能量管理系统范文10篇

时间:2023-04-10 00:41:25

能量管理系统

能量管理系统范文篇1

电力系统自动化经历了“元件自动化”、“局部自动化”、“单一岛自动化”到“综合自动化(EMS)”的发展阶段,能量管理系统将各个自动化孤岛连接成为一个有机的整体。20世纪60年代提出的在线安全分析的急迫性,促进了能量管理系统的诞生;20世纪80年代频繁出现的大型电力系统电压崩溃事故,使EMS的重要性更为突出;20世纪90年代以来实行的电力市场,使电力系统的运营从垄断走向开放、走向市场,:EMS的功能子模块重新面临技术改造和补充完善的严峻挑战,突出表现在实时电价计算、最大输电能力计算、输电路径优化、输电费用计算、输电服务预调度和实时调度等。

能量管理系统的开发和应用可大致划分为四个阶段,如表1所示。

2能量管理系统EMS主要应用软件

根据各主要软件的功能及用途,可将EMS划分为五大类别:发电控制类、发电计划类、网络分析类、调度员培训模拟类、市场交易与管理类。

2.1发电控制类软件

这类软件主要由自动发电控制、发电成本分析、交换计划评估和机组计划组成。

①自动发电控制(AGC)。自动发电控制是一项成熟的技术,它有40多年的历史而且已经由模拟系统发展到数字系统,由线形反馈控制发展到最优控制。自动发电控制的基本功能包括:负荷频率控制,维持系统频率(50Hz)或/和维持区域间联络线交换功率为计划值;经济调度,确定各机组的经济基准运行点;系统备用容量监视;AGC系统性能监视。

②发电成本分析。在垄断体制下,该软件模块将定期给出每台机组及各区域总的生产成本。在电力市场环境下,每个发电厂都将成为独立发电运营商(IPP),电网调度或交易中心在分析单个电厂成本及报价的同时,应当把握信息公开的范围和尺度,做好部分信息的保密工作。

③交换计划评估和机组计划。前者对发电交换计划的结果进行评估和AGC再校正,后者确定机组的基点功率计划和减出力计划等。

2.2发电计划类软件

发电计划类软件主要包括负荷预测、机组组合、水电计划、交换计划、火电计划等。在电力市场机制下,负荷预测应该引入电价弹性的理念;机组组合应该充分考虑不同机组在负荷曲线上的位置及其预期的报价盈利水平;交换计划应该满足购电和买电双方交易的利益均分原则;火电计划应兼顾绿色能源和环境保护的需要。

机组组合是在满足系统负荷、备用容量、机组容量、最小启动时间和最小停机时间等约束条件下,考虑机组启动费用和发电费用特性,确定系统各区域的电厂、机组次日规定时段的开停机计划,使一定周期内的总费用最小。但在计划经济体制下,人为干预和不确定性因素太多,很难自动实现。在电力市场中,报价面前人人平等,实现机组组合反而容易了。虽然机组组合功能是在交易管理系统中,目标函数不同了,但其基本算法并没有根本改变,原来的基础和经验仍然有效。

2.3网络分析类软件

网络分析类软件主要由网络拓扑、状态估计、外部网络等值、调度员潮流、安全约束调度、最优潮流、静态安全分析、暂态安全分析、电压稳定分析、无功优化、短路计算等。

网络拓扑和外部等值是EMS应用软件中最基本的功能。拓扑分析的作用在于将网络的物理模型实时转化为计算的数学模型,根据数据采集与监视系统中断路器和隔离开关的信息确定电网的电气连接状态,并将网络的物理模型转换为数学计算模型;外部等值(有静态和动态等值之分)的作用是简化计算,提高求解速度。它是对调度范围或计算范围以外的网络进行简化,以便考虑这部分网络对本区域电网的影响。两者作为公共模块广泛应用于状态估计、调度员潮流、安全分析、无功优化等程序中。

静态安全分析的作用在于,对多种给定运行方式进行预想事故分析,模拟元件或线路越限或开断故障,找出薄弱环节,评估整个系统的静态安全水平。当发现有危及系统静态安全的预想事故时,调用安全约束调度软件,以系统控制量调整最小或生产费用最低或网损最小为目标函数,提出解除有功、无功、电压越限并使系统进入新的安全状态的对策。

