水工钢筋范文10篇

时间:2023-03-16 02:08:03

水工钢筋

水工钢筋范文篇1

这类结构在水利工程设计中是难于避免的,有时,它在某些水工混凝土工程结构中处于制约设计的重要地位。从逻辑概念讲,只要允许素混凝土结构的存在,必定会有少筋混凝土结构的应用范围,因为它毕竟是素混凝土和适筋混凝土结构之间的中介产物。

凡经常或周期性地受环境水作用的水工建筑物所用的混凝土称水工混凝土,水工混凝土多数为大体积混凝土,水工混凝土对强度要求则往往不是很高。在一般水工建筑物中,如闸墩、闸底板、水电站厂房的挡水墙、尾水管、船坞闸室等,在外力作用下,一方面要满足抗滑、抗倾覆的稳定性要求,结构应有足够的自重;另一方面,还应满足强度、抗渗、抗冻等要求,不允许出现裂缝,因此结构的尺寸比较大。若按钢筋混凝土结构设计,常需配置较多的钢筋而造成浪费,若按素混凝土结构设计,则又因计算所需截面较大,需使用大量的混凝土。

对于这类结构,如在混凝土中配置少量钢筋,在满足稳定性的要求下,考虑此少量钢筋对结构强度安全方面所起的作用,就能减少混凝土用量,从而达到经济和安全的要求。因此,在大体积的水工建筑物中,采用少筋混凝土结构,有其特殊意义。

关于少筋混凝土结构的设计思想和原则,我国《水工混凝土结构设计规范》(SL/T191—96)作了明确的规定。

二、规范对少筋混凝土结构的设计规定

对少筋混凝土结构的设计规定体现在最小配筋率规定上,这里将《水工混凝土结构设计规范》(SL/T191—96)(下文简称规范)有关最小配筋率的规定,摘录并阐述如下:

1.一般构件的纵向钢筋最小配筋率

一般钢筋混凝土构件的纵向受力钢筋的配筋率不应小于规范表9.5.1规定的数值。温度、收缩等因素对结构产生的影响较大时,最小配筋率应适当增大。

2.大尺寸底板和墩墙的纵向钢筋最小配筋率

截面尺寸较大的底板和墩墙一类结构,其最小配筋率可由钢筋混凝土构件纵向受力钢筋基本最小配筋率所列的基本最小配筋率乘以截面极限内力值与截面极限承载力之比得出。即

1)对底板(受弯构件)或墩墙(大偏心受压构件)的受拉钢筋As的最小配筋率可取为:

ρmin=ρ0min()

也可按下列近似公式计算:

底板ρmin=(规范9.5.2-1)

墩墙ρmin=(规范9.5.2-2)

此时,底板与墩墙的受压钢筋可不受最小配筋率限制,但应配置适量的构造钢筋。

2)对墩墙(轴心受压或小偏心受压构件)的受压钢筋As’的最小配筋率可取为:

ρ'min=ρ′0min()

按上式计算最小配筋率时,由于截面实际配筋量未知,其截面实际的极限承载力Nu不能直接求出,需先假定一配筋量经2—3次试算得出。

上列诸式中M、N——截面弯矩设计值、轴力设计值;

e0——轴向力至截面重心的距离,eo=M/N;

Mu、Nu——截面实际能承受的极限受弯承载力、极限受压承载力;

b、ho——截面宽度及有效高度;

fy——钢筋受拉强度设计值;

γd——钢筋混凝土结构的结构系数,按规范表4.2.1取值。

采用本条计算方法,随尺寸增大时,用钢量仍保持在同一水平上。

3.特大截面的最小配筋用量

对于截面尺寸由抗倾、抗滑、抗浮或布置等条件确定的厚度大于5m的结构构件,规范规定:如经论证,其纵向受拉钢筋可不受最小配筋率的限制,钢筋截面面积按承载力计算确定,但每米宽度内的钢筋截面面积不得小于2500mm2。

规范对最小配筋率作了三个层次的规定,即对一般尺寸的梁、柱构件必须遵循规范表9.5.1的规定;对于截面厚度较大的板、墙类结构,则可按规范9.5.2计算最小配筋率;对于截面尺寸由抗倾、抗滑、抗浮或布置等条件确定的厚度大于5m的结构构件则可按规范9.5.3处理。设计时可根据具体情况分别对待。

为慎重计,目前仅建议对卧置于地基上的底板和墩墙可采用变化的最小配筋率,对于其他结构,则仍建议采用规范表9.5.1所列的基本最小配筋率计算,以避免因配筋过少,万一发生裂缝就无法抑制的情况。

经验算,按所建议的变化的最小配筋率配筋,其最大裂缝宽度基本上在容许范围内。对于处于恶劣环境的结构,为控制裂缝不过宽,宜将本规范表9.5.1所列受拉钢筋最小配筋率提高0.05%。大体积构件的受压钢筋按计算不需配筋时,则可仅配构造钢筋。

三、规范的应用举例

例1一水闸底板,板厚1.5m,采用C20级混凝土和Ⅱ级钢筋,每米板宽承受弯矩设计值M=220kN/m(已包含γ0、φ系数在内),试配置受拉钢筋As。

解:1)取1m板宽,按受弯构件承载力公式计算受拉钢筋截面面积As。

αs===0.012556

ξ=1-=1-=0.0126

As===591mm2

计算配筋率ρ===0.041%

2)如按一般梁、柱构件考虑,则必须满足ρ≥ρmin条件,查规范表9.5.1,得ρ0min=0.15%,

则As=ρ0bh0=0.15%×1000×1450=2175mm2

3)现因底板为大尺寸厚板,可按规范9.5.2计算ρmin

ρmin===0.0779%

As=ρminbh0=0.0779%×1000×1450=1130mm2

实际选配每米5Φ18(As=1272mm2)

讨论:1)对大截面尺寸构件,采用规范9.5.2计算的可变的ρmin比采用规范表9.5.1所列的固定的ρ0min可节省大量钢筋,本例为1:1130/2175=1:0.52。

2)若将此水闸底板的板厚h增大为2.5m,按规范9.5.2计算的ρmin变为:

ρmin===0.0461%

则As=ρminbh0=0.0461%×1000×2450=1130mm2

可见,采用规范9.5.2计算最小配筋率时,当承受的内力不变,则不论板厚再增大多少,配筋面积As将保持不变。

例2一轴心受压柱,承受轴向压力设计值N=9000kN;采用C20级混凝土和I级钢筋;柱计算高度l0=7m;试分别求柱截面尺寸为b×h=1.0m×1.0m及2.0m×2.0m时的受压钢筋面积。

解:1)b×h=1.0m×1.0m时,轴心受压柱承载力公式为:

N≤φ(fcA+fy′As′)

==7<8,属于短柱,稳定系数φ=1.0,

As′===3809mm2

ρ′===0.38%

由规范表9.5.1查得ρ0min′=0.4%,对一般构件,应按ρ0min′配筋

As′=ρ0min′A=0.4%×106=4000mm2

2)b×h=2.0m×2.0m时,若仍按一般构件配筋,则

As′=0.4%×2.0×2.0×106=16000mm2

现因构件尺寸已较大,可按规范9.5.3计算最小配筋率:

ρmin′=ρ0min′()

式中因实际配筋量As′尚不知,故需先假定As′计算Nu。

①假定As′=4000mm2。

Nu=fy′As′+fyAs

=210×4000+10×4.0×106=40.84×106N

ρmin′=ρ0min′()

=0.4%()=0.106%

As′=ρ0min′A=0.106%×4.0×106=4231mm2

②假定As′=4231mm2。

Nu=210×4231+10×4.0×106=40.89×106N

ρmin′=0.4%()=0.1056%

水工钢筋范文篇2

这类结构在水利工程设计中是难于避免的,有时,它在某些水工混凝土工程结构中处于制约设计的重要地位。从逻辑概念讲,只要允许素混凝土结构的存在,必定会有少筋混凝土结构的应用范围,因为它毕竟是素混凝土和适筋混凝土结构之间的中介产物。

凡经常或周期性地受环境水作用的水工建筑物所用的混凝土称水工混凝土,水工混凝土多数为大体积混凝土,水工混凝土对强度要求则往往不是很高。在一般水工建筑物中,如闸墩、闸底板、水电站厂房的挡水墙、尾水管、船坞闸室等,在外力作用下,一方面要满足抗滑、抗倾覆的稳定性要求,结构应有足够的自重;另一方面,还应满足强度、抗渗、抗冻等要求,不允许出现裂缝,因此结构的尺寸比较大。若按钢筋混凝土结构设计,常需配置较多的钢筋而造成浪费,若按素混凝土结构设计,则又因计算所需截面较大,需使用大量的混凝土。

对于这类结构,如在混凝土中配置少量钢筋,在满足稳定性的要求下,考虑此少量钢筋对结构强度安全方面所起的作用,就能减少混凝土用量,从而达到经济和安全的要求。因此,在大体积的水工建筑物中,采用少筋混凝土结构,有其特殊意义。

关于少筋混凝土结构的设计思想和原则,我国《水工混凝土结构设计规范》(SL/T191—96)作了明确的规定。

二、规范对少筋混凝土结构的设计规定

对少筋混凝土结构的设计规定体现在最小配筋率规定上,这里将《水工混凝土结构设计规范》(SL/T191—96)(下文简称规范)有关最小配筋率的规定,摘录并阐述如下:

1.一般构件的纵向钢筋最小配筋率

一般钢筋混凝土构件的纵向受力钢筋的配筋率不应小于规范表9.5.1规定的数值。温度、收缩等因素对结构产生的影响较大时,最小配筋率应适当增大。

2.大尺寸底板和墩墙的纵向钢筋最小配筋率

截面尺寸较大的底板和墩墙一类结构,其最小配筋率可由钢筋混凝土构件纵向受力钢筋基本最小配筋率所列的基本最小配筋率乘以截面极限内力值与截面极限承载力之比得出。即

1)对底板(受弯构件)或墩墙(大偏心受压构件)的受拉钢筋As的最小配筋率可取为:

ρmin=ρ0min()

