19869.1—2005《钢、镍及镍合金的焊接工艺评定试验》中的表3明确规定了钢材各类25组及分类组的认可范围,而JTG/TF50—2011《公路桥涵施工技术规范》中的附录K-3焊接工艺评定及TB10212—2009《铁路钢桥制作规范》中的附录C钢材的焊接工艺评定并没有明确规定钢材各类组及分类组的认可范围。2.1.3焊后热处理3种标准中都提到了增加或者取消焊后热处理时,要重新进行评定,但都对热处理的种类未标明如何分类。2.1.4厚度认可范围。每种标准的试板厚度对应的产品覆盖厚度详见表1。从表1可以看出,JTG/TF50—2011中的试件厚度t没有厚度范围要求,覆盖的产品厚度δ为0.67t≤δ≤1.25t。GB/T19869.1—2005和TB10212—2009中的试件厚度t划分为4个区段,对应的覆盖的产品厚度δ也分为4个区段。试板厚度划分比较细致,但是TB10212—2009中的试件厚度最大值只能达到80mm,而GB/T19869.1—2005中的试件厚度最大值没有限制。而GB/T19869.1—2005比较特殊的地方是覆盖的产品厚度还与实际的焊接道次有关,单道焊和多道焊的产品覆盖范围也不相同。对比来看,GB/T19869.1—2005的厚度认可范围要求的更细、更全面。2.2焊接工艺评定的工艺要素对比焊接工艺评定因素一般分为重要因素、附加因素和次要因素。重要因素一般是指影响焊接接头抗拉强度和弯曲性能的焊接工艺因素;附加因素一般是指影响焊接接头冲击性能的焊接工艺因素;次要因素一般是指对力学性能无明显影响的焊接工艺因素。在这3种标准中并没有把焊接工艺因素按照重要因素、附加因素和次要因素进行划分,只是提到了那些因素改变的话,需要重新进行焊接工艺评定。对比GB/T19869.1—2005、JTG/TF50—2011和TB10212—2009可知,GB/T19869.1—2005中的这些因素有13项,JTG/TF50—2011和TB10212—2009中的这些因素有10项。JTG/TF50—2011和TB10212—2009的因素基本相同,不同之处是JTG/TF50—2011中焊接参数变化中增加了焊接线能量增大10%以上需要重新评定,TB10212—2009中坡口形状和尺寸改变这一因素中增加了有衬垫的根部间隙变化要求。GB/T19869.1—2005、JTG/TF50—2011和TB10212—2009区别之处较多,具体区别如下:(1)焊接位置。GB/T19869.1—2005中规定既无冲击要求,也无硬度要求时,任一位置(板或管子)上的焊接适用于所有位置(板或管子)的焊接。(2)接头/焊缝种类。GB/T19869.1—2005中规定对接焊缝适用于全焊透及部分焊透的对接焊缝和角焊缝。覆盖范围大,即对接接头可以覆盖T型接头及角焊缝,而JTG/TF50—2011和TB10212—2009中对接接头、T型接头是需要分开单独评定的。(3)焊材规格。GB/T19869.1—2005中规定在热输入规定的变化范围内,允许改变焊接材料的尺寸。而JTG/TF50—2011和TB10212—2009中对此项没有提出具体的要求。(4)道间温度。GB/T19869.1—2005中规定评定的上限值就是焊接工艺评定试验中达到的最高道间温度。而JTG/TF50—2011和TB10212—2009中对此项没有提出具体的要求。(5)坡口形式及尺寸改变。JTG/TF50—2011和TB10212—2009中对此项提出了具体的要求。而GB/T19869.1—2005对此项没有提出具体的要求。综上所述,GB/T19869.1—2005中的焊接工艺因素相对全面一些,但也有不足之处,如对于焊接来说的一些重要因素,如对接头种类、坡口形式及尺寸改变的规定略显不足。3种标准各有优缺点,焊评工作者可以综合选择。2.3焊接工艺评定试验要求对比焊接工艺评定试验要求对比详见表2。综合对比,可以发现JTG/TF50—2011和TB10212—2009中的评定试验要求基本相同,与GB/T19869.1—2005不同的是,对接接头试件、T型接头试件和角接头试件中都要求做焊缝金属拉伸试验,同时T型接头还要求做冲击试验,而GB/T19869.1—2005对此项试验没有要求。因为力学性能是检验焊接工艺评定的一项重要指标,相对来说,GB/T19869.1—2005中评定试验有所欠缺,尤其对于焊缝金属拉伸试验这一重要指标没有提出要求,在一定意义上也存在一定的不足。

3结论

对比分析上述三种悬索桥制造常用的焊接工艺评定标准,可以得出以下结论:(1)GB/T19869.1—2005明确规定了钢材各类组及分类组的认可范围,厚度的覆盖范围比较全面。(2)JTG/TF50—2011与TB10212—2009的要求基本相同,差异不大,对于接头类型覆盖范围来说,与GB/T19869.1—2005不同的是,T型接头是需要分开单独评定的。(3)JTG/TF50—2011和TB10212—2009中对工艺因素———坡口形式及尺寸改变提出了具体的要求,而GB/T19869.1—2005对此项没有提出具体的要求。(4)对于工艺评定的力学性能试验来说,GB/T19869.1—2005中的各种接头试件不需要做焊缝金属拉伸试验这一重要指标,存在一定的不足。3种焊接工艺评定标准都对焊接工艺评定工作做出了具体的要求,但相对实际的焊接工艺评定的目的来说,各有不足之处,随着科学技术的发展和国外焊接技术及标准的应用,行业中先行标准的一些不足也不断的暴露出来,给企业、技术工作者造成了一定的困惑,因此优先各种标准中的可取之处,弥补不足之处,完善标准,作出更加有效合理的焊接工艺评定工作已经成为了悬索桥制造领域急需解决的问题。

参考文献

悬索桥范文篇4

关键词:悬索桥桥梁模型模态试验

一、前言

试验模态技术发展已将近20年,工程应用亦十分普遍。一般桥梁结构模型的模态试验,和大多数结构模型一样,因都是在线性小振幅范围内进行,且频率范围适中,所以都比较容易做。但特大跨径悬索桥相似模型的模态试验却不是这样。

如全桥风洞模型,因要求与原型相似,模型本身就是一座既柔又轻的结构物。加上实际模型设计过程中,原桥结构的刚度相似往往以脊骨形式满足,质量分布相似则以加集中质量满足,而加劲梁斯塔等又都要求气动外型相似,故整个结构质地轻柔、形?quot;松散"。悬索桥相似模型的这些特点,使传统的模态试验方法产生如下几个问题:

1.激励锤作用在轻柔的模型上,出力大小不易掌握。太重,模型不能承受:轻了,能量不够,远离激励点的测点的传递函数(由于信躁比低)质量会很差。

2.用随机信号发生器驱动连接在模型上的电磁激振器,因为激励模型的力是有一定周期的随机躁声且大小是可调的,所以能激发出模型比较理想的多阶模态。但这里:①激振器与模型的连接杆对模型有一个附加质量,当模型本身的质量贡献不能忽略这个附加质量的影响时,就不能用这种方法。②悬索桥桥塔和加劲梁(包括主缆)的低阶振动模态是分开的,在桥塔上安装激振器,基本不能激励出加劲梁的模态。

3.模拟实桥环境随机振动方法,对模型进行随机激励,以能使全模型保持随机振动状态,测定模型各测点的响应,用这些响应的线性谱和(响应对响应的)传递函数确定模态参数。实测表明,由此得到的传递函数质量比较差也难以满足要求。

针对上述问题,笔者凭籍对模态试验技术原理的深刻理解以及在各种结构模态试验方面丰富的实践经验,采用一种"准周期脉冲激?quot;(介于上述1,2之间)的方法,使特大跨径悬索桥相似模型的模态试验这个难题得到了解决。

二、模态试验分析的基本原理

结构模型可离散为某种具有N个自由度的线弹性系数,其运动微分方程为:

给定输入{f(x)}(可以是激励锤产生的脉冲力,也可以是小型电磁激振器产生的随机激励力),测出模型的响应信号(输出){x(t)},就可以得到该模型的传递函数。用公式表示:

{X(w)}=[H(w)]{F(w)}

对系统p点的激励并在l点措振,可得到传递函数矩阵中的第p行l元素

式中,φliφpi为l,p点的振型元素,从而对结构上一(或多)点激励,多(或一)点拾振,即可得到传递函数矩阵的某一列(或行),进而计算出模态参数。

具体做起来,对锤击法,单点激励、多点措振或多点激励、单点措振都是一样的;而激振器激励一般采取单点激励、多点拾振方法。

三、模态试验分析方法

"准周期脉冲激励"方法的思路是针对普通脉冲力出力偏大偏小都不妥而激振器激励会产生附加质量的影响提出来的。考虑用一个大小适中的脉冲力,按一定的周期连续地对模型进行激励,使模型始终保持振动状(当然,这种振动绝对是与锤击力有关的)。同时测量,记录输入力和输出加速度的时域信号,再进行传递函数分析。

下面通过某长江公路大桥的例子介绍具体做法。

1.测点布置

把模型纵向分成10个断面,每个断面加劲梁和缆索上各两个测点,所有测点都是二维的,整个模型试验共60个测点。

2.几项关键技术

实测、分析过程中,主要把握以下几点:

(1)激振。在激励锤上安装橡皮缓冲头,既保护模型免遭硬物冲击,又使脉冲力的作用时间加长,并且增强低频段的能量。脉冲力作用周期为3~5s,视具体模型频响特性而定。

(2)多点拾振。同时测量几个测点的二维振动,一方面节省试验时间,另一方面尽可能减少对(纤弱的)模型的敲击次数。

(3)信号采样和分析。悬索桥模型的感兴趣频率最高一般不超过10Hz,为此:①采用30~50Hz的采样频率,至少采满51200个数据点;②做传递函数时,对力和响应都加海宁窗;

③采取分段平均。以上措施可以保证传递函数在10Hz以前的质量。

四、结论

做大跨度悬索桥相似(如风洞)模型的模态试验比较难做,本文介绍的方法解决了这一难题,实际模态试验得到了理想的数据结果。其关键在于:

(l)提出了"准周期脉冲激励"的方法,并付诸实用;

悬索桥范文篇5

关键词:悬索桥;自锚式体系;施工;实例

一、前言

一般索桥的主要承重构件主缆都锚固在锚碇上,在少数情况下,为满足特殊的设计要求,也可将主缆直接锚固在加劲梁上,从而取消了庞大的锚碇,变成了自锚式悬索桥。

过去建造的自锚式悬索桥加劲梁大多采用钢结构,如1990年通车的日本此花大桥,韩国永宗悬索桥、美国旧金山——奥克兰海湾新桥、爱沙尼亚穆胡岛桥墩等。2002年7月在大连建成了世界上第一座钢筋混凝土材料的自锚式悬索桥——金石滩金湾桥墩,为该类桥墩型的研究提供了宝贵的经验。此后在吉林、河北、辽宁又有4座钢筋混凝土自锚式悬索桥正在设计和设计和建造中。

自锚式悬索桥有以下的优点:①不需要修建大体积的锚碇,所以特别适用于地质条件很差的地区。

②因受地形限制小,可结合地形灵活布置,既可做成双塔三跨的悬索桥,了可做成单塔双跨的悬索桥。

③对于钢筋混凝土材料的加劲梁,由于需要承受主缆传递的压力,刚度会提高,节省了大量预应力构造及装置,同时也克服了钢在较大轴向力下容易压屈的缺点。

④采用混凝土材料可克服以往自锚式悬索桥用钢量大、建造和后期维护费用高的缺点,能取得很好的经济效益和社会效益。

⑤保留了传统悬索桥的外形,在中小跨径桥梁中是很有竞争力的方案。

⑥由于采用钢筋混凝土材料造价较低,结构合理,桥梁外形美观,所以不公局限于在地基很差、锚碇修建军困难的地区采用。

自锚式悬索桥也不可避免地有其自身的缺点:①由于主缆直接锚固在加劲梁上,梁承受了很大的轴向力,为此需加大梁的截面,对于钢结构的加劲梁则造价明显增加,对于混凝土材料的加劲梁则增加了主梁自重,从而使主缆钢材用量增加,所以采用了这两种材料跨径都会受到限制。

②施工步骤受到了限制,必须在加劲梁、桥塔做好之后再吊装主缆、安装吊索,因此需要搭建大量临时支架以安装加劲梁。所以自锚式悬索桥若跨径增大,其额外的施工费用就会增多。