暂态安全分析是在给定的或预想的运行方式下,针对预想事故集中的故障或继电保护装置动作情况,判断系统是否会失去暂态稳定并确定故障的最长持续时间。电压稳定性分析可以给出预想运行方式下各个节点的电压稳定性指标、功率极限和临界电压。

最优潮流的计算目的是优化电力系统的静态运行条件,通过调节控制变量使目标函数达到最小,实现发电费用最小或购电总成本最低的经济运行目标。无功优化则是在调度员潮流分析基础上,通过改变无功设备,在满足安全约束和电压质量的条件下,使系统的有功总网损达到最小。

2.4调度员培训模拟

这主要用于培训调度员在正常状态下的操作能力和事故状态下的快速反应能力,也可用作独立系统调度员(ISO)分析电网运行状况的工具。

2.5市场交易与管理类

这主要包括实时电价计算、最大输电能力计算、输电路径优化、输电费用计算、输电服务预调度和实时调度等软件。这类软件在功能上如何与现有EMS软件整合与分工,有待进一步研究和探索。

4实例分析——以SE-9000系统为例

电力市场机制给EMS带来了巨大挑战,其主要软件模块在功能和内涵上将发生重大的变化,如SCADA、AGC、负荷预测、机组组合、调度员潮流、安全分析、无功优化、数据库结构、人机界面等。当今主流能量管理系统以SE-9000为典范,SE-9000系统以开放、稳定、实用、先进、功能完善、易维护、易扩充为主要设计目标,在系统设计中进行了图模库一体化、SCADA/PAS/FA设计一体化、人机界面一体化、开发接口一体化、维护一体化一体化设计。

4.1软件系统分析

SE-9200系统支撑平台是整个系统的核心,平台为各应用子系统提供统一的系统运行管理、数据访问、模块间通信、图形界面、权限管理、告警处理等公共服务,使各应用只需专注于各自业务逻辑的实现,如图1。

系统支撑平台可以归纳为集成总线层、数据总线层、公共服务层三层,如图2。集成总线层提供各公共服务之间、各应用子系统以及第三方软件之间规范化的交互机制;数据总线层提供适当的数据访问服务;公共服务层为各应用子系统提供公共服务,如图形界面、报表工具、告警服务等。

在应用软件方面,SE-9000系统的大型软件应用子系统除了包含常规的电网监控子系统外,还集成有集控中心子系统、电网高级应用软件子系统、电量管理子系统、调度管理子系统、配网自动化子系统等。

4.2结语

通过实际操作应用,SE-9000在操作上比较简单,拥有智能化的系统建模,界面比较人性化;在系统上采用全新的一体化设计,并适合混合平台操作。而且日常维护工作量大大减少,在数据处理上支持ORACLE等商用数据库,保证了其安全性,具有全方位的监视和管理功能。

参考文献:

[1]杜松怀.电力市场[M].北京:中国电力出版社,2006.

能量管理系统范文篇2

电力系统自动化经历了“元件自动化”、“局部自动化”、“单一岛自动化”到“综合自动化(EMS)”的发展阶段,能量管理系统将各个自动化孤岛连接成为一个有机的整体。20世纪60年代提出的在线安全分析的急迫性,促进了能量管理系统的诞生;20世纪80年代频繁出现的大型电力系统电压崩溃事故,使EMS的重要性更为突出;20世纪90年代以来实行的电力市场,使电力系统的运营从垄断走向开放、走向市场,:EMS的功能子模块重新面临技术改造和补充完善的严峻挑战,突出表现在实时电价计算、最大输电能力计算、输电路径优化、输电费用计算、输电服务预调度和实时调度等。

能量管理系统的开发和应用可大致划分为四个阶段,如表1所示。

2能量管理系统EMS主要应用软件

根据各主要软件的功能及用途,可将EMS划分为五大类别:发电控制类、发电计划类、网络分析类、调度员培训模拟类、市场交易与管理类。

2.1发电控制类软件

这类软件主要由自动发电控制、发电成本分析、交换计划评估和机组计划组成。

①自动发电控制(AGC)。自动发电控制是一项成熟的技术,它有40多年的历史而且已经由模拟系统发展到数字系统,由线形反馈控制发展到最优控制。自动发电控制的基本功能包括:负荷频率控制,维持系统频率(50Hz)或/和维持区域间联络线交换功率为计划值;经济调度,确定各机组的经济基准运行点;系统备用容量监视;AGC系统性能监视。