也可按下列近似公式计算:

底板ρmin=(规范9.5.2-1)

墩墙ρmin=(规范9.5.2-2)

此时,底板与墩墙的受压钢筋可不受最小配筋率限制,但应配置适量的构造钢筋。

2)对墩墙(轴心受压或小偏心受压构件)的受压钢筋As’的最小配筋率可取为:

ρ'min=ρ′0min()

按上式计算最小配筋率时,由于截面实际配筋量未知,其截面实际的极限承载力Nu不能直接求出,需先假定一配筋量经2—3次试算得出。

上列诸式中M、N——截面弯矩设计值、轴力设计值;

e0——轴向力至截面重心的距离,eo=M/N;

Mu、Nu——截面实际能承受的极限受弯承载力、极限受压承载力;

b、ho——截面宽度及有效高度;

fy——钢筋受拉强度设计值;

γd——钢筋混凝土结构的结构系数,按规范表4.2.1取值。

采用本条计算方法,随尺寸增大时,用钢量仍保持在同一水平上。

3.特大截面的最小配筋用量

对于截面尺寸由抗倾、抗滑、抗浮或布置等条件确定的厚度大于5m的结构构件,规范规定:如经论证,其纵向受拉钢筋可不受最小配筋率的限制,钢筋截面面积按承载力计算确定,但每米宽度内的钢筋截面面积不得小于2500mm2。

规范对最小配筋率作了三个层次的规定,即对一般尺寸的梁、柱构件必须遵循规范表9.5.1的规定;对于截面厚度较大的板、墙类结构,则可按规范9.5.2计算最小配筋率;对于截面尺寸由抗倾、抗滑、抗浮或布置等条件确定的厚度大于5m的结构构件则可按规范9.5.3处理。设计时可根据具体情况分别对待。

为慎重计,目前仅建议对卧置于地基上的底板和墩墙可采用变化的最小配筋率,对于其他结构,则仍建议采用规范表9.5.1所列的基本最小配筋率计算,以避免因配筋过少,万一发生裂缝就无法抑制的情况。

经验算,按所建议的变化的最小配筋率配筋,其最大裂缝宽度基本上在容许范围内。对于处于恶劣环境的结构,为控制裂缝不过宽,宜将本规范表9.5.1所列受拉钢筋最小配筋率提高0.05%。大体积构件的受压钢筋按计算不需配筋时,则可仅配构造钢筋。

三、规范的应用举例

例1一水闸底板,板厚1.5m,采用C20级混凝土和Ⅱ级钢筋,每米板宽承受弯矩设计值M=220kN/m(已包含γ0、φ系数在内),试配置受拉钢筋As。

解:1)取1m板宽,按受弯构件承载力公式计算受拉钢筋截面面积As。

αs===0.012556

ξ=1-=1-=0.0126

As===591mm2

计算配筋率ρ===0.041%

2)如按一般梁、柱构件考虑,则必须满足ρ≥ρmin条件,查规范表9.5.1,得ρ0min=0.15%,

则As=ρ0bh0=0.15%×1000×1450=2175mm2

3)现因底板为大尺寸厚板,可按规范9.5.2计算ρmin

ρmin===0.0779%

As=ρminbh0=0.0779%×1000×1450=1130mm2

实际选配每米5Φ18(As=1272mm2)

讨论:1)对大截面尺寸构件,采用规范9.5.2计算的可变的ρmin比采用规范表9.5.1所列的固定的ρ0min可节省大量钢筋,本例为1:1130/2175=1:0.52。

2)若将此水闸底板的板厚h增大为2.5m,按规范9.5.2计算的ρmin变为:

ρmin===0.0461%

则As=ρminbh0=0.0461%×1000×2450=1130mm2

可见,采用规范9.5.2计算最小配筋率时,当承受的内力不变,则不论板厚再增大多少,配筋面积As将保持不变。

例2一轴心受压柱,承受轴向压力设计值N=9000kN;采用C20级混凝土和I级钢筋;柱计算高度l0=7m;试分别求柱截面尺寸为b×h=1.0m×1.0m及2.0m×2.0m时的受压钢筋面积。

解:1)b×h=1.0m×1.0m时,轴心受压柱承载力公式为:

N≤φ(fcA+fy′As′)

==7<8,属于短柱,稳定系数φ=1.0,

As′===3809mm2

ρ′===0.38%

由规范表9.5.1查得ρ0min′=0.4%,对一般构件,应按ρ0min′配筋

As′=ρ0min′A=0.4%×106=4000mm2

2)b×h=2.0m×2.0m时,若仍按一般构件配筋,则

As′=0.4%×2.0×2.0×106=16000mm2

现因构件尺寸已较大,可按规范9.5.3计算最小配筋率:

ρmin′=ρ0min′()

式中因实际配筋量As′尚不知,故需先假定As′计算Nu。

①假定As′=4000mm2。

Nu=fy′As′+fyAs

=210×4000+10×4.0×106=40.84×106N

ρmin′=ρ0min′()

=0.4%()=0.106%

As′=ρ0min′A=0.106%×4.0×106=4231mm2

②假定As′=4231mm2。

Nu=210×4231+10×4.0×106=40.89×106N

ρmin′=0.4%()=0.1056%

水工钢筋范文篇3

当然,引起水工建筑物混凝土结构产生裂缝的原因是多方面的。但是,归纳起来可分为荷载作用引起的裂缝和非荷载引起的裂缝两类。本文对这两类因素进行了分析,并根据实践经验对在施工中进行预防的措施,供参考。

2荷载作用引起的裂缝

2.1水工建筑物混凝土结构在使用荷载作用下,由于截面的混凝土拉应变大多是大于混凝土极限拉伸值的,所以构件在使用时总是带缝工作的。这类裂缝总是与主拉应力方向大致垂直,且最先在荷载效应最大处产生。如果荷载效应相同,裂缝首先在混凝土抗拉能力最薄弱处产生。

2.2预防荷载作用引起的裂缝的措施是合理的配筋。在施工过程中,选用混凝土粘结较好的变形钢筋,控制钢筋的应力不过高,钢筋的直径不过粗,并用钢筋不在混凝土中分布比较均匀。这样就能较好地控制正常使用条件下裂缝宽度,不致过宽。

3非荷载引起的裂缝

在水工建筑物混凝土物件中,大部份缝是由非荷载因素引起的,如温度变化、混凝土收缩、基础不匀沉降、塑性坍落、钢筋锈蚀、碱—骨科化学反应等等。

3.1温度变化引起的裂缝

3.1.1水工建筑结构件随着温度的变化而产生变形,即通常所说的热胀冷缩。当变形受到约束时,便产生了裂缝,约束的程度越大,裂缝就越宽。

预防热胀冷缩的措施:一是撤去约束,允许自由的产生变形;二是设置伸缩缝。

3.1.2水泥和水所引起化学反应引起裂缝。大体积混凝土开列的主要原因之一,是由于混凝土在硬化过程中,水泥和水起化学反应,产生大量的水化热引起混凝土的温度上升,如果热量不能很快散失,内部和外部温差过大,就将产生温度应力,使结构内部受压,外部受拉。混凝土在硬化初期,只有很低的抗拉强度,如果由内外温度差引起的拉应力超过混凝土早期抗拉强度时,混凝土就要产生裂缝。

防止这类裂缝产生的措施是:①尽量选用低热或中热降低泥矿渣水泥、粉煤灰水泥;②减少水泥用量,将水泥用量尽量控制在450kg/m2以下;③降低水灰比,一般混凝土的水灰比控制在0.60以下;④改善骨科级配,掺加粉煤灰或高效减少水剂等来减少水泥用量,降低水化热;⑤改善混凝土的搅拌工艺,采用“二次风冷”新工艺降低混凝土的浇筑温度;⑥在混凝土中掺加一定量的具有减水、增塑、缓凝等作用的外加剂,改善混凝土拌和物的流动性、保水性,降低水热化,推迟热峰出现的时间;⑦合理安排施工工序,分层、分块浇筑,以利于散热,减小约束;⑧在大体积混凝土内部设置冷却管道,通过冷水或冷气冷却,减小混凝土的内部温差;⑨加强混凝土温度的监控,及时采取冷却保护措施;⑩加强混凝土养护,混凝土浇筑后,及时用湿润的草帘、麻片等覆盖,并洒水养护,适当延长养护时间,保证混凝土表现缓慢冷却,在寒冷季节,混凝土两面必须采取保温措施,以防寒潮袭击。

3.1.3构件硬化成型后,在使用中,如果温度较大,构件内部温度梯度就极大,也会引起构件开裂。

3.1.4预防产生比类裂缝的措施是:采用隔热(或保温)措施,尽量减少构件内部温度梯度,在配筋时应考虑温度力的影响。

3.2混凝土收缩引起的裂缝

3.2.1混凝土在空气中结硬时,体积要缩小,产生收缩变形,当受到约束时,就可能导致裂缝的产生。

3.2.2在配筋率较高的构件中,由于钢筋对周围混凝土的约束作用增强,混凝土的收缩也会受到钢筋的限制而产生拉应力,引起构件局部裂缝。

3.2.3新老混凝土界面容易产生收缩裂缝。

3.2.4防止和减少收缩裂缝的措施:①合理设置收缩缝;②改善水泥土性能,降低水灰比,减少水泥用量;③配筋率不宜过高,设置构造钢筋收缩裂缝健分布均匀,避免发生集中的大裂缝;④加强混凝土的时期养护,并适应当延长混凝土保温覆盖时间,并涂刷养护剂养护。

3.3混凝土塑性坍落引起的裂缝

3.3.1混凝土塑性坍落发生在混凝土浇筑后的头几个小时内,这时混凝土还处于塑性状态,如果混凝土出现泌水现象,在重力作用下混合料中的固体颗粒有向下沉移而水向上浮动的倾向。这种移动当受到钢筋骨架或者模板约束时,在上部就容易形成沿钢筋长度方向的裂缝。

