渗流范文10篇

时间:2023-03-26 19:17:39

渗流范文篇1

坝后出现较大的渗流水量基于以下几个主要原因:挡水结构发生破坏;沿构造产生集中渗漏;库水绕过两坝肩的防渗体系产生绕坝渗漏;外水补给。现对坝后渗流原因进行分析,对大坝安全作出综合评价。

1.1挡水结构破坏

坝体主要受力结构由砂砾石构成,目前坝体应力和变形观测成果表明,大坝整体的变形和位移均不大,面板应力水平不高,各接缝位移也远小于止水结构的变形适应能力;而趾板是锚固于坚硬、完整的弱风化基岩上,面板、趾板及其接缝止水结构不会受到结构应力破坏。

沿面板周边布设的11支孔隙水压力计,仅有5支测得了明显的渗透水头,位于河床部位及附近的3支(P-1-05~P-1-07)测得的坝下最高水位为1292.6~1293.1m,较为一致;两岸趾板转角处的P-1-04和P-1-09这2支孔隙水压力计埋设高程分别为1300.040m和1319.250m,最高渗透压力分别为:3.1m和3.677m(相应水位1303.140m和1322.927m)。估计是由于该两处均位于趾板转角处,存在趾板结构缝和面板周边缝的连接,接缝结构复杂,现场搭接粘结和焊接的质量控制难度较大,因而存在渗漏现象。但从P-1-04渗透压力随库水位升高而增大后又减小,这应与周边缝止水结构和上游铺盖料的自愈作用有关。随着库水位的进一步升高P-1-04渗透压力又有所增大,但未超过最高压力值,增大趋势明显小于库水位的变化。P-1-09的渗透压力变化与P-1-04基本相同。鉴于此两处的水头压力并不大,因此可以认为这两处的渗漏量亦应该不会很大,且接缝止水结构的自愈作用正在得到发挥。

通过以上分析,可以肯定坝体的主挡水结构处于正常的工作状态,不会产生较大的渗漏。

1.2沿构造集中渗漏

本工程地质条件较为复杂,构造极为发育,F32断层是坝址区规模最大的一条断层,通过河床趾板,断层破碎带及影响带宽22m,断层带的透水率一般在12~45Lu之间,属较严重透水带。

在F32断层经过趾板帷幕灌浆中心线下游侧埋设了3支渗压计P-1-06、17、18,P-1-17和P-1-18的渗透压力与库水位呈同步变化,涨幅仅略低于库水位。而P-1-06的渗透压力虽然也与库水位呈同步变化,却始终很低,基本与邻近测点所测得的坝体内水位保持一致。当库水位为1389.9m时,P-1-17和P-1-18内水位分别为1366.3m、1366.8m,而P-1-06内水位仅为1291.94m。经分析,P-1-17、P-1-18两只孔隙水压力计渗透压力较高是因为其布设于距趾板下游排帷幕灌浆孔仅2m的同一钻孔内,该钻孔位于F32断层影响范围内,岩体较为破碎,灌浆过程中单孔吃浆量较大,浆液扩散范围亦较大;同时由于上游围堰外水头的作用,浆液向下游的扩散范围必然大于上游;另外P-1-17、P-1-18两只孔隙水压力计与下游趾板末端布置于断层处理盖板表面的P-1-06孔隙水压力计相距仅1.0m,且盖板与趾板间接缝未设止水,但P-1-06孔隙水压力计与坝基其它部位的孔隙水压力计一样,渗透压力均较低,因此可以断定P-1-17、P-1-18两只孔隙水压力计处于帷幕有效宽度范围内,所以才显示出较高的渗透压力水平。因此,P-1-17和P-1-18内水位偏高并不是F32断层集中渗漏所致,而P-1-06内水位受库水位影响较小则表明帷幕灌浆的防渗效果是明显的。F32断层通过处的趾板末端、断层处理盖板末端和断层上部反滤料末端较低的渗透压力均可表明不存在沿F32断层的集中渗漏通道。

坝基下沿最大断面、F32断层等渗流观测断面和周边缝下部布置的孔隙水压力计显示渗透压力较低,证明亦不存在沿其它构造产生集中渗漏的现象。

1.3两坝肩绕渗

坝址区岩性性脆、坚硬,节理裂隙较为发育,岩体的透水性主要受结构面发育程度的控制和风化卸荷程度的影响,岩体透水性具有随深度变化小的规律,但构造部位透水性相对较大。坝址区基岩强风化层厚3~5m,透水率为12.0~26.1Lu,为中等透水,弱风化层厚25~30m,透水率2.6~17.0Lu,为中等透水~弱透水,微风化及新鲜岩体透水率2.0~10.0Lu,为弱透水,基岩面45m以下透水率为0.1~2.7Lu,为弱透水~微透水。趾板基础下及灌浆平洞帷幕深度一般50m以下,深入到弱透水~微透水的岩体中,但由于受构造影响,趾板线钻孔帷幕深度以下节理裂隙密集带或断层带压水试验透水率4~24Lu,个别段断层带处最高可达45Lu。

左右岸测压管孔压明显高于坝体孔压,其中右岸孔压高于坝体孔压达67m之多,右岸比左岸也高出了近59m。右岸灌浆平洞内两处处孔压分别达到1351.124m和1345.915m。上述情况表明右岸绕坝范围较大、山体内水位较高,因此右岸存在较明显的绕坝渗流;右岸坝后坡测压管孔压压降明显,由SY-2的1352.691m降至UP-1-10的1313.606m;右岸一级台地安装的测点UP-1-01和P-1-15孔压值为1300.318m;左岸布设于深孔和发电洞上平段的孔隙水压力计除进口部位外,均未测得明显的水头,这表明左岸洞群帷幕后山体孔压由低于1342m向下游至斜井段上弯点处逐步降低至不高于1320m,至下平段降低至1286m左右,山体内渗流孔压较低。

1.4外水补给

本工程位于欧亚大陆腹地,属大陆性北温带气候,夏季气候较湿润,温和,降雨丰沛,冬季寒冷积雪较深。同时量水堰至坝轴线之间约为590m,下游坝坡和马道、坝肩分水岭下游的两岸岸坡及冲洪沟、厂坝间压重平台及厂区地坪所汇集的降水即便在厂坝区排水系统最终形成以后也难以彻底排除,大气降水对量水堰流量观测的影响将始终存在。此外,由于地表植被、渗流所经路径地层性状、堰前较大蓄水容积等因素的影响,均使得降水影响出现滞后并相对均匀,这也正是量水堰观测的水量在降水时段前后往往不会出现较大变化。

本工程地下水位高于河水位,两岸存在着较为稳定的地下水补给,由于尾水挡墙的阻断,量水堰上游的地下补给水也只能通过量水堰排出,量水堰所测得的流量数据将始终包含此部分水量。

2结论

2.1目前量水堰观测到的渗流水量包含了坝体渗漏、坝基及两岸绕渗、大气降水补给等多方面的因素,但以两岸绕渗为主。两岸绕渗汇入量水堰的水量由于左岸普遍分布的风积黄土层、洞群帷幕灌浆、导流洞、发电洞排水洞的影响,又以右岸为主;

2.2坝体挡水结构处于正常工作状态;断层处理效果较好,通过趾板的断层不会产生渗透破坏或形成较大集中渗漏通道;由于良好的排水性能,坝体内孔隙水压力较低,压力稳定,蓄水过程中未发生异常或突变,因而渗流对坝体稳定影响不大;

2.3量水堰渗流水清澈、透明,未携带细砂、悬浮物等物质,因而两坝肩产生渗透破坏或形成较大集中渗漏通道的可能性不大,坝基、坝肩是安全的。

渗流范文篇2

坝后出现较大的渗流水量基于以下几个主要原因:挡水结构发生破坏;沿构造产生集中渗漏;库水绕过两坝肩的防渗体系产生绕坝渗漏;外水补给。现对坝后渗流原因进行分析,对大坝安全作出综合评价。

1.1挡水结构破坏

坝体主要受力结构由砂砾石构成,目前坝体应力和变形观测成果表明,大坝整体的变形和位移均不大,面板应力水平不高,各接缝位移也远小于止水结构的变形适应能力;而趾板是锚固于坚硬、完整的弱风化基岩上,面板、趾板及其接缝止水结构不会受到结构应力破坏。

沿面板周边布设的11支孔隙水压力计,仅有5支测得了明显的渗透水头,位于河床部位及附近的3支(P-1-05~P-1-07)测得的坝下最高水位为1292.6~1293.1m,较为一致;两岸趾板转角处的P-1-04和P-1-09这2支孔隙水压力计埋设高程分别为1300.040m和1319.250m,最高渗透压力分别为:3.1m和3.677m(相应水位1303.140m和1322.927m)。估计是由于该两处均位于趾板转角处,存在趾板结构缝和面板周边缝的连接,接缝结构复杂,现场搭接粘结和焊接的质量控制难度较大,因而存在渗漏现象。但从P-1-04渗透压力随库水位升高而增大后又减小,这应与周边缝止水结构和上游铺盖料的自愈作用有关。随着库水位的进一步升高P-1-04渗透压力又有所增大,但未超过最高压力值,增大趋势明显小于库水位的变化。P-1-09的渗透压力变化与P-1-04基本相同。鉴于此两处的水头压力并不大,因此可以认为这两处的渗漏量亦应该不会很大,且接缝止水结构的自愈作用正在得到发挥。