②发电成本分析。在垄断体制下,该软件模块将定期给出每台机组及各区域总的生产成本。在电力市场环境下,每个发电厂都将成为独立发电运营商(IPP),电网调度或交易中心在分析单个电厂成本及报价的同时,应当把握信息公开的范围和尺度,做好部分信息的保密工作。

③交换计划评估和机组计划。前者对发电交换计划的结果进行评估和AGC再校正,后者确定机组的基点功率计划和减出力计划等。

2.2发电计划类软件

发电计划类软件主要包括负荷预测、机组组合、水电计划、交换计划、火电计划等。在电力市场机制下,负荷预测应该引入电价弹性的理念;机组组合应该充分考虑不同机组在负荷曲线上的位置及其预期的报价盈利水平;交换计划应该满足购电和买电双方交易的利益均分原则;火电计划应兼顾绿色能源和环境保护的需要。

机组组合是在满足系统负荷、备用容量、机组容量、最小启动时间和最小停机时间等约束条件下,考虑机组启动费用和发电费用特性,确定系统各区域的电厂、机组次日规定时段的开停机计划,使一定周期内的总费用最小。但在计划经济体制下,人为干预和不确定性因素太多,很难自动实现。在电力市场中,报价面前人人平等,实现机组组合反而容易了。虽然机组组合功能是在交易管理系统中,目标函数不同了,但其基本算法并没有根本改变,原来的基础和经验仍然有效。

2.3网络分析类软件

网络分析类软件主要由网络拓扑、状态估计、外部网络等值、调度员潮流、安全约束调度、最优潮流、静态安全分析、暂态安全分析、电压稳定分析、无功优化、短路计算等。

网络拓扑和外部等值是EMS应用软件中最基本的功能。拓扑分析的作用在于将网络的物理模型实时转化为计算的数学模型,根据数据采集与监视系统中断路器和隔离开关的信息确定电网的电气连接状态,并将网络的物理模型转换为数学计算模型;外部等值(有静态和动态等值之分)的作用是简化计算,提高求解速度。它是对调度范围或计算范围以外的网络进行简化,以便考虑这部分网络对本区域电网的影响。两者作为公共模块广泛应用于状态估计、调度员潮流、安全分析、无功优化等程序中。

静态安全分析的作用在于,对多种给定运行方式进行预想事故分析,模拟元件或线路越限或开断故障,找出薄弱环节,评估整个系统的静态安全水平。当发现有危及系统静态安全的预想事故时,调用安全约束调度软件,以系统控制量调整最小或生产费用最低或网损最小为目标函数,提出解除有功、无功、电压越限并使系统进入新的安全状态的对策。

暂态安全分析是在给定的或预想的运行方式下,针对预想事故集中的故障或继电保护装置动作情况,判断系统是否会失去暂态稳定并确定故障的最长持续时间。电压稳定性分析可以给出预想运行方式下各个节点的电压稳定性指标、功率极限和临界电压。

最优潮流的计算目的是优化电力系统的静态运行条件,通过调节控制变量使目标函数达到最小,实现发电费用最小或购电总成本最低的经济运行目标。无功优化则是在调度员潮流分析基础上,通过改变无功设备,在满足安全约束和电压质量的条件下,使系统的有功总网损达到最小。

2.4调度员培训模拟

这主要用于培训调度员在正常状态下的操作能力和事故状态下的快速反应能力,也可用作独立系统调度员(ISO)分析电网运行状况的工具。

2.5市场交易与管理类

这主要包括实时电价计算、最大输电能力计算、输电路径优化、输电费用计算、输电服务预调度和实时调度等软件。这类软件在功能上如何与现有EMS软件整合与分工,有待进一步研究和探索。