3.3.2预防措施是:①要仔细选择集料的配级,做好混凝土的配合比设计,特别是要控制水灰比,采用适量的减水剂;②施工时混凝土既不能漏振也不能过振,避免混凝土泌水现象的发生,防止模板沉陷;③如果发生这类裂缝,可在混凝土终凝以前重新抹面压光,使裂缝闭合。3.4基础不均匀沉降引起的裂缝

3.4.1基础不均匀沉降,使超静结构受迫,从而导致裂缝。

3.4.2防止基础不均匀引起裂缝的措施是:根据地基条件及上部结构形式,采用合理的构造措施及设置沉降缝。

3.5冰冻引起的裂缝

3.5.1水在结冰过程中,荷重要增加,因此,水在设灌浆或灌浆不饱满的预应力构件孔道中结冰,就可以产生沿着孔道方向的纵向裂缝。

3.5.2预防冰冻裂缝的措施:在建筑物基础梁下填一定厚度的松散材料(炉渣)。

3.6钢筋锈蚀引起的裂缝

3.6.1原因:钢筋的生锈过程实际上是电化学反应过程,这种效应可在钢筋周围的混凝土中产生胀拉应力,如果混凝土的保护层比较薄,不是以抵抗这种拉应力时,就会沿着钢筋形成一条顺筋裂缝。顺筋裂缝一旦产生,又进一步促进钢筋锈蚀程度的增加,形成恶性循环,最后导致混凝土保护层剥落,甚至钢筋锈断。这种顺筋裂缝对结构的耐久性影响最大。

3.6.2预防措施:防止顺筋裂缝的措施是提高混凝土的密实度和抗渗性,适当加大保护层的厚度。

3.7碱——骨科化学反应引起的裂缝

3.7.1原因和分析:碱——骨科反应是指混凝土孔隙中水泥的碱性溶液与活性骨科(含活性Si02)化学反应,生成碱——硅酸凝胶,碱硅胶温水后可产生膨胀,使混凝土胀裂,开始时在混凝土表面形成不规则的细小裂缝,然后由表及里地发展,裂缝中充满了白色深沉。

3.7.2预防措施:碱——骨科化学反应对结构件的耐久性影响极大,为了控制碱——骨科的化学反应速度应选择优质骨科和低含碱量水泥,并提高混凝土的密实度和采用较低的水灰比。

4结语

裂缝是水利建筑物混凝土结构中普遍存在的一种现象,它的出现不仅会降低水利建筑物的抗渗能力,影响水利建筑物的使用功能,而且会引起钢筋的锈蚀,混凝土的碳化,降低材料的耐久性,影响水利建筑物的承载能力。所以,必须对混凝土裂缝进行深入细致的调查研究,区别对待,在施工中采取各种有效的预防措施来预防裂缝的出现和发展,以保证水利工程建筑物的构件的安全、稳定、经久、耐用。

论文关键词:水利工程建筑物;混凝土裂缝;防治措施

论文摘要:在许多水利工程建筑物中,混凝土的裂缝问题是一个普遍存在而又难以解决的工程实际问题,对水利工程中常见的混凝土裂缝的成因进行了探讨分析,并有针对性地提出了一些防治措施。

参考文献

水工钢筋范文篇4

关键词:水利工程建设混凝土施工裂缝控制具体措施

引言

水工混凝土裂缝是水工建筑物最为常见的病害之一,产生的原因是多种多样的。裂缝对水工建筑物的危害程度不一,还可能诱发其他病害的发生和发展,对水工建筑物的耐久性产生巨大的危害,因此,必须对此加以重视,并采取措施加以解决。

一、水工混凝土裂缝的危害

混凝土裂缝将使水工建筑物产生渗漏,渗漏的结果,一方面在压力水作用下使裂缝逐步扩宽和发展;另一方面当水渗入混凝土内部后首先会引起水解破坏,并可能由此导致混凝土结构物的破坏。根据调查,由裂缝引起的各种不利结果中,渗漏水占60%。

由于混凝土碳化会加剧混凝土收缩开裂,导致混凝土结构物破坏。混凝土裂缝的存在,能使空气中的二氧化碳极易渗透到混凝土内部与水泥的某些水化产物相互作用形成碳酸钙,这就是常说的混凝土碳化。在潮湿的环境下二氧化碳能与水泥中的化学成分相互作用,使混凝土的碱度降低,使钢筋纯化膜遭受破坏,当水和空气同时期渗入,钢筋就产生锈蚀。

混凝土的裂缝还会使混凝土对钢筋的保护作用削弱,在裂缝部位,水拉性能减弱,裂缝进一步扩大,形成更大的危害。

综上,混凝土裂缝对混凝土结构物的结构强度和稳定性具有直接的影响。会降低混凝土结构物的结构强度和整体稳定性。轻则影响建筑物的外观和正常使用,严重的贯穿性裂缝甚至可能导致混凝土结构物的完全破坏。

二、水工混凝土结构裂缝产生的原因

按裂缝产生的原因划分有:由外荷载引起的裂缝;由变形引起的裂缝;由施工操作引起的裂缝。水工建筑物产生裂缝的主要原因如下:

2.1大体积混凝土水化时产生的大量水化热得不到散发,导致混凝土内外温差较大,使混凝土的形变超过极限引起裂缝。

2.2混凝土在硬化的过程中,由于干缩引起的体积变形受到约束时产生的裂缝,这种裂缝的宽度有时会很大,甚至会贯穿整个构件。

2.3在厚度较大的构件中,由于混凝土的塑性塌落引起的裂缝。

2.4当有约束时,混凝土热胀冷缩所产生的体积胀缩,因为受约束力的限制,在内部产生了温度应力,由于混凝土抗拉强度低,容易被温度引起的拉应力拉裂,从而产生温度裂缝。由于太阳暴晒产生裂缝也是工程中最常见的现象。

2.5混凝土加水拌和后,水泥中的碱性物质与活性骨料中活性氧化硅等起反应,析出的胶状碱——硅胶从周围介质中吸水膨涨,体积增大3倍,从而使混凝土涨裂产生裂缝。

2.6在炎热的大风天气,混凝土表面水分蒸发过快,造成混凝土内部水化热过高,在混凝土浇筑数小时仍处于塑性状态,易产生塑性收缩裂缝。

2.7构件超载产生的裂缝。例如:构件在超出设计的均布荷载或集中荷载作用下产生内力弯矩,出现垂直于构件纵轴的裂缝,构件在较大剪力作用下,产生斜裂缝,并向上、下延伸。

2.8当结构的基础出现不均匀沉陷,就有可能会产生裂缝,随着沉陷的进一步发展,裂缝会进一步扩大。

2.9当钢筋混凝土处于不利环境中,例如:侵蚀性水,由于混凝土保护层厚度有限,特别是当混凝土密实性不良,环境中的氯离子等和溶于水中的氧离子会使混凝土中的钢筋生锈,生成氧化铁,氧化铁的体积比原来金属的体积大得多,铁锈体积膨胀,对周围混凝土挤压,使混凝土胀裂。

三、控制混凝土裂缝的具体措施

3.1混凝土配合比的优化设计。掺入粉煤灰,选择减水剂,保证泵送流动度。采集原材料进行试拌,尽可能地减少水泥用量,添加Ⅰ级粉煤灰,将水胶比控制在规范允许的范围内,粗骨料采用二级配。掺入适量的粉煤灰对改善混凝土的和易性,降低温升,减少收缩,提高抗侵蚀具有良好的作用。

3.2原材料的选择。砂料细度模数控制在2.4以上,含泥量控制在1%内。碎石针片状控制在10%以内,含泥量控制在1%内,尽可能使用低水热化水泥,控制原材料的质量不使混凝土产生收缩。

3.3施工安排。混凝土的浇筑尽可能避开高温、曝晒、多风、降温的天气,若需要上述条件下施工时必须有相应遮挡、保温措施。

3.4施工过程控制。a.二次振捣法消除混凝土沉缩裂缝。对于浇筑后坍落度已经消失开始初凝的混凝土进行二次振捣,混凝土会重新液化,能较好地消除粗骨料、钢筋下面的水膜,消除沉缩收缩量。泵送混凝土特别需要二次振捣。b.二次压光消除混凝土塑性收缩裂缝。此种裂缝是混凝土表面水分散失引起的,发生在混凝土初凝至终凝期间,消除此种裂缝应使用机械抹光机进行大面积、高强度的提浆抹光,然后使用机械收光机进行大面积、高强度的收光,将极大地提高混凝土的平整度和表面强度,在混凝土终凝前再进行二次人工抹压收光。c.控制约束裂缝的措施。混凝土约束裂缝的产生是混凝土内外温差过大或收缩引起的约束拉力超过了混凝土的抗拉强度,在混凝土内外温差过大、气温骤降时,及时采取保温、保湿措施,加强测温和气温预报,做到防护及时。闸墩下部与底板同时浇筑或尽量缩短闸墩与闸底板之间浇筑的时间间隔,可有效控制闸墩裂缝发生。

3.5混凝土干缩裂缝的控制措施。混凝土存在空隙产生湿胀干缩,加强振捣使之密实,清除混凝土中的泌水,加强表面的抹压收光,掺加优质粉煤灰,降低水灰比,可有效地控制混凝土湿胀干缩裂缝产生。

3.6混凝土内部的温度控制。大体积混凝土内部埋设热电耦测温,掌握混凝土内部的温升变化及内部最高温度的发生时间,通过蓄热保温使混凝土内外温差控制在25℃以内。常采用两层农膜加干铺两层草袋的做法。

3.7混凝土的养护和表面保护。良好的养护可使混凝土保持或接近饱和状态,水化作用速度最大,也是控制混凝土裂缝发生的措施之一,一般保温、保湿养护不得少于14d。

四、水利工程构筑物已产生裂缝的修补方法

国内外学者把裂缝分为死缝、活缝和增长缝等3种。对于死缝可以采用刚性材料填充修补;对活缝则采用弹性材料修补;对于增长缝,必须消除引发裂缝的因素。裂缝修补除了要恢复防水性和耐久性为目的之外,还要从结构安全及美观角度出发进行修补,当前的修补方法主要有以下三大类。