通过以上分析,可以肯定坝体的主挡水结构处于正常的工作状态,不会产生较大的渗漏。

1.2沿构造集中渗漏

本工程地质条件较为复杂,构造极为发育,F32断层是坝址区规模最大的一条断层,通过河床趾板,断层破碎带及影响带宽22m,断层带的透水率一般在12~45Lu之间,属较严重透水带。

在F32断层经过趾板帷幕灌浆中心线下游侧埋设了3支渗压计P-1-06、17、18,P-1-17和P-1-18的渗透压力与库水位呈同步变化,涨幅仅略低于库水位。而P-1-06的渗透压力虽然也与库水位呈同步变化,却始终很低,基本与邻近测点所测得的坝体内水位保持一致。当库水位为1389.9m时,P-1-17和P-1-18内水位分别为1366.3m、1366.8m,而P-1-06内水位仅为1291.94m。经分析,P-1-17、P-1-18两只孔隙水压力计渗透压力较高是因为其布设于距趾板下游排帷幕灌浆孔仅2m的同一钻孔内,该钻孔位于F32断层影响范围内,岩体较为破碎,灌浆过程中单孔吃浆量较大,浆液扩散范围亦较大;同时由于上游围堰外水头的作用,浆液向下游的扩散范围必然大于上游;另外P-1-17、P-1-18两只孔隙水压力计与下游趾板末端布置于断层处理盖板表面的P-1-06孔隙水压力计相距仅1.0m,且盖板与趾板间接缝未设止水,但P-1-06孔隙水压力计与坝基其它部位的孔隙水压力计一样,渗透压力均较低,因此可以断定P-1-17、P-1-18两只孔隙水压力计处于帷幕有效宽度范围内,所以才显示出较高的渗透压力水平。因此,P-1-17和P-1-18内水位偏高并不是F32断层集中渗漏所致,而P-1-06内水位受库水位影响较小则表明帷幕灌浆的防渗效果是明显的。F32断层通过处的趾板末端、断层处理盖板末端和断层上部反滤料末端较低的渗透压力均可表明不存在沿F32断层的集中渗漏通道。

坝基下沿最大断面、F32断层等渗流观测断面和周边缝下部布置的孔隙水压力计显示渗透压力较低,证明亦不存在沿其它构造产生集中渗漏的现象。

1.3两坝肩绕渗

坝址区岩性性脆、坚硬,节理裂隙较为发育,岩体的透水性主要受结构面发育程度的控制和风化卸荷程度的影响,岩体透水性具有随深度变化小的规律,但构造部位透水性相对较大。坝址区基岩强风化层厚3~5m,透水率为12.0~26.1Lu,为中等透水,弱风化层厚25~30m,透水率2.6~17.0Lu,为中等透水~弱透水,微风化及新鲜岩体透水率2.0~10.0Lu,为弱透水,基岩面45m以下透水率为0.1~2.7Lu,为弱透水~微透水。趾板基础下及灌浆平洞帷幕深度一般50m以下,深入到弱透水~微透水的岩体中,但由于受构造影响,趾板线钻孔帷幕深度以下节理裂隙密集带或断层带压水试验透水率4~24Lu,个别段断层带处最高可达45Lu。

左右岸测压管孔压明显高于坝体孔压,其中右岸孔压高于坝体孔压达67m之多,右岸比左岸也高出了近59m。右岸灌浆平洞内两处处孔压分别达到1351.124m和1345.915m。上述情况表明右岸绕坝范围较大、山体内水位较高,因此右岸存在较明显的绕坝渗流;右岸坝后坡测压管孔压压降明显,由SY-2的1352.691m降至UP-1-10的1313.606m;右岸一级台地安装的测点UP-1-01和P-1-15孔压值为1300.318m;左岸布设于深孔和发电洞上平段的孔隙水压力计除进口部位外,均未测得明显的水头,这表明左岸洞群帷幕后山体孔压由低于1342m向下游至斜井段上弯点处逐步降低至不高于1320m,至下平段降低至1286m左右,山体内渗流孔压较低。

1.4外水补给

本工程位于欧亚大陆腹地,属大陆性北温带气候,夏季气候较湿润,温和,降雨丰沛,冬季寒冷积雪较深。同时量水堰至坝轴线之间约为590m,下游坝坡和马道、坝肩分水岭下游的两岸岸坡及冲洪沟、厂坝间压重平台及厂区地坪所汇集的降水即便在厂坝区排水系统最终形成以后也难以彻底排除,大气降水对量水堰流量观测的影响将始终存在。此外,由于地表植被、渗流所经路径地层性状、堰前较大蓄水容积等因素的影响,均使得降水影响出现滞后并相对均匀,这也正是量水堰观测的水量在降水时段前后往往不会出现较大变化。

本工程地下水位高于河水位,两岸存在着较为稳定的地下水补给,由于尾水挡墙的阻断,量水堰上游的地下补给水也只能通过量水堰排出,量水堰所测得的流量数据将始终包含此部分水量。

2结论

2.1目前量水堰观测到的渗流水量包含了坝体渗漏、坝基及两岸绕渗、大气降水补给等多方面的因素,但以两岸绕渗为主。两岸绕渗汇入量水堰的水量由于左岸普遍分布的风积黄土层、洞群帷幕灌浆、导流洞、发电洞排水洞的影响,又以右岸为主;

渗流范文篇3

论文摘要:在水利水电工程中,存在许多有自由面的无压渗流问题,自由面是渗流场特有的一个待定边界,这使得应用有限元法求解渗流场问题时,较之求解温度场和结构应力等问题更为复杂。归纳总结了无压渗流分析的各种数值计算方法,分析比较了其优缺点和适用条件,提出了无压渗流数值分析方法的发展趋势。

1引言

在许多水利工程中(如土石坝渗流、混凝土坝渗流、拱坝绕流、地下结构渗流等等),都存在着无压渗流问题,这类问题的关键在于求解渗流场的边界,即确定事先不知道其位置的自由面和溢出面,属于非线性边界问题。求解该问题的有限元法以往采用移动网格法。虽然取得了许多成功的经验,但也表现出方法本身的缺陷。为解决上述问题,国内外学者致力于寻找有自由面渗流分析的新方法。其研究核心就是计算中不变网格,自Neumann于1973年提出用不变网格分析有自由面渗流的Galerkin法以来,出现了多种固定网格法,如剩余流量法、单元渗透矩阵调整法、初流量法、虚单元法和虚节点法等。

2无压渗流的数值分析方法

2.1调整网格法

调整网格法先根据经验假定渗流自由面的位置,然后把它作为一个计算边界,按照vn=0的边界条件进行分析,得出各结点水头H值后,再校核H=z是否已满足。如不满足,调整自由面和渗出点的位置,一般可令自由面的新坐标z等于刚才求出的H,然后再求解。

该方法原理简单,渗流自由面可以随着求解渗流场的迭代过程逐步稳定而自行形成,并且迭代是收敛的。但是,当初始自由面与最终自由面相差较大时,容易造成迭代中的网格畸形,甚至交错重叠;当渗流区内介质的渗流系数不均匀时,特别是有水平分层介质时,程序处理困难;对复杂结构问题,由计算机自动识别和执行网格移动几乎是不现实的。

2.2剩余流量[1]

剩余流量法通过不断求解流过自由面的法向流量(称为剩余流量)建立求解水头增量的线性代数方程组,达到修正全场水头和调整新的自由面位置的目的。迭代过程中只需一次形成总体渗透矩阵,但需要判断自由面被单元分割的各种情形,要求算出穿过单元的自由面被单元切割的面积及流过自由面的法向流速,计算工作量很大,难以推广到三维问题中。剩余流量法的全部调整均基于第一次有限元计算的结果,因而计算精度较差。

2.3单元渗透矩阵调整法[2]

单元渗透矩阵调整法利用对渗流场有限元计算的结果,根据单元结点水头与结点位置势的比较,把渗流场进行分区,各区的渗透系数给不同的值,通过不断调整单元渗透矩阵,模拟渗流不饱和区的作用,来确定出真实的渗流饱和区及渗流场。

该算法实际上是把边界不确定的非线性问题转化成了材料非线性问题来考虑。但是,单元渗透矩阵调整法对三维而言其计算效率是很低的,不能真实反映渗透区域的透水特性,计算精度和收敛稳定性都受到影响。

2.4初流量法[3]

初流量法利用高斯点的水头求出结点的初流量作为求解水头增量的右端项,避免了求自由面被切割的面积,同时避免了每次迭代中确定自由面的位置的做法,大大简化了剩余流量法的计算工作量。由于初流量法在计算跨自由面单元的结点初流量时,自由面以下的高斯点未予计算,计算精度受到影响。初流量法其收敛性不尽人意,解的稳定性不好。

2.5虚单元法[4]