③锚固区局部受力复杂。

④相对地锚式悬索桥而言,由于主缆非线性的影响,使得吊杆张拉时的施工控制更加复杂。

二、历史回顾

19世纪后半叶,奥地利工程师约瑟夫。朗金和美国工程师查理斯。本德分别独立地构思出自锚式悬索桥的造型。本德在1867年申请了专利,朗金则在1870年在波兰建造了一座小型的铁路自锚式悬索桥。

到20世纪,自锚式悬索桥已经在德国兴起。1915年,德国设计师在科隆的莱茵河上建造了第一座大型自锚式悬索桥——科隆-迪兹桥,当时主要是因为地质条件的限制而使工程师们选择了这种桥型,该桥主跨185m,用木脚手架支撑钢梁直到主缆就位。此后,美国宾夕尼亚州的匹兹堡跨越阿勒格尼河的3座桥和在日本东京修建的清洲桥都受科隆-迪兹桥的影响。虽然科隆-迪兹桥1945年被毁,但原桥台上的钢箱梁仍保存至今。匹兹堡的3座悬索桥比科隆-迪兹桥的跨径要小,但施工技术比科隆-迪兹桥有了很大的进步。科隆-迪兹桥建成后的25年内在德国莱茵河上又修建了4座悬索桥,其中最著名的是1929年建成的科隆-米尔海姆桥,该桥主跨315m,虽然该桥在1945年被毁,但它至仍然保持着自锚式悬索桥的跨径记录。在20世纪30年代,工程师们认为自锚式悬索桥加劲梁的轴力将使该种桥梁的受力性能接近于弹性理论,所以这段时间美国德国修建了许多座自锚式悬索桥。

三、国外现代自锚式悬索桥

1、日本此花大桥

日本此花大桥原名大阪北港连络桥,是现有的最早修建的特大跨径自锚式悬索桥,又是世界上唯一的英国式自锚式悬索桥。1990年通车。

跨径布置为(120+300+120)m,是现有最大跨径的自锚式悬索桥。垂跨比叫大,为1/6,以减小主缆的索力,使能为梁所承受。

该桥采用单主缆,用PWS法施工,包含30束股,每束184丝。仅一个索面,吊索做成倾斜形,构成三角形吊杆,与钢箱加劲梁一起,体现了英国式悬索桥的特点。

钢箱加劲梁为三室箱,梁高3.17m,箱总宽26.5m.由于单索面,按抗扭的需要,箱高较大。塔成呈花瓶形,但下塔柱较矮。人字形上塔柱要在加劲梁节段架设后才能安装。

2韩国永宗大悬索桥

永宗大悬索桥位于韩国汉城仁川国际机场通往汉城市区的高速公路上,是世界上第一座双层行车的公铁两用自锚式县索桥。

跨径布置为125+300+125m,主跨径与日本此花大桥相同。垂跨比为1/5,以减小主缆索力。

塔设计成花瓶形,高104.6m,较美观。采用空中纺线法制索,主缆直径46.7cm.主缆塔处横向间距受塔型限制,公6.6m,而在主跨中部则展宽为35m(与梁宽相同),主缆呈三维空间曲面。

加劲梁三跨连续,其腹板及行驶铁路部分的下层为桁架。梁总高12m,宽35m.上层设6个车道;下设4个车道及双线铁路。加劲梁的上层桥面系为一钢箱,以承受巨大的水平轴力。箱高3m,连同风嘴,总宽41m.梁的施工,分为8个节段,用3000t的海上浮吊架设,全部放在临时排架或塔上,然后安设吊索。

防护体系,加劲梁采用抽湿防护,只要有一个传感器测得相对湿度高于50%时,抽湿系统自动开始一切工作,直至相对湿度降至40%以下。

主缆防护采用S形钢丝缠绕,再设涂装,并采用干燥空气体系,与日本明石海峡大桥相同。

3、美国旧金山——奥克兰海湾新桥

20世纪30年代中期修建的旧金山——奥克兰海湾桥,全长12.8m,是当时世界上最长的、技术水平很高的桥梁,至今人仍为旧金山半岛至东海湾的主干线,车辆繁忙,每天通行近28万车次。设计的地震力很小,其东桥(钢桁架桥)于1989年在里氏7.1度地震烈度时局部坍塌,因此决定修建新海湾桥来代替现有东桥,全长3.6km.新桥每方向有宽25m的桥面,各包括5个车道和一条轻轨铁路。南侧还有宽4.8m的人行道,考虑1500年回归的地震。

主航道桥为自锚式悬索桥,单塔,跨径为385+180m.两主缆直径0.78m,东侧(385m侧)锚固在东墩处的梁上,其素鞍由箱梁支承,并设计成可移动的,以平衡两主缆索力差。西侧(180m侧)主缆通过两分离的索鞍环绕在西墩上,这两个分离索鞍固定在西墩上在施工期间两主缆索力差异采用一项进的座板来平衡。西墩上设计一个预应力帽梁,其重量可以平衡桥梁跨径不对称而在西墩产生的恒载拨力,也用以承受西墩两主缆在运营荷载和地震荷载作用时其素鞍产生的不同应力。塔高160m.主缆不跨越而是固定在单一的索鞍上。塔由4柱组成,沿高度用剪力杆连接。塔柱为钢箱。柱间有间距3m的横隔梁连接。承台高6.5m,支承在13根直径2.5m的钢管桩上,桩内填灌混凝土,桩净长20m,嵌入岩石。

上部结构为两个空心的各向异性版,并将吊杆荷载分布在箱梁上,箱梁间用宽10m、高2.5m、间距30m的横梁连接。该横梁承受吊杆横向72m跨的荷载,保证两箱在荷载、特别是风和地震荷载时的整体作用。吊杆设在两箱的外侧,形成两空间索面,很美观。

4、其它自锚式悬索桥

Sorok岛桥是韩国与Geogcum岛连接本土的桥梁,跨径布置为110m+480m+200m,矢跨比为1:8,加劲梁为钢箱梁,高跨比为1:400,桥塔为H形。1996年哥本哈根的国际桥梁和结构工程协会(LABSE)学术会议论文集中,J.F.Klcin介绍了一种自锚式悬索桥的比较方案,跨径布置为303m+950m+303m,采用单主缆,主跨跨中约200m长的主缆在梁体内部,与梁固结,使结构具有很高的刚度,索夹处设有锚固装置,所以主缆截面沿桥梁是可变化的,这样可大大节省主缆造价。

四、国内自锚式悬索桥

尽管自锚式悬索桥在国处产生发展较早,在国内却很少建造,相关文献也很少,使这种桥型在国内的发展远远落后于国外。2002年在大连建成了世界上第一座加劲梁采用钢筋混凝土材料的自锚式悬索桥,此后大连理工大学桥梁研究所又设计了多座钢筋混凝土自锚式悬索桥,为国内桥梁的建设提供了宝贵的经验。

1大连金石滩金湾悬索桥

金石滩金湾悬索桥是我国,也是世界上第一座钢筋混凝土结构的自锚式悬索桥,位于大连金石滩旅游度假区的滨海路上,横跨帆船港池入海口,已成为当地的一处特殊景观。

金石滩金湾桥主桥为自锚式混凝土悬索桥,它直接把主缆锚固于加劲梁的两端,用加劲梁做成拱形(吊拱体系),用主缆的水平分力来抵搞拱脚的推力,起到了系杆拱桥中系杆的作用。这样既满足了跨中通航的净空要求,同时也使主桥两端高度降低,大大减少了引桥的长度,节省了投资。这种拱度也可使加劲梁刚度增加、挠度减小,从而使该桥在受力和经济上都达到了很好的效果。金湾悬索桥总长198m,其中主桥长108m,引桥长90m,主桥跨径为(24+60+24)m,桥宽10m,矢跨比为1:8,双塔双主缆结构。主桥的加劲梁采用钢筋混凝土边主梁形式,梁高1m,梁段中间浇注横隔梁,引桥为钢筋混凝土连续梁。桥塔为钢筋混凝土门式塔架,塔高27m,塔柱直径为1.5m.主桥的加劲梁及横梁采用50号混凝土。主缆索采用ф7,吊杆采用ф5镀锌高强钢丝,冷铸锚具。基础采用ф1.6m钻孔灌注桩基础。主缆跨过桥塔索鞍,不散开,两端锚固在主梁上,在端部主索套筒内设减震器。梁上吊杆间距为3m.主桥施工主要工序为:钻孔桩基础;浇筑桥墩桥塔;搭设临时支架,支架上浇筑加劲梁;加劲梁达到强度后挂主缆,上索夹,张拉吊杆。

金石滩悬殊索桥采用了新的结构形式,总造价只有498万元,不但取得了良好的经济效益,而且其独特的设计为美丽的海滨城市大连又增添了一处亮丽的风景,同时也为该类桥型的建造提供了宝贵的经验。

2、浙江省平湖市海盐塘桥

海盐塘桥位于浙江省平湖市东湖风景区,上部结构构为自锚式钢筋混凝土悬索桥,主跨跨径组合为(30+70+30)m,全桥长164m;桥面全宽40.0.m;桥梁纵坡为K2.20%.

平湖海盐塘自锚式悬索桥充分利用自锚式悬索桥的受力特性,借鉴了同类桥梁的一些优点,并经过改进。其主要有以下几个特点:主缆锚于梁端,不需要建造昂贵的锚碇;主梁采用了钢筋混凝土箱梁,利用主缆的水平分力,为主梁施加免费预应力,主梁内不再配置预应力钢束;塔顶不设置鞍座,主缆直接锚固在塔顶上。这种桥型结构新颖,造型美观,结构轻巧,构件受力合理,用材经济,造价比同等跨径的预应力混凝土连续梁桥、部分斜拉桥都要低,是一种在中小跨径内非常具有竞争力的桥型。

五、自锚式悬索桥的受力分析

1、受力原理

自锚式悬索桥的上部结构包括:主梁、主缆、吊杆、主塔四部分。传力路径为:桥面重量、车辆荷载等竖向荷载通过吊杆传至主缆承受,主缆承受拉力,而

主缆锚固在梁端,将水平力传递给主梁。由于悬索桥水平力的大小与主缆的矢跨比有关,所以可以通过矢跨比的调整来调节主梁内水平力的大小,一般来讲,

跨度较大时,可以适当增加其矢跨比,以减小主梁内的压力,跨度较小时,可以适当减小其矢跨比,使混凝土主梁内的预压力适当提高。由于主缆在塔顶锚固,为了尽量减少主塔承受的水平力,必须保证边跨主缆内的水平力与中跨主缆产生的水平力基本相等,这可以通过合理的跨径比来调节,也可以通过改变主缆的线形来调节。

另外,自锚式悬索桥中的恒载由主缆来承受,而活载还需要由主梁来承受,所以主梁必须有一定的抗弯刚度,主梁的形式以采用具有一定抗弯刚度的箱形断面较为合适。

2、结构特点

采用自锚式结构体系,和地锚式相比可以不考虑地质条件的影响,而且由于免去了巨大的锚锭,降低了工程造价。采用自锚,将主缆锚固于加劲梁之上,相比同等跨径的其他桥型,更有其特有的曲线线形,外观优雅,而且现代桥梁除了满足自身的结构要求外,也越来越注重景观设计,其发展前途很大。

自锚式悬索桥采用混凝土加劲梁,虽然增加了体系的自重,但也增加了体系的刚度,在一定的跨度允许范围内,使桥梁的安全性指标、适用性指标、经济性指标、美观性指标得到了完美的统一。对结构受力而言,由于采用了自锚体系,将索锚固于主梁上,利用主梁来抵抗水平轴力,对于混凝土这种抗压性能好的材料来说无疑是相当于提供了。免费的。预应力。因此采用的是普通钢筋混凝土结构,节省了大量的预应力器具,而且又由于混凝土材料相对于钢材料的经济性,工程造价大大减少。但是由于混凝土的抗拉、弯的性能较差,所以对其进行受力分析时应综合考虑这个特点。

由于自锚式悬索桥的主缆拉力是传递给桥梁本身,而不是锚锭体,主缆拉力的水平分力在桥梁的上部结构中产生压力,如果两端不受约束的话,其垂直分力将使桥梁的两端产生上拔力。例如金石滩悬索桥桥采用了两种办法来抵抗这种上拔力:一是在锚块处设置拉压支座;二是在主桥和引桥的交接处设置牛腿,从而将引桥的重量压在主梁上。