4.1充填法对于裂缝宽度大于0.5mm的裂缝,沿裂缝处凿成“U”形或“V”形槽,槽顶宽约10cm,在槽中充填密封材料。充填材料采用水泥砂浆、环氧砂浆、弹性环氧砂浆、聚合物水泥砂浆等。如果钢筋混凝土结构中钢筋已经锈蚀,则将混凝土凿开到能够处理已经生锈的钢筋部分,将钢筋除锈,再在槽中充填水泥砂浆或环氧树脂砂浆等材料。

4.2注入法注入法分压力注入法(灌浆法)与真空吸入法两种。灌浆法适应于较深较细的裂缝,而真空注入法则利用真空泵使缝内形成真空,将浆材注入缝内,该方法适应于各种表面裂缝的修补。灌浆材料有水泥浆材、普通环氧浆材、弹性聚氨酯浆材、水溶性聚氨酯浆材等。

4.3表面覆盖法在细微裂缝表面上涂膜,以提高其防水性及耐力性为目的的修补方法。分涂覆裂缝部分及全部涂覆两种方法。施工时,首先用钢丝刷将混凝土表面打毛,清理表面附着物,用水冲洗干净后充分干燥,然后用树脂充填混凝土表面气孔,再用修补材料覆盖表面。公务员之家:

五、结语

水工建筑构筑物的结构安全和防渗等主要由混凝土承担,因此混凝土的质量极其重要。因此,减少和控制混凝土裂缝的产生和扩展,对提高混凝土结构的质量,进而提升水工建筑物的安全起着极为重要的作用,必须加以重视。

参考文献:

[1]刘军《试论常见水工混凝土裂缝的种类及预防措施》[J].甘肃科技纵横.2008(1).

水工钢筋范文篇5

关键词:水利工程建设混凝土施工裂缝控制具体措施

0引言

水工混凝土裂缝是水工建筑物最为常见的病害之一,产生的原因是多种多样的。裂缝对水工建筑物的危害程度不一,还可能诱发其他病害的发生和发展,对水工建筑物的耐久性产生巨大的危害,因此,必须对此加以重视,并采取措施加以解决。

1水工混凝土裂缝的危害

混凝土裂缝将使水工建筑物产生渗漏,渗漏的结果,一方面在压力水作用下使裂缝逐步扩宽和发展;另一方面当水渗入混凝土内部后首先会引起水解破坏,并可能由此导致混凝土结构物的破坏。根据调查,由裂缝引起的各种不利结果中,渗漏水占60%。

由于混凝土碳化会加剧混凝土收缩开裂,导致混凝土结构物破坏。混凝土裂缝的存在,能使空气中的二氧化碳极易渗透到混凝土内部与水泥的某些水化产物相互作用形成碳酸钙,这就是常说的混凝土碳化。在潮湿的环境下二氧化碳能与水泥中的化学成分相互作用,使混凝土的碱度降低,使钢筋纯化膜遭受破坏,当水和空气同时期渗入,钢筋就产生锈蚀。

混凝土的裂缝还会使混凝土对钢筋的保护作用削弱,在裂缝部位,水拉性能减弱,裂缝进一步扩大,形成更大的危害。

综上,混凝土裂缝对混凝土结构物的结构强度和稳定性具有直接的影响。会降低混凝土结构物的结构强度和整体稳定性。轻则影响建筑物的外观和正常使用,严重的贯穿性裂缝甚至可能导致混凝土结构物的完全破坏。

2水工混凝土结构裂缝产生的原因

按裂缝产生的原因划分有:由外荷载引起的裂缝;由变形引起的裂缝;由施工操作引起的裂缝。水工建筑物产生裂缝的主要原因如下:

2.1大体积混凝土水化时产生的大量水化热得不到散发,导致混凝土内外温差较大,使混凝土的形变超过极限引起裂缝。

2.2混凝土在硬化的过程中,由于干缩引起的体积变形受到约束时产生的裂缝,这种裂缝的宽度有时会很大,甚至会贯穿整个构件。

2.3在厚度较大的构件中,由于混凝土的塑性塌落引起的裂缝。

2.4当有约束时,混凝土热胀冷缩所产生的体积胀缩,因为受约束力的限制,在内部产生了温度应力,由于混凝土抗拉强度低,容易被温度引起的拉应力拉裂,从而产生温度裂缝。由于太阳暴晒产生裂缝也是工程中最常见的现象。

2.5混凝土加水拌和后,水泥中的碱性物质与活性骨料中活性氧化硅等起反应,析出的胶状碱——硅胶从周围介质中吸水膨涨,体积增大3倍,从而使混凝土涨裂产生裂缝。

2.6在炎热的大风天气,混凝土表面水分蒸发过快,造成混凝土内部水化热过高,在混凝土浇筑数小时仍处于塑性状态,易产生塑性收缩裂缝。

2.7构件超载产生的裂缝。例如:构件在超出设计的均布荷载或集中荷载作用下产生内力弯矩,出现垂直于构件纵轴的裂缝,构件在较大剪力作用下,产生斜裂缝,并向上、下延伸。

2.8当结构的基础出现不均匀沉陷,就有可能会产生裂缝,随着沉陷的进一步发展,裂缝会进一步扩大。

2.9当钢筋混凝土处于不利环境中,例如:侵蚀性水,由于混凝土保护层厚度有限,特别是当混凝土密实性不良,环境中的氯离子等和溶于水中的氧离子会使混凝土中的钢筋生锈,生成氧化铁,氧化铁的体积比原来金属的体积大得多,铁锈体积膨胀,对周围混凝土挤压,使混凝土胀裂。

3控制混凝土裂缝的具体措施

3.1混凝土配合比的优化设计。掺入粉煤灰,选择减水剂,保证泵送流动度。采集原材料进行试拌,尽可能地减少水泥用量,添加Ⅰ级粉煤灰,将水胶比控制在规范允许的范围内,粗骨料采用二级配。掺入适量的粉煤灰对改善混凝土的和易性,降低温升,减少收缩,提高抗侵蚀具有良好的作用。

3.2原材料的选择。砂料细度模数控制在2.4以上,含泥量控制在1%内。碎石针片状控制在10%以内,含泥量控制在1%内,尽可能使用低水热化水泥,控制原材料的质量不使混凝土产生收缩。

3.3施工安排。混凝土的浇筑尽可能避开高温、曝晒、多风、降温的天气,若需要上述条件下施工时必须有相应遮挡、保温措施。

3.4施工过程控制。a.二次振捣法消除混凝土沉缩裂缝。对于浇筑后坍落度已经消失开始初凝的混凝土进行二次振捣,混凝土会重新液化,能较好地消除粗骨料、钢筋下面的水膜,消除沉缩收缩量。泵送混凝土特别需要二次振捣。b.二次压光消除混凝土塑性收缩裂缝。此种裂缝是混凝土表面水分散失引起的,发生在混凝土初凝至终凝期间,消除此种裂缝应使用机械抹

光机进行大面积、高强度的提浆抹光,然后使用机械收光机进行大面积、高强度的收光,将极大地提高混凝土的平整度和表面强度,在混凝土终凝前再进行二次人工抹压收光。c.控制约束裂缝的措施。混凝土约束裂缝的产生是混凝土内外温差过大或收缩引起的约束拉力超过了混凝土的抗拉强度,在混凝土内外温差过大、气温骤降时,及时采取保温、保湿措施,加强测温和气温预报,做到防护及时。闸墩下部与底板同时浇筑或尽量缩短闸墩与闸底板之间浇筑的时间间隔,可有效控制闸墩裂缝发生。

3.5混凝土干缩裂缝的控制措施。混凝土存在空隙产生湿胀干缩,加强振捣使之密实,清除混凝土中的泌水,加强表面的抹压收光,掺加优质粉煤灰,降低水灰比,可有效地控制混凝土湿胀干缩裂缝产生。

3.6混凝土内部的温度控制。大体积混凝土内部埋设热电耦测温,掌握混凝土内部的温升变化及内部最高温度的发生时间,通过蓄热保温使混凝土内外温差控制在25℃以内。常采用两层农膜加干铺两层草袋的做法。

3.7混凝土的养护和表面保护。良好的养护可使混凝土保持或接近饱和状态,水化作用速度最大,也是控制混凝土裂缝发生的措施之一,一般保温、保湿养护不得少于14d。

4水利工程构筑物已产生裂缝的修补方法

国内外学者把裂缝分为死缝、活缝和增长缝等3种。对于死缝可以采用刚性材料填充修补;对活缝则采用弹性材料修补;对于增长缝,必须消除引发裂缝的因素。裂缝修补除了要恢复防水性和耐久性为目的之外,还要从结构安全及美观角度出发进行修补,当前的修补方法主要有以下三大类。

4.1充填法对于裂缝宽度大于0.5mm的裂缝,沿裂缝处凿成“U”形或“V”形槽,槽顶宽约10cm,在槽中充填密封材料。充填材料采用水泥砂浆、环氧砂浆、弹性环氧砂浆、聚合物水泥砂浆等。如果钢筋混凝土结构中钢筋已经锈蚀,则将混凝土凿开到能够处理已经生锈的钢筋部分,将钢筋除锈,再在槽中充填水泥砂浆或环氧树脂砂浆等材料。

4.2注入法注入法分压力注入法(灌浆法)与真空吸入法两种。灌浆法适应于较深较细的裂缝,而真空注入法则利用真空泵使缝内形成真空,将浆材注入缝内,该方法适应于各种表面裂缝的修补。灌浆材料有水泥浆材、普通环氧浆材、弹性聚氨酯浆材、水溶性聚氨酯浆材等。

4.3表面覆盖法在细微裂缝表面上涂膜,以提高其防水性及耐力性为目的的修补方法。分涂覆裂缝部分及全部涂覆两种方法。施工时,首先用钢丝刷将混凝土表面打毛,清理表面附着物,用水冲洗干净后充分干燥,然后用树脂充填混凝土表面气孔,再用修补材料覆盖表面。

5结语

水工建筑构筑物的结构安全和防渗等主要由混凝土承担,因此混凝土的质量极其重要。因此,减少和控制混凝土裂缝的产生和扩展,对提高混凝土结构的质量,进而提升水工建筑物的安全起着极为重要的作用,必须加以重视。

参考文献:

[1]刘军《试论常见水工混凝土裂缝的种类及预防措施》[J].甘肃科技纵横.2008(1).