4实例分析——以SE-9000系统为例

电力市场机制给EMS带来了巨大挑战,其主要软件模块在功能和内涵上将发生重大的变化,如SCADA、AGC、负荷预测、机组组合、调度员潮流、安全分析、无功优化、数据库结构、人机界面等。当今主流能量管理系统以SE-9000为典范,SE-9000系统以开放、稳定、实用、先进、功能完善、易维护、易扩充为主要设计目标,在系统设计中进行了图模库一体化、SCADA/PAS/FA设计一体化、人机界面一体化、开发接口一体化、维护一体化一体化设计。

4.1软件系统分析

SE-9200系统支撑平台是整个系统的核心,平台为各应用子系统提供统一的系统运行管理、数据访问、模块间通信、图形界面、权限管理、告警处理等公共服务,使各应用只需专注于各自业务逻辑的实现,如图1。

系统支撑平台可以归纳为集成总线层、数据总线层、公共服务层三层,如图2。集成总线层提供各公共服务之间、各应用子系统以及第三方软件之间规范化的交互机制;数据总线层提供适当的数据访问服务;公共服务层为各应用子系统提供公共服务,如图形界面、报表工具、告警服务等。

在应用软件方面,SE-9000系统的大型软件应用子系统除了包含常规的电网监控子系统外,还集成有集控中心子系统、电网高级应用软件子系统、电量管理子系统、调度管理子系统、配网自动化子系统等。

4.2结语

通过实际操作应用,SE-9000在操作上比较简单,拥有智能化的系统建模,界面比较人性化;在系统上采用全新的一体化设计,并适合混合平台操作。而且日常维护工作量大大减少,在数据处理上支持ORACLE等商用数据库,保证了其安全性,具有全方位的监视和管理功能。

参考文献:

[1]杜松怀.电力市场[M].北京:中国电力出版社,2006.

能量管理系统范文篇3

论文摘要:开展能量管理系统(ems)实用化工作,必须有一个良好的scada基础平台做保证。在公司领导和省调的关心支持下,在更新地调自动化系统主站的同时,结合基建、大修、技改、变电所无人值班改造和两网改造等项目,新建了多套厂站端远动设备,对部分老变电所容量小、精度低的rtu进行更换,基本把站端统一为新型交流采样rtu,使各项精度有了大幅度的提高,特别是无功测量精度。同时对各站rtu的供电电源加以改造,保证了交直流双电源供电。在做好各项基础工作之后,建成的电网能量管理系统(ems)率先通过实用化验收。针对某电网能量管理系统出现的问题进行了分析,如状态估算覆盖率低、变电所主要档位的采集、提高测点冗余度及scada断面实时映射等问题。对这些问题提出了解决方案,实践结果表明,解决问题的处理方法既实用又效果显著。

开展能量管理系统(ems)实用化工作,必须有一个良好的scada基础平台做保证。在公司领导和省调的关心支持下,在更新地调自动化系统主站的同时,结合基建、大修、技改、变电所无人值班改造和两网改造等项目,新建了多套厂站端远动设备,对部分老变电所容量小、精度低的rtu进行更换,基本把站端统一为新型交流采样rtu,使各项精度有了大幅度的提高,特别是无功测量精度。同时对各站rtu的供电电源加以改造,保证了交直流双电源供电。在做好各项基础工作之后,建成的电网能量管理系统(ems)率先通过实用化验收。本文总结了ems工程实用化的经验,介绍了实用化过程中一些问题的解决方案。

一、状态估计覆盖率低的问题

本文所指状态估计覆盖率低,并不是指某些变电所没有数据采集装置,而是指本地调管辖范围内的一些220kv供电小区的电源来自无量测的外网。例如,该地调管辖的安平供电小区。该小区的安平220kv变电所的两条220kv进线分别来自外网的东寺220kv变电所和束鹿220kv变电所,与电厂主网没有任何电气连接。在状态估计时由于软件th2100系统只估计最大的可观测岛,国外有些软件可以估计两个以上的可观测岛,但由于两个可观测岛无电气连接,即使能计算,其所得的某些数据,例如相角等结果也多是不准确的,所以安平小区就成为死岛。直接导致状态估计覆盖率低于实用化要求指标,后经与省调多次协商,决定采用三级数据网将该电网所需的全部外网数据传至地调主站端。使状态估计覆盖率达到100%。