由于主梁采用混凝土材料,设计和计算时必须计入混凝土的收缩)徐变等因素的影响,这就使得混凝土自锚式悬索桥的设计较钢桥更为复杂。

六、施工工艺

1、主塔施工

悬索桥一般主塔较高,塔身大多采用翻模法分段浇筑,在主塔连结板的部位要注意预留钢筋及模板支撑预埋件。对于索鞍孔道顶部的混凝土要在主缆架设完成后浇筑,以方便索鞍及缆索的施工。主塔的施工控制主要是垂直度监控,每段混凝土施工完毕后,在第二天早晨8:00至9:00间温度相对稳定时,利用全站仪对塔身垂直度进行监控,以便调整塔身混凝土施工,应避免在温度变化剧烈时段进行测试,同时随时观测混凝土质量,及时对混凝土配比进行调整。

2、鞍部施工

检查钢板顶面标高,符合设计要求后清理表面和四周的销孔,吊装就位,对齐销孔使底座与钢板销接。在底座表面进行涂油处理,安装索鞍主体。索鞍由索座、底板、索盖部分组成,索鞍整体吊装和就位困难;可用吊车或卷扬设备分块吊运组装。索鞍安装误差控制在横向轴线误差最大值3mm标高误差最大值3mm.吊装入座后,穿入销钉定位,要求鞍体底面与底座密贴,四周缝隙用黄油填实。

3、主梁浇筑

主梁混凝土的浇筑同普通桥一样,首先梁体标高的控制必须准确,要通过精确的计算预留支架的沉降变形;其次,梁体预埋件的预埋要求有较高的精度,特别是拉杆的预留孔道要有准确的位置及良好的垂直度,以保证在正常的张拉过程中拉杆始终位于孔道的正中心。

主梁浇筑顺序应从两端对称向中间施工,防止偏载产生的支架偏移,施工时以水准仪观测支架沉降值,并详细记录。待成型后立即复测梁体线型,将实际线型与设计线型进行比较,及时反馈信息,以调整下一步施工。

4、索部施工

(1)主缆架设

根据结构特点,主缆架设可以采取在便桥或已浇筑桥面外侧直接展开,用卷扬机配合长臂汽车吊从主梁的侧面起吊安装就位。

缆索的支撑:为避免形成绞,将成圈索放在可以旋转的支架上。在桥面每4-5m,设置索托辊(或敷设草包等柔性材料。),以保证索纵向移动时不会与桥面直接摩擦造成索护套损坏。因锚端重量较大,在牵引过程中采用小车承载索锚端。

缆索的牵引:牵引采用卷扬机,为避免牵钢丝绳过长,索的纵向移动可分段进行,索的移动分三段,分别在二桥塔和索终点共设三台卷扬机。

缆索的起吊:在塔的两侧设置导向滑车,卷扬机固定在引桥桥面上主桥索塔附近,卷扬机配合放索器将索在桥面上展开。主要用吊车起吊,提升时避免索与桥塔侧面相摩擦。当索提升到塔尖时将索吊入索鞍。在主索安装时,在桥侧配置了3台吊机,即锚固区提升吊机、主索塔顶就位吊机和提升倒链。

当拉索锚固端牵引到位时,用锚固区提升吊机安装主索锚具,并一次锚固到设计位置,吊机起重力在5t以上;主索塔顶就位吊机是在两座塔的二侧安置提升高度大于25m时起重力大于45t的汽车吊,用于将主索直接吊上塔顶索鞍就位,在吊装过程中为避免索的损伤,索上吊点采用专用索夹保护;主索在提升到塔顶时,由于主跨的索段比较长,为确保吊机稳定,可在适当的时候用塔上提升倒链协助吊装。

(2)主缆调整

在制作过程中要在缆上进行准确标记。标记点包括锚固点、索夹、索鞍及跨中位置等。安装前按设计要求核对各项控制值,经设计单位同意后进行调整,按照调整后的控制值进行安装,调整一般在夜间温度比较稳定的时间进行。调整工作包括测定跨长、索鞍标高、索鞍预偏量、主索垂直度标高、索鞍位移量以及外界温度,然后计算出各控制点标高。

主缆的调整采用75t千斤顶在锚固区张拉。先调整主跨跨中缆的垂直标高,完成索鞍处固定。调整时应参照主缆上的标记以保证索的调整范围。主跨调整完毕后,边跨根据设计提供的索力将主缆张拉到位。

(3)索夹安装

为避免索夹的扭转,索夹在主索安装完成后进行。首先复核工厂所标示的索夹安装位置,确认后将该处的PE护套剥除。索夹安装采用工作篮作为工作平台,将工作篮安装在主缆上(或同普通悬索桥一样搭设猫道),承载安装人员在其上进行操作。索夹起吊采用汽吊,索夹安装的关键是螺栓的坚固,要分二次进行)索夹安装就位时用扳手预紧,然后用扭力扳手第一次坚固,吊杆索力加载完毕后用扭力扳手第二次紧固。索夹安装顺序是中跨从跨中向塔顶进行,边跨从锚固点附近向塔顶进行。

(4)吊杆安装及加载

吊杆在索夹安装完成后立即安装。小型吊杆采用人工安装,大型吊杆采用吊车配合安装。

由于自锚式悬索桥在荷载的作用下呈现出明显的几何非线性,因此吊杆的加载是一个复杂的过程。主缆相对于主梁而言刚度很小。如果吊杆一次直接锚固到位,无论是张拉设备的行程或者张拉力都很难控制而全桥吊杆同时张拉调整在经济上是不可行的。为了解决这个问题,就必须根据主梁和主缆的刚度、自重采用计算机模拟的办法,得出最佳加载程序。并在施工过程中,通过观测,对张拉力加以修正。

吊索张拉自塔柱和锚头处开始使用8台千斤顶对称张拉。吊索底端冷铸锚具,其锚杯铸有内外螺纹,内螺纹用于连接张拉时的连接杆以便千斤顶作用,外螺纹用螺母连接后将吊杆固定于锚垫板上。由于主缆在自重状态标高较高,导致吊杆在加载之前下锚头处于主梁梁体之内,因此在张拉时需配备临时工作撑脚和连接杆。

第一次张拉施加1/4的设计力将每一根吊杆临时锁定!第二次顺序与第一次相同,按设计力张拉完,然后检测每一根吊杆的实际荷载,最后根据设计力具体对每一根吊杆进行微调。在吊索的张拉过程中,塔顶与鞍座一起发生位移!塔根承受弯矩!这样有可能产生塔根应力超限的危险,为了不让塔根应力超限!张拉一定程度后,根据实际观测及计算分析!进行索鞍顶推,使塔顶回到原来无水平位移时的状态,如此反复后!将每根吊索的张拉力调整至设计值。

施工过程的控制对于自锚式混凝土悬索桥每一道工序的施工均非常重要,尤其在索部施工过程中每一阶段每一根吊索的索力都要及时准确的反馈。吊索张拉时千斤顶的油表读数是一个直观反映,另外利用智能信号采集处理分析仪通过对吊索的振动测出其所受的拉力,两种方法互相检验,确保张拉时每一根吊索的索力与设计相吻合。

七、需要进一步研究的问题

(1)更优越的施工方法的研究。例如将中跨主缆锚固在主梁的底部,用转体施工,从而可以在一定程度上克服施工上的困难,但在跨径较大的情况下,如何保证转体施工时的稳定性,还需要做进一步的研究。

(2)主缆锚固点锚下应力的分布研究。

(3)当主缆外包钢管混凝土时,吊杆在主缆上的锚固方式研究。

(4)吊杆及主缆的合理张拉顺序研究。

(5)新型材料的研究和开发。

(6)受力体系及理论的进一步完善。

八、结论及其发展

(1)通过国内工程时间证明,钢筋混凝土自锚式悬索桥在中小跨径上是一种既经济又美观的桥型,结构的刚度也相对较大,对于中小跨径的公路桥梁和人行桥都适合建造。

(2)对于钢筋混凝土结构的自锚式悬索桥,锚块的设计是一个关键环节,它不但影响结构的整体工作性能,也是影响桥梁的经济效益和美观要求,应给予足够的重视。

(3)自锚式悬索桥主缆的锚固形式是与地锚式的最大不同之处,根据受力大小和锚块构造要求的不同,可采取直接锚固、散开锚固和环绕式锚固等方式。

(4)由于主缆非线性的影响而使吊索张拉时的施工控制变的尤为关键。

悬索桥范文篇6

关键词:悬索桥;自锚式体系;施工;实例

一、前言

一般索桥的主要承重构件主缆都锚固在锚碇上,在少数情况下,为满足特殊的设计要求,也可将主缆直接锚固在加劲梁上,从而取消了庞大的锚碇,变成了自锚式悬索桥。

过去建造的自锚式悬索桥加劲梁大多采用钢结构,如1990年通车的日本此花大桥,韩国永宗悬索桥、美国旧金山——奥克兰海湾新桥、爱沙尼亚穆胡岛桥墩等。2002年7月在大连建成了世界上第一座钢筋混凝土材料的自锚式悬索桥——金石滩金湾桥墩,为该类桥墩型的研究提供了宝贵的经验。此后在吉林、河北、辽宁又有4座钢筋混凝土自锚式悬索桥正在设计和设计和建造中。

自锚式悬索桥有以下的优点:①不需要修建大体积的锚碇,所以特别适用于地质条件很差的地区。

②因受地形限制小,可结合地形灵活布置,既可做成双塔三跨的悬索桥,了可做成单塔双跨的悬索桥。

③对于钢筋混凝土材料的加劲梁,由于需要承受主缆传递的压力,刚度会提高,节省了大量预应力构造及装置,同时也克服了钢在较大轴向力下容易压屈的缺点。

④采用混凝土材料可克服以往自锚式悬索桥用钢量大、建造和后期维护费用高的缺点,能取得很好的经济效益和社会效益。

⑤保留了传统悬索桥的外形,在中小跨径桥梁中是很有竞争力的方案。

⑥由于采用钢筋混凝土材料造价较低,结构合理,桥梁外形美观,所以不公局限于在地基很差、锚碇修建军困难的地区采用。

自锚式悬索桥也不可避免地有其自身的缺点:①由于主缆直接锚固在加劲梁上,梁承受了很大的轴向力,为此需加大梁的截面,对于钢结构的加劲梁则造价明显增加,对于混凝土材料的加劲梁则增加了主梁自重,从而使主缆钢材用量增加,所以采用了这两种材料跨径都会受到限制。

②施工步骤受到了限制,必须在加劲梁、桥塔做好之后再吊装主缆、安装吊索,因此需要搭建大量临时支架以安装加劲梁。所以自锚式悬索桥若跨径增大,其额外的施工费用就会增多。

③锚固区局部受力复杂。

④相对地锚式悬索桥而言,由于主缆非线性的影响,使得吊杆张拉时的施工控制更加复杂。

二、历史回顾

19世纪后半叶,奥地利工程师约瑟夫。朗金和美国工程师查理斯。本德分别独立地构思出自锚式悬索桥的造型。本德在1867年申请了专利,朗金则在1870年在波兰建造了一座小型的铁路自锚式悬索桥。

到20世纪,自锚式悬索桥已经在德国兴起。1915年,德国设计师在科隆的莱茵河上建造了第一座大型自锚式悬索桥——科隆-迪兹桥,当时主要是因为地质条件的限制而使工程师们选择了这种桥型,该桥主跨185m,用木脚手架支撑钢梁直到主缆就位。此后,美国宾夕尼亚州的匹兹堡跨越阿勒格尼河的3座桥和在日本东京修建的清洲桥都受科隆-迪兹桥的影响。虽然科隆-迪兹桥1945年被毁,但原桥台上的钢箱梁仍保存至今。匹兹堡的3座悬索桥比科隆-迪兹桥的跨径要小,但施工技术比科隆-迪兹桥有了很大的进步。科隆-迪兹桥建成后的25年内在德国莱茵河上又修建了4座悬索桥,其中最著名的是1929年建成的科隆-米尔海姆桥,该桥主跨315m,虽然该桥在1945年被毁,但它至仍然保持着自锚式悬索桥的跨径记录。在20世纪30年代,工程师们认为自锚式悬索桥加劲梁的轴力将使该种桥梁的受力性能接近于弹性理论,所以这段时间美国德国修建了许多座自锚式悬索桥。