水工钢筋范文篇6

水利工程是基础产业工程,目前我国正在大规模、高速度地进行水利开发,工程建设耗费了大量资源,水工混凝土的耐久性也直接关系到工程的使用寿命、加固费用、效益发挥和运行安全,但是水工混凝土却经常受到裂缝、冻胀、冲磨、空蚀、碱骨料反应、碳化、溶蚀和侵蚀等病害的威胁,由于工程耐久性不足,增加了建筑物使用过程中的修理与加固费用,影响或限制了结构的正常使用功能并缩短结构的使用年限,影响效益和安全,不仅造成经济损失,而且严重浪费资源,引发社会问题。因此有必要对水工混凝土的常见病害进行分析和研究,并反馈到设计、施工和运行管理等方面来进行预防和控制,在工程建设管理的整个过程中,全方位、多渠道地提高水工混凝土的质量和耐久性,延长工程使用寿命,确保国家可持续发展战略在水利建设开发过程中的有效施行。

2、常见病害分析

水工混凝土是水利工程建设中很重要的材料,使用种类繁多,也需要在各种各样复杂的环境条件下发挥作用和确保工程正常运行。根据水工混凝土建筑物的结构性特点和所处工作环境的不同,常见病害主要有裂缝、冻胀、冲磨空蚀、碱骨料反应、碳化、溶蚀和侵蚀七大类,其中前三类属于物理性病害,后四类属于化学性病害。由于工程自身因素和工作条件的差异,这几类病害对混凝土的危害程度也互不相同。

(1)裂缝

裂缝是混凝土建筑物最常见的病害之一。裂缝是材料的不连续现象,属于物理性病害,是水工混凝土耐久性的首要影响因素。裂缝的出现,多数在施工期就存在,有的虽然在施工期以后,也多在运行初期5~10年以内,不是由于运行期长工程老化问题,而是早期的问题。裂缝的存在直接导致混凝土抗拉性能的降低,裂缝也会引导有害物质进入混凝土内部,造成钢筋锈蚀,甚至混凝土结构破坏。对于水库蓄水发电和灌溉来说,挡水混凝土结构的裂缝会直接引起渗漏,如果渗漏量达到一定程度,就直接危及工程的蓄水能力;对于混凝土重力坝来说,如果裂缝达到一定贯穿深度和宽度,会引起坝体扬压力的急剧增长,削弱坝体的抗滑能力,对结构抗震非常不利,甚至会对整个坝体的结构稳定和安全造成威胁。

水工混凝土常见病害类型及影响框图

(2)冻胀

一般认为,在温度正负交替过程中,混凝土微孔中的水成为结冰或过冷的水,体积膨胀产生冻胀压力,过冷的水迁移产生渗透压力,当两者的附加作用力超过混凝土的抗拉强度时,混凝土就遭受破坏。所以说冻胀破坏是一种物理性破坏,在我国的北方地区,水工混凝土受到这种破坏的情况比较严重。受冻融作用的影响,混凝土会变得酥松、鼓包、开裂,甚至层状剥落,使建筑物失去作用,进而对建筑物整体稳定造成影响。

(3)冲磨和空蚀

冲磨主要是水流中的泥沙作用,我国河流多泥沙,和高速水流一起运动时磨蚀直接接触或临近的混凝土。空蚀是水工泄水建筑物工作中的水流的一种特有现象,混凝土局部受到不规则的挤压变形而产生破坏。所以冲磨和空蚀都属于物理性病害。一般地,冲磨和空蚀是交替而又相互促进的,造成混凝土表面粗骨料裸露,混凝土表面凸凹不平,产生坑洞,进而造成钢筋外露和钢筋锈蚀。

(4)碱骨料反应

骨料中含有的氧化硅等物质容易和水泥或混凝土中的碱(Na2O、K2O)起反应,即碱骨料反应,显然这是一种化学病害。该反应生成吸水膨胀的凝胶,使混凝土产生开裂。

(5)碳化

混凝土的碳化(中性化)是空气中的二氧化碳气体不断地透过混凝土中未完全充水的粗毛细孔,扩散到混凝土内部充水的毛细孔中,与其中的空隙液所溶解的氢氧化钙进行中和反应,生成碳酸盐或其他物质,使混凝土孔溶液的PH值小于10,钢筋的钝化膜被破坏,钢筋发生锈蚀。钢筋生锈后体积膨胀,引起混凝土开裂,与钢筋的粘结力降低,混凝土保护层脱落,钢筋断面面积发生损缺,严重影响混凝土的耐久性。

(6)溶蚀

混凝土溶蚀是一种化学性病害。混凝土中的CaO被水溶解变成Ca(OH)2,然后遇到空气中的CO2反应生成CaCO3沉淀物,标志着混凝土已经病变,将因此损失掉胶凝性而逐渐失去强度,抗渗能力也不断降低。当CaO被溶出约33%时,混凝土将变得酥松而失去强度。

(7)侵蚀

侵蚀主要是环境水质对水工混凝土的危害,这也是一种化学病害,虽然不是特别普遍,但有些工程却受害很深。比如,环境水中的SO42-离子与混凝土中的Ca(OH)2反应生成CaSO4时,产生第一次体积膨胀,CaSO4又与混凝土中的C3A反应生成硫铝酸钙,产生第二次体积膨胀,巨大的膨胀应力导致混凝土胀裂、变酥,甚至变成粉末状。另一个就是氯盐的渗入,当混凝土结构处于含有氯盐的海水、岩土或空气环境中时,氯离子也会从混凝土表面逐渐扩散到钢筋表面并使钢筋脱钝而锈蚀。

在上述所列病害类型中,以混凝土裂缝为首要病害,同时各类病害对混凝土的影响程度不同,同种病害在不同的混凝土建筑物上造成的破坏也各种各样,另外还存在地域差异,就全国范围来说,各地的混凝土病害特征也是复杂多样。并且各种病害还会交叉感染,比如说,裂缝的存在会引起渗漏溶蚀、环境水侵蚀、冻胀破坏的扩展、混凝土碳化和钢筋锈蚀等。

3、预防对策

随着运行期的增长,水工混凝土的老化是客观现象,及时的维护和修补也是必要的,但是很多相关混凝土的病害却不是一般的老化问题,更多地与设计、施工和运行管理有密切关系,因此要减少或预防混凝土病害,就要从这几个方面采取预防措施。

(1)工程设计

①水工混凝土建筑物的设计要从按强度设计的模式中解脱出来,更多地考虑建筑物长期使用过程中由于环境作用引起结构材料性能劣化、腐蚀对结构安全性与适用性的影响,尽可能延长工程寿命,避免资源浪费。

②水工混凝土建筑物的设计要严格按照国家现行有关标准执行,严格考虑建筑物正常使用过程中构件的预定检测和维护,并在结构设计时为此项工作提供可能性和工作面。

③水工混凝土遭受病害是不可避免的,只是程度轻重可以控制。所以混凝土构件在考虑了环境的侵蚀性和材料性能的老化过程后,要仍然可以保证结构应有的安全性和稳定性。

④同一建筑物中的不同构件所处的工作环境可能存在差异,其遭受病害的可能性和程度也会不一样,因此其耐久性就不同,所以对于局部可能遭受病害严重同时可以更换的构件可以设计成拆装和可更换型的,从而延长建筑物使用寿命。

⑤在建筑物的构造设计中,也可以有很多措施,比如,对混凝土表面进行粉刷或涂膜延缓碳化或减少水质侵蚀,在有效范围内增大混凝土钢筋保护层,对混凝土裂缝最大宽度的允许值进行认真论证和严格限定,设置合理的伸缩缝、沉降缝和施工缝,让结构可以自由变形,避免裂缝和不均匀沉降等。另外还可以设置有效的防渗、排水、抗冲刷和抗磨蚀措施等。

(2)工程原材料

①合理选择水泥品种和标号,尽可能选用水化热小的水泥,适量掺加粉煤灰或矿渣等掺和料。

②严格对混凝土拌和用水进行检验,避免氯离子含量超标。

③尽可能采用较小的水灰比,减少混凝土的孔隙率。

④采用杂质少、粒径适中、级配好、坚固性好的砂石骨料。

⑤合理使用和掺加减水剂和引气剂等外加剂。

(3)施工工艺

①建筑物的施工要符合工程设计和国家现行的施工规范、质量评定与验收规范的要求。

②严格执行工程施工监理和竣工验收制度,并进行耐久性专项质量检验。

③大体积混凝土要事先制定完备的温控措施计划,并在施工中严格执行。

④改进施工机械,改善施工操作方法,确保混凝土均匀密实。

⑤混凝土浇筑过程中严格控制钢筋保护层不受影响和破坏。

⑥混凝土临空面要从模板和浇筑过程中的振捣等方面进行控制,避免蜂窝、麻面的出现,对于已经造成的混凝土缺陷,要及时科学地进行修补和处理。

⑦加强混凝土养护,要从养护方法、时间和材料等方面下工夫。

(4)运行管理

①严格按照设计预定的工况进行运行,不应有超出设计范围的工况,对于设计预定的但是不常用的工况运行期间要加强监测和控制。

②建立严格的运行管理规章制度并在运行中严格执行。

③设计人员要向建设单位或运行单位的相关人员提出建筑物使用过程中日常维护措施、设计预定的定期维修、部件更换、监测要求和定期安全鉴定计划的内容,做好运行安全技术交底。