虚单元法以上一次有限元计算的结点水头值为基础,求出自由面与单元边线的交点,移动跨自由面单元的某些结点,使之落于交点处,自由面将单元分成渗流实区和虚区。渗流虚区在下一次计算中退出计算区域,随着渗流计算区域向渗流实区逼近,结果也逼近问题的真解。该方法对三维复杂问题不适用,易产生结果收敛不稳定的现象。同时,虚单元法在处理有自由面穿越的单元时,结点移动路径的确定是比较困难的。

2.6虚节点法[5]

虚节点法以上一次有限元分析求得的节点势为基础,求出自由面和单元节线的交点,根据交点确定单元的积分区域,形成下一次分析的渗透矩阵。不同于虚单元法,虚节点法无需移动任何节点,因此不会出现网格畸形;虚节点法对网格不作改动,并能精确地描述跨越自由面单元的渗透矩阵,具有很好的精度和数值稳定性。

此外,无压渗流的数值分析方法还有边界单元法、流形单元法、无单元法等。

3无压渗流数值分析方法的比较

调整网格法计算原理简单,迭代过程稳定而自行形成,迭代过程收敛,但该算法对有复杂夹层和复杂排水系统的水工结构处理起来太困难,几乎不可能实现;另外对初始渗流自由面位置的假定要求也较高,如果初始位置与最终自由面位置相距甚远,则极易造成单元严重畸变,影响计算的精度;剩余流量法计算工作量很大,难以推广到三维问题中。初流量法在剩余流量法的基础上作了重大改进,大大简化了剩余流量法的计算工作量,但是收敛稳定性较差,而且由于两种算法的整个迭代过程依赖于第一次有限元计算的结果,精度受到一定的影响。单元渗透矩阵调整法对跨自由面单元按复合材料单元处理,复合材料单元渗透系数在复合面突变,其单元渗透矩阵不能代表这一特性,且矩阵主系数常不占优,因而计算精度和计算稳定性均受到影响。虚单元法对三维复杂问题不适用,易产生结果收敛不稳定的现象。虚节点法具有很好的精度和数值稳定性。

结论

本文归纳总结了各种无压渗流数值计算方法的原理及其优缺点,得到如下结论:

传统的调整网格法虽仍被使用,但由于自身的缺陷给应用带来诸多不便,因而正在逐渐被固定网格法所取代。具体选择计算方法时,应从问题的复杂度、收敛性及精度要求等方面加以考虑。现有的大型商用软件如ANSYS提供了良好的二次开发环境,用户可以通过二次开发,来实现无压渗流的数值分析。

参考文献

[1]DESAICS.Finiteelementresidualschemesforunconfirmedflow[J].IntNumMethodEng.1976,10(6):1415~1418.

[2]BATHEJN.Transmitmatrixmethodforseepagewithfreesurfaceproblem[J].IntJNumMethEngng,1983,(7):41~53.

[3]张有天,陈平,王镭.有自由面渗流分析的初流量法[J].水利学报,1988,(8):18~26.

渗流范文篇4

1.影响稳定渗流形成因素分析

1.1设计洪水过程我国河流众多,其所处地理、气候条件差异很大,各次洪水成因及特性亦不相同。暴雨形成的洪水过程常为峰高、量大、涨水急剧、落水缓慢。而冰雪融化所造成的洪水,流量涨落较缓慢。此外,洪水过程线形状与流域产汇流条件密切相关,山区河流因坡陡流急,多出现峰高、量小、暴涨暴落的洪水,而大江大河多出现涨落平缓、历时很长的洪水。

在堤防断面形成稳定渗流的洪水,往往需要一定的历时(T=L/V,T为堤防断面某一特征水位形成稳定渗流所需时间,V为渗流速度,L为渗径),因此,能够在堤防断面形成稳定渗流的洪水,需要长历时、高水位的洪水过程,相应设计洪水过程线要选取相对峰型稍胖、峰值较高的过程。一般来说,大江大河的堤防工程易形成稳定渗流,山区河流堤防相对不易形成稳定渗流,另外蓄滞洪区堤防在大洪水期挡水时间较长,也容易形成稳定渗流。

另外,对于设计洪水过程,其水位—历时呈反比函数关系,水位越大,历时越短,对于能够形成稳定渗流的堤防,由于所采用设计水位为峰值水位,持续时间很短,不易形成稳定渗流,而只有持续时间足够长的某一腰值水位及其以下水位,才会在堤防断面形成稳定渗流,设计时应考虑最不利情况,以能形成稳定渗流的最高水位最为计算水位,进行稳定渗流分析,当然,对《堤防工程设计规范》中另有规定的大江大湖的堤防或中小河湖重要堤段应按设计洪水位稳定渗流计算。

1.2堤基及堤防填筑料一般来说,形成稳定渗流主要与堤基及堤防填筑材料的渗透系数ks有关,此外受孔隙率等条件影响,这些因素直接决定堤防渗流速度,依据达西定律(V=ks×J,ks—渗透系数,J—水力坡降),渗透系数越大,越容易形成稳定渗流。因此,对于由砂土、砂壤土等渗透系数较大的材料构筑的堤防,较粘土、壤土构筑的堤防形成稳定渗流容易,强透水性堤基较弱透水堤基易形成稳定渗流。

1.3堤防断面形式堤防断面形式直接影响稳定渗流的形成。

①堤顶宽度越大,比降越缓,渗径越长,越不容易形成稳定渗流;而堤防高度越大,说明该处地面较低,相应堤脚以上水位持续时间较长,形成稳定渗流的可能越大。

②堤防上游坡的防渗情况亦很大程度决定着稳定渗流的形成,上游坡如果有良好的防渗措施,如防渗土工布铺设、粘土斜墙、基础截渗墙等,通过对水头的削减降低平均流速,使稳定渗流不易形成。

2.稳定渗流计算水位的确定

2.1设计洪水与设计洪水过程线设计洪水一般以设计洪峰流量、设计时段洪水总量、设计洪水过程线来表达,设计洪水的洪峰、洪量计算通过特大洪水重现期调查、系列频率分析、合理性检查确定,与水库等水利工程相同。而稳定渗流计算时,其设计洪水过程的选择原则应有所不同

1)典型洪水过程应具有代表性,应在汛期大洪水中选取。洪水的历时、峰量关系、主峰位置均能代表汛期流域较大洪水特性的实测洪水过程。

2)尽量选择高水位、长历时的洪水过程,设计洪水过程线要选取相对峰型稍胖、峰值较高的过程。主峰位置偏后的洪水,更为危险。因前面的洪水已经形成一定的浸润线,又来了洪水主峰,浸润线的叠加使稳定渗流更易形成,因此是最不利的典型,而水库工程典型洪水过程的选取一般是以“峰高量大、主峰位置偏后”为原则。

日本国土开发技术研究中心编著出版的《河流土工手册》中指出“在堤防设计时,如果设计洪水位低、洪水历时短,可以认为安全上没有什么特殊问题。对于设计洪水位高、洪水历时长的区间要充分考虑地基和堤体的条件、背后地的条件及河流特性,设计洪水位和洪水持续时间,确定堤身稳定度。”从另一方面说明,应以高水位、长历时作为典型洪水过程的选取原则。

按照上述条件可以选择一个或多个典型洪水过程线,经分时段同频率放大后作为设计洪水过程,供计算选用。

设计洪水过程确定后,分别在腰值选定一组水位,求出其持续时间,在坐标纸上点绘其不同时间对应水位,绘制一组设计洪水水位—历时曲线。

典型洪水过程只发生在某水文站断面处的洪水,但往往能代表该段河段的洪水过程,河道其它断面处洪水可采取等量移植法,认为其涨水降水速度是相等的。

渗流范文篇5

东湖水库位于济南市章丘市高官寨镇和历城区遥墙镇,由围坝、入库泵站、出库泵站、泄水闸、截渗沟等组成,是济南市东湖供水工程的调蓄水库。水库总库容5800万m3,占地6.7km2,平均蓄水深6.6m,围坝总长9.1km,最大坝高9.2m。东湖水库建成后可大大缓解济南市东部地区供水紧张状况,为经济社会发展提供可靠保障,并改善该地区生态环境状况。

2.坝体防渗设计

为了使水库工程经济合理,筑坝土料采用库区内取土,可取土面积4.67km2主要为粉砂、壤土、砂壤土及少量裂隙黏土。为尽量利用料场砂壤土、粉砂土,并且保证大坝安全,拟在坝体浸润线以上2m用粉砂及砂壤土筑坝。根据砂壤土、粉砂土黏性含量低,遇水液化、塌坡、失水松散、遇风易被扬起等特点,将砂壤土、粉砂土内包,四周用壤土保护。围坝上游护坡采用14cm厚混凝土预制板,下铺500g/cm2复合土工膜一层,再向下铺设10cm厚的中砂垫层。

3.坝基防渗设计

东湖水库坝基地层为第四系土,从上到下主要为粉砂、裂隙黏土、砂壤土、淤泥质黏土、粉砂、壤土夹礓石、黏土夹礓石、砂壤土、粉细砂和壤土夹礓石,共10层。第6层壤土夹礓石埋深为10~18m,渗透系数为10-5cm/s,分布连续,工程地质条件较好,可视为相对不透水层。根据东湖水库工程地质勘察报告,坝基年渗漏量1620万m3,占设计库容的38.6%,渗漏严重,必须采取坝基截渗措施。