二、各220kv变电所主变档位的采集

在ems的实际应用中我们发现,由于220kv变电所是所在供电小区的电压支点,220kv主变档位是否正确直接影响遥测合格率的高低,而遥测合格率是保证高级应用软件正常工作的关键指标。试运行初期,档位仅靠调度员来手工置位,这对于负荷峰谷变化和电压变化较大的电网是力不从心的。所以我们自行研制简易主变档位采集装置分期分批将所辖10台220kv主变中的9台档位全部采集至调度端(另外1台是无载调压)。仅此一项,将ems的遥测合格率平均提高近5个百分点。

三、提高测点冗余度

实现了各110kv主变高压侧量测的采集,由于早期建设的110kv变电所高压侧均未设量测点,一般取中、低压侧p、q值相加代替高压侧量测,实践证明误差较大,特别是q值受主变阻抗角的影响,制约着遥测合格率的提高。我们分别配合主变停电检修的机会从主变高压侧套管ta备用二次线圈处将量测值采集上来,使测点冗余度明显提高。

四、等值负荷、线路电纳

将220kv变电所的35kv侧和110kv变电所的10kv侧的线路按负荷或等值负荷处理,是在保证精度的前提下简化工程量的好办法;线路的电纳参数最好填入,因为它对处理单端开断的支路是有影响的,其参数值可以通过上级调度部门和实测得到。五、scada断面实时映射

我们知道,ems在实践中更侧重于电网的安全性和可靠性等的分析,而不注重数据采集的实时性,也就是说,scada的量测数据不必实时传输至ems。电厂ems以ftp文件传输方式每5min由scada请求一个断面,这样就保证了ems大部分功能的正常需要,又不至于使scada主系统的服务器负荷率过高。但在实际应用过程中,我们又发现,在进行电网解合环等操作过程中,拉合断路器的操作时间间隔很短,映射断面还来不及刷新,因而调度员也就来不及进行潮流分析,为此,我们修改了scada软件,增加了手动截取断面文件的功能。实践证明,该功能实现方法虽然简单,却为潮流计算等功能模块的真正实用化奠定了坚实的基础。

六、隔离开关问题

隔离开关数量远远多于断路器,全部实时采集是不可能的,但若维护不及时则会导致计算母线模型与实际运行方式不同,造成计算结果不收敛或精度差。为此,我们修改了系统软件,增加了离线隔离开关置位功能,并根据实际运行情况,对电网内所有在运行的隔离开关全部进行了置初位。同时,制定严格的运行管理制度,电网每次进行操作和方式改变时,由运方人员及时通知ems维护人员,在scada系统上进行相应的置位。这样,既保证了scada实时信息的可读性,又大大提高了ems的各项相应指标。

七、人员的培训

ems是远动、调度和自动化等多专业融合在一起的一门边缘科学技术,要想真正应用好ems,需要电网、计算机、自动化甚至包括通信等多学科专业,近年来,我们先后组织人员多次到金华地调、南通地调、清华大学、烟台等地学习ems新技术,同时加强人员培训,组织专题讲座,使各相关专业有机地结合在一起,为更好地开展ems实用化工作提供了技术保障。

八、程序质量

ems结合电网实际,核心程序采用了先进的、有效的和实用的算法,算法性能优良。例如,状态估计中采用国际领先的递归量测误差估计辨识法,最优潮流使用有功、无功交叉逼近算法。同时,一套先进完整的程序,在不同的应用环境和应用条件下,总会做相应的改动,例如现场提出的一些功能要求以及与scada系统的接口程序等。首先,做程序改动必须慎之又慎;其次,改动后的程序质量异常重要,它将直接影响系统运行的整体稳定性。

能量管理系统范文篇4

摘要:能量管理系统外网实用化

开展能量管理系统(ems)实用化工作,必须有一个良好的scada基础平台做保证。在公司领导和省调的关心支持下,在更新地调自动化系统主站的同时,结合基建、大修、技改、变电所无人值班改造和两网改造等项目,新建了多套厂站端远动设备,对部分老变电所容量小、精度低的rtu进行更换,基本把站端统一为新型交流采样rtu,使各项精度有了大幅度的提高,非凡是无功测量精度。同时对各站rtu的供电电源加以改造,保证了交直流双电源供电。在做好各项基础工作之后,建成的衡水电网能量管理系统(ems)于2003年1月15日在河北省南网率先通过省公司组织的实用化验收。本文总结了ems工程实用化的经验,介绍了实用化过程中一些新问题的解决方案。