④对于建筑物的特殊部位要经常性检测,特别是处于严重腐蚀性环境作用下的构件和部位。

⑤定期进行安全鉴定。

⑥对于检测和安全鉴定中发现的问题,要及时进行科学规范的处理。

4、结语

由于病害的影响,很多水工混凝土建筑物的耐久性受到威胁和挑战,很多以前建成的混凝土建筑物也不同程度地遭受了破坏,因此很有必要对这些病害进行分析和研究论证,探讨可行的有效的处理措施和预控方案,并且在工程建设过程中做好宣传教育和引导,混凝土的耐久性问题不是设计、施工和运行管理单位任何一家的问题,而是大家面临的共同问题,我们一定要高度重视,认真对待,各参建及运行管理单位要齐心协力,全方位、多渠道地联合控制,确保混凝土质量,减少病害隐患及威胁,提高水工混凝土耐久。

参考文献

[1]刑林生,聂广明.我国水电站混凝土建筑物耐久性分析.水力发电,2003(2)

[2]柏宝忠,王以仁.影响水工建筑物耐久性的主要因素及预防对策.水利水电技术,2004(10)

水工钢筋范文篇7

关键词:调水工程;安全监控;监控指标;等级划分;工作状态

我国水资源呈现时空分布明显不均的特点,导致部分地区存在水资源严重短缺的问题,调水工程是解决水资源短缺、优化水资源配置的有效途径。截至2020年底,世界上已建成大型调水工程350余项,其中我国的南水北调工程、美国的北水南调工程和俄罗斯的东水西调工程并称为世界上的三大著名调水工程[1]。调水工程通常为跨流域工程,一般规模宏大,地形、地质和运行条件复杂,渠道工程渠线长,建筑物种类样式多。调水工程安全不仅涉及到工程本身的运行安全,而且涉及到沿线地区的公共安全。为确保工程运行安全,预防灾害发生,需要对工程开展安全监测,评判工程安全状态,拟定安全监控指标,实施工程安全监控和预警。监测效应量的监控指标,是对工程的荷载或效应量所规定的安全界限值[2],是评判工程安全运行状态的一种科学依据,也是工程从一种工作状态向另一种工作状态转变的判断指标。从一种工作状态向另一种工作状态转变的临界点属于安全监控的关键性节点,也是对监控指标进行分级的工作状态节点。目前安全监控指标的研究主要集中在大坝安全领域[3-4],调水工程安全监控指标的研究成果还不多,且大多以南水北调中线工程为主要研究对象[5-7]。其中,监控指标等级划分尚无明确的规定,也没有形成公认的划分方法。为此,本文针对调水工程安全监控问题,从工程破坏机理和统计学理论两个方面,对监测效应量安全监控指标的等级划分方法进行研究。

1基于工程破坏机理

调水工程既包括渠道工程,又包括各类建筑物;既包括各类土体结构和岩体结构,又包括混凝土结构。

1.1土体破坏机理

调水工程中普遍存在土体结构,比如采用散粒体填筑而成的填方渠段的渠堤结构,在山体中开挖形成的挖方渠段的表层土体等[8]。失稳是土体结构主要的破坏模式,其中滑坡最为常见。土坡的滑动面通常被假设为一个圆弧面。在外荷载等因素的作用下,如果滑动面上的抗滑力大于滑动力,则滑动面稳定;如果滑动面上的抗滑力小于滑动力,则滑动面失稳。土坡失稳过程表现为:首先在滑动面的局部(如滑动面的坡脚、以及滑动面上的薄弱部位)产生塑性变形,形成拉伸破坏区;该破坏区沿滑动面逐渐扩大,最终贯通整个滑动面,导致滑坡失稳[9]。从塑性区的产生,到塑性区逐渐贯通并导致沿贯通面滑动失稳,是一个渐进的破坏过程。因此,可以将塑性区形成时所对应的监测效应量值视为监控指标等级划分中的一种等级临界点,将塑性区贯通时所对应的监测效应量值视为监控指标等级划分中的另一种等级临界点。

1.2岩体破坏机理

调水工程中存在大量的输水隧洞、倒虹吸等建筑物,这些建筑物大多穿过山体中的岩体,或穿过河底的岩体,围岩破坏是主要的破坏模式。以输水隧洞的围岩为例,围岩破坏失稳是一个渐变的过程[10],图1为围岩从开始变形、逐渐破坏到最终失稳的变形全过程。图1岩体变形典型曲线图1中,OA段为围岩处于弹性的阶段,围岩的工作状态是正常的;AB段为围岩处于稳定塑性变形的阶段,围岩所出现的塑性变形是可容许的塑性变形,因而围岩的工作状态也是正常的;BE为加速塑性变形的阶段,当越过B点时,围岩进入有害塑性工作阶段,围岩工作状态进入异常状态;当越过C点时,围岩进入变形急剧加速状态,围岩工作状态进入险情状态,直至围岩最终破坏失稳(BE段)。图1中,B点是可容许塑性变形与有害塑性变形的临界点,“OB段”对应的变形监测效应量数值区域属于正常区域,因此,可将B点对应的安全状态视为从正常状态向异常状态转变的临界点,将B点对应的变形监测效应量值视为监控指标等级划分中的一种等级临界点。变形越过B点后,BC段为围岩处于有害塑性变形的初期,但尚不至产生破坏失稳,此阶段围岩的安全状态虽出现异常,但并未恶化;当越过C点时,围岩进入塑性变形急剧加速的工作阶段,C点为急剧加速的临界点,一旦越过C点,围岩即进入向失稳破坏加速发展的状态。因此,可将“BC段”对应的变形监测效应量数值区域视为异常区域,将“CE段”对应的变形监测效应量数值区域视为险情区域,将C点对应的安全状态视为从异常状态向险情状态转变的临界点,将C点对应的变形监测效应量值视为监控指标等级划分中的另一种等级临界点。

1.3钢筋混凝土结构破坏机理

非预应力混凝土结构按“概率极限状态设计法”进行设计。以钢筋混凝土受弯构件为例,受弯构件的受力状态可以划分为3个阶段,如图2所示。图中,Mcr为混凝土出现裂缝时的开裂弯矩;My为钢筋达到屈服强度fy时的屈服弯矩,对应的梁中点的挠度为δy;Mu为钢筋达到极限强度fu时的极限弯矩,对应的梁中点的挠度为δu。1)未裂阶段(第Ⅰ阶段)。钢筋及混凝土均在弹性范围内工作,截面上未出现裂缝,其受力特点基本上与均质弹性体受弯构件相同。若荷载增加到使受拉区边缘应变达到混凝土极限拉应变,则截面处于即将开裂的状态,即达到第Ⅰ阶段的末端;此时对应的截面应力状态为受弯构件进行抗裂验算的依据。2)裂缝工作阶段(第Ⅱ阶段)。当受弯构件上的弯矩增加到使某一薄弱截面的下部产生第一条裂缝时,构件的受力状态进入裂缝工作阶段。裂缝出现后,受拉区混凝土拉力主要由钢筋承担,因此裂缝处钢筋应变和应力明显增大。当钢筋拉应力达到屈服强度时,第Ⅱ阶段应力状态结束;此时对应的截面应力状态为受弯构件正常使用极限状态的验算依据。3)破坏阶段(第Ⅲ阶段)。钢筋屈服后,随着弯矩的增大,裂缝迅速向上扩展。当弯矩增加到极限弯矩时,受压区边缘达到混凝土极限压应变,构件因受压区混凝土压碎而完全破坏;此时对应的截面应力状态可以作为受弯构件“极限承载力”的计算依据。在实际工程应用中,为保证结构安全,原则上结构不允许进入破坏阶段(第Ⅲ阶段);同时,对于非预应力钢筋混凝土结构,由于混凝土抗拉强度很低,产生裂缝是不可避免的,因此未裂阶段(第Ⅰ阶段)也不是运行中需要控制的状态。基于此,非预应力钢筋混凝土结构工作状态的控制主要体现在裂缝工作阶段(第Ⅱ阶段)。由于非预应力钢筋混凝土结构出现裂缝是必然的,只要裂缝宽度不影响结构正常运用即可,因此,可将限制裂缝宽度作为监控指标等级划分中的一种等级临界点;此后,结构一旦达到裂缝工作阶段(第Ⅱ阶段)应力状态末端的工作状态,则结构即将进入破坏阶段(第Ⅲ阶段)的工作状态,因此,可将此时作为监控指标等级划分中的另一种等级临界点。

2基于统计学理论

监测效应量对环境变量变化引起工程运行性态变化以及观测误差等因素的综合反映。现有的研究表明,渠道水位、气温、降雨等环境变量以及观测误差均基本服从或近似服从正态分布。因此,在工程安全监测领域,一般认为监测效应量的数据序列也基本服从正态分布或近似服从正态分布[2]。在理论上,正态随机变量y的取值范围为(-∞,+∞);但在实际工程中,监测值只能是在某一有限范围内变动,该范围一般认为是(μ-3σ,μ+3σ),如图3;其中,μ为测值序列的均值;σ为测值序列的标准差。这就是统计学中的由图3可知,测值y落在(μ-3σ,μ+3σ)区间的概率为99.73%,测值y落在(μ-3σ,μ+3σ)以外的概率约为0.3%。也就是说,一旦测值y出现在(μ-3σ,μ+3σ)以外,就有理由认为y是一个不应该出现的小概率事件。造成测值异常的原因,可能是观测误差,也可能是由于工程安全状态发生了不利变化。因此,从统计学的角度来看,“3σ准则”为拟定监测效应量的监控指标提供了一条有效途径。(1)利用式(1)计算标准差σ时,采用均值作为真值。此时,测值序列需要满足所有样本值yi为来源于同一母体、服从或近似服从正态分布的独立等精度测值。但实际工程中,上述条件是难以严格满足的。为此,通过建立监测数学模型,将拟合值y^(t)作为真值,采用监测模型的剩余标准差S作为标准差σ,从而拟定监控指标,即将“3σ准则”转变为“3S准则”。

