土坝范文10篇

时间:2023-04-02 07:15:07

土坝范文篇1

1.1水库土坝结构

水库土坝结构的修筑质量差是当前水库施工工程中常见的问题之一,这主要是因为施工人员在对水库土坝结构进行施工的过程中,没有对周围的地质情况进行全面的了解,而且所采用的施工技术和施工材料也存在着一定的质量缺陷,这就导致水库的土坝结构在使用过程中出现严重的质量问题,使大坝出现渗流的现象。

1.2水库的使用过程

水库在使用过程中,大坝坝体出现局部坍塌的情况,这就对土坝结构的稳定性,带来了严重的影响,使其水库大坝的抗滑功能和稳定性能无法满足水库工程设计的要求,从而出现了许多安全隐患,对水库的正常运行和人们的日常生活造成了严重的影响。

2土坝加固设计方案

从我国当前水库工程发展情况来看,水库土坝结构的除险加固问题,不仅对水库的正常使用造成了严重的影响,还存在着一定安全隐患,时刻威胁着人们的生命财产安全。为此,对水库土坝加固方案进行设计。目前,人们在水库土坝加固设计中所包含的内容主要有:土坝坝体加厚、坝体防渗和坝体的截渗设计等。

2.1大坝坝体培厚、坝坡放缓设计

在对大坝坝体结构进行抗滑稳定加固施工工程中,坝体边坡的抗滑稳定性不足的问题直接影响了水库的使用功能,因此,为了保障水库的正常使用,技术人员就要采用大坝坝体培厚以及边坡放缓设计,来提高大坝坝体的稳定性。不过由于在不同的水库工程施工中,其大坝结构也存在着一定的差异,而且在对其进行施工的过程中还要考虑到水库周围的地质环境等综合因素,因此采用经济、安全的设计方案对其进行施工处理是十分必要的。

2.1.1上游培厚、坝坡放缓,下游坝坡不变将原上游坝坡1:2.5、1:2.75、1:3.3三级变坡通过坝体底部培厚为1:2.75、1:3.0、1:3.50,变坡处高程分别为89.00m和77.00m,坝顶宽度保持6.0m。大坝下游坝坡原设计为1:2.5、1:2.8、1:3.2、1:1.50,保持不变。

2.1.2上游坝坡削坡放缓,下游坝坡相应培厚将原上游坝坡从高程89.00m起向上通过削坡改成1:2.75,变坡处高程为77.00m,上游坝坡为1:2.75、1:3.3二级变坡。坝顶总宽不变,大坝轴线向下游平移2.75m。下游坝坡在原坝坡基础上相应培厚,保持原坡比不变。变坡处高程分别为92.00m、83.00m、74.50m,变坡处设宽2.0m马道,马道内侧设排水沟。

2.1.3上游坝坡底部培厚、上部消坡放缓,下游坝坡相应培厚将原上游坝坡三级变坡通过底部培厚、上部消坡放缓改成1:2.75、1:3.0、1:3.5,变坡处高程分别为89.00m和77.00m,坝顶总宽保持6.0m不变,大坝轴线向下游移2.00m。下游坝坡在原坝坡基础上相应培厚,保持原坡比不变。变坡处高程分别为92.00m、83.00m、74.50m,变坡处设宽2.0m马道,马道内侧设排水沟。

2.2大坝坝体防渗设计

2.2.1冲抓套井回填粘土防渗墙作为水库大坝加固设计中最常见的一种加固方式,防渗墙的使用范围较广,施工设计方法也有很多,其中回填粘土防渗墙和沥青混凝土防渗墙是较为常见的两种施工设计方案。利用冲抓式打井机具,在土坝渗漏范围造井,用粘性土料分层回填夯实,形成一连续的套接粘土防渗墙,截断渗流通道,以起到防渗目的。此外,在回填粘土夯击时,夯锤对井壁的土层挤压,使其周围土体密实,提高堤坝质量,从而达到坝体防渗、加固的目的。采用排套井平行坝轴线布置,套井直径为1.1m,排距为0.8m,套井深入坝基强风化层内1m。

2.2.2机械造槽法修建沥青混凝土防渗墙与粘土相比,沥青混凝土的塑性更佳,防渗能力和变形能力也更强,当防渗墙出现裂缝时,沥青混凝土还可以通过自行愈合的能力来治理裂缝,因而防渗效果更佳。一般坝体在采取沥青混凝土防渗墙时,多采用机械造槽法进行施工,必要时还会与帷幕灌浆技术相结合,以确保坝体防渗体系的可靠性,提高土坝加固设计效果。

2.3劈裂灌浆

劈裂灌浆防渗机理,是沿土坝轴线的小主应力面,用一定的泥浆压力人为地劈开坝体,灌注泥浆,利用浆坝互压、泥浆析水固结和坝体湿陷密实等作用,使所有与浆脉连通的裂缝、洞穴等隐患得到充填、挤压密实,形成竖直边浆体防渗墙。同时,由于灌浆压力在坝体内部所产生的应力再分配,也能改善坝体的应力状态,促进变形稳定。劈裂灌浆按双排孔布置,孔距为4.0m,孔径为1.0mm,排距为0.5m,孔深入基岩强风化层1.0m。钻孔灌浆采用分序钻灌,这样可以使灌入的浆液平衡均匀分布于坝体,有利于泥浆排水固结,避免坝体产生不均匀沉陷和位移。施工时,先钻灌一序孔,后在序孔中间等分插灌二序孔。

2.4大坝坝基和坝肩防渗加固设计

对于水库大坝来讲,坝基的加固和坝肩的加固也十分重要。如果坝基所处位置的地质层为强风化砂岩,并且还附有一定透水能力强的残积土层,那么该大坝的坝基就非常容易出现渗漏现象,必须要对其采取有效的加固防渗措施。一般在实际的工程实践中,对于这种坝基和坝肩的防渗加固设计多采用帷幕灌浆的方法或者高压喷射灌浆的方法。灌浆的质量和相关技术参数需要结合工程的实际情况,通过一定的灌浆试验来最终确定,以保证加固设计方案的可行性与可靠性。

3结束语

土坝范文篇2

摘要:浸水变形本构模型增量有限元法

1引言

众所周知,土坝对水的功能十分敏感,尤其在水库蓄水初期,土坝会发生某些非凡的变形。比如,水库初次蓄水期,土坝上游坝壳表面往往产生向上游的位移,这和水压力功能的方向正好相反,同时还伴随一定的下沉,而不是想象中的随浮托力的增大而上抬。大量的探究成果表明,产生这种现象的根本原因就在于坝体土料的浸水变形,或称湿化变形[1,2]。浸水变形往往使坝顶发生横向的伸长变位从而引起坝体发生不均匀沉降,甚至导致坝体产生纵向裂缝[1]。因此,如何对初次蓄水期土坝的浸水变形进行准确而合理地分析,在此基

础上把握其发生和发展的规律,对确保土坝的正常运行具有重要意义。

2浸水变形的分析方法

目前有关浸水变形增量分析方法的探究还不够深入。但据笔者分析,文献[2]所建议的一种增量分析方法,即增量有限元法,相对而言还是较为合理的。其基本原理如下摘要:设单元在浸水前的应力状态为{σd},假定它是由n级应力增量按比例增加达到的,则每级应力增量为式中,刚度矩阵[Dd]是和当前的应力状态有关的干态非线性弹性或弹塑性矩阵。

将各级增量下的{Δε}累加,即得浸水前的总应变{ε}。

假定浸水前后应变相同,则浸水后每级的应力增量可按下式计算摘要:

{Δσw}=[Dw]{Δε}(3)