1状态估计覆盖率低的新问题

本文所指状态估计覆盖率低,并不是指某些变电所没有数据采集装置,而是指本地调管辖范围内的一些220kv供电小区的电源来自无量测的外网。例如,衡水地调管辖的安平供电小区。该小区的安平220kv变电所的两条220kv进线分别来自外网的东寺220kv变电所和束鹿220kv变电所,和衡水主网没有任何电气连接。在状态估计时由于软件th2100系统只估计最大的可观测岛,国外有些软件可以估计两个以上的可观测岛,但由于两个可观测岛无电气连接,即使能计算,其所得的某些数据,例如相角等结果也多是不准确的,所以安平小区就成为死岛。直接导致状态估计覆盖率低于实用化要求指标,后经和省调多次协商,决定采用三级数据网将衡水电网所需的全部外网数据传至地调主站端。使状态估计覆盖率达到100%。

2各220kv变电所主变档位的采集

在ems的实际应用中我们发现,由于220kv变电所是所在供电小区的电压支点,220kv主变档位是否正确直接影响遥测合格率的高低,而遥测合格率是保证高级应用软件正常工作的关键指标。试运行初期,档位仅靠调度员来手工置位,这对于负荷峰谷变化和电压变化较大的电网是力不从心的。所以我们自行研制简易主变档位采集装置分期分批将所辖10台220kv主变中的9台档位全部采集至调度端(另外1台是无载调压)。仅此一项,将ems的遥测合格率平均提高近5个百分点。档位变送器原理如图1所示。

图1档位变送器原理图

3提高测点冗余度

实现了各110kv主变高压侧量测的采集,由于早期建设的110kv变电所高压侧均未设量测点,一般取中、低压侧p、q值相加代替高压侧量测,实践证实误差较大,非凡是q值受主变阻抗角的影响,制约着遥测合格率的提高。我们分别配合主变停电检修的机会从主变高压侧套管ta备用二次线圈处将量测值采集上来,使测点冗余度明显提高。

4等值负荷、线路电纳

将220kv变电所的35kv侧和110kv变电所的10kv侧的线路按负荷或等值负荷处理,是在保证精度的前提下简化工程量的好办法;线路的电纳参数最好填入,因为它对处理单端开断的支路是有影响的,其参数值可以通过上级调度部门和实测得到。

5scada断面实时映射

我们知道,ems在实践中更侧重于电网的平安性和可靠性等的分析,而不注重数据采集的实时性,也就是说,scada的量测数据不必实时传输至ems。衡水ems以ftp文件传输方式每5min由scada请求一个断面,这样就保证了ems大部分功能的正常需要,又不至于使scada主系统的服务器负荷率过高。但在实际应用过程中,我们又发现,在进行电网解合环等操作过程中,拉合断路器的操作时间间隔很短,映射断面还来不及刷新,因而调度员也就来不及进行潮流分析,为此,我们修改了scada软件,增加了手动截取断面文件的功能。实践证实,该功能实现方法虽然简单,却为潮流计算等功能模块的真正实用化奠定了坚实的基础。

6隔离开关新问题

隔离开关数量远远多于断路器,全部实时采集是不可能的,但若维护不及时则会导致计算母线模型和实际运行方式不同,造成计算结果不收敛或精度差。为此,我们修改了系统软件,增加了离线隔离开关置位功能,并根据实际运行情况,对电网内所有在运行的隔离开关全部进行了置初位。同时,制定严格的运行管理制度,电网每次进行操作和方式改变时,由运方人员及时通知ems维护人员,在scada系统上进行相应的置位。这样,既保证了scada实时信息的可读性,又大大提高了ems的各项相应指标。

7人员的培训

ems是远动、调度和自动化等多专业融合在一起的一门边缘科学技术,要想真正应用好ems,需要电网、计算机、自动化甚至包括通信等多学科专业,近年来,我们先后组织人员多次到金华地调、南通地调、清华大学、烟台等地学习ems新技术,同时加强人员培训,组织专题讲座,使各相关专业有机地结合在一起,为更好地开展ems实用化工作提供了技术保障。