3等级的划分

以上基于工程破坏机理和基于统计学理论研究了效应量监控指标的等级问题。研究表明,上述研究均具有一个共同点,即工程工作状态的转变主要有两个临界控制点,据此可将效应量监控指标划分为2个等级,汇总见表1。表1中的第一临界点为工程安全状态从正常工作状态向异常工作状态变异的临界点,可以将其对应的效应量值定义为监控指标的“一般警戒值”。效应量达到或越过“一般警戒值”时,预示着工程的运行性态出现了异常,正在向不利于工程安全的方向发展,但尚不会导致工程出现严重的安全问题。“一般警戒值”的作用主要是在工程运行性态出现异常迹象而提出的一种提醒,提醒工程管理者给予足够的重视,必要时应采取适当的措施降低工程的安全风险,改善工程的运行性态。表1中的第二临界点为工程安全状态从异常工作状态向险情工作状态变异的界限点,可以将其对应的效应量值定义为监控指标的“严重警戒值”。效应量达到或越过“严重警戒值”时,表明工程的运行性态已进入了不安全的险情状态,工程的失事概率或破坏风险急剧增大。“严重警戒值”的作用是在工程运行性态进入险情状态时发出一种明确的具有紧迫性的警告,要求工程管理者立即或尽快采取适当的措施对工程的安全风险进行处置。

4结语

水工钢筋范文篇8

关键词:清单报价施工技术

随着建筑业的不断发展,清单报价成为一种国际上通行的工程造价计价方式,是在建筑工程招标、投标中招标人按照国家统一的《建设工程工程量清单计价规范》的要求,以及施工图、提供工程量清单,由投标人依据工程量清单、施工图、企业定额、市场价格自主报价,并经评审后,合理低价中标的工程造价计价方式。工程量清单由分项工程量清单、措施项目清单、其他项目清单组成,清单报价由计价工程量、综合单价、措施项目费、其他项目费、规费、税金组成。建筑施工技术是一门综合性很强的职业技术课,它与建筑工程预算、工程量清单以及清单报价有着密切的关系,它们是相互联系,又相互影响的,因此,清单报价很需要施工技术中的如下知识。

一、编制清单报价最需要施工技术课程中土方工程、地基处理与基础工程的知识。

在编制清单报价时,土方工程是一很重要的组成部份,计算土方工程中的每个分部分项工程都要写清项目名称以及项目特征,而项目特征的内容就需要施工技术中土方工程的知识,土方工程中讲述了土的分类,开挖方法以及开挖的工具,在计算挖土方时,自然土的体积、夯实土的体积以及松散土的体积,需要可松性系数才能计算出工程量,还需要掌握土方工程中的施工顺序。土方定额内讲述了,均未包括地下水位以下施工的排水费用,发生时另行计算,在土方开挖时需用什么样的开挖机械节约时间又节约费用都是工程量清单报价中很需要的,按竖向布置(超过30cm的挖土方、用方格网控制填至设计标高就叫按竖向布置挖、填土方)进行挖、填土方时,不得再计算平整场地的工程量,在计算工程量时应防止漏算及多算。比如说在土方开挖中遇到有地下水,要对地基进行处理,开挖时设土壁支撑防止塌方,选择什么材料对土壁支撑更加有利,又能节约费用,这都是编制清单报价时非常重要的,合理选择支撑方式、材料是避免造成一些不必要的安全事故以及因安全事故所产生费用,土方填筑与压实时为了保证填方工程强度和稳定性方面的要求,心须正确选择填土的种类和填筑方法。因此,编制清单报价最需要施工技术中的土方工程、地基处理与基础工程的知识。

二、编制清单报价最需要施工技术课程中砌筑工程的知识。

砌筑工程属于清单报价中计价工程量的一个重要组成部分,它包含脚手架、垂直运输设施、砌体的材料、基础的砌筑及墙、柱的砌筑,脚手架及垂直运输设施是措施项目清单中的一部分,计算工程量时需要了解脚手架的的形式,为后面套用消耗定额计算费用打下基础。垂直运输设施是施工中不可缺少的,也是最重要的,根据工程的需要选择适合的垂直运输设施。计算砌筑工程中的各项内容时,需要掌握它的施工顺序,这样才能准确的列项,并计算出工程量,基础的砌筑需要掌握它的基础放脚形式,在计算计价工程量时才能计算得更加准确,在报价时更合理。在计算空斗墙的工程量时,需要施工技术中的砌筑形式及砌筑方法,才能确定出价格,按设计图示尺寸以外形体积计算,应扣除门窗洞口及0.3cm2以上孔洞所占的体积,墙角、门窗洞口立边、内墙节点、钢筋砖过梁、砖碹、楼板下和山尖处以及屋檐处的实砌部分已婚包括在定额内不另计算,但附墙垛(柱)实砌部分,应按砖柱项目另行计算。砖墙的计价工程量需要砖墙的厚度、砌筑砂浆的强度,这些知识都是在施工技术中砌筑工程中的讲述。可见,编制清单报价最需要施工技术课程中砌筑工程的知识。

三、编制清单报价最需要施工技术课程中钢筋混凝土工程和预应力钢筋混凝土工程的知识。

清单报价中钢筋混凝土工程和预应力混凝土工程是整个清单报价的重中之重,它包含的内容泛多,计算量大,复杂。施工中钢筋混凝土工程包含了模板、钢筋及混凝土等等,模板费用计算属于现浇钢筋混凝土结构施工和降低工程造价具有重要的作用,施工中讲述了混凝措施项目费中的一部分,在施工中应选择模板的形式,材料及合理组织施工,对加快土的强度等级、如何浇筑混凝土等的知识,钢筋的型号,用什么符号表示,钢筋的计算以及钢筋在混凝土中的保护层厚度,钢筋混凝土工程的施工顺序。梁或柱的施工应先支模板,后放入钢筋笼,然后在浇筑混凝土,预应力混凝土工程讲述了张拉设备及人工时效,在清单报价中需要乘以相应的系数才能合理的得出费用,掌握了这些知识在工程列项、计算计价工程量以及清单报价都是很重要的。

四、编制清单报价最需要施工技术课程中屋面及防水工程的知识。

施工技术课程中屋面及防水工程包含屋面防水工程、地下防水工程、室内其他部位防水工程。屋面防水工程中有卷材防水屋面和刚性防水屋面等,并述了各种屋面的施工工艺,材料选择,这些内容在清单报价中的列项、计算计价工程量以及套用消耗定额都是需要掌握的,只要掌握了这些知识才能够准确的计算综合单价、以及最后的报价。地下防水工程中的基础防潮层、变形缝、后浇带的处理,基础防潮层材料有卷材防水和结构防水,这些费用的计算都需要施工技术中的施工工艺、材料来确定。因此,编制清单报价施工技术课程中屋面及防水工程的知识是必不可少的。

五、编制清单报价最需要施工技术课程中冬期与雨期施工的知识。

冬期与雨期施工给施工现场带来了很大的困难,对于常规的施工方法已不能适应,在冬期和雨期施工时,必须从具体的条件出发,选择合理的施工方法,制定具体的措施,确保工程质量以及降低工程费用,在结冻时土的机械强度提高,挖土困难,费用相对增加,计算费用时应乘以相应的系数,避免漏算,雨期施工还应考虑现场排水、设备排水防雨措施,这些知识在清单报价时都应考虑。

可见,编制清单报价施工技术课程中的知识占了很大的比重,要想编制出好的清单报价,降低成本、合理低价中标,施工技术课程中的知识是必不可少的,也是整个清单报价中最需要的知识之一。

参考文献:

[1]编著:袁建新[工程量清单计价]出版地:中国建筑工业出版社出版2004年8月第一版。

[2][建筑施工技术]三者内部资料出版时间:2004年12月

水工钢筋范文篇9

关键词:高层建筑地下室工程渗漏水防水工程施工

近年来,由于某些地下结构防水工程质量较差,导致地下室漏水事件时有发生。地下室漏水不仅给居民生活的居住环境造成不利影响,如果地下混凝土结构长期渗水,一方面会使混凝土中的钙大量流失;另一方面会使混凝土中的钢筋锈蚀,从而破坏了地下混凝土结构的整体性,进而影响了主体结构的稳定性和使用寿命。因此做好高层建筑物地下结构的防水,不仅会给住户带来一个舒适的生活环境,而且对主体结构的使用寿命也是百年大计的事。

一、地下室防水工程施工的主要特点

对高层建筑地下室防水工程的施工特点进行认真分析,将有助于地下室防水工程施工的开展:

(1)高层建筑地下室的平面尺寸一般比较大,目前,在设计中一般都不设置沉降缝和伸缩缝,而是采用设置后浇带的方法来解决混凝土的早期干缩和结构不同部位的沉降差问题,而后浇带的混凝土属于二期混凝土,在后浇带的二期混凝土与一期混凝土交接处,是地下室防水工程中抗渗的薄弱部位,非常容易引起渗漏。

(2)高层建筑地下室的底板混凝土通常是大体积混凝土,对于大体积混凝土,必须对砼的温度进行有较控制,混凝土浇筑后由于水泥的水化热和混凝土的内外约束产生的温度应力而使混凝土产生温度裂缝,底板结构中的裂缝将会成为渗水通道,影响地下室的抗渗能力。

(3)高层建筑的各种设备用房通常都布置在地下室,这些设备都有许多管道要从地下室引出,这些管道就不可避免地要从地下室外墙穿过,这些管道穿墙的地方也是地下室防水结构的薄弱部位。

(4)地下室的外壁是砼墙,砼墙支模定位时要使用对拉螺栓,对拉螺栓的止水片处理不当,也会形成渗漏通道,造成地下室外壁渗漏。

二、地下室工程渗漏水原因分析

地下室渗漏与否,重点在于施工质量。从施工方案的编制,材料的选择到施工段的划分、施工程序等各个环节,如控制不好都可能造成渗漏。

(1)施工单位不重视特殊工程应采取特殊措施,没有针对地下室防水功能要求编制专项施工措施方案,仍按一般结构工程组织施工;关键工序质量控制不严,致使地下室结构防水性能达不到应有的效能。

(2)施工前没有进行混凝土设计配合比抗渗性能试验(只作强度试验),抗渗混凝土配合比不合理,影响实际抗渗性能。

(3)混凝土浇注前未进行供料速度(产量)与施工浇注需求速度关系的计算,造成因供不应求而不能连续浇注,致使前后浇注混凝土之间(尤其加早强剂)形成冷缝,从而产生渗漏通道。