式中[Dw]为浸水饱和状态的刚度矩阵。

将各级增量下的{Δσ}累加,即得浸水后的总应力{σ}。

按假想约束的思路,可确定由浸水变形产生的“初应力”为

{Δσ}={σd}-{σw}(4)

然后,将此假想的“初应力”约束释放,转化为等效结点荷载,即

式中,[B]为单元几何矩阵;负号表示由于浸水变形转化的等效结点荷载实际上不存在,故需从单元结点荷载中予以扣除。

由等效结点荷载{F},即可求得土体由于浸水变形所引起的附加位移及附加应变。

为简化计算,可将{F}和水压力或渗透压力、浮托力等所转化的结点荷载叠加在一起进行计算。

3应力—应变本构模型

目前,非线性弹性的邓肯E—B模型是土石坝应力变形计算中最常用的模型[3]。该模型的基本原理如下摘要:

材料的切线模量

4应用实例

某水库大坝坝型为砂砾石坝壳粘土心墙坝,最大坝高127.5m,坝顶长440m。上游坝坡1∶2.2,下游坝坡1∶1.8。心墙两侧设反滤层,上游侧宽3m,下游侧宽5m。大坝心墙土料自1999年10月开始填筑,2001年底大坝竣工、水库开始蓄水。

基于上述的邓肯E-B本构模型及浸水变形的增量有限元方法,笔者编制了相应的二维有限元计算程序,用此程序对该水库初次蓄水时的大坝变形进行了有限元计算。计算取用的断面为大坝设计桩号为0+226m的最大断面。计算中模拟逐级加载过程,共采用17个荷载级,其中施工阶段坝体填筑分11级,水库初次蓄水从现有的几个观测水位直到正常高水位594.0m,共分6级。计算所用的坝体材料模型参数见表1所列。

心墙在竣工期及和各蓄水位相应的最大竖向变位的计算结果见表2,此表中还同时列出相应的部分竖向变位观测成果,以资对照。

从图1、图2及表2可以看出,随着水库蓄水水位的逐渐升高,土体颗粒受到水的润滑进而产生越来越大的浸水变形,从而使心墙产生越来越大的竖向变位;同时可以看出,计算得到的竖向变位和实测结果较为接近,且二者的变化趋向基本一致。根据位移计算结果,计算得到的竖向位移均是铅直向下的,这说明浸水变形所引起的下沉功能总大于浮托力所引起的上抬功能。从图3、图4及其它蓄水位时的水平位移计算结果可以看出,

上游坝壳土体的水平位移受浸水变形的功能较为明显,在竣工期及较低蓄水位时,由于无水平推力或水平推力尚小,致使上游坝壳部分单元产生向上游的位移,但随着蓄水位升高,几乎全部上游坝壳的单元水平位移又变为向下游的位移。

5结语

本文基于土坝浸水变形分析的增量有限元法,并结合邓肯E—B模型,编制了相应的土坝应力及变形有限元计算程序。应用实例的计算结果表明,所采用的增量有限元分析方法是合理的,所得计算结果也是接近实际的。显然,本文有关土坝浸水变形的探究思路和分析方法,对类似工程新问题的探究具有重要的参考价值。

参考文献

[1]朱百里,沈珠江.计算土力学[M].上海摘要:上海科学技术出版社,1990.

土坝范文篇3

一、原材料试验

试验所用水泥为安徽宁国海螺32.5R级复合硅酸盐水泥,掺合料采用膨润土,细骨料为天然河砂或石屑,粗骨料为一级配石灰岩碎石,各种材料的物理性能试验成果分述如下。

1.1水泥

试验所用水泥为安徽宁国海螺32.5R级复合硅酸盐水泥,其物理力学性能试验成果。

1.2细骨料

试验所用细骨料为天然河砂或石屑,各项物理性能指标试验成果见表2,表3。

表2砂料试验成果

名称

细度模数

含泥量

(%)

饱和面干表观密度(kg/cm3)

饱和面干吸水率

(%)

3.0

1.1

2520

2.5

表3石屑试验成果

名称

细度模数

含泥量

(%)

饱和面干表观密度(kg/cm3)

饱和面干吸水率

(%)

石屑

3.3

1.2

2620

1.6

细骨料试验成果表明,天然砂的细度模数为3.0、石屑的细度模数为3.3,属于粗砂,含泥量满足水工混凝土拌和用砂有关规范要求。

1.3粗骨料

试验所用粗骨料为石灰岩碎石,石料级配为一级配,Dmax=20mm,各项物理性能指标试验成果见表4

表4粗骨料试验成果

名称

饱和面干吸水率

(%)

饱和面干表观密度(kg/cm3)

含泥量

(%)

针片状含量

(%)

碎石

1.6

2580

0.3

1.3

粗骨料试验成果表明,本粗骨料含泥量等各指标均满足水工混凝土拌和用粗骨料要求。

1.4膨润土

试验所用膨润土为钠基膨润土,其细度为11.2%(按水泥细度试验方法)。

1.5外加剂

试验用外加剂为浙江五龙化工股份有限公司生产的ZWL-B-2型引气缓凝泵送剂。

二、低弹混凝土基本参数的确定

根据本工程防渗墙的施工特点(采用人工开挖坝体,倒挂井护壁,人工振捣),因此工作面较小,施工难大较大,要求防渗墙混凝土拌和物应具有良好的和易性、粘聚性及一定的流动性,而做为防渗墙应具有弹性模量低、变形性能好的特点,能有效适应土坝坝体的变形。但由于现场施工进度要求试验室在一个月多的时间内,提供合宜的施工配合比。而本工程防渗墙混凝土的设计要求混凝土强度等级为C8、坝落度为9~11cm、弹性模量≤14000MPa,抗渗等级W4,根据资料分析国内同类型防渗墙混凝土设计弹性模量为≤15000Mpa,而施工实测弹性模量均在14000Mpa以上,因此本工程的设计要求是比较高的。在这么短的时间内,决定采用非常规的试验安排,根据有关经验,对不同水胶比、水泥用量、膨润土掺量、细骨料种类、含砂率等因素经优化直接进行一轮试验,能过试验成果分析,选定合宜的施工配合比,故确定以下参数。

2.1水胶比

水胶比是决定混凝土强度、抗渗性及耐久性等指标的重要参数,对于本工程防渗墙的混凝土应具有弹性模量低,较高的抗渗性能,并应具有C8的强度。根据实际细骨料采用天然砂时水胶比为0.68、0.70、0.72、0.74、0.75,细骨料采用石屑时水胶比为0.70、0.72、0.74、0.76等各种水胶比进行混凝土的抗压强度、渗透系数、及弹性模量等指标的试验。

2.2膨润土是以蒙脱石为主要成份的含水硅酸类,属无机非金属矿物,其颗粒一般较细,掺入混凝土中有利降低混凝土的弹性模量,但由于本工程要求防渗墙混凝土的强度较高,但细骨料细度模数又较大,故细骨料用砂时膨润土选择20%、25%、30%的掺量,细骨料用石屑时选择25%、30%、35%的掺量进行各项性能试验。

2.3砂率

砂率的变动将混凝土拌和物的流动性产生很大的影响,并对混凝土的弹性模量产生较大的影响,应选用较大的砂率,但由于工程工期紧,故混凝土中细骨料采用天然砂时选择50%的砂率,混凝土中细骨料采用石屑时选择60%的砂率进行不同水胶比和不同膨润土掺量的各项性能试验。

2.4用水量的确定

混凝土单位用水量的多少是控制混凝土拌和物流动度大小的主要因素,因此确定单位用水量应以混凝土拌和物达到能满足施工要求的流动度为依据。根据本工程设计要求坝落度应控制在9~11cm之间,并结合外加剂的减水性能确定混凝土细骨料采用天然砂时用水量为260~270kg/cm3之间,混凝土细骨料采用石屑时用水量为260~275kg/cm3之间。