根据本工程地基土层分布特点,经方案比较,采用深层搅拌法(水泥土加固法)截渗技术。该方案不仅截渗效果好,而且易施工,不需开槽,直接搅拌成桩,施工速度快,工效高,耐久性好,强度高。加固深度嵌入第6层相对不透水层,且与坝脚处的复合土工膜密切结合,形成完整的防渗体系,达到防渗设计的目的。

4.围坝渗流计算

(1)有限元法的原理

有限元法是把连续体离散化为有限个单元的集合体来进行研究,引用变分原理对研究问题建立模型,推导出近似解的一组方程,最后归结为求解多阶系数矩阵的线性方程组,以计算机作为工具,并在矩阵分析和数值方法的基础上进行所需精度的计算。

(2)单元格剖分的方法

对无压渗流求解稳定渗流场时,一个麻烦的问题是决定自由面的位置。在实际计算中,一般是先假设一个自由表面的初始位置,然后再进行单元格的剖分。

(3)计算结果

渗流范文篇6

1.1工程概况

黄壁庄水库位于河北省省会石家庄市西北30km滹沱河干流上,总库容12.1亿m3,设计水位127.6m,正常蓄水位120.0m。主坝工程于1958年始建,1959年拦洪,经历了1963年大洪水,1968年完成坝顶高程由125m扩建到128.7m。主坝位于马鞍山脚下,南端自正常溢洪道左边墩起,北跨过滹沱河河床与非常溢洪道右边墩相接,主坝全长1843m,最大坝高30.7m,为水中倒土均质坝。

1.2工程地质概况

主坝工程桩号由0+156.038~1+999.076,兼跨了马鞍山残丘、一级阶地、河床、二级阶地四个地貌单元。

河床右岸,0+156~0+300为一级阶地,有3.0m厚的红土层,基岩为大理石千枚岩及其互层,大理岩千枚岩溶蚀严重。

桩号0+300~1+000为河床部分,河床高程为100m,基岩为太古时代前震旦纪矽化灰岩与千枚岩互层及千枚岩与大理岩互层。基岩以上为砂卵石、砂砾石及砂层,覆盖层厚7~16m。

河床左岸,1+000~1+999范围内为二级阶地,标高为117~125m,基岩为千枚岩、大理岩,上覆红土卵石,厚约5m,表层为亚砂土及亚粘土。

1.3主坝防渗措施

主坝坝体上游河床部分填筑有粘土铺盖,长180m,厚1~3m,与坝脚相接,坝下游坡脚筑有排水沟两道,一道排除坝面雨水,一道排除坝基渗流,均流入下游滹沱河河河槽。河床段0+450~0+989下游坝脚为褥垫排水,其基础与天然地基粗砂层相接,河床右岸坝轴线下游设有部分水平排水砂垫层,左岸坝轴线下游设有排水砂带。

1.4坝基渗流观测设施布置

主坝共设置7个坝基渗流观测断面,分别为0+258、0+450、0+705、0+850、1+050、1+200、1+400,共计26根测压管。

2主坝地下水动态分析

从主坝地下水等水位线(库水位119.0m)可看出,主坝地下水动态与各段地基的水文地质条件关系十分密切,总的来看是上游地下水位高,下游地下水位低,两端地下水位高,中间地下水位低,但两端并不对称,各段地下水位在本段内亦有不同的变化。(见下图)

河床部分,上下游地下水位差别不大,一般为1~3m,右边地下水位高,左边地下水位低,但水位差一般不足2m,从历年测压管水位与库水位过程线可看出,管水位变化与库水位关系密切,随库水位升降十分明显。滞后时间仅两天左右或不足一天,且管水位的升降幅度不大。一般靠上游的测压管水位升降值不足2m,下游测压管水位升降值不足1m,靠近排水沟的测压管在褥垫排水带内,其水位变化更小。

左岸1+000以北的二级阶地,其地下水位与河床部分有很大差别,以1+200为中心,地下水位向两侧缓降,接近河床部分陡降。如1+200断面的24#管,在坝轴线上游12.25m,当库水位119.2m,管水位达118.56m,而河床相同轴线上的11#管水位仅为101.13m,两管水位相差17.43m。测压管滞后时间大多在30天以上。总的看来,二级阶地地下水对库水位的变化反应迟缓一些,这与其岩层透水性弱的地质条件相适应。

右岸桩号0+300以南,坝基地下水位亦高于河床段但低于左岸。如库水位119.0m以上时,0+258断面坝轴线下游18.9m的1#管水位,较河床段相同位置的12#管水位高6m左右。

河床段0+450断面,上游距坝轴线12.25m的5#测压管水位有异常变化,发现每当库水位上升到118.0左右时,管水位均有一次突变现象,升高4m左右,每次库水位产生的突变并不完全一致,突变后与库水位建立的相关关系、规律性较差,但与库水位升降速度关系很大。当库水位下降较快时,管水位随之降到原相关曲线上;库水位下降较慢时,则管水位较缓慢的回到原相关曲线的位置。分析管水位突变的原因,可能是在117.0m以上坝体有裂缝,库水位较高时,库水沿管壁渗入管内,使管水位升高。理由是5#测压管在坝体上游护坡上,管口高程为120.84m,管身入坝体土面高程为118.5m。当库水位118.0m时,坝体土已很薄,管身与土体结合不良时,渗水沿管壁渗入是可能的;再者,当库水位下降时,管水位下降有个滞后时间,反应出的相关关系呈直线下降,然而,当库水位缓慢下降时,则管水位就不再随库水位缓慢下降,反而又回到原来的相关关系曲线上。与5#管同一断面上的测压管和两侧相邻断面相同位置上的测压管均无异常现象,因此5#管的管水位异常反应是孤立的,需进一步分析研究。

3坝基测压管水位与库水位的相关关系

为了弄清库水位与坝基各断面测压管水位的相互关系,进而由实测资料推测未来高水位时坝基渗流的情况。利用已有实测观测资料,选取有代表性的数个相对稳定的库水位情况下的相应管水位,利用微机采用数理统计的方法,将以上选取的实测数据进行回归直线计算,得出每个观测孔的库水位与管水位之间的表达式,并利用这个线性表达式,预测124.0m、126.1m、127.6m高库水位时各断面的管水位值.

3.1历年不同稳定库水位的选取

自历年内选取有代表性的数个库水位,并要求在此库水位左右稳定5天以上,即认为稳定在此水位

3.2历年不同库水位情况下各测压管水位的选取

依据不同稳定库水位,选取管水位,在同一断面选取同一天测得的管水位值,不考虑因轴距影响造成的滞后时间,历年最高、最低库水位时的管水位,取其与之相对应的最高、最低管水位值,其它管水位值选取库水位上升的情况,这样滞后时间较为一致,同时运用中采取库水位上升的过程。

3.3预测高库水位时各断面测压管水位

将预测库水位值直接代入回归方程式h=a+b*H中,(h预测测压管水位值;a常数项;b回归系数;H库水位),即可得出相应的预测管水位值,通过回归分析计算,相关系数在α=0.01水平上显著相关,大多在0.80左右。

4主坝坝基渗流稳定计算成果分析

对于建筑在强透水地基上的土坝,由于坝体填土的渗透系数与强透水层的渗透系数相差很大,故坝基地下水为渗流分析的主要因素,坝体可视为相对不透水部分,人工铺盖因其厚度很小且较长,仍然视为透水部分。为确定各地段坝基的透水压力分布情况,及其对坝基和坝体的影响,渗流分析时采用实测资料分析计算。主要内容有:库水位118.0m及高于118.0m和预测高库水位124.0m、126.1m、127.6m时,各断面坝基水平渗透坡降及出逸比降、铺盖有效长度、铺盖末端入渗比降、坝基渗透流量估算等。

4.1坝基水平渗透坡降及出逸比降

主坝河床段坝基地层特点自上而下分别为土、砂、砂砾、砂卵石层,设计坝基允许渗透坡降值为0.1。当库水位为118.0m和超过118.0m时,利用实测资料计算得出,河床段最大水平渗透坡降为0.0312,远小于设计允许值。预测库水位127.6m的最大坝基水平坡降也仅为0.037,满足工程安全运用要求。且除0+850断面出逸外,其它断面均不出逸,最大出逸比降为0.1765,小于临界出逸比降。因此,主坝河床段在高水位作用下,地基岩层层间接触冲刷、流失的可能性不大,不会产生出逸变形。

主坝的左右两端,坝基渗透性及入渗条件都较差,下游排泄条件也差。在实测资料计算中,坝基水平渗透比降最大为0.0507,比河床段平均高0.02~0.03,即使在预测库水位127.6m时,水平渗透坡降最大为0.077,亦满足设计要求。