三、国外现代自锚式悬索桥

1、日本此花大桥

日本此花大桥原名大阪北港连络桥,是现有的最早修建的特大跨径自锚式悬索桥,又是世界上唯一的英国式自锚式悬索桥。1990年通车。

跨径布置为(120+300+120)m,是现有最大跨径的自锚式悬索桥。垂跨比叫大,为1/6,以减小主缆的索力,使能为梁所承受。

该桥采用单主缆,用PWS法施工,包含30束股,每束184丝。仅一个索面,吊索做成倾斜形,构成三角形吊杆,与钢箱加劲梁一起,体现了英国式悬索桥的特点。

钢箱加劲梁为三室箱,梁高3.17m,箱总宽26.5m.由于单索面,按抗扭的需要,箱高较大。塔成呈花瓶形,但下塔柱较矮。人字形上塔柱要在加劲梁节段架设后才能安装。

2韩国永宗大悬索桥

永宗大悬索桥位于韩国汉城仁川国际机场通往汉城市区的高速公路上,是世界上第一座双层行车的公铁两用自锚式县索桥。

跨径布置为125+300+125m,主跨径与日本此花大桥相同。垂跨比为1/5,以减小主缆索力。

塔设计成花瓶形,高104.6m,较美观。采用空中纺线法制索,主缆直径46.7cm.主缆塔处横向间距受塔型限制,公6.6m,而在主跨中部则展宽为35m(与梁宽相同),主缆呈三维空间曲面。

加劲梁三跨连续,其腹板及行驶铁路部分的下层为桁架。梁总高12m,宽35m.上层设6个车道;下设4个车道及双线铁路。加劲梁的上层桥面系为一钢箱,以承受巨大的水平轴力。箱高3m,连同风嘴,总宽41m.梁的施工,分为8个节段,用3000t的海上浮吊架设,全部放在临时排架或塔上,然后安设吊索。

防护体系,加劲梁采用抽湿防护,只要有一个传感器测得相对湿度高于50%时,抽湿系统自动开始一切工作,直至相对湿度降至40%以下。

主缆防护采用S形钢丝缠绕,再设涂装,并采用干燥空气体系,与日本明石海峡大桥相同。

3、美国旧金山——奥克兰海湾新桥

20世纪30年代中期修建的旧金山——奥克兰海湾桥,全长12.8m,是当时世界上最长的、技术水平很高的桥梁,至今人仍为旧金山半岛至东海湾的主干线,车辆繁忙,每天通行近28万车次。设计的地震力很小,其东桥(钢桁架桥)于1989年在里氏7.1度地震烈度时局部坍塌,因此决定修建新海湾桥来代替现有东桥,全长3.6km.新桥每方向有宽25m的桥面,各包括5个车道和一条轻轨铁路。南侧还有宽4.8m的人行道,考虑1500年回归的地震。

主航道桥为自锚式悬索桥,单塔,跨径为385+180m.两主缆直径0.78m,东侧(385m侧)锚固在东墩处的梁上,其素鞍由箱梁支承,并设计成可移动的,以平衡两主缆索力差。西侧(180m侧)主缆通过两分离的索鞍环绕在西墩上,这两个分离索鞍固定在西墩上在施工期间两主缆索力差异采用一项进的座板来平衡。西墩上设计一个预应力帽梁,其重量可以平衡桥梁跨径不对称而在西墩产生的恒载拨力,也用以承受西墩两主缆在运营荷载和地震荷载作用时其素鞍产生的不同应力。塔高160m.主缆不跨越而是固定在单一的索鞍上。塔由4柱组成,沿高度用剪力杆连接。塔柱为钢箱。柱间有间距3m的横隔梁连接。承台高6.5m,支承在13根直径2.5m的钢管桩上,桩内填灌混凝土,桩净长20m,嵌入岩石。

上部结构为两个空心的各向异性版,并将吊杆荷载分布在箱梁上,箱梁间用宽10m、高2.5m、间距30m的横梁连接。该横梁承受吊杆横向72m跨的荷载,保证两箱在荷载、特别是风和地震荷载时的整体作用。吊杆设在两箱的外侧,形成两空间索面,很美观。

4、其它自锚式悬索桥

Sorok岛桥是韩国与Geogcum岛连接本土的桥梁,跨径布置为110m+480m+200m,矢跨比为1:8,加劲梁为钢箱梁,高跨比为1:400,桥塔为H形。1996年哥本哈根的国际桥梁和结构工程协会(LABSE)学术会议论文集中,J.F.Klcin介绍了一种自锚式悬索桥的比较方案,跨径布置为303m+950m+303m,采用单主缆,主跨跨中约200m长的主缆在梁体内部,与梁固结,使结构具有很高的刚度,索夹处设有锚固装置,所以主缆截面沿桥梁是可变化的,这样可大大节省主缆造价。

四、国内自锚式悬索桥

尽管自锚式悬索桥在国处产生发展较早,在国内却很少建造,相关文献也很少,使这种桥型在国内的发展远远落后于国外。2002年在大连建成了世界上第一座加劲梁采用钢筋混凝土材料的自锚式悬索桥,此后大连理工大学桥梁研究所又设计了多座钢筋混凝土自锚式悬索桥,为国内桥梁的建设提供了宝贵的经验。

1大连金石滩金湾悬索桥

金石滩金湾悬索桥是我国,也是世界上第一座钢筋混凝土结构的自锚式悬索桥,位于大连金石滩旅游度假区的滨海路上,横跨帆船港池入海口,已成为当地的一处特殊景观。

金石滩金湾桥主桥为自锚式混凝土悬索桥,它直接把主缆锚固于加劲梁的两端,用加劲梁做成拱形(吊拱体系),用主缆的水平分力来抵搞拱脚的推力,起到了系杆拱桥中系杆的作用。这样既满足了跨中通航的净空要求,同时也使主桥两端高度降低,大大减少了引桥的长度,节省了投资。这种拱度也可使加劲梁刚度增加、挠度减小,从而使该桥在受力和经济上都达到了很好的效果。金湾悬索桥总长198m,其中主桥长108m,引桥长90m,主桥跨径为(24+60+24)m,桥宽10m,矢跨比为1:8,双塔双主缆结构。主桥的加劲梁采用钢筋混凝土边主梁形式,梁高1m,梁段中间浇注横隔梁,引桥为钢筋混凝土连续梁。桥塔为钢筋混凝土门式塔架,塔高27m,塔柱直径为1.5m.主桥的加劲梁及横梁采用50号混凝土。主缆索采用ф7,吊杆采用ф5镀锌高强钢丝,冷铸锚具。基础采用ф1.6m钻孔灌注桩基础。主缆跨过桥塔索鞍,不散开,两端锚固在主梁上,在端部主索套筒内设减震器。梁上吊杆间距为3m.主桥施工主要工序为:钻孔桩基础;浇筑桥墩桥塔;搭设临时支架,支架上浇筑加劲梁;加劲梁达到强度后挂主缆,上索夹,张拉吊杆。

金石滩悬殊索桥采用了新的结构形式,总造价只有498万元,不但取得了良好的经济效益,而且其独特的设计为美丽的海滨城市大连又增添了一处亮丽的风景,同时也为该类桥型的建造提供了宝贵的经验。

2、浙江省平湖市海盐塘桥

海盐塘桥位于浙江省平湖市东湖风景区,上部结构构为自锚式钢筋混凝土悬索桥,主跨跨径组合为(30+70+30)m,全桥长164m;桥面全宽40.0.m;桥梁纵坡为K2.20%.

平湖海盐塘自锚式悬索桥充分利用自锚式悬索桥的受力特性,借鉴了同类桥梁的一些优点,并经过改进。其主要有以下几个特点:主缆锚于梁端,不需要建造昂贵的锚碇;主梁采用了钢筋混凝土箱梁,利用主缆的水平分力,为主梁施加免费预应力,主梁内不再配置预应力钢束;塔顶不设置鞍座,主缆直接锚固在塔顶上。这种桥型结构新颖,造型美观,结构轻巧,构件受力合理,用材经济,造价比同等跨径的预应力混凝土连续梁桥、部分斜拉桥都要低,是一种在中小跨径内非常具有竞争力的桥型。

五、自锚式悬索桥的受力分析

1、受力原理

自锚式悬索桥的上部结构包括:主梁、主缆、吊杆、主塔四部分。传力路径为:桥面重量、车辆荷载等竖向荷载通过吊杆传至主缆承受,主缆承受拉力,而

主缆锚固在梁端,将水平力传递给主梁。由于悬索桥水平力的大小与主缆的矢跨比有关,所以可以通过矢跨比的调整来调节主梁内水平力的大小,一般来讲,

跨度较大时,可以适当增加其矢跨比,以减小主梁内的压力,跨度较小时,可以适当减小其矢跨比,使混凝土主梁内的预压力适当提高。由于主缆在塔顶锚固,为了尽量减少主塔承受的水平力,必须保证边跨主缆内的水平力与中跨主缆产生的水平力基本相等,这可以通过合理的跨径比来调节,也可以通过改变主缆的线形来调节。

另外,自锚式悬索桥中的恒载由主缆来承受,而活载还需要由主梁来承受,所以主梁必须有一定的抗弯刚度,主梁的形式以采用具有一定抗弯刚度的箱形断面较为合适。

2、结构特点

采用自锚式结构体系,和地锚式相比可以不考虑地质条件的影响,而且由于免去了巨大的锚锭,降低了工程造价。采用自锚,将主缆锚固于加劲梁之上,相比同等跨径的其他桥型,更有其特有的曲线线形,外观优雅,而且现代桥梁除了满足自身的结构要求外,也越来越注重景观设计,其发展前途很大。

自锚式悬索桥采用混凝土加劲梁,虽然增加了体系的自重,但也增加了体系的刚度,在一定的跨度允许范围内,使桥梁的安全性指标、适用性指标、经济性指标、美观性指标得到了完美的统一。对结构受力而言,由于采用了自锚体系,将索锚固于主梁上,利用主梁来抵抗水平轴力,对于混凝土这种抗压性能好的材料来说无疑是相当于提供了。免费的。预应力。因此采用的是普通钢筋混凝土结构,节省了大量的预应力器具,而且又由于混凝土材料相对于钢材料的经济性,工程造价大大减少。但是由于混凝土的抗拉、弯的性能较差,所以对其进行受力分析时应综合考虑这个特点。

由于自锚式悬索桥的主缆拉力是传递给桥梁本身,而不是锚锭体,主缆拉力的水平分力在桥梁的上部结构中产生压力,如果两端不受约束的话,其垂直分力将使桥梁的两端产生上拔力。例如金石滩悬索桥桥采用了两种办法来抵抗这种上拔力:一是在锚块处设置拉压支座;二是在主桥和引桥的交接处设置牛腿,从而将引桥的重量压在主梁上。

由于主梁采用混凝土材料,设计和计算时必须计入混凝土的收缩)徐变等因素的影响,这就使得混凝土自锚式悬索桥的设计较钢桥更为复杂。

六、施工工艺

1、主塔施工

悬索桥一般主塔较高,塔身大多采用翻模法分段浇筑,在主塔连结板的部位要注意预留钢筋及模板支撑预埋件。对于索鞍孔道顶部的混凝土要在主缆架设完成后浇筑,以方便索鞍及缆索的施工。主塔的施工控制主要是垂直度监控,每段混凝土施工完毕后,在第二天早晨8:00至9:00间温度相对稳定时,利用全站仪对塔身垂直度进行监控,以便调整塔身混凝土施工,应避免在温度变化剧烈时段进行测试,同时随时观测混凝土质量,及时对混凝土配比进行调整。

2、鞍部施工

检查钢板顶面标高,符合设计要求后清理表面和四周的销孔,吊装就位,对齐销孔使底座与钢板销接。在底座表面进行涂油处理,安装索鞍主体。索鞍由索座、底板、索盖部分组成,索鞍整体吊装和就位困难;可用吊车或卷扬设备分块吊运组装。索鞍安装误差控制在横向轴线误差最大值3mm标高误差最大值3mm.吊装入座后,穿入销钉定位,要求鞍体底面与底座密贴,四周缝隙用黄油填实。

3、主梁浇筑

主梁混凝土的浇筑同普通桥一样,首先梁体标高的控制必须准确,要通过精确的计算预留支架的沉降变形;其次,梁体预埋件的预埋要求有较高的精度,特别是拉杆的预留孔道要有准确的位置及良好的垂直度,以保证在正常的张拉过程中拉杆始终位于孔道的正中心。

主梁浇筑顺序应从两端对称向中间施工,防止偏载产生的支架偏移,施工时以水准仪观测支架沉降值,并详细记录。待成型后立即复测梁体线型,将实际线型与设计线型进行比较,及时反馈信息,以调整下一步施工。

4、索部施工

(1)主缆架设

根据结构特点,主缆架设可以采取在便桥或已浇筑桥面外侧直接展开,用卷扬机配合长臂汽车吊从主梁的侧面起吊安装就位。

缆索的支撑:为避免形成绞,将成圈索放在可以旋转的支架上。在桥面每4-5m,设置索托辊(或敷设草包等柔性材料。),以保证索纵向移动时不会与桥面直接摩擦造成索护套损坏。因锚端重量较大,在牵引过程中采用小车承载索锚端。