2.5外加剂的掺量

外加剂的掺量根据外加剂生产企业提供的掺量为胶凝材料用量的0.25%。

三、试验方案及成果分析

3.1根据上述确定的参数,按不同水胶比、膨润土掺量与相同砂率的不同配合比进行混凝土的各项性能指标的试验。试验严格按有关规程进行。

注:编号S的是指细骨料用天然砂,编号G的是指细骨料用石屑。

3.2成果分析

1、水胶比是影响混凝土强度的主要因素,随着水胶比的增大混凝土的抗压强度、抗拉强度、弹性模量、渗透等级均随着下降,这符合混凝土和水胶比的一般规律。

2、膨润土掺量是影响混凝土强度的次要因素,随着膨润土掺量的增加混凝土的抗压强度、抗拉强度、弹性模量、渗透等级均随着下降。

3、在一定范围内,砂率对混凝土的力学性能影响较小。

4、膨润土掺量相同,水胶比每缩小0.03,混凝土的抗压强度约增加14.3%,抗拉强度约增加24.2%,弹性模量约增加9.9%。

5、膨润土掺量相同,混凝土抗压强度相同的情况下,细骨料使用石屑与使用砂比较,抗拉强度约增加18.5%,弹性模量约增加8.4%。

6.抗渗等级基本可满足防渗墙的设计要求。

综上所述,水胶比和膨润土掺量是影响混凝土强度和弹性模量的最主要因至素,强度增加,弹性模量也增加,但强度的增加对设计要求的弹性模量是不利的,所以在达到设计混凝土强度等级的条件(尽量降低)混凝土的弹性模量。通过以上试验只要选择适当的水胶比和膨润土掺量是可以配制出满足设计要求的混凝土。

四、工程应用结果

根据室内试验的情况,确定细骨料采用天然砂,选用编号S2的配合比作为现场用施工配合比。并在本工程防渗墙应用中取得了较好的效果。现场浇筑情况表明,选定的配合比和易性好,易于浇筑,适应施工要求。并经现场取样试验,28d抗压强度最大值为11.3Mpa、最小值为8.1Mpa,平均抗压强度为9.6Mpa;弹性模量最大值为13426Mpa、最小值为10770Mpa,平均弹量模量为12020Mpa;抗渗等级≥W4,上述各项指标均符合设计要求。

五、结论

随着时间的推移,国内五、六十建造的土坝都相继进入除险加固期,而其中对土坝坝体作一新的混凝土防渗体是有效的防止坝体的渗漏的方法,但同时对防渗墙采用的混凝土提出了较高的要求,其混凝土应具有适应土坝坝体变形,又能防止水流渗漏的能力,因此要求配制的混凝土应具有低弹性模量、高抗渗的性能,而且应具有相对低弹混凝土较高的强度。

在设计配合比时在满足和易性的要求下,尽量采用大砂率,对降低混凝土的弹性模量有帮助。并在设计时可以掺入引气型减水剂,以达到降低水胶比提高混凝土的抗渗能力。

土坝范文篇4

我国平原地区水库大多修建于二十世纪五、六十年代,一般为就地取材筑坝,坝型以均质土坝居多,坝高较低。由于历史原因,大坝填筑质量普遍较差。有的坝基处理不彻底,甚至未清基,直接在河床上填土筑坝。坝基存在深厚砂砾石层渗水通道。坝体裂缝、沉陷、坝基渗漏现象十分普遍。汛期高水位时,大坝下游地面极易产生渗水、管涌险情,危及水库安全运行。随着混凝土防渗墙施工工具和工艺技术的不断发展和完善,将混凝土防渗墙技术应用于土坝防渗加固,已成为平原区水库大坝防渗加固的一项重要措施[1-2]。本文根据作者多年的工程经验,介绍了平原地区土坝混凝土防渗墙的设计与施工原则,旨在为类似工程提供借鉴。

二、混凝土防渗墙设计方案

根据地质勘探资料分析,平原区均质土坝坝体普遍存在上坝土料选择要求不严格、筑坝土料分区不明显,碾压不充分,填筑质量差的问题。抽样检查结果表明,干密度小于1.5t/m3的土样占总数的60%以上,同时坝基相对不透水层或透水系数较小的土层一般埋藏深度5m~20m。据此,防渗墙布置设计方案一般有两种:第1种方案是在坝顶布孔修筑混凝土防渗墙;第2种方案是在大坝上游坝坡坡脚设混凝土防渗墙,上游坝坡铺设复合土工膜方案,两种方案均可达到防渗要求。

第1种方案在坝顶施工,具有施工人员少,不受汛期洪水干扰等优点,但存在防渗墙墙体较深,施工时易塌孔等缺点,一旦出现问题,补救困难,同时,上游坝坡裂缝、漏水、沉陷等问题得不到解决。

第2种方案避免了坝体塌孔现象的发生,墙体较浅,施工方便,可以保证施工质量及进度,能有效地解决水库上游坝坡质量问题。缺点是防渗墙在大坝上游坡脚施工,水库需要放空,影响水库效益发挥,且施工易受汛期洪水干扰,渡汛困难,有的部位还需增加施工围堰等临时工程量。

故大坝除险加固时,根据水库各自的具体情况,选择合适的防渗加固方案。对无法放空的水库,且上游坝坡防护质量较好的大坝,一般采用第1种方案进行防渗加固处理。对于具有放空条件的水库,一般采用第2种方案进行加固处理。

三、混凝土防渗墙的设计

3.1混凝土防渗墙的设计深度

混凝土防渗墙底部原则上嵌入相对不透水层1m左右,顶部嵌入坝体防渗体中。目前,平原地区土坝混凝土防渗墙深度大多在40m以内。

3.2混凝土防渗墙墙体厚度的确定

防渗墙的厚度应满足墙体抗渗性、耐久性、满足墙体应力和变形的要求,同时还应考虑到地质情况及施工设备等因素。

由于国内防渗墙设计无规范,防渗墙的渗透计算和渗透稳定分析以及强度、变形计算尚无规范的计算方法和理论。在设计时,根据防渗墙破坏时的水力坡降确定墙体厚度(d),计算公式如下:

式中:ΔHmax——作用在防渗墙上的最大水头差(m);

K——抗渗坡降安全系数,一般取3~5。

Jmax——防渗墙渗透破坏坡降,取300;

根据已建成的混凝土防渗墙统计,防渗墙允许承受的水力坡降Jp=Jmax/K,可达到100,当K=5时,Jp为60,假定防渗墙承受的最大水头差与坝前水深相同。平原区水库,由于河流水头较低,ΔHmax一般在10m~30m之间居多。计算得:δ=0.15m~0.5m即可满足要求。

为节约材料,降低成本,平原地区土坝混凝土防渗墙可以做得薄一些,受造孔机具限制,参考国内工程经验,平原区土坝混凝土防渗墙墙体厚度一般确定为0.20m~0.8m之间。

3.3墙体材料

参考国内外已建防渗墙的经验,一般采用塑性混凝土作为墙体材料。这种材料有抗渗性能好,变形模量低,极限应变值大,适应变形能力强等特点。

塑性混凝土防渗墙的设计指标为:28d弹性模量800~1000MPa,抗压强度≥2.5MPa,渗透系数<(1~9)×10-8cm/s。,配合比见表1。

表1塑性混凝土配合比(kg)