4.2上游铺盖入渗比降

在计算上游铺盖入渗比降时,其土层厚度仅考虑了天然土层及人工铺盖层,未计天然淤积,并依其渗透系数进行了化引厚度计算。当库水位118.0和高于118.0m时,坝前铺盖入渗比降均小于3.0,预测127.6m水位时,铺盖入渗比降最大为3.925。鉴于主坝河床坝基地层为良好的天然反滤层,具有良好的抗渗条件,预测在此入渗比降作用下,地基不致发生破坏。但在高库水位时,应加强监测。

4.3坝基渗流量

主坝主要的透水层为河床部分的砂卵石、砂砾石,故此次只对河床段坝基进行渗流量估算。从实测资料计算看,当库水位118.0m或高于118.0m时,坝基渗流量估算值均小于0.19m3/s,在设计水位127.6m时,坝基渗流量也很小为0.232m3/s,对坝基影响不大。由此可知,主坝的水平防渗铺盖虽然未进行过人工补强,但经过40余年的运行,泥砂的淤积,对水平铺盖自然形成了良好地补强,河床段坝基渗流量一直较稳定且趋于安全。

由实测观测资料计算的渗流分析各项成果得出,主坝坝基各项渗流稳定计算成果均满足设计要求,即使在库水位127.6m时,各项渗流计算成果亦满足或接近设计要求。

渗流范文篇7

1.1达西定律

法国工程师Darcy经过渗透实践验证,渗流量q不只同截面面积a成正比例,还与水头耗损(h1-h2)正比,与渗径尺寸l成反比,带入土粒构造与流体特性的定性常数k。

1.2渗流连续方程

渗流连续方程通常以质量守恒定律为基础,考虑可压缩土体的渗流加以引证,即渗流场中水在某一单元体内的增减速率等于进出该单元体流量速率之差。对于每一个流动的过程而言,皆是在特定的空间流场之中发生的,沿着其边界发挥支配功能的条件,成为边界条件。在开始进行研究的时候,在流场之内,流动的状态与其支配条件,成为初始条件。边界条件与初始条件合称定解条件。定解条件普遍是由室外测量数据或实验得出的,其对流动过程有着决定性功用。找寻某个函数(假如水头),让其在微分方程的条件下,又可以适应定解条件的便可认为是定解问题。

2渗流计算

2.1计算目的

坝体(堤身)浸润线的位置。渗透压力、水力坡降和流速。通过坝体(堤身)或坝(堤)基的渗流量。坝体(堤身)整体和局部渗流稳定性分析。

2.2渗流计算的主要方法

渗流计算求解方法一般可分为以下四种类型。流体力学的解决方案:是一个严谨的解决方案,在边界条件符合定解时,能够算出渗流场中随便一点的值。然而,解答的过程十分繁杂,并且适用范围窄,在现实运用上受到很多的制约。水力学的解决方案:这种解法跟流体力学的解法有点相似。就是根据某种假设,针对某种特殊的边界条件的进行的流体力学计算。同样在实际工程应用上受到较多的制约。模拟测试:根据以上那二种方式的劣势,对于现实中的项目,原本常常经过水力学模拟测试来解答渗流问题。数值模拟计算分析:通过计算机,在确定物理模型的情况下,第一步要求建立一个数学模型,然后利用相关模型对于具体问题进行求解,这有时也称为数值法,包括有限差分法和有限元法。现在,以上这些渗流的计算手段里面水力学求解与有限元法在水利工程里面经常使用。

3水力学解法在水利水电工程上的运用

对于上述问题利用水力学的方法进行求解,也就是利用流体力学的计算方法,进行一些边界条件的假设基础上进行,根据相关流体力学的要求,对于实际工况进行简化处理,还包括底层的渗透系数的简化处理等。考虑渗透系数差距在5倍以内的邻接薄质土壤层可以算作一层,将加权均衡的渗透系数当作计算的根据。两层土质构成的地基,当下面土壤层的渗透系数小于表层土壤层的渗透系数100倍或更高时,可以把第二层土壤层看作是不渗透水层;上层土壤层看作为弱透水层的情况下,就可按照两层地基来进行计算。当直接与堤坝地基相连的地基土壤的渗透系数比堤坝的本身的渗透系数大于等于100倍时,可以确认为堤坝本身不渗水,只对堤坝地基根据有压力水流进行渗透计算,堤坝本身浸润线的地方可以依据地基里面的压力水头来认定。

4有限元解法在水利水电工程上的运用

4.1数学模型的选取

从现在的应用探究状况看来,大概分为这几种计算形式:布辛内斯克方程式,拉普拉斯方程式,固结方程式,扩散方程式。上述不同的计算数学模型均含有它一定的适合环境,通过四种模型的计算对比可以总结为:大多数泥土和石子结构坝体与地基的不稳固渗流问题,都可以运用固结方程加流量补给条件的自由边界和相对应的初始条件和边界条件算出流场的分布,比较符合实际;对于固结完好再不进行压缩处理的土石筑坝的不稳定渗流问题,可以运用拉氏方程加流量补给条件的自由边界计算。实际上拉氏方程只是固结方程的一个特定解。

4.2有限元计算程序

当前,计算渗流有限元的方法有很多,即使它们都有自己的缺陷,但是在输入时都要注意边界条件。计算有限元渗流的方法除了有二维之外还有三维,当然还有专门针对岩体裂隙的计算方法。

5小结

渗流范文篇8

随着人类工程和开采活动的日益增加,其影响越来越多地涉及到地下裂隙岩体,并且人类工程和开采活动与裂隙岩体之间的相互作用有着日益加剧的趋势,这使得人们对裂隙岩体的工程及开采特性备加关注。随着工程实践和科学研究的深入,人们已逐渐认识到裂隙岩体所赋存地质环境的复杂性及其所诱发地质灾害的多变性,于是刘继山、仵彦卿、柴军瑞、黄涛等国内一些专家学者在不同程度、不同角度对裂隙岩体赋存地质环境中各个因素之间相互影响作用的课题进行了有意义的探索和研究。裂隙岩体中存有地下水,地下水在岩体中会产生渗流,在复杂的地质环境中,不同的因素之间随着时间、空间而发生着复杂的动态变化,其中裂隙岩体中渗流的热学效应(渗流对温度的影响机理)是一个比较重要的影响方面。

2、裂隙岩体地下水渗流的基本理论

对于裂隙岩体渗流的热学效应的分析,首先应先了解岩体渗流的基本理论。一般情况下,岩体的各个裂隙中均含有水,而地下水在岩体中会产生渗流,所谓渗流是指含空隙(孔隙、裂隙等)介质中流体(液体、气体)通过空隙的流动[1]。地下水的流动是最典型的渗流现象,裂隙岩体中地下水的渗流特性体现了渗流理论的主体特征。

2.1达西(Darcy)定律

达西定律的最初表达式[2](Darcy,1855年提出):

式中,为渗流速度,K为渗透系数,J为水力坡降,为渗透水头H沿渗流方向的梯度。上式表明,渗流速度与水力坡降成线性关系,因此达西定律也被称为现行渗透规律。

假设岩体中的渗流以裂隙渗流为主,忽略其间岩块的渗透作用,那么裂隙的分布就相对比较密集,表征单元体比较小,视裂隙岩体为等效连续介质,用连续介质的方法描述岩体的渗流问题,并考虑岩体的非均质性和各向异性,以渗透系数张量来描述岩体裂隙的渗透性能。

本人根据矢量及张量的定义和连续性方程将达西定律进行了推广,可得下式:

式中,为渗流速度矢量,为介质的渗流系数张量,为水力坡降矢量。上式的展开式为:

==-

2.2费克(FICK)定律

对溶质或压缩性较大的气体在介质空隙中的运动,可采用张蔚榛(1996年)关于费克定律[3]公式:

=

式中,为扩散通量或气体流量,为扩散系数,为浓度(或密度)沿扩散方向的梯度。

2.3立方定律

单直平滑裂隙中的渗流满足立方定律[4],为了更好的描述裂隙介质的渗流规律,本文引用了田开铭、万力(1989年)著作中的立方定律的公式:

==

式中,为通过单直平滑裂隙断面的单宽流量,γ和分别为流体的容量和动力粘滞系数,

为裂隙的隙宽,为沿裂隙方向的水力坡降,=为裂隙的等效渗透系数,为渗流水头沿裂隙方向的梯度,=-。

对于实际的粗糙不规则的裂隙及充填裂隙,须对立方定律进行修正[5]。

3、岩体温度场分布

通常把人类工程活动所涉及的岩体内的温度分布和热状态称为岩体温度场,岩体温度场的分布一方面受制于地壳浅层温度分布和热状态的控制,;另一方面受岩体工程和外界条件(包括地下水渗流)的影响。理论和实验研究表明,热力的传递(即传热)一般有三种方式:传导、对流和辐射。工程岩体中温度场的分布是以传导和对流为主实现的,而对流则是以地下水的渗流运动为基础进行的。

为了使岩体温度场分布的描述更加具体化、形象化,本人根据热量平衡原理,把传导型传热方程、因地下水参与引起的对流项及通过地下热源区因辐射增加的内热源项进行了重新组合,引用了黄涛等(1999年)关于岩体温度场的分布模型[6],如下式:

Ca+cvi=+c(-)q(1)

式中,为岩体的热动力弥散系数张量;xi、xj为笛卡尔坐标,,=1,2,3并遵循求和约定;为时间;为岩石的热容量;c为地下水的热容量;vi为渗透速度;q为单位体积含水岩体中源汇流量;为地下水温;为源汇项温度。

4、裂隙岩体中渗流的热学效应分析

裂隙岩体渗流的热学效应即岩体中渗流对温度的影响机理。当裂隙岩体中有渗流发生时,一方面,地下水的渗流运动促成了岩体与地下水体之间发生热传导的热量传递与交换。另一方面,地下水作为裂隙岩体中热量交换的载体,通过地下水本身的渗流运动而产生热对流的热能转移过程。以上两个方面的热能转移,为达到地下水体与裂隙岩体二者温度分布的均衡,最终导致裂隙岩体温度场分布的总体衰减,即岩体温度值的总体降低。

在一向导热的情况下,当裂隙岩体中存在渗流时,热量包括两部分:一部分是由于岩体本身的热传导作用,等于-;另一部分是由渗流夹带的热量,等于,因此在总结朱伯芳等(1976年)关于热传导原理的基础上柴军瑞(2001年)在其著作中总结了热流量的公式为[7][8]:

-(2)

式中,为沿一维坐标轴x方向的热流量;为水的比热;为水的密度;为岩体介质的导热系数;为渗流速度;为温度。

本人对该公式进行了分析,认为吸热的热源可作为负的热源,将公式两边取负号,并两边同时作微分处理,得到了在单位时间内流入单位体积的净热量为:

-(3)

根据热量平衡原理,这个热量必须等于单位时间内裂隙岩体介质温度升高所吸收的热量,而单位时间内裂隙岩体介质温度升高所吸收的热量,故,即:

(4)

式中,为岩体介质的比热,为岩体介质的密度。

为了更全面的对渗流影响下的温度场进行分析,本人对式(4)进行了推广:

如果温度只随平面内的两个位置坐标而变,即温度沿z方向是常数,,则温度场是两向的,推得渗流影响下的二维导热方程:

(5)

同理,三向导热的情况下,在不考虑源(汇)项的情况下,可推得考虑渗流影响的三维导热方程:

(6)

由(6)式可以看出,温度场的分布与渗流速度场的分布有密切的关系;渗流速度越大,对温度场的影响也就越大。而渗流速度场的分布又由渗流场水头的分布决定,即。所以式(6)定量地反映了渗流对温度的影响机理。

5、结束语

通过对地下裂隙岩体渗流的热学效应的分析可以看出,地下水在岩体中会产生渗流,地下水的渗流运动直接影响了岩体与地下水体之间发生热传导的热量传递与交换,同时地下水本身的渗流运动通过热对流的方式进行了热能转移,这些因素影响了裂隙岩体的温度场分布,而且地下水在裂隙岩体中的渗流运动大大降低了岩体中的温度分布值,地下水在裂隙岩体中的渗流速度的大小直接控制了岩体温度的变化幅度,因此,渗流对温度的影响是非常明显的,对裂隙岩体渗流的热学效应的分析研究具有很实际的意义,这还有利于加深对渗流影响温度分布的因素的认识。

参考文献

[1]朱诗鳌,坝工技术史,北京:水利电力出版社,1995

[2]祁庆和,水工建筑物,北京:水利水电出版社,1986

[3]张蔚榛,地下水与土壤水动力学,北京:中国水利电力出版社,1996

[4]田开铭、万力,各向异性裂隙介质渗流性的研究与评价,北京:学苑出版社,1989

[5]忤彦卿、李俊亭、张倬元,地下水动态观测网的优化设计,成都:成都科技大学出版社,1993

[6]黄涛、杨立中,隧道裂隙岩体温度-渗流耦合数学模型研究,岩土工程学报,1999,21(5):554~558

渗流范文篇9

土石坝的土石体介质内非渗流区的温度场分布受单纯的热传导控制,在土石体表层10~15m范围内,温度场受流体(空气、水)的季节性温度变化控制,越靠近表面区域与流体温度越一致。由于土体具有较低的热传导特性,土体导热率低,温度场分布较均匀,流体温度与土体内部的温度差别随深度而增加。

当土石体内存在大量水流动时,土石体热传导强度将随之发生改变,如渗透系数大于10-6m/s,土石体传导热传递将明显被流体运动所引起的对流热传递所超越。即使很少的水体流动也会导致土石体温度与渗漏水温度相适应,由此引起温度场的变化。

将具有较高灵敏度的温度传感器埋设在土石坝的土石介质的挡(蓄)水建筑物的基础或内部的不同深度。如测量点处或附近有渗流水通过(渗透流速一般必须大于10-6m/s),水流的运动和迁移,土中热量传递的强度发生改变,将打破该测量点处附近温度分布的均匀性及温度分布的一致性。土体温度随渗水温度变化而变化。在研究该处正常地温及参考水温后,就可独立地确定测量点处温度异常是否是由渗漏水活动引起的,这一变化可作为渗漏探测的指征,从而实现对土体内集中渗漏点的定位和监测。

2渗流热监测技术的研究历史和现状

2.1利用点式热敏温度计测量温度进而监测渗流场

早期渗流热监测技术主要是通过在水工建筑物或其基础内埋设大量热敏温度计来进行温度测量的。美国加利福尼亚Occidental大学地质系的JosephH.Birman等人从1958年开始研究利用这一技术勘探地下水,1965年JosephH.Birman将这一技术用于水坝的漏水探查中,并申请了专利。美国垦务局也将这一技术成功地应用于一些病险土石坝的治理。前苏联将其扩展至混凝土坝,在水库蓄水后发现了地下集中渗漏通道。上述测量方法的致命缺陷是对土体内温度实施点式测量,因测量点有限,对温度场分布中的不规则区域集中渗漏往往漏检,因此增大了对渗漏通道的漏检概率。

2.2热脉冲方法(HPM)渗流监测技术

渗漏水流必然与对流热传输相伴产生,对流热传输是超出已存在的、流速不大于10-7m/s引起的传热以外的热量传递部分。使用一个线热源,可以在大坝内产生一个非常确定的热量扰动。根据所在处的热传导率和渗流流速,在热源范围内就可以获得随一个随时间的特定温升情况。通过测定这个作为时间函数的温升,并与数值模型得到的温度-时间曲线对比,就可能决定渗漏的流速,这就是热脉冲方法(HPM)渗流监测技术。热脉冲方法的探测深度取决于加热时间、热源强度和孔隙水的流速。一般情况下,如果加热周期在6到8个小时之间,小到10-6m/s量级的流速就可以被测到。

2.3分布式光纤热渗流监测技术

近年来,各种类型分布式光纤传感器系统有了迅速发展,现有的光纤温度测量系统能够沿长达40km的光纤上实时连续采样并能对测量点定位,测温精度和空间分辩率也都有很大的提高。目前,这种技术已广泛应用于工业领域,如高压输电线、化工厂的反应器等的温度分布探测等。光纤温度测量系统可望取代传统点式温度传感器应用于坝工、堤防的渗漏监测中,并可以大大提高发现水工建筑物及其基础集中渗漏通道的概率。

将分布式光纤温度测量应用于土石坝内部的渗漏探测有两种方式:即梯度方式和电热脉冲方式。梯度法即利用光纤系统直接测量土体内实际温度,不对光缆进行加热,其前提是河道或库水温与量测位置土体温度存在比较明显的温度差,从而在渗漏水周围就会产生局部温度异常。电热脉冲法是通过对光缆保护层的金属外壳或特制光缆中的电导体通电,使光缆加热到一定程度,可克服可能的各种不利影响。当存在渗漏水流时,光缆加热过程中可以看到渗漏区的明显温度分布异常。这两种方式用来探测集中渗漏均已试验成功,且后一种方式适用范围更广泛。

3土石坝的热学特性

土石坝的热学特性比较复杂,它包括诸如热传导、对流热传输和热辐射等基本热过程。其中,来自太阳的辐射和对大气层的辐射的影响仅局限在大坝表面,主要是昼夜间短时间脉冲,因此一般情况假定坝内部温度与坝表面的辐射无关。

在一个无渗漏的土石坝内,温度分布由纯热传导的方式控制的。坝内10~15m深处的温度场则主要受坝表面的季节性温度变化控制。坝表面以下部分,季节性温度的最大和最小值直接与空气和水的温度值相关。由于大坝通常是由低热传导的材料组成的,因此随深度的增加,大坝表面温度的变化与坝内土的温度变化的相位差也增大,而相位差的大小则与热扩散系数有关。

3.1热传导

热传导主要发生在垂直方向,因为地热的基流是向上运动的,空气温度变化引起的年温度脉冲是向下运动的。地热流动通常比较小,约0.1w/m2,大多数情况下可忽略不计。由于热传导仅沿一个方向进行,因此可以用解析法求解问题。根据瑞典SamJohansson博士的研究表明,在瑞典,当温度变幅为15℃且温度特性正常的情况下,地面以下5m处温度变幅是7.1℃,10m深度处为1.7℃。因此,对于高坝来说,垂直方向的热传导可以忽略。