8程序质量

衡水ems结合衡水电网实际,核心程序采用了先进的、有效的和实用的算法,算法性能优良。例如,状态估计中采用国际领先的递归量测误差估计辨识法,最优潮流使用有功、无功交叉逼近算法。同时,一套先进完整的程序,在不同的应用环境和应用条件下,总会做相应的改动,例如现场提出的一些功能要求以及和scada系统的接口程序等。首先,做程序改动必须慎之又慎;其次,改动后的程序质量异常重要,它将直接影响系统运行的整体稳定性。

能量管理系统范文篇5

关键词:楼宇建筑;智能化;用电;能量控制

近些年来我国经济领域的发展速度相对较快,同时也伴随着我国能源方面的消耗不断的增加尤其是电能资源。结合实际情况来讲目前我国楼宇建筑内对于电力资源方面的能耗在社会活动中占有相对较大的比重。同时我国在经济领域的不断发展的影响下城市化水平也在不断的提高,从而造成了楼宇建筑在电力资源方面的消耗将逐渐的提高,并且在社会能耗放慢的比重也越来越大所以对于楼宇用电能量方面的管理系统具有深远的影响。

1楼宇用电能量控制系统的架构概述

对于楼宇其用电能量方面的控制系统来讲其是有若干个子系统组成的:第一,楼宇自动化控制系统,其中主要涉及到空调系统还有楼宇各单元的照明系统还有空气方面的检测系统以及配电监控等方面的系统。第二,则是风电光伏子系统,该系统主要是针对楼宇建筑在今后大量采用清洁环保能源的阶段。第三,V2G系统,该系统主要的功能在于将电力能源的新能源汽车视为了移动存储能量的单元进行与电网的对接,以此使得电网还有电动新能源车辆建立起双向的互动联系从而可以进行对负荷展开有效的平衡调节作用。第四,智能变电站系统,反应了APF还有SVG+技术方面对于楼宇建筑内部的电能资源质量方面的提高。第五,空调系统,体现了地源热泵还有吸附式的空调等系统成为新的负荷式用电设备完成的智能化用电概念还有能量方面的有机结合使用。对于楼宇智能用电能量管理系统的子系统来讲其集成活动主要涉及到了对楼宇建筑内相关数据信息的收集还有处理分析还有反馈等方面的功能。并且楼宇智能用电能量管理系统的若干子系统在数据信息方面收集还有处理以及分析的结果作为机型对楼宇用电方面的规划参数,同时采用联动控制展开对所有的子系统的有效管控从而实现楼宇用电方面的科学化与节能化。根据楼宇用电能量管理系统的各方面的要求来讲,其主要采用的是分层分布式的结构,其中主要涉及到监控管理层还有通信层以及建筑内设备层。所谓的监控管理层其作用在进行对参与管理楼宇的工作人员提供相应的有效的信息进行对优化用电能量措施还有提高设备工作,采用与物联网技术相结合从而展开楼宇建筑内的能效方面的管理,实现节能减排。通信层指的是采用通信网关设备将若干个子系统应用的非标准通信协议都转换成标准的通信协议,把监测信息还有设备工作状态送至楼宇建筑用电能量管理系统中。对于现场设备层来讲其主要指的是在高低压配电柜内的测控保护装置还有仪表以及所有子系统SCADA系统。