水泥

膨润土

外加剂

160

80

260

848

848

0.66

四、混凝土防渗墙的施工

防渗墙是在坝体内连续造孔成槽,以泥浆固壁,在泥浆下浇筑混凝土而建成的。对于小型工程,一般采用冲击式钻机造孔或两钻一抓法。这两种方法都先施工一期槽孔(主孔),后二期槽孔(副孔)。后一种方法工效高,目前被水利工程广泛采用。但该法施工平台要求大于18m,施工时难以布置。成墙厚度受开槽机械限制,防渗墙一般较厚。

目前,平原地区土坝防渗墙工程施工的另一种方法采用液压开槽机连续槽孔法。液压开槽机是由在同一轨道上行走的开槽机、水下混凝土浇筑机、清槽砂石泵及混凝土搅拌机组成。液压开槽机沿墙体轴线连续成槽,槽孔完全连续。墙体厚度20cm左右,最大深度可达40m。该法适用于砂壤土、粉土、粘土等地质条件。每台班工效可达150m2,造价150元/m2(20m深22cm厚的墙体150元/m2)。其工艺流程。

五、防渗墙施工中应注意的问题

防渗墙施工过程中,造孔质量是保证防渗墙质量的首要环节。同时,在防渗墙施工过程中,造孔时间占总工期的2/3以上,是制约工期的关键环节。施工中应采取预防偏孔措施,有效地防止或减少偏孔,使孔斜控制在允许范围内。

保证混凝土防渗墙施工质量和速度的关键在于开槽的连续性,浇筑的及时性。并且要把泥浆固壁作为一个重要的施工环节去对待。否则,一旦出现塌孔,将导致施工中断,而断开段的处理相当困难。因此,各工序必须严格按规程进行操作,控制进度和质量。同时加强机械设备的维修养护,保证完好率,确保混凝土防渗墙“连续作业”,达到保证混凝土防渗墙施工质量的目的。

六、结语

实践表明,混凝土防渗墙技术应用于平原地区大坝除险加固工程,可有效解决坝体,坝基渗漏问题,且具有施工速度快,工程造价低,防渗效果好,可靠性高等特点,是水库大坝防渗加固较好的措施。随着混凝土防渗墙技术的迅速发展,施工机具的不断创新和完善,经济效益的不断提高,其用途将日益广泛。

参考文献:

(1).水利水电工程混凝土防渗墙施工技术规范.SL174-96

土坝范文篇5

五、六十年代,我省土坝建造时受到自然条件和当时施工技术条件的限制,不可避免的留下诸多薄弱环节。随着时间的推移,土坝设计运行寿命的接近,多数土坝出现不同程度的险情,土坝除险加固工程日趋繁重,其中坝体及坝基渗漏,是众多土坝成为病险水库的主要原因之一。

进入九十年代,省内土坝除险加固采用帷幕灌浆、劈裂灌浆等方法处理,收到一定效果,但由于情况复杂,部份工程渗漏问题没有得到彻底解决,同时土坝灌浆,在坝体内形成的有效防渗体厚度较薄,耐久性差,易击穿。地下砼防渗墙作为防渗处理的一种行之有效的截流防渗建筑,其墙体强度高,性能非常稳定,使用年限长,同时塑性混凝土防渗墙在运行过程中允许一定的变形,逐渐被工程界所重视。地下防渗墙在我国开始于1958年,进入九十年代,经过众多的工程实践,其施工工艺、墙体材料、检测方法、机械设备等已非常成熟,在土坝除险加固中得到广泛应用。据统计,截至2002年底,我国建造的各类防渗墙已超过150座,成墙技术和成墙规模均居于世界前列。

贵州特有的地层—喀斯特地层,对地下防渗墙在贵州土坝除险加固中的应用提出了新的要求。为满足坝体及坝基的整体截流防渗效果,在进行防渗墙的设计时,不但要考虑坝体自身的各种因素,还要充分考虑坝基岩层的透水性。

贵州的地层以碳酸盐类岩层为主、碎屑岩地层其次、火成岩地层仅在西部有少量出露,其中碳酸盐类岩层为透水性岩层;碎隙岩和火成岩地层多为不透水性岩层。在覆盖层厚度不大的情况下,坝基基岩为不透水性岩层时,可采用接地式防渗墙直接嵌入强风化岩层达到防渗效果;而对于透水性基岩,防渗墙嵌入基岩后,对坝基及坝肩仍要辅以帷幕灌浆才能达到整体防渗效果。少数覆盖层厚度较大的地层,在进行防渗墙设计过程中,对防渗墙是否嵌入基岩应进行经济技术和防渗指标比较。防渗墙深入覆盖层一定深度,使渗径达到一定的长度,渗流量减小,能够满足设计要求的情况下,可采用悬挂式防渗墙(墙体不嵌入基岩)。我国大多数防渗墙采用接地式,如三峡一、二期围堰、小浪底上游围堰防渗墙、福建省水口电站一期围堰防渗墙等工程;只有少数防渗墙采用悬挂式,如长江堤防工程、四川铜钟电站大坝防渗墙、四川冶勒电站大坝基础防渗墙等。

2002年底,我省都匀市绿茵湖水库首次引入地下防渗墙施工,并在2003年初再次采用地下防渗墙对兴义市兴西湖水库土坝进行除险加固,为防渗墙在贵州的首次应用打开了局面。目前地下防渗墙在贵州境内作为一种新兴的土坝除险加固施工工艺,受到人们的关注。地下防渗墙作为一项隐蔽工程,其质量好坏只能在施工过程中进行控制,在最终运行中才能够完全体现。为保证地下防渗墙在土坝除险加固工程中的质量,我们要注重以施工过程控制为主,在施工过程中充分考虑坝体的密实度和坝体的自身稳定,从临建工程、防渗墙造孔、孔形及清孔、砼浇筑过程等方面进行质量控制。笔者以几年的防渗墙施工经历并结合兴西湖水库除险加固工程施工监理的实践,浅谈防渗墙在我省土坝除险加固工程中的实施。

临建工程作为临时工程,但它在防渗墙造孔过程中起到重要的作用,是施工中不可缺少的一部分,在实施过程中要认真对待。临建工程包括:导向槽、施工平台、砼拌和站、制浆站及浆水管路等。

导向槽在施工中起到墙体定位,稳定孔口土体,稳定钻机,避免塌孔、缩孔等重要作用。采用地下防渗墙对土坝进行除险加固处理,坝体必然存在许多质量缺陷,主要表现为坝体填筑密实度差,存在渗漏现象,这对我们保证导向槽在施工过程中的稳定提出了较高的要求。

常用的导向槽断面形式主要有:矩型、梯型、“L”型。由于坝体密实度较差,土体比较松散;施工机械设备重达几十吨,使导向槽底部的土体承受较大压力;孔口附近槽壁所受的泥浆压力较小,孔口土体稳定性差;造孔过程中产生的震动,加之槽孔壁土体受泥浆的长期浸泡,易产生滑动。为减小导向槽底部土体承受的压强,避免槽孔壁土体的滑动,保证导向槽的稳定。在进行导向槽设计过程中,要尽量采用“L”型断面,增加底部宽度,同时导向槽的深度不宜小于1.5m,保证槽段施工的顺利进行。必要时,还应对该层土体进行加密处理。

防渗墙施工过程中,由于坝体填筑质量差,易发生漏浆、渗浆现象,对浆池的建造要充分考虑浆池的容量,保证泥浆池的容量满足施工要求。其它临时工程要保证在施工过程中正常运行。

防渗墙造孔过程是防渗墙施工中的事故多发环节,由于槽段的不稳定因素,应尽量缩短各槽段的施工时间,保证槽段正常施工,对可能发生的事故防范于未然。在土坝内建造防渗墙常用的施工工艺主要有纯抓法、钻抓法和钻劈法三种。在进行槽段划分过程中,要结合施工工艺、施工机械,充分考虑到各槽段从开始施工至砼浇筑的施工时段不能太长,以保证砼浇筑前槽段的整体稳定。对于坝体填筑质量差的部位,尽量采用小槽段、单向推进、钻劈法施工。