缆索的牵引:牵引采用卷扬机,为避免牵钢丝绳过长,索的纵向移动可分段进行,索的移动分三段,分别在二桥塔和索终点共设三台卷扬机。

缆索的起吊:在塔的两侧设置导向滑车,卷扬机固定在引桥桥面上主桥索塔附近,卷扬机配合放索器将索在桥面上展开。主要用吊车起吊,提升时避免索与桥塔侧面相摩擦。当索提升到塔尖时将索吊入索鞍。在主索安装时,在桥侧配置了3台吊机,即锚固区提升吊机、主索塔顶就位吊机和提升倒链。

当拉索锚固端牵引到位时,用锚固区提升吊机安装主索锚具,并一次锚固到设计位置,吊机起重力在5t以上;主索塔顶就位吊机是在两座塔的二侧安置提升高度大于25m时起重力大于45t的汽车吊,用于将主索直接吊上塔顶索鞍就位,在吊装过程中为避免索的损伤,索上吊点采用专用索夹保护;主索在提升到塔顶时,由于主跨的索段比较长,为确保吊机稳定,可在适当的时候用塔上提升倒链协助吊装。

(2)主缆调整

在制作过程中要在缆上进行准确标记。标记点包括锚固点、索夹、索鞍及跨中位置等。安装前按设计要求核对各项控制值,经设计单位同意后进行调整,按照调整后的控制值进行安装,调整一般在夜间温度比较稳定的时间进行。调整工作包括测定跨长、索鞍标高、索鞍预偏量、主索垂直度标高、索鞍位移量以及外界温度,然后计算出各控制点标高。

主缆的调整采用75t千斤顶在锚固区张拉。先调整主跨跨中缆的垂直标高,完成索鞍处固定。调整时应参照主缆上的标记以保证索的调整范围。主跨调整完毕后,边跨根据设计提供的索力将主缆张拉到位。

(3)索夹安装

为避免索夹的扭转,索夹在主索安装完成后进行。首先复核工厂所标示的索夹安装位置,确认后将该处的PE护套剥除。索夹安装采用工作篮作为工作平台,将工作篮安装在主缆上(或同普通悬索桥一样搭设猫道),承载安装人员在其上进行操作。索夹起吊采用汽吊,索夹安装的关键是螺栓的坚固,要分二次进行)索夹安装就位时用扳手预紧,然后用扭力扳手第一次坚固,吊杆索力加载完毕后用扭力扳手第二次紧固。索夹安装顺序是中跨从跨中向塔顶进行,边跨从锚固点附近向塔顶进行。

(4)吊杆安装及加载

吊杆在索夹安装完成后立即安装。小型吊杆采用人工安装,大型吊杆采用吊车配合安装。

由于自锚式悬索桥在荷载的作用下呈现出明显的几何非线性,因此吊杆的加载是一个复杂的过程。主缆相对于主梁而言刚度很小。如果吊杆一次直接锚固到位,无论是张拉设备的行程或者张拉力都很难控制而全桥吊杆同时张拉调整在经济上是不可行的。为了解决这个问题,就必须根据主梁和主缆的刚度、自重采用计算机模拟的办法,得出最佳加载程序。并在施工过程中,通过观测,对张拉力加以修正。

吊索张拉自塔柱和锚头处开始使用8台千斤顶对称张拉。吊索底端冷铸锚具,其锚杯铸有内外螺纹,内螺纹用于连接张拉时的连接杆以便千斤顶作用,外螺纹用螺母连接后将吊杆固定于锚垫板上。由于主缆在自重状态标高较高,导致吊杆在加载之前下锚头处于主梁梁体之内,因此在张拉时需配备临时工作撑脚和连接杆。

第一次张拉施加1/4的设计力将每一根吊杆临时锁定!第二次顺序与第一次相同,按设计力张拉完,然后检测每一根吊杆的实际荷载,最后根据设计力具体对每一根吊杆进行微调。在吊索的张拉过程中,塔顶与鞍座一起发生位移!塔根承受弯矩!这样有可能产生塔根应力超限的危险,为了不让塔根应力超限!张拉一定程度后,根据实际观测及计算分析!进行索鞍顶推,使塔顶回到原来无水平位移时的状态,如此反复后!将每根吊索的张拉力调整至设计值。

施工过程的控制对于自锚式混凝土悬索桥每一道工序的施工均非常重要,尤其在索部施工过程中每一阶段每一根吊索的索力都要及时准确的反馈。吊索张拉时千斤顶的油表读数是一个直观反映,另外利用智能信号采集处理分析仪通过对吊索的振动测出其所受的拉力,两种方法互相检验,确保张拉时每一根吊索的索力与设计相吻合。

七、需要进一步研究的问题

(1)更优越的施工方法的研究。例如将中跨主缆锚固在主梁的底部,用转体施工,从而可以在一定程度上克服施工上的困难,但在跨径较大的情况下,如何保证转体施工时的稳定性,还需要做进一步的研究。

(2)主缆锚固点锚下应力的分布研究。

(3)当主缆外包钢管混凝土时,吊杆在主缆上的锚固方式研究。

(4)吊杆及主缆的合理张拉顺序研究。

(5)新型材料的研究和开发。

(6)受力体系及理论的进一步完善。

八、结论及其发展

(1)通过国内工程时间证明,钢筋混凝土自锚式悬索桥在中小跨径上是一种既经济又美观的桥型,结构的刚度也相对较大,对于中小跨径的公路桥梁和人行桥都适合建造。

(2)对于钢筋混凝土结构的自锚式悬索桥,锚块的设计是一个关键环节,它不但影响结构的整体工作性能,也是影响桥梁的经济效益和美观要求,应给予足够的重视。

(3)自锚式悬索桥主缆的锚固形式是与地锚式的最大不同之处,根据受力大小和锚块构造要求的不同,可采取直接锚固、散开锚固和环绕式锚固等方式。

(4)由于主缆非线性的影响而使吊索张拉时的施工控制变的尤为关键。

悬索桥范文篇7

关键词:悬索桥;隧道锚;数值模拟;FLAC3D

近年来,许多跨山跨海大桥采用悬索桥型式,悬索桥的锚碇方式主要包括重力式锚碇和隧道式锚碇。隧道式锚碇拥有造价低、对环境影响小等优点,故被应用的越来越广泛。学者们对隧道式锚啶进行了一些研究,夏才初等人[1]对锚碇设计方案进行现场模型试验,并根据模型试验的结果对隧道锚岩体可能发生的破坏形式进行判定;阳金惠等人[2]对桥梁采用隧道式锚碇与重力式锚碇的优缺点进行对比分析研究;曾钱帮等人[3]对坝陵河的悬索桥采用不同长度的隧道锚锚体进行对比,并利用有限元软件FLAC3D建立模型进行分析;董志宏等人[4]对矮寨悬索桥吉首岸的隧道锚采用有限元软件进行数值模拟,分析了隧道锚在开挖施工过程中塔基与公路隧道的位移及应力。本文采用FLAC3D有限元软件进行数值模拟分析,对隧道锚的工作原理进行了研究。

1隧道锚的工作原理

1.1隧道锚的组成。关于采用地锚式的悬索桥,主缆的锚固主要是在锚碇上,有重力式锚啶与隧道式锚啶,其中隧道锚的组成见图1。1.2隧道锚的长度计算。隧道锚的长度要根据现场围岩情况以及主缆的拉力来确定,同时还要考虑两个锚塞体之间在开挖时相互影响,此外还需要考虑回填混凝土锚塞体的大小。隧道锚的计算可以参考锚杆的拉拔试验进行。具体的长度计算公式见式(1)。图1隧道式锚啶Lm≥槡33PK槡8CUP[τ](1)式中:Lm表示锚塞体的长度,P表示主缆的设计缆力,K表示隧道锚的安全系数,C表示常参数,UP表示锚塞体的断面周长,[τ]表示接触面的抗剪强度。1.3隧道锚的破坏模式。从理论分析出发,隧道式锚啶的破坏形式主要包括锚塞体结构破坏和锚塞体周围围岩滑动破坏,而根据力学分析及工程经验,锚啶破坏有以下几种,具体见表2。

2有限元模拟

采用FLAC3D软件对隧道锚进行数值模拟,其模拟计算的过程主要包括两个阶段,一是建立分析模型,二是进行模拟并求解,具体如图2所示。2.1几何模型的建立。模型中锚塞体的长度为35m,前锚室的轴线长度为30m,前锚面的高为9.5m,宽为9.5m,后锚室的长度3m,后锚面的高为13m,宽为13m,具体见图3,模型中的参数设置见表3。2.2模拟结果分析。(1)初始应力分析初始应力是指由于自重和构造所产生的应力,本次模拟中仅考虑自重作用下,采用弹塑性模拟进行初始应力的计算,结果见图4。从图4中可以看出,岩体的竖向位移发生在岩体的顶部,出现这样的情况主要是因为在模型中没有建立实际的山坡高度,但这对结构并没有影响,另外从应力图中可以发现,在自重应力的作用下岩体的最大应力出现在结构的底部,其值大约为-3.5MPa。(2)隧道锚开挖后的岩体应力分析对模型中的前锚室、后锚室以及锚塞体进行开挖后,计算岩体应力,其结果见图5。从图5中可以看出,当岩体开挖之后,岩体的应力将发生巨大的变化,在后锚室附近出现应力集中的现象,其中最大的主应力呈现为压应力,其值大约为-0.2~-0.45MPa之间,最小的主应力值大约为-0.2~-0.55MPa之间,在开挖时,需对岩体的顶部加于支护,以保证施工的安全。(3)隧道锚回填后的岩体应力分析对模型中的前锚室、后锚室以及锚塞体进行开挖后,对其进行锚塞体的回填计算,其结果见图6。从图6中可以看出,当岩体在回填之后,岩体的应力依然处于压应力状态,此时其最大的主应力值大约为-0.41~-1MPa之间,最小的主应力值大约为-0.52~-2.85MPa之间,呈现出压应力变大的原因,主要是因为回填的锚塞体处于被挤压的状态,从而导致后锚室的应力集中加剧,应力加大。(4)隧道锚的锚塞体施加拉应力后的应力分析对模型中的前锚室、后锚室以及锚塞体进行开挖后,对其回填的锚塞体施加张拉预应力,其计算结果见图7。从图7中可以看出,对岩体在回填后的锚塞体施加张拉预应力之后,锚塞体出现局部的拉应力,其值大约为-0.5~-1.1之间,而此时岩体的最大的主应力值大约为-4.2MPa,最小的主应力值大约为-0.5~-4.2MPa之间,锚固体预应力的施加使岩体的应力进一步的增大。(5)隧道锚的主缆施加荷载后的应力分析对模型中的主缆施加荷载后,其计算结果见图8。(a)主缆施加荷载后的最大的主应力图(b)主缆施加荷载后的最小主应力图图8埋深体施加张拉预应力后的计算结果从图8中可以看出,对主缆施加荷载之后,对锚固体的影响并不大,但主缆荷载的施加会使锚固体与岩体的接触面发生相对剪切,接触面之间将会产生剪切应力,施加主缆的荷载后,锚塞体的最大主应力其值大约为0.5(拉应力)至-2.1之间,而此时岩体的最大的主应力值大约为-4.2MPa,最小的主应力值大约为0.5(拉应力)至-4.1MPa之间,在拱顶的部位出现拉应力。

3结论

采用FLAC3D有限元软件对隧道锚从岩体开挖到主缆荷载施加全过程所产生的应力进行分析,结果表明,在隧道锚施工过程中结构受力总体安全可控,仅需在开挖时对岩体进行必要的支护即可。

参考文献

[1]夏才初,程鸿鑫,李荣强.广东虎门大桥东锚碇现场结构模型试验研究[J].岩石力学与工程学报,1997(6).

[2]阳金惠,郭占起,万仁辉,等.隧道式锚碇加锚杆在万州长江二桥锚固系统中的应用[J].公路,2002(1).

[3]曾钱帮,王思敬,彭运动,等.坝陵河悬索桥西岸隧道式锚碇锚塞体长度方案比选的数值模拟研究[J].水文地质工程地质,2005(6).