3.2对流热传输

热的对流方式传输比纯热传导更有效,只要有小量的水流就会对温度分布产生相当大的影响。研究表明,在量级为l0-7m/s~10-6m/s的非常低的达西速度下,总的热传输也还是由对流部分所控制。在这种情况下坝内的温度分布主要受水流温度的影响。在坝内或坝基内,甚至小量水流也会引起土温的调整。由于在低流速下也会出现温度异常,因此温度是探测土石坝内渗漏的一个非常敏感的指标。

4土石坝温度与渗流的关系

坝体中渗流场与温度场是相互作用、相互影响的。坝体中渗流场与温度场双场相互作用、相互影响的结果,会使双场耦合到达某一动平衡状态,形成温度场影响下的渗流场及渗流场影响下的温度场。

温度场和渗流场耦合的过程实际上是热能和流体在介质中一个动态调整变化的过程,温度场和流场任何一种因素的不稳定均会导致另一个因素的变化。一方面从物理过程来看,热能通过介质的接触进行热交换,而渗流流体则因存在势能差在多孔介质的孔隙进行扩散和流动,同时流体也作为热能传播的介质,在多孔介质中携带热能沿运动迹线进行交换和扩散。另一方面从理化过程来看,热能的变化导致介质温度的变化,从而影响介质和流体本身的理化特性的改变,主要表现为介质和流体体积效应的改变,和流体流动特性参数的改变等方面。因此,渗流和温度相互影响的过程实际上包括了能量平衡和耗散过程,以及媒介物质发生理化反应等过程。

总体上来说,渗流场和温度场的相互影响、相互作用的过程是一个十分复杂的问题,目前综合考虑这两方面相互影响问题的研究还比较少,且大多处于定性研究的基础上。从工程技术应用的角度而言,通过对温度场的监测期望获得渗流场的变化情况,目前主要局限于定性分析,对定量监测问题方面的研究相对较少。本文将从渗流场合温度场耦合的角度进行定量的探讨。

4.1温度变化对渗流场的影响

温度变化时会影响水体和土体的物理和化学参数,从而影响渗流场在坝体内部的分布。土体中与渗流场和温度场密切相关的参数有孔隙率、比热容、热传导、导热系数等参数,这些参数中在温度变幅为10℃内变化极小或无变化,故可认为温度变化对土体的这些参数没有影响。水体物理化学参数中和温度场、渗流场密切相关的参数包括密度、重度、粘度、导热系数、热膨胀系数

水体导温系数、比热、运动粘滞系数等参数。

假定水温从=15℃上升到=20℃,各参数的变化量如下表所示:

表1:各参数变化量

参数

=15℃

998.987

9790.073

1.0907

0.011491

=20℃

997.966

9780.066

1

0.010152

变化量

-1.021

-10.007

-0.090

-0.00134

相对变化率

0.1%

0.1%

8.25%

11.6%

注:相对变化率=变化量/=15℃时对应的量

参数

=15℃

4185.45

0.58691

14.02

1.617

=20℃

4178.30

0.59752

14.30

2.156

变化量

-7.15

0.01061

0.28

0.539

相对变化率

0.17%

1.8%

2.0%

33.3%

结合以上数据,在研究温度变化对水体的物理化学性质的影响过程中,比热、密度、导温系数、导热系数、重度在15℃至20℃之间变化较小,可以不计其影响;运动粘度系数、动力粘度系数和水体热膨胀系数的变化直接影响水体渗流特性,因此在耦合计算分析中需要考虑。

土石坝等水工建筑物土体饱和状态时,温度发生变化时,必然引起土石体和孔隙水的体积发生变化,通常情况下(对水而言大于4℃时)温度上升时,体积膨胀,孔隙水压力将上升。在总应力保持不变情况下,孔隙水压力上升必然会导致有效应力的相应减小,进而引起水体的体积及土体体积的进一步变化,因此在温度变化时,介质内固相体积、孔隙水体积,有效应力、孔隙水应力将进行调整,重新达到平衡状态,满足总体积不变和质量守恒的条件。可以定量地认为,当温度上升时,有效应力减小,孔隙水压力增大,即渗透压力增大,当温度下降时反之。又根据现有研究证明:由温度差形成的温度势梯度也会影响水的流动。由于温度势本身就是较为复杂的问题,因此,温度对水流运动的影响目前只能用温度梯度的一种经验表达式。例如,对一维情况,有[7]:

式中,为温度变化引起的水流通量,是温差作用下的水流扩散率,中已经包含水体和土体的热膨胀系数,物理化学变化系数的影响,

为温度沿x维坐标轴x方向的梯度。

所以

可推出温度场影响下的渗流场方程:

4.2渗流场对温度场的影响

水体从坝体中流过,当两种介质存在温度差时,必然产生热量交换。当我们把土石坝中的流动的水体和认为是相对不动的介质土体分开研究时(需要特别说明的是:渗流场处于稳定状态,其相对不动的介质仍为饱和状态的土体),坝体或坝基内部存在渗流时,其热量交换应包括两部分:一部分为本身的热传导作用,另一部分为渗流夹带的热量。

在一向导热的情况下,当土坝内部存在渗流时,热流量包括两部分:一部分是由于土体本身的热传导作用,等于另一部分是由渗流夹带的热量,等于,因此热流量为[8]:

式中,为沿一维坐标轴x方向的热流量;为水的比热;为水的密度;为土的导热系数。因此,在单位时间内流入单位体积的净热量为:

这个热量必须等于单位时间内坝体温度升高所吸收的热量,故

式中,为土体的比热,为土体的密度。

将该式推广到三向导热的情况下,可得到考虑渗流影响下的温度场三维导热方程:

根据渗流场对温度场的影响机理分析,可以知道渗流速度直接影响了温度场的变化。

4.3渗流场和温度耦合的一维求解

理论上,能同时满足两组数学模型的渗流场水头分布H(x,y,z,t)与温度场分布T(x,y,z,t)即为土坝渗流场与温度场耦合分析的精确解,这就需要联合求解两式。众所周知,在大多数情况下,目前在数学上要单独求解每式的解析解也是不可能的,联合求解则更是难上加难。所以我们有必要讨论一下双场在一维状态下的解析解,从而得出一些结论。

假定一维渗流场和温度场的边界条件为:

求解可得近似解析解,渗流场影响下的温度场分布和温度场影响下的渗流场分布为:

若取工程中的参数如下:

取时,分别计算,,,并用图表表示:

图1不考虑耦合情况、

图2考虑耦合情况不同K值下温度比较

图3考虑耦合情况不同K值下比较

图4考虑耦合情况不同K值下比较局部放大图

由图可以看出,耦合解析解(即T1(x)及H1(x))与非耦合解析解(即T0(x)及H0(x))有很大的不同,渗流场而对温度场的影响更为明显。还可以看出,随着渗透系数的增大,渗流场对温度场的影响更加明显,而温度场对渗流场的影响减弱;且渗流由高温向低温流动时,使温度场温度普遍升高,但使渗流场水头普遍减少。而且,当渗透系数大于10-6m/s时,温度由渗流水控制。

考虑主要因素,忽略次要因素,仅考虑渗流影响下的温度场,而不考虑温度场对渗流水头的改变、即不考虑就能满足工程精度要求,使得问题得以简化。

4.4利用温度场测值计算渗流场的渗透系数K

考虑二维情况下渗流场与温度场的耦合问题,假定渗流场为稳定场,不考虑温度场对渗流水头的改变,边界条件已知,渗流场方程为:

令渗流场影响下的土体二维温度场数学模型为:

选取坝体的典型截面,简化为平面问题,假定坝体的渗透系数K,结合渗流边界条件,利用有限元数值计算的方法计算坝体在一定的边界条件下的渗流场的水头分布H(x,y);根据此已知渗流场,计算出渗流场各点的、,并结合该温度场的边界条件,用有限元程序计算出该坝体内各点的温度T,得出温度场。用此理论计算的温度场与用分布式光纤量测得到的温度场相比较,不断调整渗透系数K值,直至理论计算值与实际量测值很接近,此时对应的渗透系数即为坝体的渗透系数,就能利用对温度场的监测实现对渗流场的监测。

进一步推广到三维情况下,假定渗流场为稳定场,忽略虑温度场对渗流水头的改变,在渗流和温度边界条件已知的情况下,控制方程为:

同理,利用有限元数值计算的方法,由分布式光纤实际量测得到的温度场可以得出渗流场渗透系数K值。

5结论

利用分布式光纤温度测量系统这一先进的量测手段,我们可以较为准确地得到土坝内部温度场的空间分布,并且信息量大;对坝体渗流场和温度场耦合分析,得出二者的关系;借助有限元数值计算的方法,可以定量地得出渗流场的渗透系数,从而实现对渗流场的监测。

参考文献:

1李端有,陈鹏霄,王志旺.温度示踪法渗流监测技术在长江堤防渗流监测中的应用初探[J],长江科学院院报,2000年增刊,48~50

2肖才忠,潘文昌.由温度场研究坝基渗流初探[J].人民长江,1999,30(5):21-23

3王志远,王占锐,王燕.一项渗流监测新技术--排水孔测温法[J],大坝观测与土工测试,1997,21(5),10-13

4汤平,李端有,马水山.光纤渗压计实验研究[J],长江科学院院报,2000年增刊,52~55

5.AuflegerM,FibreOpticalTemperatureMeasurementinDamMonitoring—FourYearsofExperience[R],Obernach:InstituteofHydraulicandWaterResourcesEngineering,2000,1~10

6马水山,王志旺,李端有,汤平,光纤传感器及其在岩土工程中的应用[J],岩石力学与工程学报,2001.20(增刊)1692~1694

7.仵彦卿等、地下水动态观测网的优化设计,成都:成都科技大学出版社,1993

8.朱明善、林兆庄、刘颖、彭晓峰,工程热力学,北京:清华大学出版社,1995

StudyOnTheSeepageMonitoringTechnologyWithTempertureInEmbankmentDam

LIDuan-you1,XiongJian1,YUSan-Da2WANGZhi-wang1,,

(1YangtzeRiverScientificResearchInstitute,Wuhan430010China)

渗流范文篇10

关键词:土石坝渗流原理及其控制工程质量

土石坝是目前世界坝工建设工程中应用最为广泛和发展最快的一种坝型。与其他坝型相比较,无论从经济方面还是从施工方面,土石坝具有绝对的优势,据不完全统计世界土石坝占大坝总数的82.9%,而在中国土石坝数量占到大坝总数的93%。

因土石坝的施工所用材料一般采用就地开采,同时在施工中充分利用各种开挖料,包括当地土料、石料或混合料,土石坝的施工即是将这些材料经过抛填、辗压等方法堆筑成的挡水坝,故土石坝又称作当地材料坝,对于坝体材料以土和砂砾为主时,称土坝;以石渣、卵石、爆破石料为主时,称堆石坝;当两类当地材料均占相当比例时,称土石混合坝。

土石坝按施工方法的不同,土石坝可分为:碾压式土石坝、冲填式土石坝、水中填土坝和定向爆破堆石坝等。其中应用最为广泛的是碾压式土石坝,其主要特点是对基础要求低、适应基础变形强。

土石坝按坝高可分为:低坝、中坝和高坝。而高坝筑坝技术是近代才发展起来的。

碾压式土石坝按照土料在坝身内的配置和防渗体所用的材料种类,又可分为均质坝、土质心墙坝、土质斜墙坝、多种土质坝、人工材料心墙坝、人工材料面板坝等。

土石坝是历史最为悠久的一种坝型。其优点包括:就地取材,节省钢材、水泥、木材等重要建筑材料,减少了建坝过程中的远途运输;结构简单,便于维修和加高、扩建;土石坝的坝身是土石散粒体结构,有适应变形的良好性能,因此对地基的要求低;施工技术简单,工序少,便于组合机械快速施工。其缺点是坝身一般不能溢流,施工导流不如混凝土坝方便,粘性土料的填筑受气候条件影响较大等。土石坝建设最大的病害即是渗流。

一、如何控制和预防渗流是土石坝工程建设中最主要的工作之一

所谓渗流,即是指由于填筑土石坝的土料和坝基的砂砾是散粒体结构,颗粒间存在大量的孔隙,因此具有一定的透水性。当水库蓄水后,在水压力的作用下,水流必然会沿着坝身土料、坝基土体和坝端两岸地基中的孔隙渗向下游,造成坝身、坝基和绕坝的渗漏。假如这种渗流是在设计控制之下,大坝任何部位的土体就不会产生渗透破坏,则为正常渗流,此时渗流量一般较小,水质清澈透明,不含土壤颗粒,对坝体和坝基不致造成渗透破坏;反之对能引起土体渗透破坏,或渗流员过大且集中,水质浑浊,透明度低,使坝体或坝基产生管涌,流土和接触冲刷等渗透破坏,这种影响蓄水兴利的渗流则为异常渗流。

根据我国早期的土石坝工程的资料统计,由渗流而引起的破坏事故率约占31.7%。其中大型水库占11座,而对于中小型水库而言,漫坝冲垮者最多,占51.5%,其次就是渗漏导致垮坝,占29.1%,由此可见渗漏造成的溃坝问题是相当严重的。因此确保对坝体和坝基的渗流控制是保证土石坝安全的一项重要措施。

渗流控制的控制理论是在工程实践中的发展和运用起来的,是实践反馈的结果,其中渗流的基本原理、渗流场的分析方法、土体渗透稳定性三大部分,是渗流控制理论的基础。而渗流控制技术是渗流基础理论的实施措施,它主要包括灌浆技术、反滤坝技术、土石坝坝坡滑动破坏加固技术、土石坝坝体灌注粘土浆加固技术、坝体和坝基的密度加固技术、土工合成材料加固技术以及防渗墙及其坝体坝基加固技术等。

总结起来产生异常渗流的原因有以下几个方面:①坝体填土与排水体之间的反滤层设计不正确,层间系数过大,或施工时有错断混层现象,或填土不够密实,过大的渗流使填土向排水体流失,都会造成反滤层破坏失效。反滤层在整个防渗体系中是尤为关键的环节,即使前面的防渗体裂缝或出现渗漏通道,只要反滤层工作正常,排水降压,渗漏破坏就不会扩大。②防渗体没有直达基岩或底部连续可靠的粘土层,在开挖截水槽时,因施工困难,半途而废,从而留下隐患。③土石坝两岸岸坡产生台阶状。应该开抢成较平顺的坡度,为减少开挖可以变坡,在上下两坡度转折处,两坡角之差不应大于15°~20°,若有平台,则平台处填土高度与平台的两端的填土高度,高差悬殊沉陷量突变,容易产生裂缝,导致渗透破坏。如何组织科学有序的施工,提高工程质量,控制渗流是整个过程成败的关键。

二、土石坝过程在施工中应从以下几个方面进行控制:

①做好基础处理,必须万无一失。很多大型土石坝,必须要满足坝基承载力及基础防渗的情况下,完成基础处理的稳固后,方可进行填筑施工,特别是在深覆盖层上修建工程,基础处理工程量大、不可预见因素多,需要经常采用防渗墙、振冲、帷幕灌浆、固结灌浆等对地基进行综合处理。

②掌握当地地质、水文气象资料,控制好施工工期的季节性土石坝对水文气象的因素极为敏感,在雨季,土料的含水量影响极大,直接制约着大坝填筑,施工强度将受到影响;冬季,土料上冻,如不采取积极措施,也无法进行填筑,且冬雨季填筑施工,存在着高投入、低产出的窘境。对于度汛期的施工,应编制具有针对性的施工方案。土石坝工程,一般不允许漫顶过流,故土石坝工程“施工高峰期”应控制在工程实施截流后第一个汛前达到拦洪度汛断面挡水这一阶段,截流后均需加快施工进度,以确保在汛前将坝体全断面或度汛小断面填筑至拦洪度汛高程。因此给坝体填筑的施工工期有限,在北方地区采用冬季施工时,当月平均气温在0℃以下,有些地区河流结冰、土层冻结,对开挖工程、混凝土工程、灌浆工程以及填筑工程均有不利的影响,因此必须要提高月填筑强度,方能按安全渡汛的要求按期达到拦河高程。

③确保工程所用料场开采土、石料的材料质量料场对土石坝的重要性不言而喻,却也是最容易影响大坝顺利填筑的软肋。根据工程实践,一般而言,料场的地质勘探工作深度远不如坝址,特别是填筑量最大的堆石料,往往仅靠几个探洞或地形勘查进行地质描述,进场后,与招标文件发生变化的可能性很大,无法形成大规模开采(或台阶开采)条件,直接影响大坝填筑级配是否得到保证。在防渗土料方面,含水量的高低也成为大坝能否快速填筑的关键,因此,完善而慎重地进行料场复查及复勘工作显得尤为重要,搞好料场复查和储量计算,做到心中有数。

此外材料的碾压试验也是非常重要的一项工作。对土石坝而言,碾压试验是填筑前最为重要的技术参数论证工作,也是确定大坝能否顺利填筑及确保大坝安全的重要环节。碾压试验工作的好坏,直接影响坝体的填筑。

碾压试验中还需对防渗土料的含水量进行确定及调节,同时还应确定好对堆石料洒水量。此外,为确保土石坝填筑质量,土石坝工程的施工必须要求进行试坑取样,只有在填筑面碾压合格并能过验收后方可进行上一层填筑。

④确定合理的坝面分区,是填筑工作施工的关键由于土石坝体型较大,为坝面分区流水作业提供了必要的场面,土石坝工程一般在填筑工序上分为铺料、摊铺、洒水、压实、质检等工作。在坝面分区流水作业中,防渗土料的施工应根据填筑的需要,应根据实际情况合理划分填筑区域和进行流水作业,以及采用的机械设备及填筑情况进行调整。对采用平起填筑与临时断面填筑的土石坝工程,不可为一味减少临时断面填筑量而影响大型机械的正常施工,必须要确保填筑质量。公务员之家