施工中,要加强设备的保养,保证设备的完备性,减少施工中的机械事故,做到每个槽孔开始施工后尽快浇筑完毕。由于施工过程中不可避免会发生漏浆、渗浆现象,因此制浆站要随时备足浆液,保证泥液的供给。当发生漏浆、渗浆时及时补充浆液,并采取措施进行堵漏,保证槽孔内浆面高于导向槽底部。具体堵漏措施有,采用粘土、木屑、水泥等混合物进行堵漏,必要时可采用粘土进行全部回填后再行造孔,如果出现塌孔事故可采用低标号砼进行回填,待达到一定强度后再进行造孔作业。施工过程中不得向槽孔内直接注入清水,以防止浆液比重过低,浆液对孔壁的压力偏小而发生塌孔、缩孔现象。

孔形和清孔是保证防渗墙体的整体性和混凝土浇筑质量的关键。土坝防渗墙主要起防渗作用,一般没有承重和抗冲等要求。施工中对防渗墙的孔斜率要求不高,但必须保证墙体的整体性,不得有梅花孔、小墙。对一、二期槽,保证接头孔的两次孔位中心在任意深度的偏差,不得大于设计墙厚的1/3,并采取措施保证设计墙厚。在孔形合格后,才能进行清孔换浆。清孔换浆使孔内的泥浆比重、粘度、含砂量等指标降低,使砼浇筑过程顺利进行,保证砼的浇筑质量。清孔换浆质量的具体检查指标为孔底淤积和泥浆的三项性(比重、粘度、含砂量),合格标准要严格按规范要求执行。

二期槽段清孔换浆结束前,宜用钢丝刷子钻头进行刷洗,清除接头混凝土表面附着的泥皮,保证一、二期砼很好地连接成一个整体。刷洗的合格标准是:刷子钻头上基本不带泥屑,孔底淤积不再增加。

砼浇筑过程是保证防渗墙质量的最后一关,也是最重要的一关。浇筑导管内径以200~250mm为宜,并按规范要求严格控制浇筑导管间距及导管距孔端的距离,同时导管应布置在其控制范围的最低处。开浇前,浇筑导管内必须置入可浮起的隔离球。开浇时,应先注入水泥砂浆,随即注入足够的混凝土,挤出隔离球并埋住导管底部,使后注入的混凝土与浆液隔离开,保证混凝土不产生混浆现象。在浇筑过程中,要勤测砼面的深度,控制砼面的高差在0.5米内,如砼面高差过大,易发生砼包裹泥浆形成质量缺陷,特别是深槽段,泥浆上浮,比重不断增加,更易发生砼包裹泥浆的现象。施工中要及时绘制混凝土浇筑图,如发现实际浇筑方量与计算方量相差较大时,要及时分析原因,是否因塌孔、坝内空洞等原因造成,避免混凝土的浇筑造成坝体破坏。在实施中要控制砼浇筑强度,浇筑速度过快,砼对坝体劈裂作用可能破坏坝体,过慢会使砼表面泥浆沉淀较厚,同时表层砼初凝,影响砼质量。

土坝范文篇6

论文摘要:水库是水利产业的重要措施,建国后我国已兴建了各类水库。因为水库受修建时间较长、当时的技术等因素所限制,现在大部分水库带病工作,事故较多,对人民生产和国民经济产生了一定影响。在众多水库事故中,因为土坝渗漏造成的事故占比例较多。本文就这几年的工程实践结合该问题谈谈具体的原因及防治措施,希望对病险水库的加固起到借鉴作用。

一、引言

建国后,国家非常重视水库建设,截止到2007年,已建水库10万多座,在战胜水旱灾害,促进工农业生产,改善人民生活方面,发挥了巨大的作用。但是,由于当时历史条件及技术、经验不足等原因,很多水库工程存在着不同程度的质量和防洪标准问题,使水库事故不断增加,给国家和人民生命财产造成了重大损失。

土坝存在问题,除防洪标准偏低外,主要是工程质量问题,具体表现在渗漏、滑坡和裂缝。概括起来,是一个防渗加固问题,一般处理防渗的原则是“上堵下排”。上堵的措施有垂直防渗和水平防渗。垂直防渗有混凝土防渗墙、高压喷射灌浆防渗、劈裂灌浆防渗、冲抓套井回填防渗、倒挂井防渗、土工合成材料防渗、射水造孔混凝土墙防渗和岩溶帷幕灌浆防渗等。水平防渗有人工粘土铺盖和利用天然铺盖等,并结合下排的措施有:在坝体背水坡脚附近开挖导渗沟、减压井和盖重压渗等。

二、土坝渗漏表现形式

土坝病险问题主要是各种原因引起的渗漏问题,常表现在以下方面:

(一)土坝建成蓄水后,由于选取土料物理力学指标不当,致使浸润线常高于设计的浸润线水位,导致渗流从坝的下游坡面溢出,使下游坡失稳。

(二)坝基和坝身产生危害性渗透变形,导致坝基或坝身淘空破坏。

(三)地质条件差,往往认为土坝对基础要求不高,因而忽视工程与水文地质条件及其基础的防渗处理,造成基础漏水。

三、坝身渗漏分析

土坝常因斜墙、心墙等防渗体裂缝形成渗流的集中通道,导致管涌的发生,甚至引起坝体的失事破坏。

(一)心墙、斜墙裂缝漏水

土坝防渗体开裂较常见,尤其是发生在近年来较普遍的薄心墙土坝中。由于心、斜墙与坝体其他部分的填筑土料不同,因变形模量的差异使变形不一致,导致心、斜墙开裂。在裂缝处产生集中渗漏,渗透水以很大的水力坡降冲刷心、斜墙裂缝,因管涌作用把防渗体土料带至下游坝体,使心、斜墙丧失防渗作用。

(二)坝体因扩建加高,新老防渗体衔接处理不当漏水

坝体因多次扩建,新老防渗体的衔接处理往往不严,造成隐患。特别是心墙坝加高时,对原有心墙很难采取补强措施。当蓄水位抬高以后,其防渗体承受的水力梯度明显加大,增加了被击穿的危险,有的将心墙改做斜墙,但因库内死水排干困难,使基础处理不严,造成漏水隐患。

(三)浸润线抬高使下游坝坡失稳

已建的均质土坝中,常存在浸润线比设计计算的有所抬高,致使坝的下游坡面长期处于湿润状态而影响坝坡的稳定。浸润线的抬高多数原因是设计时没有考虑土坝施工时是分层碾压的,因碾压使坝体形成许多水平层面,导致水平向渗透系数大干垂直向渗透系数,产生各向异性渗流场的结果。

(四)土坝滑坡与处理

土坝滑坡或沉陷往往是因为填筑的土料差,设计抗剪指标选用不当,坝坡设计不合理以及渗漏等原因造成的。

四、渗漏控制方法和措施

(一)垂直防渗

垂直防渗常适用于地基透水层较薄或隔水层较浅的情况,以封闭式防渗帷幕来根治坝基渗透破坏的险情,可以比较彻底地解决坝基和坝身渗漏问题。垂直防渗在工程实际中应用较多我们着重介绍一下混凝土防渗墙、高压喷射灌浆防渗、劈裂灌浆防渗的原理和施工办法。