(4)施工缝留设不合理,出现凹槎;凿毛不规范,槽内清理不干净;二次浇灌时又不事先铺浆等。均造成抗渗性能下降而引起渗漏。

(5)钢筋密集处或预埋件集中处,未作坍落度调整并采用细石砼,仍用一种粗骨料和坍落度,导致下料困难,振捣不及或振捣不实,引起这些部位出现蜂窝、孔洞,形成抗渗的薄弱部位。

(6)地下室墙壁支模用的对拉螺栓和预埋穿墙套管,未在中间焊接止水环片,形成渗水通道。

(7)泵送混凝土浇筑段的上层砂浆较厚,没有另加碎石振捣,致使施工缝处混凝土比重较轻,直接影响结构抗渗性能。

(8)混凝土配制时配合比控制不严,浇注时振捣不均匀,不规范,直接影响到实际强度和密实度的均衡性,影响到结构混凝土抗渗性能。

(9)在做柔性防水施工时,由于混凝土基层面不干燥粘结不牢,易剥落、损坏;防水涂料涂刷不严密,不均匀、或有漏刷等。均能引起局部渗漏。

(10)地下防水工程施工队伍素质差,操作不规范或选料质量不标准,达不到设计要求,影响抗渗性能和使用寿命。

(11)在防水混凝土工程和附加防水层施工完毕后,未采取及时回填土等保护措施,造成干缩和温差而引起开裂。

三、如何进行施工过程质量控制

在防水工程的具体施工过程中,必须进行严格而有力的监控,才能保证地下室的防水质量。在做柔性防水层施工时,必须使混凝土基层表面做到平整,清洁,干燥,基层表面不得起砂,起皮或有其它突起物,柔性防水层表面必须严密,不得有翘边,开口,开裂空鼓等现象;外墙模板的对拉螺栓一定要焊上止水片。

为了有效堵塞可能形成的渗水通道,除了在对拉螺栓的中部焊上止水片外,在对拉螺栓的两端也同时焊上止水片,则防水效果更好;对于穿墙的管道一定要在其进入墙体的中部位置上焊上止水钢板;为了有效地保护钢筋,防止锈蚀,迎水面防水砼的钢筋保护层厚度,一定要得到有效地保护。同时为了阻止钢筋的引水作用,底板所有钢筋均不能接触砼垫层,外墙中为固定墙内钢筋骨架而设置的支撑筋不能直接顶住模板。

防水砼是靠提高砼自身的密实性来达到其防水目的,因此防水砼的浇筑质量是保证防水砼防水质量的关键,务必做好。在防水砼的浇筑过程中,必须严格按经过计算后确定的方案进行浇捣,避免产生冷缝所造成的渗水通道。为保证防水砼的密实度,浇筑时必须使用机器振捣,并注意不能漏振,欠振,以确保砼振捣密实。对于目前广泛采用的掺减水剂防水砼,最好采用高频振动器振捣,这样能更有效地排除砼中的大气泡,并使小气泡分布得更均匀,这样对保证砼的抗渗要求更为有利;防水砼浇筑后的养护对其抗渗性能影响极大,特别是早期湿润养护更为重要。在常温下,砼初凝以后,就应浇水养护,并使其表面保持湿润状态,其持续时间不少于14昼夜。另外,地下室混凝土结构模板不宜过早地拆除,否则,极容易造成混凝土结构内伤,形成意想不到的渗水通道,影响抗渗能力。

参考文献

[1]吴霞曦.民用建筑地下防水工程施工方法的探讨[J].中国科技信息,2005,(4).

水工钢筋范文篇10

钢筋焊接网是通过专用设备在工厂加工,纵向钢筋和横向钢筋分别以一定间距垂直叠交排列,全部交叉点均通过全自动智能化的GWC型钢筋焊接网生产线用电阻熔接法点焊(低电压、高电流,焊接接触时间一般不超过0.5s)在一起形成的钢筋网片。是一种代替传统人工制作、绑扎的新型、高效、优质的钢筋混凝土结构的建筑钢筋。钢筋焊接网是建设部重点推广应用的新技术之一。

钢筋焊接网即可用于制作钢筋混凝土预制构件,也可用于现浇混凝土结构,大量用于工业与民用建筑的墙板、楼板、屋面板等。在市政、水利工程领域如:混凝土路面、桥面铺装、桥涵挡墙和基础混凝土以及污水处理池、水库等工程中也有广泛用途。焊接网也可利用弯网机弯成各种不同的形状来适应不同构件的需要。目前,焊接网的应用范围已从板类构件为主扩大到包括梁、柱类构件的多种类型结构。

2.钢筋焊接网在国内外的应用与发展

钢筋焊接网是20世纪初在欧洲产生的,德国、美国、意大利、奥地利、法国等欧美国家20世纪初,就对钢筋焊接网混凝土构件的结构性能进行了较多的试验研究,并相继制定了钢筋焊接网标准、图集、规程、使用手册。经近百年的应用与发展,在国外已被建筑界广泛采用。目前德国钢筋混凝土结构中钢筋焊接网的用量己占钢筋总用量的50~65%以上,并且还在继续增长。

在亚太地区钢筋焊接网的应用也得到一定发展。日本、澳大利亚、新加坡等国的焊接网应用较早,在上世纪50年代就制订了焊接网产品标准,并在钢筋混凝土结构规范和设计手册中对焊接网的构造要求等作了专门规定。焊接网已大量用在现浇混凝土板类构件和构筑物中,目前焊接网的产量大约占35%以上。

钢筋焊接网技术是20世纪八十年代末九十年代初引入我国的,10年多来,特别是近几年,得到迅速发展,成为建设部重点推广的新钢种。冷轧带肋钢筋的迅速发展,为焊接网的发展提供良好条件。我国焊接网产品首部标准已于1995年12月起实施,对于指导生产、保证产品质量具有重要的意义。据不完全统计,截止2000年10月,国内应用焊接网的民用与工业房屋建筑工程有500多项。主要用在高层及多层住宅、办公楼、宾馆、医院、学校、仓库、厂房等建筑的楼板、屋面板、墙体、地坪、地下室墙壁、基础以及游泳池的池壁、池底等部位。工程主要分布在珠江三角洲、上海市、江苏省、北京及两湖地区。同期,国内钢筋焊接网在道路、桥梁中的应用也达180多项。

目前,水利系统钢筋焊接网的应用还比较少,我院在南水北调济平干渠工程、胶东地区引黄调水工程等水利工程设计中,引用了这项新技术。经在济平干渠工程的应用,效果良好。在即将开工的胶东调水倒虹吸和暗渠工程中的应用也将进一步验证这项技术的优良性能。

3.钢筋焊接网的特点:

3.1改善混凝土结构性能、提高钢筋工程质量

钢筋焊接网片是在工厂加工而成,网格间距尺寸、钢筋数量准确,克服了传统人工绑扎时由人工摆放钢筋造成间距尺寸误差大、绑扎质量出现漏扎、缺扣的现象。焊接网的网格尺寸非常规整,远超过手工绑扎网。网片刚度大,弹性好,浇注混凝土时钢筋不易局部弯折、不产生变位,混凝土保护层厚度均匀、易于控制,明显提高钢筋工程质量。由于采用纵、横钢筋点焊成网状结构,达到共同均匀受力起粘结锚的目的,加上钢筋断面的横肋变形、增强了与混凝土的握裹力,使得所形成的混凝土结构受弯构件的结构性能得到改善,有效地防止了混凝土裂缝的产生,提高了钢筋混凝土的内在质量。试验研究分析表明:在混凝土路面内配置焊接网铺装层时,可有效减少70%左右的由于荷载或湿度引起的混凝土表面龟裂。对于混凝土受弯板类构件,使用焊接网可以提高板刚度50%左右,提高抗裂性能约30%,有效减少裂缝宽度约50%。

3.2提高生产效率、加快施工进度

钢筋焊接网将原来现场制作的全部工序及90%以上的绑扎成型工序全部进行了工厂化生产,除保证钢筋制作、绑扎的质量外,还可大量降低钢筋安装工时,减少用工数量。从济平干渠使用焊接网的南大沙河倒虹吸与采用普通绑扎网的田山沉沙池倒虹吸的比较看,使用焊接网比绑扎网少用人工60%左右,提高钢筋制作安装速度50%左右,大大缩短了工程的施工周期,节约了施工排水费用。即将开工的胶东供水工程,排水问题也是工程施工的难点,钢筋焊接网的使用,将会给工程的顺利进展创造良好的条件。

3.3节约钢材、净化施工环境

由于焊接钢筋是一种规模化连续生产方式,可以最大限度减少对钢筋加工过程的损耗,据统计,扣除单元搭接所增加的用钢量后还可以节省钢材2%左右。由于采用工厂化专业化生产,按施工进度运到现场后即吊运至作业面,现场不必设钢筋加工场地,即节约了场地又提高了现场管理水平。同时,还可以解决调直钢筋时所产生的噪音污染等问题,促进了现场文明施工。

3.4方便质量控制和工程验收

采用按照产品标准生产的合格焊接网,在安装和验收过程中,只要严格控制和检查网片的搭接长度和锚固长度就可以保证安装质量。安装简单,检查方便。可以有效避免因人为影响而造成的钢筋根数误差和规格错误。免去了验收时检查钢筋规格、间距、钢筋漏扎、绑扎不牢固和错扎等大量的繁琐工作。

4.在水利工程中推广使用尚需合理解决的问题

钢筋焊接网作为钢筋工程的技术进步的确有许多优点,钢筋施工走焊接网道路是世界钢筋工业发展的潮流。焊接网既是一种新型、高性能结构材料,也是一种高效施工技术,是钢筋施工由手工操作向工厂化、商品化的根本转变。目前,该技术在建筑、道路等领域中的应用,已趋于成熟。在水利工程中推广使用时,尚需处理好以下几点:

(1)深入了解钢筋焊接网的性能特点,选择能充分发挥其优势的工程进行合理应用。可由易到难,先在远距离调水工程的倒虹吸、暗渠及桥面铺装等构件上应用。注意总结经验,同时积极准备在其它构件中试点应用。