悬索桥范文篇8

关键词:海上;悬索桥;锚碇沉箱基础;施工方案

1工程简介

大连南部滨海大道东起金沙滩东侧的金银山,向西跨越星海湾,在高新园区填海区登陆,全长约10.36km。在经过星海广场时,线路垂直于广场中轴线,并将主桥主跨中心设于广场轴线上。线路距离星海广场百年城雕1000m。主桥为双塔三跨地锚式悬索桥,跨度布置为180+460+180=820m。桥塔采用“门”式框架混凝土结构,塔高112.31m,由塔柱和上下横梁组成。锚碇采用重力式沉箱基础,沉箱尺寸为69m×44m×17m,单个沉箱重约26000t,为国内最大沉箱基础。锚碇基础大沉箱设计尺寸为69m×44m×17m,共150个舱格,其中底板厚1.0m,外壁厚45cm,隔墙厚30cm,舱格尺寸为4.26m×4.04m,沉箱隔墙顶部下卧3.0m,最外侧舱格维持设计高度。本工程共需预制大沉箱2个,单个沉箱混凝土方量约10400m3,钢筋用量约1128.23t,重约26000t。锚碇沉箱底面尺寸为72.0m×47.0m(包括沉箱趾),基床顶面每边比沉箱底面尺寸超出3.0m,为78.0m×53.0m,四周按1∶1坡比放坡至底面。根据设计要求,基床底部需开挖至强风化岩面,同时基床厚度不得低于1.5m。东侧锚碇基床底标高施工中由设计及地勘单位根据实际开挖土样共同确定,基床厚度超过10m;西侧锚碇基床按设计要求厚度为1.5m,实际地质中局部区域存在溶洞及海沟,海沟处要求挖至强风化岩层,然后用骨料填满。基床抛石变更为50~200mm骨料,沉箱安装后,采取升浆措施,以消除基床沉降量。

2施工工艺

2.1基槽开挖。利用GPS基准站和GPS测量系统相对坐标系以及测量控制软件,对挖泥施工进行总体测量控制。东、西锚碇基础基床沿桥梁纵桥向设置船地建立网格,在每个船地再次进行纵横向分条形成小网格,小网格纵向为5m,横向为2m,每个小网格就代表抓斗开口尺寸。把已经分好网格的全部挖泥区位置图连同开挖设计轮廓线输入电脑,利用测量控制软件控制,用于挖泥施工。其中西侧分五个船地进行施工,东侧分六个船地进行施工。挖泥船纵向上由南向北,横向上由西向东依次对每个单位施工区域进行挖泥施工。东西两侧同时施工,分别配备挖泥船和泥驳。挖泥采用“横移挖宽,纵移挖长“的方法进行。挖泥船移位一次的作业宽度为挖泥船自身的宽度;挖泥船每次前移长度即船的纵移宽度等于挖斗的一次向前开挖的长度。每一挖泥区开挖前,应根据所挖基槽的宽度和挖泥船宽计算该基槽横向几次开挖。深基槽、泥层厚部分需分层挖泥,以免泥土塌入已挖基槽。每层深度控制在2m以内,为控制好基槽底标高和基槽平整度,最后一层挖泥需控制抓斗下落深度和岩层的硬度,其中深度不高于-16.5m,岩层要到强风化岩(承载力不小于1000kPa),一直挖到挖不动为止。2.2基槽炸礁。(1)钻孔:在船上确定的孔位处下钻钻孔。下钻前用水砣或套管量测岩面标高,根据水位与设计孔底标高计算钻孔深度,当钻孔深度达到要求时,吹清孔内碎碴提钻,用水砣测量套管内的孔底标高,如达到设计标高进行装药。若出现塌孔现象需再次下钻使成孔达到要求的标高。(2)装药:当成孔深度达到规定要求,按设计要求药量进行连续装药。(3)联线起爆:根据不同距离控制最大齐爆药量,视现场的施工情况,单排或多排起爆(放炮)一次。采用串联法联接,尾端接两发电雷管引爆。在移船前应仔细检查联线有无错、漏接,确认无误后将危险区内的人员和船只撤至安全区,炸礁船撤出距爆区150m外发出起爆信号起爆。2.3基底抛石。为了便于升浆,西锚碇基床抛填划分为3个区域分别进行升浆,为防止漏浆,每个施工区域间采用铺设双层土工布作为施工隔断,抛填顺序由中间到两边,对于溶洞及海沟位置,先抛填骨料找平。将每个分区的分区的抛石范围根据方驳甲板装载石料长度尺寸再分成若干条状区域,通常分条宽度小于方驳装载石料长度4.0~6.0m。采用装载有反铲挖机的600t自航式甲板驳施工。拖轮拖带抛石方驳在定位方驳引导下驻位于指定抛石区域,定位方驳吨位不小于600t。测深仪测出方驳舷外水深,反铲挖掘机按指挥人员指引在方驳一侧船舷外指定位置抛石,抛石指挥人员应勤问水位,用水砣勤测水深,直到抛石顶标高达到设计要求及规范规定为止。本船位抛石达到设计要求顶标高后,方驳向另一侧移动,移船位置2.0m,重新测量,继续抛石施工。本条抛石完成后方驳移至下一分条,直至本施工区域全部完成。基床验收时测量船按规定的网格测量,测量间距5.0×2.0m,测量水深与设计断面校核后,确定局部需补抛的位置,由方驳加反铲重新定位进行补抛,直至全部合格。根据经验西侧锚碇基床预留5cm沉降量。2.4基底整平。整平导轨用φ90钢管加工而成,单根长度12m。导轨沿码头轴线方向布设,整平时向导轨两侧各加宽0.5m,共计整平宽度为48m。据此宽度设计布设5排导轨,每排导轨间距为9.6m。整平刮道采用两根槽钢I12对扣而成,其长度12m;并在刮道中间利用小浮鼓吊浮,以减小刮道挠度,同时起到标志作用。潜水员按轨道顶面标高,用刮道进行粗平。刮道粗平完毕后,进行整平导轨的复测工作,然后再进行一遍刮平、细平工作。2.5锚碇沉箱基础托运安装。在船坞注水前,利用缆绳将沉箱与船坞两侧系船柱连接,以限制沉箱横向移动,防止沉箱碰撞坞墙。综合考虑沉箱起浮跳跃高度(沉箱起浮过程中,由于沉箱与底胎之间存在粘结力,沉箱脱离底胎的一瞬间,可能会出现“跳跃”现象)及沉箱趾部与坞墙距离(10.5m),为防止沉箱起浮瞬间碰撞坞墙,带缆时,缆绳不能绷紧,要保证有5m左右的富余伸长量。所有准备工作完成后,分阶段进行注水起浮作业,如表1所示。沉箱拖运采用“四点三拖+两傍拖”形式,根据拖运沉箱需用拖带力,配备主拖轮1艘,功率7200hp,最大拖带力78.5t;4艘辅助拖轮,每艘功率3600hp,最大拖带力45t,总拖带力满足拖运要求。大沉箱拖运到现场之后,以预先安放好的小沉箱为依托,利用拖轮对大沉箱进行粗定位。粗定位完成后,通过600t吊船上的卷扬机和拖轮配合对沉箱进行细定位,直到达到安装要求为止,如图1所示。2.6基床升浆。锚碇基础结构需要平衡由主缆传递至锚碇的斜向力,故沉箱基础与基床之间需要足够的水平抗拉力。因锚碇基床的厚度和面积特别大,致使基床升浆总量很大,无法一次升浆完成,必须对基床进行隔断分块分次升浆。东锚碇基床采用预制空心方块进行隔断,隔断竖向布置4道,使基床形成5个独立的分块单元,升浆时依次分别对各分块进行升浆。

3结语

沉箱基础作为重力式锚碇的一种新型结构形式,能为跨海大桥或其他离岸较远、水深较深的悬索桥锚碇结构形式提供参考。锚碇结构作为地锚式悬索桥的主要受力结构部分,平衡主缆传递的拉力。主缆拉力主要由缆索系统、钢桁架梁及桥面系、二期恒载以及营运期间作用在桥梁上部的动荷载。锚碇基础为主缆力提供水平及竖向平衡力,另锚碇沉箱基础重量巨大,故对基底有较强的要求。

作者:马振民 梁磊磊 单位:中交二公局二公司

参考文献:

[1]重力式码头设计与施工规范[M].人民交通出版社,2009.

悬索桥范文篇9

关键词:悬索桥隧道式锚碇施工图设计阶段岩体工程地质力学研究建议

1前言

坝陵河大桥离拟建贵州省镇宁至胜境关高速公路起点约21km,地处黔中山原地带。高速公路在关岭县东北跨越坝陵河峡谷,峡谷两岸地势陡峭,地形变化急剧,高差起伏大,河谷深切达400~600m。桥址区属构造剥蚀、溶蚀中低山河谷地貌。岩石建造类型以碳酸盐岩与陆源碎屑岩互层,以碳酸盐岩构成峡谷谷坡,以碎屑岩互层构成谷底及缓坡为基本特征。坝陵河流向与区域地质构造线方向(NW)基本一致。河谷西岸地形较陡,地形坡度40~70°,近河谷一带为陡崖。桥位区西岸(关岭岸)锚碇地段处于斜坡中部,出露的岩层有三叠系中统竹杆坡组第一段(T2z1)中厚层状泥晶灰岩和杨柳井组(T2y)中厚层状白云岩[1,2]。弱风化岩体直接出露于地表,微新岩体埋深30~50m。

坝陵河悬索桥主跨1068m,桥面总宽度24.5m,东岸锚碇采用重力式锚,西岸锚碇采用隧道式锚。西岸隧道式锚碇在技术设计中全长74.7m,最大埋深78m,主要由散索鞍支墩、锚室(34.7m)和锚塞体(40m)三部分组成,两锚体相距18~6.36m。锚塞体和锚室为一倾斜、变截面结构,上缘为圆形,下缘为矩形,纵向呈楔形棱台,矩形截面尺寸为10m×5.8m~21m×14.5m。西岸每根主缆缆力(P)约为270MN,水平夹角约26°。锚体中设预应力锚固系统,主缆索股通过索股锚固连接器与锚体中的预应力锚固系统连接。

悬索桥锚碇在承受来自主缆的竖向反力的同时,主要还承受主缆的水平拉力,是悬索桥的关键承载结构之一,其总体稳定性和受力状态直接影响到大桥的安全和长期使用的可靠性。坝陵河悬索桥是镇宁-胜境关高速公路的重要节点,针对该大桥施工图设计阶段,本文提出坝陵河悬索桥西岸隧道式锚碇及其边坡的工程地质力学研究建议。鉴于锚碇型式受到地形、地质条件的限制,国内外采用隧道式锚碇的大跨悬索桥为数较少[3-7],见诸文献报道的更少,本研究建议有不适当之处,请专家批评指正。

2岩体工程地质力学研究建议

2.1锚碇围岩工程地质条件研究

西岸隧道式锚碇坐落于边坡浅表弱风化~微新岩体中,弱风化~微新岩体的工程地质条件关系到锚碇隧洞的成洞条件及锚碇体系在主缆拉力荷载作用下的整体稳定状态。

边坡浅表部中存在卸荷岩体。岩体卸荷带是伴随河谷下切过程或边坡开挖过程中,由于应力释放,岩体向临空面方向发生卸荷回弹变形,能量的释放导致斜坡浅表一定范围岩体内应力的调整,浅表部位应力降低,而坡体更深部位产生更大程度的应力集中。由于表部应力降低导致岩体回弹膨胀、结构松弛,破坏岩体的完整性,并在集中应力和残余应力作用下产生卸荷裂隙。岩体应力的降低最直观的表现是导致岩体松弛和原有的裂隙发生各种变化,形成新环境下的裂隙网络。这些裂隙一部分是迁就原有构造裂隙引张扩大经改造形成[8],有一些是微裂隙扩展后的显式裂隙,也有在新的应力环境和外动力环境下形成的裂隙。在岩体卸荷、应力降低的过程中,随着新的裂隙系统的形成,也为外动力或风化营力提供了通道,加速岩体的风化和应力的进一步降低。风化岩体裂隙的增多,是岩体卸荷和风化共同造就的。

西岸锚碇边坡岩体在浅部节理裂隙发育,岩体透水性较好,渗透系数高;随着深度的增加,透水性逐渐减弱。深部的岩溶发育情况有待研究。

据初步设计阶段工程勘察资料,西岸锚碇边坡出露的灰岩和白云岩的产状为:倾向50~80°,倾角48~87°。主要发育三组优势节理:①155°∠57°;②220°∠34°;③333°∠46°。在岩层层面、不利结构面组合切割和深部岩溶发育情况下,在主缆巨大拉力下,不能够排除存在深部拉裂滑移面威胁西岸锚碇边坡整体稳定性的可能性。

锚碇围岩工程地质条件研究内容包括:

(1)研究从边坡表部至深部岩体中裂隙的分布密度及张开度变化,揭示岩体的卸荷程度,为锚碇施工期和运行期边坡岩体质量评价以及岩体质量变化趋势提供可靠基础资料;