1、混凝土防渗墙

使用专用钻机机具,在已建的坝体或覆盖层透水地基中建造槽型孔,以泥浆固壁,并利用高压泵将泥浆压入孔底,携带岩渣,再从孔底回流到地面,然后采用直升导管,向槽孔内浇筑混凝土,形成连续的混凝土墙,起到防渗目的。这种防渗墙可以适应各种不同材料的坝体和复杂的地基水文和工程地质条件,墙的两端与岸坡防渗设施或岸边基岩相连接,墙的底部可嵌入弱风化基岩内一定深度,在施工中只要严格控制施工质量,是可以达到彻底截断渗透水流的。

2、高压喷射灌浆防渗

按设计布孔,利用钻机钻孔,将喷射管置于孔内(内含水管、水泥管和风管),由喷射出高压射流冲切破坏土体,同时随喷射流导入水泥浆液与被冲切土体搅拌,喷嘴上提,浆液凝固,在地基中按设计的方向、深度、厚度及结构形式与地基结合成紧密的凝结体,起到防渗作用。3、劈裂灌浆防渗

在土坝中采取劈裂灌浆,使用一定压力,将坝体沿坝轴线小主应力面劈开,灌注泥浆,并使浆坝互压,最后形成10~50cm厚的连续泥墙,可以起到防渗目的。同时泥浆使坝体湿化,增加坝体的密实度。劈裂灌浆防渗不仅起到防渗作用,也加固了坝体,可以就地取材,施工简便,投资省、工效高。

(二)水平防渗

水平铺盖分利用天然粘土和人工填筑粘土两种,可以就地取材、造价低、施工工作面大、工期短、简单易行,不需要特殊的施工设备和器材。按设计要求施工,可以满足渗透稳定,但渗透量较大,坝基下游仍有一定的坡降。因此在采用水平铺盖防渗时,必须结合下游排水减压设施。

在实际应用中摘要的注意以下几点:

(1)利用天然粘土铺盖要慎重,必须了解粘土的分布情况、厚度、干容重以及粘土下面覆盖层的厚度、粒径组成和透水性等。

(2)人工填筑粘土铺盖长度与坝前设计水头比,实践总结7~8倍,最大有超过10倍。

(3)铺盖粘土渗透系数应小于1000倍地基的渗透系数。

(4)粘土铺盖要避免与河床覆盖层渗透系数K>10-2cm/s透水层接触。

(5)铺盖粘土要封闭大坝两侧岸坡,避免发生饶渗。

(6)在坝基表面有较薄的弱透水层或不透水层,且底下的透水层较浅时,宜采用排水沟截穿表层,用以控制渗流,也就是做导渗沟导渗。

(7)如果不透水层较厚,而其下透水层深厚或含水层成层显著,应该采用减压井深入下部强透层导渗。

(8)做导渗沟和减压井有困难时,可做压渗措施。

五、施工要求

总结以上各项控制措施,在具体施工时应严格遵守以下的原则:

(一)必须对坝基进行详细的水文地质调查

在决定防渗措施之前,要考虑各方面的因素,其中最重要的是坝址的工程和水文地质条件,要对河床冲积层进行详细的勘探和试验,以了解河床覆盖层的总厚度,有无相对不透水层,厚度及其连续性,砂砾石层平面与空间分布、级配、渗透系数、允许渗透坡降;土层的成层性,是否是不透水层与透水砂砾石层相互间层;查明铺盖土料的料源、级配、最大干容重、最优含水量、渗透系数、允许渗透坡降等,来确定有效而经济的防渗措施。

(二)垂直防渗处理可以比较彻底的解决土坝渗漏问题

垂直防渗加固措施,在实际工程中的应用都取得了显著的防渗和加密效果。水平防渗结合下游排水减压导渗,虽然可以做到坝基渗透稳定,但仍有一定的渗漏水量损失。在处理时,是采用垂直防渗,还是采用水平防渗与排水相结合,应按技术可靠、经济合理的原则,根据防渗条件和要求,结合当地具体情况,通过方案比较,慎重研究确定。

土坝范文篇7

灰色模型简称GM模型,GM模型的建模包括因素分析、等时距处理、数据标准化、数据生成、建立状态模型、模型效果评价等方法和过程。本文只探讨灰色理论在混凝土坝应力观测资料分析中的应用。

1因子选择

在研究大坝的应力规律时,应力数列是参考数列,影响应力的行为因子则为比较数列,它们均为时间数列。混凝土坝应力主要与水压力、温度、自重、湿涨以及时效等因素有关系。在蓄水初期的观测资料分析中,自重应力和湿涨应力以常数表示。

(1)库水位因子。选择水深的三次多项式:H、H2、H3。

(2)时效因子。选择线性函数和对数函数的叠加函数:

(3)温度因子。选择当日气温T、前30天平均气温T30、前60天平均气温T60、前1~6个月的某日气温Tqi(i=1~6)、前1~6个月的月平均气温Tqi(i=1~6)。

于是,参考数列:应力

x1(0)={x1(k)(0)|k=1,2,3…m};

比较数列:库水位、时效、温度

xi(0)={xi(k)(0)|k=1,2,3,...m}

(i=2,3,...n),m为样本数,n为变量数。

2模型建立

在蓄水初期由于水位较低,水压力对应力的影响并不明显,因此考虑对水压应力分量采用有限元计算的确定性模型。温度和时效应力分量采用GM模型,将以上各种因素的模型求和就得出表征坝体实测应力变化规律的灰色混合模型。

2.1水压应力分量确定性模型

为了寻求水位与应力之间的确定性函数关系,可采用有限元法进行计算,以便提高数学模型值的精度。其一般方程见下式。

式中:α0、αi为回归系数。

2.2温度和时效应力分量GM模型

经过等时距处理、数据标准化和数据生成可得到生成数列

xit(1)={xit(k)(1)|k=1,2,...,m}(i=1,2,...,n)

通过编制GM程序可以很方便的建立动态和静态模型,动态模型x1(1)的时间(离散)近似关系式为:

静态模型x1(1)的时间(离散)近似关系式为:

对模型值进行数据还原可用于模型效果的评价,通过后验差比值C和小误差概率P可综合评价模型的精度。在实际建模中,模型的精度与选入的因子有很大关系,可以通过剔除关联度小的因子来提高模型精度。

2.3灰色混合模型的建立

将水压应力分量确定性模型与温度时效应力分量GM模型求和就得出灰色混合模型,其一般方程式如下:

3工程实例

桃林口水库位于滦河主要支流青龙河上,工程于1992年10月动工,1998年底竣工。水库大坝为碾压混凝土重力坝,最大坝高74.5m,坝顶长度500m,坝顶宽7m,坝底最大宽度63.76m。5号坝段为应力监测的重点坝段,在距建基面6m的80.00m高程选择应力观测截面一个,在观测截面的中心线上布设5组5向应变计组测点,每个测点布设无应力计一个,其中靠上游的第1组测点位于常态混凝土中,其余4个测点位于碾压混凝土中。本例以第1、3、5测点垂直向应力为分析对象,选取1998年3月至1998年11月的观测时段进行建模。

3.1水压应力分量

选取35级不同上游水深,通过有限元计算相应的应力,然后采用逐步回归的方法进行拟合,计算结果见表1。

表1中各参数正负号有所不同,说明水压对不同部位测点应力的影响是不同的。各方程的复相关系数都很接近1,表明全部因子与应力的相关程度十分密切,剩余标准差都很接近0,表明模型回归值与计算值之间的离散程度微小,因此,采用表1的模型回归拟合值作为灰混模型的水压分量是比较理想的。

3.2温度时效应力分量

对各因子进行一次累加生成,使用GM程序计算动态和静态模型参数,通过对比较数列的舍取使模型精度达到最高,计算结果见表2。

表2中模型精度均为Ⅰ级,表明模型精度较好。选取因子包括ln(1+τ/30.5)、前1~6个月的某日气温Tqi(i=1~6)、前1~6个月的月平均气温Tqi(i=1~6),没有选入当日气温、前30天平均气温、前60天平均气温,表明各测点应力与气温变化存在滞后性,前1~6个月的气温变化对应力均有叠加影响。

3.3灰色混合模型

绘制应力灰混模型拟合曲线见图1~3。残差分布概率见图4。计算结果中灰混模型的残差90%分布在-0.5~0.5kg/cm2之间,表明模型的精度较好。除了第一、第五测点动态模型曲线的初期2~3个数据的残差较大外,其余各点与实测值拟合地很好。

4结语

(1)在大坝运行初期,采用混合模型分析实测应力较统计模型更具有合理性。

(2)在实际问题中把统计学、灰色理论和有限元方法有机结合起来可以取得互相补充的效果。所建立的碾压混凝土坝应力灰色混合模型,其精度是较好的。在只有少量观测资料的情况下,即可以用于第一次蓄水及运行初期这一重要时期大坝的安全观测。

(3)在建立GM模型过程中,要通过对模型精度的检验来选择因子。

TheApplicationofGraySystemModelinStressAnalysisofConcreteDam

WangYong-liang,XuYang

(HebeiProvincialAcademyOfWaterResource,Shijiazhuang050051,China)

Abstract:Toanalysetheimpactfactorsonstressofconcretedamandstresschanges,especiallyinthecaseofinsufficientobservationsatthebeginningofstoringwater,GrayMixModelaredevelopedinthispaperbyintegratingthedeterminablefiniteelementmodelandgraysystemmodel.ThemodelhasbeenappliedtostressanalysisofTaolinkouconcretedam,theresultsshowthatthemodelisapplicable.

Keywords:graysystemmodel;determinablemodel;finiteelementmodel;stressanalysis;concretedam

土坝范文篇8

1、土坝施工以其成本低、易于施工的特点,在水利工程土坝的建筑施工中广泛应用,但一般来说土坝的填筑方量都非常大,多数是在几十万方,甚至上百万方。例如:尼尔基水利枢纽右副坝I标工程,粘土心墙坝:总长2387.45m,总填筑量约为51.7万m3,其中粘土心墙填筑量为6.15万m3;右副坝I标工程在2003年9月上旬至10月上旬的填筑高峰期,平均日强度约为5500m3,最高日强度达到7640m3,因此,土坝填筑施工都是高强度、快速连续的施工作业。

2、由于在施工中要坚持贯彻“质量第一”的方针,必须达到创优工程的质量指标(右副坝I标工程的要求合格率达100%,优良品率达86%,重要部位均为优良),并且,在施工管理过程中,健全管理体制,建立监理验收制度,将坝体填筑施工划分成每160米一个单元,每个单元,每一种、每一层料都要实行严格的质量检查和验收程序,其程序见如下框图:

正规填筑质检程序框图

完成以上程序框图的六个步骤,特别是室内试验,必须采用《土工试验规程》中严格规定的“环刀”取样法(对粘土料)或灌水法(对砂砾料),需要较长时间(约两小时),资料汇总至监理签证又需要1-3小时,以至于按正规的方法完成上述六道质检程序最少需要3个小时,经常是4-5个小时。对于一个单元一种料从填筑一层直至压实完毕只需要4-6小时,而质检验收需要3-4小时,施工被迫中断,这样就造成要求高强度施工与质量检查验收占据很长时间之间的尖锐矛盾。(以尼尔基右副坝I标工程为例,在2003年春季,刚开始填筑施工时,质检时间占据总施工时间的40%左右)。

针对这一尖锐矛盾,为了促使施工单位提高生产效率而又不能降低质量检查标准,更不允许减去质检的程序,为此,我们经过反复摸索、积累经验,研究出了一套快速质检程序法,即“三步检测法”。

二、以尼尔基右副坝工程填筑为例,说明“三步检测法”。

1、粘土心墙填筑压实质量的“三步检测法”。

第一步,提前对土料场的粘土料进行快速检查含水率,其目的是控制允许上坝的土料质量,以确保土料易于压实合格。

快速检测土料含水率的方法:在料场对土料的不同深度取多组代表性试样,采用酒精燃烧法,快速检测土料含水率,合格的土料方可允许上坝施工。

一般来说,土的含水率在适合含水率范围内(w±2%),采用常规规定的碾压参数(本工程规定土料摊铺厚度30cm,振动凸块碾先静压1遍,振动压实8遍,再静压1遍,共10遍),即可达到合格(设计干容重1.62g/cm3)。反之,含水量偏大或偏小,超出了适宜范围的土料,只进行常规的碾压大都不能合格。含水量贪偏大,无法压实,需进行翻晒处理,直接影响了正常施工程序,耗时费力,增加成本;含水量偏小,必须增加碾压遍数到12遍至14遍才可能合格。

第二步,在经第一步的初步检查后,进行常规的环刀法取样,在取样过程中进行中目测、手感,以判断压实效果。

目测、手感方法为:对于压实合格以上的土料,有镐刨或锹挖,都很困难,一镐只能挖深3-5cm,被切割土层的断面密实而且连续,出现细腻光滑的表面,用手掰土块,明显感觉具有一定的抗折力,土料之间胶结状态较好,这样的压实土料其压实度,多数可达到设计指标,可以初步认为压实合格。反之,如果镐刨很容易,一镐刨深5cm以上,甚至用锹即可插入,土层切割断面粗糙不连续,有峰窝孔,容易用手掰碎,容易将土块捏成扁圆或土条,或者用脚跺踩压实表面能留下明显脚印,这样的土料可断定达不到设计压实指标,因此也没有必要做环刀法取样检查,而应该立即通知施工单位进行补压处理,直至目测判断合格才能做环刀法取样试验。

第三步,快速计算出环刀法试样的湿密度,并采用第一步所测试的土料含水率来进一步判断土料是否压实合格,即:在试验室内快速称量环刀内土料的重量,计算出土料的湿容重(土料的湿容重=湿土质量/环刀容积,环刀的容积和重量都是预先称量并有记录),利用第一步所测的土料含水率,推算出该土料的干容重(干容重=湿容重/(1+含水率),看干容重是否合格便可作出决定,而不必等待试验的最终精确结果,可以节约大部分的检测时间。判定合格,就可通知现场监理进行检查,争取监理同意,允许继续连续施工,待试验室试验数据做出后,再填写质检报表,请监理签证,也就是将常规质量检查程序,变为“三步法”快速质检程序,如下框图:

2、“三步法”快速质检的应用

(1)在施工初期质检员尚缺乏经验,缺乏凭借目测、手感判断压实质量是否合格的能力,监理也不能接受快速检测法,在这一阶段不能强行推行快速检测法,否则将对施工造成混乱,甚至造成填筑返工,而应当努力地积累经验,反复比较目测、手感判断的结果与正规试验结果之间的差距,直到积累了丰富的经验,才能达到凭借目测、手感判断的结果与试验室正规试验的成果基本一致,并且让监理对质检员达到“信得过”的程度,才能逐步推行快速检测法,达到监理认可,接受此方法。

(2)运用快速检测法是有一定风险的。因为,仅凭目测、手感判断合格,通知监理后继续填筑,如果试验室正规试验成果是不合格的,或者监理试验室抽检不合格,将造成已经开始的新一层填筑的前一层料进行返工处理,从而带来很大的施工麻烦和经济损失,因此,凭目测、手感的快速检测一定要慎重,应当有两名以上有经验的现场质检员共同做出决定。