(2)在岩层层面和不利结构面组合切割下,由于锚碇工程荷载,研究岩体中形成的潜在不稳定块体的安全度以及西岸锚碇边坡的整体稳定性;

(3)采用地球物理勘探方法,研究边坡深部溶蚀裂隙与溶蚀洞穴的分布规律及其发育特征。

2.2锚碇围岩工程力学特性研究

主悬索的巨大拉力通过索股、锚杆传人隧道中填充的(预应力)混凝土,再通过(锚塞体)混凝土与隧道岩体的摩阻力和粘结力传递给周围的岩体。隧道式锚碇在巨大主缆拉力荷载作用下,不仅要维持自身的抗拔稳定,同时还要将自身承受的主缆拉力传递到锚碇围岩中,以充分利用围岩的承载能力,使锚碇和围岩共同作用形成一个整体的承载体系。

锚碇围岩工程力学特性研究包括三个方面:

(1)锚塞体与岩体之间的抗剪摩擦力学性能[9,10]和粘结特性试验研究;

(2)锚碇下部及两锚体之间的岩体处于复杂的拉剪应力状态,研究锚碇围岩在拉剪应力下的变形及强度特性,尤其是弱风化~微新围岩在拉剪复杂应力下的变形、强度及疲劳试验研究,模拟其破坏现象和破坏过程,从而掌握其破坏机制;

(3)岩体在中度~轻度工程爆破开挖扰动下的力学性能研究。

锚碇围岩工程力学试验目的是确定锚碇边坡岩体力学参数建议值,供设计和三维数值仿真采用。建议在设计锚碇区域附近开挖一试验斜硐,采取岩样,并在硐壁打适量钻孔,进行室内岩石力学试验和原位岩石力学性质及配套的各项试验研究工作。主要包括室内岩石力学三轴剪切试验、节理(裂隙)测量、岩体变形特性(静载)试验、岩体抗剪(抗剪断)试验、岩体抗拉试验、混凝土与基岩胶结面抗剪和摩擦等试验和硐室声波普测、硐室地球物理勘探、含水量测试、钻孔声波测试、钻孔压水试验等试验研究工作。锚碇系统的摩阻力由基岩与锚碇系统接触面的正应力与摩擦系数来决定,摩擦系数一般由相似原理进行模型试验或现场测试得到。硐室地球物理勘探是查明锚碇围岩(主要是锚碇下部及两锚体之间的岩体)中的岩溶发育情况。

试验资料的整理应通过对现场和室内大量试验数据的综合分析,结合现行有关行业规范(规程)和工程经验的类比,提出西岸隧道式锚碇边坡区域岩体力学参数建议值,供设计采用。

2.3锚碇围岩渗透及抗溶蚀特性研究

坝陵河悬索桥西岸锚碇围岩为弱风化~微新的灰岩和白云岩,属于易溶蚀化岩体。锚碇边坡地段地下水主要为(节理)裂隙水、岩溶裂隙水和岩溶孔(洞)穴水。西岸隧道式锚碇锚体混凝土浇筑后,在边坡岩体中形成不透水体(阻渗体),从而改变锚碇边坡的地下水渗流场。可以预见,地下水将从锚塞体混凝土边缘绕渗,因此锚塞体与围岩的交界部位岩体更易遭到溶蚀,削弱锚塞体混凝土与围岩之间的摩阻力和粘结力。锚碇围岩渗透特性的研究应着重锚塞体与围岩的交界部位岩体的渗透性能与抵抗溶蚀的能力的试验研究。

为防治锚塞体与围岩交界部位岩体的溶蚀危害采取的工程措施,主要是加强锚碇边坡坡面的排水工程。

2.4锚碇及其围岩相互作用三维数值模拟研究

由于悬索桥安全是依靠锚碇固定桥的体系,锚碇发生移动将严重影响桥梁体系,甚至导致桥体破坏,因此研究西岸隧道式锚碇的锚块及其围岩在主动拉力作用下的稳定性、瞬时变位与长期变位是相当重要的。应建立真实反映隧道式锚碇锚体和围岩二者相互作用、考虑施工过程非线性、地质结构面影响等的三维数值仿真模型,对锚碇稳定性及变位进行预测[11]。

2.5锚碇隧道钻爆开挖及支护的施工技术试验

根据西岸隧道式锚碇为倾斜、变截面的工程特点,需研究锚碇隧道的钻爆开挖以及支护的施工技术[12-14]。在隧道式锚碇施工过程中,自始至终都要注意严格控制围岩的完整性,尽量避免对围岩产生过大的扰动。为保证主缆等硐内钢结构的使用寿命,锚碇的防水按GB50108-2001二级标准进行控制,要求较高。施工开挖后应对围岩中的塑性变形带进行挤密压浆处理,以使锚塞体混凝土与围岩紧密结合。

2.6锚碇锚固系统试验

试验目的是验证用于坝陵河大桥锚碇锚固系统的各产品力学性能是否满足设计要求。试验内容包括锚拉杆组件静载试验、疲劳试验及锚具组装件静载试验和疲劳试验[15]等。

2.7大体积混凝土浇筑防裂的施工技术研究

坝陵河悬索桥西岸隧道式锚碇锚塞体混凝土浇筑量约2×12143.322m3。锚碇结构混凝土浇筑量大,强度高,对施工工艺及养护维修提出了更高的要求;而大体积混凝土浇注施工由于受多种因素影响,若措施不当,很容易出现裂缝,影响到锚塞体混凝土的整体性强度以及钢筋的耐久性和实用性。西岸隧道式锚碇锚塞体大体积混凝土浇筑防裂技术从混凝土原材料选取和配合比的选择、降低原材料温度和控制混凝土拌和物温度、合理选择浇筑工艺和保证整体质量、有效控制混凝土内外温差到对混凝土温度进行监控及时掌握混凝土温度变化动态等一系列技术措施[16-22],都可借鉴汕头海湾悬索桥、宜昌长江公路大桥和重庆鹅公岩大桥的做法。

悬索桥范文篇10

改革开放以来,我国公路建设事业迅猛发展,尤其是高速公路建设,从无到有,现已建成8700km。作为公路建设重要组成部分的桥梁建设也得到相应发展,跨越大江(河)、海峡(湾)的长大桥梁建设也相继修建,一般公路和高等级公路上的中、小桥、立交桥,形式多样,工程质量不断提高,为公路运输提供了安全、舒适的服务。

随着经济的发展、综合国力增强,我国的建筑材料、设备、建筑技术都有了较快发展。特别是电子计算技术的广泛应用,为广大工程技术人员提供了方便、快捷的计算分析手段。更重要的是我国的经济政策为公路事业发展提供多元化的筹资渠道,保证了建设资金来源。

我国广大桥梁工作者,充分认识到这一可贵、难得的机遇,竭尽全力,发挥自己的聪明才智,为我国公路桥梁建设事业,积极工作,多做贡献。

结合常用的桥型谈谈对公路桥梁发展趋势的看法,不当之处,请同行指正。

一、板式桥

板式桥是公路桥梁中量大、面广的常用桥型,它构造简单、受力明确,可以采用钢筋混凝土和预应力混凝土结构;可做成实心和空心,就地现浇为适应各种形状的弯、坡、斜桥,因此,一般公路、高等级公路和城市道路桥梁中,广泛采用。尤其是建筑高度受到限制和平原区高速公路上的中、小跨径桥梁,特别受到欢迎,从而可以减低路堤填土高度,少占耕地和节省土方工程量。

实心板一般用于跨径13m以下的板桥。因为板高较矮,挖空量很小,空心折模不便,可做成钢筋混凝土实心板,立模现浇或预制拼装均可。

空心板用于等于或大于13m跨径,一般采用先张或后张预应力混凝土结构。先张法用钢绞线和冷拔钢丝;后张法可用单根钢绞线、多根钢绞线群锚或扁锚,立模现浇或预制拼装。成孔采用胶囊、折装式模板或一次性成孔材料如预制薄壁混凝土管或其他材料。

钢筋混凝土和预应力混凝土板桥,其发展趋势为:采用高标号混凝土,为了保证使用性能尽可能采用预应力混凝土结构;预应力方式和锚具多样化;预应力钢材一般采用钢绞线。板桥跨径可做到25m,目前有建成35~40m跨径的桥梁。在我看来跨径太大,用材料不省,板高矮、刚度小,预应力度偏大,上拱高,预应力度偏小,可能出现下挠;若采用预制安装,横向连接不强,使用时容易出现桥面纵向开裂等问题。由于吊装能力增大,预制空心板幅宽有加大趋势,1.5m左右板宽是合适的。

预制装配式板应特别注意加强板的横向连接,保证板的整体性,如接缝处采用“剪力键”。为了保证横向剪力传递,至少在跨中处要施加横向预应力。

建议中、小跨径板桥,应由交通行业主管部门组织编制标准图,这样对推动公路桥梁建设,提高质量,加快设计速度都会带来明显的好处。

二、梁式桥

梁式桥种类很多,也是公路桥梁中最常用的桥型,其跨越能力可从20m直到300m之间。

公路桥梁常用的梁式桥形式有:

按结构体系分为:简支梁、悬臂梁、连续梁、T型刚构、连续刚构等。

按截面型式分为:T型梁、箱型梁(或槽型梁)、衍架梁等。

梁式桥跨径大小是技术水平的重要指标,一定程度上反映一个国家的工业、交通、桥梁设计和施工各方面的成就。

现从以下几种常用的结构形式介绍梁式桥在公路桥梁上的使用和发展趋势。

(一)简支T型梁桥

T型梁桥在我国公路上修建最多,早在50、60年代,我国就建造了许多T型梁桥,这种桥型对改善我国公路交通起到了重要作用。

80年代以来,我国公路上修建了几座具有代表性的预应力混凝上简支T型梁桥(或桥面连续),如河南的郑州、开封黄河公路桥,浙江省的飞云江大桥等,其跨径达到62m,吊装重220t。

T形梁采用钢筋混凝土结构的已经很少了,从16m到5Om跨径,都是采用预制拼装后张法预应力混凝土T形梁。预应力体系采用钢绞线群锚,在工地预制,吊装架设。其发展趋势为:采用高强、低松弛钢绞线群锚:混凝土标号40~60号;T形梁的翼缘板加宽,25m是合适的;吊装重量增加;为了减少接缝,改善行车,采用工型梁,现浇梁端横梁湿接头和桥面,在桥面现浇混凝土中布置负弯矩钢束,形成比桥面连续更进一步的“准连续”结构。

预应力混凝土T形梁有结构简单,受力明确、节省材料、架设安装方便,跨越能力较大等优点。其最大跨径以不超过50m为宜,再加大跨径不论从受力、构造、经济上都不合理了。大于50m跨径以选择箱形截面为宜。

目前的预应力混凝土T形梁采用全预应力结构,预应力张拉后上拱偏大,影响桥面线形,带来桥面铺装加厚。为了改善这些缺点,建议预制时在台座上设反拱,反拱值可采用预施应力后裸梁上拱值的1/2~2/3。

预应力混凝土简支或“准连续”T形梁,建议由交通行业主管部门组织编制一套适用的标准图。

(二)连续箱形梁桥

箱形截面能适应各种使用条件,特别适合于预应力混凝土连续梁桥、变宽度桥。因为嵌固在箱梁上的悬臂板,其长度可以较大幅度变化,并且腹板间距也能放大;箱梁有较大的抗扭刚度,因此,箱梁能在独柱支墩上建成弯斜桥;箱梁容许有最大细长度;应力值σg+p较低,重心轴不偏一边,同T形梁相比徐变变形较小。

箱梁截面有单箱单室、单箱双室(或多室),早期为矩形箱,逐渐发展成斜腰板的梯形箱。

箱梁桥可以是变高度,也可以是等高度。从美观上看,有较大主孔和边孔的三跨箱梁桥,用变高度箱梁是较美观的;多跨桥(三跨以上)用等高箱梁具有较好的外观效果。

随着交通量的快速增长,车速提高,人们出行希望有快速、舒适的交通条件,预应力混凝土连续箱梁桥能适应这一需要。它具有桥面接缝少、梁高小、刚度大、整体性强,外形美观,便于养护等。

70年代我国公路上开始修建连续箱梁桥,到目前为止我国已建成了多座连续箱梁桥,如一联长度1340m的钱塘江第二大桥(公路桥)和跨高集海峡、全长2070m的厦门大桥等。

连续箱梁桥的施工方法多种多样,只能因时因地,根据安全经济、保证质量、降低造价、缩短工期等方面因素综合考虑选择。一般常用的方法有:立支架就地现浇、预制拼装(可以整孔、分段串联)、悬臂浇筑、顶推、用滑模逐跨现浇施工等。

预应力钢束采用钢绞线,可以分段或连续配束,一般采用大吨位群锚。为了减轻箱梁自重,可以采用体外预应力钢束。

由于连续箱梁在构造、施工和使用上的优点,近年来建成预应力混凝土连续箱梁桥较多。其发展趋势为:减轻结构自重,采用高标号混凝土40~60号;随着建筑材料和预应力技术发展,其跨径增大,葡萄牙已建成250m的连续箱梁桥,超过这一跨径,也不是太经济的。大跨径连续箱粱要采用大吨位支座,如南京二桥北汊桥165m变截面连续箱梁,盆式橡胶支座吨位达65O0kN。这种样大吨位支座性能如何?将来如何更换等一系列问题有待研究。我国公路桥梁在100m以上多采用预应力混凝土连续刚构桥。

中等跨径的预应力连续箱梁,如跨径40~8Om,一般用于特大型桥梁引桥、高速公路和城市道路的跨线桥以及通航净空要求不太高的跨河桥。

(三)T形构桥

这种结构体系有致命弱点。从60年代起到80年代初,我国公路桥梁修建了几座T形刚构桥,如著名的重庆长江大桥和沪州长江大桥,80年以后这种桥型基本不再修建了,这里不赘述。

(四)连续刚构桥

连续刚构桥也是预应力混凝土连续梁桥之一,一般采用变截面箱梁。我国公路系统从80年中期开始设计、建造连续刚构桥,至今方兴未艾。

连续刚构可以多跨相连,也可以将边跨松开,采用支座,形成刚构一连续梁体系。一联内无缝,改善了行车条件;梁、墩固结,不设支座;合理选择梁与墩的刚度,可以减小梁跨中弯矩,从而可以减小梁的建筑高度。所以,连续刚构保持了T形刚构和连续梁的优点。

连续刚构桥适合于大跨径、高墩。高墩采用柔性薄壁,如同摆柱,对主梁嵌固作用减小,梁的受力接近于连续梁。柔性墩需要考虑主梁纵向变形和转动的影响以及墩身偏压柱的稳定性;墩壁较厚,则作为刚性墩连续梁,如同框架,桥墩要承受较大弯矩。

由于连续刚构受力和使用上的特点,在设计大跨径预应力混凝土桥时,优先考虑这种桥形。当然,桥墩较矮时,这种桥型受到限制。

近年来,我国公路上修建了几座著名的预应力混凝土连续刚构桥,如广东洛溪大桥,主孔180m;湖北黄石长江大桥,主孔3×245m;广东虎门大桥副航道桥,主孔270m,为目前世界同类桥中最大跨径。

我国的预应力混凝土连续刚构桥,几乎都采用悬臂浇筑法施工。一般采用50~60号高标号混凝土和大吨位预应力钢束。

现在,有人正准备设计300m左右跨径的预应力混凝土连续刚构,在我看来,若能采用轻质高强混凝土材料,其跨径有望达300m左右。由于连续刚构跨径加大,自重随着加大,恒载比例已高达90%以上,故片面增大跨径,已无实际意义。此时应考虑选择斜拉桥或别的桥型。

三、钢筋混凝立拱桥

拱桥在我国有悠久历史,属我国传统项目,也是大跨径桥梁形式之一。

我国公路上修建拱桥数量最多。石拱桥由于自重大,在料加工费时费工,大跨石拱桥修建少了。山区道路上的中、小桥涵,因地制宜,采用石拱桥(涵)还是合适的。大跨径拱桥多采用钢筋混凝土箱拱、劲性骨架拱和钢管混凝土拱。

钢筋混凝土拱桥的跨径,一直落后于国外,主要原因是受施工方法的限制。我国桥梁工作者都一直在探索,寻求安全、经济、适用的方法。根据近年的实践,常用的拱桥施工方法有:(1)主支架现浇;(2)预制梁段缆索吊装;(3)预制块件悬臂安装;(4)半拱转体法;(5)刚性或半刚性骨架法。

钢筋混凝土拱桥自重较大,跨越能力比不上钢拱桥,但是,因为钢筋混凝土拱桥造价低,养护工作量小,抗风性能好等优点,仍被广泛采用,特别是崇山峻岭的我国西南地区。

钢筋混凝土拱桥形式较多,除山区外,也适合平原地区,如下承式系杆拱桥。结合环境、地形,加之拱桥的雄伟、美丽的外形,可以创造出天人合一的景观。例如,贵州省跨乌江的江界河桥,地处深山、峡谷,拱桥跨径330m,桥面离谷底263m,桥面仁立,令人叹服桥梁设计者和建设者的匠心和伟大。还有刚建成的万县长江大桥,劲性骨架箱拱,跨径420m,居世界第一。广西邕宁县的邕江大桥,钢管混凝土拱,跨径312m,都是令人称道的拱桥。

我国钢筋混凝土拱桥的发展趋势:拱圈轻型化,长大化以及施工方法多样化。

值得提醒注意的是,大跨径拱桥施工阶段及使用阶段的横向稳定性,据统计国内、外拱桥垮塌事故,多发生在施工阶段。

四、斜拉桥

斜拉桥是我国大跨径桥梁最流行的桥型之一。目前为止建成或正在施工的斜拉桥共有3O余座,仅次于德国、日本,而居世界第三位。而大跨径混凝土斜拉桥的数量已居世界第一。

50年代中期,瑞典建成第一座现代斜拉桥,40多年来,斜拉桥的发展,具有强劲势头。我国70年代中期开始修建混凝土斜拉桥,改革开放后,我国修建斜拉桥的势头一直呈上升趋势。

我国一直以发展混凝土斜拉桥为主,近几年我国开始修建钢与混凝土的混合式斜拉桥,如汕头石大桥,主跨518m;武汉长江第三大桥,主跨618m。钢箱斜拉桥如南京长江第二大桥南汊桥,主跨628m;武汉军山长江大桥,主跨460m。前几年上海建成的南浦(主跨423m)和杨浦(主跨6O2m)大桥为钢与混凝土的结合梁斜拉桥。

我国斜拉桥的主梁形式:混凝土以箱式、板式、边箱中板式;钢梁以正交异性极钢箱为主,也有边箱中板式。

现在已建成的斜拉桥有独塔、双塔和三塔式。以钢筋混凝土塔为主。塔型有H形、倒Y形、A形、钻石形等。

斜拉索仍以传统的平行镀锌钢丝、冷铸锚头为主。钢绞线斜拉索目前在汕头石大桥采用。钢绞线用于斜拉索,无疑使施工操作简单化,但外包PE的工艺还有待研究。

斜拉桥的钢索一般采用自锚体系。近年来,开始出现自锚和部分地锚相结合的斜拉桥,如西班牙的鲁纳(Luna)桥,主桥440m;我国湖北郧县桥,主跨414m。地锚体系把悬索桥的地锚特点融于斜拉桥中,可以使斜拉桥的跨径布置更能结合地形条件,灵活多样,节省费用。

斜拉桥的施工方法:混凝土斜拉桥主要采用悬臂浇筑和预制拼装;钢箱和混合梁斜位桥的钢箱采用正交异性板,工厂焊接成段,现场吊装架设。钢箱与钢箱的连接,一是螺栓,二是全焊,三是栓焊结合。

一般说,斜拉桥跨径300~1000m是合适的,在这一跨径范围,斜拉桥与悬索桥相比,斜拉桥有较明显优势。德国著名桥梁专家F.leonhardt认为,即使跨径14O0m的斜拉桥也比同等跨径悬索桥的高强钢丝节省二分之一,其造价低30%左右。

斜拉桥发展趋势:跨径会超过10O0m;结构类型多样化、轻型化;加强斜拉索防腐保护的研究;注意索力调整、施工观测与控制及斜拉桥动力问题的研究。

五、悬索桥

悬索桥是特大跨径桥梁的主要形式之一,可以说是跨千米以上桥梁的唯一桥型(从目前已建成桥梁来看说是唯一桥型)。但从发展趋势上看,斜拉桥具有明显优势。但根据地形、地质条件,若能采用隧道式锚碇,悬索桥在千米以内,也可以同斜拉桥竞争。根据理论分析,就目前的建材水平,悬索桥的最大跨径可达到3500m左右。已建成的日本明石海峡大桥,主跨已达1990m。正在计划中的意大利墨西拿海峡大桥,设计方案之一是悬索桥,其主跨3500m。当然还有规划中更大跨径的悬索桥。

悬索桥跨径增大,如上所述当跨径达35O0m时,动力问题将是一个突出的矛盾,所以,对特大跨桥梁,已提出用悬索桥和斜拉桥相结合的“吊拉式”桥型。在国外这种桥型目前还停留在研究之中,并未诸实施。然而,在我国贵州省乌江1997年底建成了一座用预应力钢纤维混凝土薄壁箱梁作为加劲梁的吊拉组合桥,把桥梁工作者多年梦寐追求的桥型付诸实现,这是贵州桥梁工作者的大胆尝试,对推动我国乃至世界桥梁建设都有巨大作用。乌江吊拉组合桥,经过近两年运行和测试,结构性能良好,特别是两种桥型交接部位的处理,较为理。

其实我国很早就开始修建悬索桥,究其跨径和规模远不能同现代悬索桥相比。到了90年代初,我国才开始建造大跨悬索桥,例如:广东汕头海湾大桥,主跨452m,加劲梁采用混凝土箱梁;广东虎门大桥,主桥跨径888m,钢箱悬索桥;正在建设的钢箱悬索桥——江阴长江大桥,主跨1385m。由此可见,现代悬索桥在我国已具有相当规模和水平,已进人世界悬索桥的先进行列。

悬索桥采用钢箱作为加劲梁,在我国较为普遍。美国和日本的悬索桥的加劲梁一律用桁架。最有名的明石海峡桥,主跨1990m也是桁架加劲粱。欧洲人研究认为,正交异性板钢箱作为加劲梁,梁高矮,如同机翼一样,空气动力性能好,横向阻力小,大大减小了塔的横向力;抗扭刚度大,顶板直接作桥面板,恒载轻,主缆截面可以减小,从而降低用钢量和造价。我国一起步修建现代悬索桥,加劲梁就采用钢箱,而对桁架梁作为加劲梁的优劣并未作深人分析研究。在已修建的几座悬索桥上,桥面沥青铺装相继出现了损坏现象,有的桥梁工作者反思认为,一是钢箱作为加劲梁还有一些方面值得改进,如钢箱桥面板的局部挠度以及箱体的通风,降低钢箱铺装层的温度;二是桁架梁作为加劲梁,还有不少优点,如加劲梁刚度大,桥面温度相对低,还可解决双层交通等。用混凝土箱梁作为加劲梁的尝试,国外有先例,在我国汕头海湾桥也实现了。总结经验,也许不会再采用混凝土箱梁作为加劲梁了。

塔的材料,国外以钢为主,我国以混凝土为主,近年来国外也有向混凝土发展的趋势,基础多为钻孔桩或沉井。

锚碇一般以重力式和地锚为主,少数地质条件好的采用了隧道锚。深水锚碇往往采用沉井或地下连续墙。如江阴长江大桥北锚,位于冲积层上,采用69m×51m带有36个隔仓的沉井,下沉深度达58m;日本明石海峡大桥神户侧锚碇采用环形地下连续墙基础,直径85m,高73.5,槽宽2.2m。

悬索桥结合地形、地质、水文可采用单跨悬吊、双跨不对称悬吊和三跨悬吊(简支和连续体系)。据查,世界上悬索桥多为单跨悬吊,其次是不对称双跨和三跨简支悬吊。三跨悬吊连续体系最少。丹麦大带桥,三跨悬吊连续,其跨径为535m+1624m+535m;中国的厦门海沧大桥,三跨悬吊连续,其跨径为230m+648m+23Om,可称世界同类桥梁的第二位。

主缆的施工方法:空中纺线法(AS);索股法(PWS)。我国几座悬索桥均采用PWS法。索股采用φ5mm镀锌钢丝,由91或127根φ5组成一根索股,根据受力钢缆由不同数量索股组成。

我国今后还会在长江、海湾修建更大跨径的悬索桥;一般加劲梁仍用钢箱;塔、锚用混凝土,但应对大体积混凝土水化热的冷却降温措施加以研究;悬索桥风动稳定还需进一步研究;钢箱梁的桥面铺装,我国已建成的几座悬索桥,都存在问题,今后应进一步研究钢箱梁桥面铺装材料、钢箱除锈、清洁、铺装的粘结以及施工工艺等。

结束语