土坝范文篇9

一、土坝设计施工条件

(一)地质环境条件。因土坝是一种古老传统的建筑,所以在施工期间存在着一定的风险。在土坝施工前,承建部门及施工单位应对文件中的设计方案进行再三评估,提前采取有效可行的预防措施,共同研究和预测土坝在施工期间可能出现的突发性危险情况,提前制定相应的措施方案,避免给工程造成不必要的损失。(二)区域气象条件。为确保土坝施工的顺利进行,有关的部门对施工区域的气象条件也应做好提前观测准备,分析该区域的气候条件和降水情况,以保证施工期间不受恶劣的环境因素破坏。土坝施工多选择在春秋两季,一方面土壤中所含水分不多,另一方面春秋季节气候稳定,有利于施工。为不影响施工进度,应对施工区域的气候情况进行长期的观测。

二、土坝设计施工技术处理要点

(一)坝基的处理。在处理坝基上,防止渗透作为首要原则,在土坝施工前,要对周围的树枝树叶等杂物进行彻底清理,对劣质土壤进行清除,若坝基基础不牢固,应进行土壤改良,去除软土,保证土壤的坚实稳固。对于坝基防渗可采用黏土栽水槽,不仅施工方便且使坝坡稳固,水槽底宽一般大于等于3m。(二)土坝黏土料场的选用。为保证土坝的总体质量及使用性能,在雨季来临之前,对料场做好防水排水的准备措施,以满足对坝用料的使用要求。坝体用料多选用地质均匀的黏土料,黏土料要贮量集中,要留有一定的备料,以保证不时之需。在气候寒冷的施工地区,可用干枯树枝来保护土料,将其覆盖,以便来年继续使用。(三)筑坝技术。在水利工程筑坝中,应选择在少雨的环境中进行,控制好黏土料的质量,在筑坝过程中严禁使用水分过高的材料用于坝体中,因为粘土土料若含水量偏高,会影响其抗剪强度,导致土坝施工过程中容易产生孔隙压力,进而影响坝体的稳定性。若粘土土料含水量大,将会给碾压程度造成困难,从而加大了坝体的渗透隐患。为了坝体顺利施工,应时刻关注施工区域的天气情况,做好防水准备。(四)坝体结构。根据当地的地质情况和交通环境等因素考虑,建坝顶材料厚度应在0.2m,坝顶应向下游侧倾斜3%,上游宜设立防浪墙,高度在1.2m左右,墙体可用混凝土浇筑,墙体与坝体之间要连接紧密,防止渗透。(五)坝型。碾压式土石坝是碾压式土石坝和碾压式堆石坝的统称,主要可分为:均质坝、组合式土坝以及组合式土石坝等。水中填土坝最为常见,其一般采用均质坝,用料多,造价高,但是适用性强。影响土坝坝型的因素有很多,其中最主要的便是筑坝区域的地质情况以及筑坝材料,除了腐殖质太多劣质土地不适合以外,其他土地经稍微改良处理均可使用。除此以外,气候条件、施工条件等各个因素均会影响坝型的选择。

三、土坝设计施工实例分析研究

土坝范文篇10

1.1地质环境

在土坝施工之前,参与工程的相关部门应联合采取有效措施,分析和预测土坝工程施工中可能发生的异常状况,并制定相应应急预案。在调研和熟悉设计图纸中土坝坝基地质构造后,确定工程施工可行方可施工。

1.2自然环境因素

土坝工程选择在春秋两季施工时,应充分考量自然天气因素。在制定土坝施工进度时应全面考虑影响施工进度的各个因素,应尽量提前设计施工进度,这样有助于碾压作业的进行。选在春秋两季施工是由于这两个季节气温适宜、土壤含水率相对较低,在施工时应科学统计降水与气温等天气条件,同时做好持续监测。

2土坝施工技术

2.1坝基处理

土坝坝基施工时应彻底地清理坝基部的腐殖土、弹簧土以及树根等杂物,以免坝体出现渗漏的情况。总而严之,在土坝施工前应对坝基进行有效的技术处置。

2.2土坝黏土料的选用与维护

在雨季到来前,应做好料场排水设施以免雨水或地下水影响土坝用料的物理性能提高土料的含水率,影响土坝总体质量和使用性能。在土坝用料的选择方面,应预留一部分备用料,贮量应集中并且要选择质地均匀的黏土料,保证土料贮量充足。同时还应研究和分析黏土料的物理特性。尽可能不使用耕地用土,同时也应考虑涂料运输以及开采的问题。在气候严寒地区施工时可以直接利用干枯的树枝或积雪等将土料覆盖,确保土料来年施工的正常使用。

2.3坝体施工技术

坝体施工时应选择无雨和少雨季节,如果降水过多致使土壤含量过大将严重影响和破坏土料的抗碱强度,使土壤层间出现光滑土层造成滑坡。并且如果土料含水率过大将无法碾压,所以在坝体施工时应严格控制土料含水率,防治土料含水率超标。应严格依据相关标准进行土坝施工设计,如施工现场存在弹簧土,则应彻底清除并采样试验。在筑坝施工时,应严格控制填土层的厚度。最后,应时刻关注天气情况,采取有效的防雨措施,避免在作业面上存有积水。

3土坝施工技术具体案例分析

某水电站具有灌溉和防洪等多种功能的综合型水利工程,以水力发电为主,主要由左右两岸的挡水坝、发电设备厂房、泄洪闸、开关站等组成。

3.1土坝施工土料的选用

该水利工程土坝施工所使用的土料取自位于左岸的黏土料厂,在获得设计部门同意后使用挖掘机开采并运到施工现场,将土料中树叶杂草等杂物清理干净,取样试验后经监理工程师签字确认后符合设计标准方可使用;在土坝施工时所使用的碎石以及排水棱体块石蹅均采取外购形式,并从中筛选出符合设计施工标准的材料使用。

3.2该工程土坝施工技术

在实际施工前依据设计图纸使用挖掘机从左至右清理坝基覆盖范围区域。而后使用全站型电子速测仪进行坝基开挖范围的实地放样工作,使用小红旗做好标记,样单由测量技术人员提供。将基础开挖完毕后,接下来进行基础压实作业,使用18T震动式压路机,压路机以‘S’形线路前进反复碾压,同时开启振动碾,每块碾压次数不应少于5次。在预埋土坝坝基监测设备时,应严格依据土坝坝基设计图纸施工,将检测装置分别预埋在坝基左侧0+121与右侧0+213的基础断面处。运用人工砌筑棱体块石,棱块间无水平缝厚度小于1m。对砂碎石排水体也采用人工砌筑的形式施工,砌筑完毕后将排水体表面铺撒一层细碎石。在排水体砌筑完毕,填筑黏土前依据设计要求,在其内侧面覆盖土工布,铺盖完毕后再进填筑黏土,应尽量缩减作业间隔,如无法连续作业则应使用塑料布将其表面覆盖,防止阳光直射,起到防护作用。在坝体土料选用方面应进行取样试验,选择土料厂家采买土料,并将土料取样试验获得详细结果后经监理工程师审批,通过审批后方可开展土坝上坡面的施工作业。当施工达到土坝填筑设计高程要求时方可进行坝顶的施工作业。施工流程依次为:首先砌筑防浪墙和排水沟、而后利用混凝土浇筑道路。这些工序全部完工以后再进行后续的收尾工作,主要有坡脚处的排水沟处理、种植草皮以护坡以及使用素混凝土镶边等工作。在草皮种植作业前,应先使用自卸式车辆把混凝土运送至坡后,通过人力运送至施工现场,使用混凝土来浇筑方格网并镶边。在砌筑完毕排水棱体之后在开展排水沟的施工作业,当混凝土浇筑完毕5d以后回填,并采取人力挖掘基础的形式作业。

4结语