2关于楼宇用电能量控制系统的设计分析

2.1通信层系统的设计。结合实际情况来讲,楼宇建筑的智能用电能量管理系统连接的相关设施其在种类上相对较多,在建设的过程中采用的物理接口还有协议在种类上相对较多同时存在一定的差异,并且其在运行工程中所传输的数据的类型也存在一定的差异。对于楼宇建筑智能用电能量管理系统来讲其中各个设备都需进行数据方面的测量还有设备具体的运行状况信息传输到通信网关设备内从而保障楼宇建筑内的智能用电能量管理系统的可维护以及可以扩展的性能。通信网关设备采用相应的通信协议展开有效的分析,同时把各个类型的数据根据设定的次序转换成标准的通信协议,将数据传输到楼宇建筑智能用电能量管理系统内部的监控管理层中。2.2关于现场设备层方面的设计。现场设备层对于楼宇建筑智能用电能量管理系统来讲其属于极为关键性的硬件方面的平台,其在楼宇建筑智能用电能量管理系统中为系统提供数据方面的支持。对现场设备层予以科学合理的设计成为了楼宇建筑智能用电能量管理系统的重要前提。对于楼宇现场设备层来讲其相关设备主要包括具有对用电量信息收集能力的智能仪表设还有不同类型的运行装置。2.3关于监控管理层方面的设计。对于楼宇智能用电能量管理系统来讲其监控管理层属于其系统的核心,监控管理层主要是承担着以图形化的办法展开实时监测以及相关数据方面的分析还有电能质量方面和能效评估等方面的作用,同时采用交互式手段为使用者进行用电方案的制定还有联动控制等作用。关于监控管理层内的实时信息方面的监测首先是需要对楼宇建筑内部的实时供电信息方面的了解,并且需要对清洁型能源在楼宇建筑用电系统中的所占的比重方面的展示,从而展现出新型的清洁型能源在利用的过程中对于生态方面的保护以及其经济效益方面的优势。其次在实时监控的过程中对APF还有SVG+等方面的技术手段所提供的电能方面质量上的提升还有非静态形式的补偿等有利之处的展现。以及对新型负荷式用电设施对于综合能量方面的有效使用还有对楼宇建筑自动控制系统所提供的楼宇使用过程中的舒适的体验感的展现。关于楼宇智能用电中历史用电方面的分析研究,首先是对所有的用电系统在各个运行时间期间的用电能量方面的对比以及对所有用电系统能耗等级方面的分析。其次结合楼宇对于电力资源方面的用电模拟多部制电价账单,并且对采用智能变电手段还有新型清洁环保能源等具有新型的技术还有能量管理系统后能量控制等效的成本方面的控制还有生态系统的环保性展开有效的分析。除此之外还需要对楼宇建筑内的各个运行期间内的电能质量方面的数据信息进行分析从而展现智能用电方式对于楼宇建筑内的电能质量方面的极大程度的提升。关于能量优化控制办法,对于该方面首先应当经过互动式的展示根据所有电价方面的结构,从而进行制定具有较高的经济效益的电力资源的使用方案,从而达到对用电高峰的减缓还有调节通电低谷的作用以及能够有效的控制在电力资源方面经济层面的消耗。展开对楼宇建筑内的用电负荷方面的分析进行对负荷平衡方面的调整的方案的制定,从而有效的缓解电网方面的压力,并且对于发点设备效率能够起到一定的提高作用使得设备的使用周期得到一定程度的扩展。经过展开对楼宇建筑内的以往的用电情况方面的分析,展开对所有智能用电能量控制系统中的若干个子系统具体运行的策略的制定,以此进行对用电设备保持相对稳定安全的高校的运行状态。除此之外,展开对楼宇建筑的整体的用电负荷还有电能质量以及电价结构予以多方面的综合性的分析,从而制定出新能源并网的相关方案还有V2G系统充放电的方案,以此展开对资源消耗的有效控制,促进生态的可持续发展实现能源的节约。关于楼宇智能用电能量管控系统中的联动方面的控制,首先需要采用合适的互动方式,使用者对当前的用电情况进行自行决策,同时进行实时性的分析并且对其用电方案进行有效的模拟,从而根据模拟的结果过对其用电情况进行一个较为合理的预测,从而为用户在进行用电方案的制定过程中予以数据信息方面的参考。其次,结合楼宇建筑的所处位置的环境方面的各项参数还有当下的具有用电负荷的情况进行对自控系统内的空调以及相关的系统运行方案的制定。结合能量优化控制方案展开对楼宇建筑智能用电管控系统中的所有子系统的远程控制功能的实现,同时结合具体的运行结果展示出用电能量方面的优化控制策略的具有效果。

3结语

综上所述,经过对楼宇建筑内的相关设备的运行状况还有用电负荷方面的具体分析以及相关的历史用电数据方面的分析,根据现实情况中运行负荷需求还有现实生活中的具体电价方面的结构,以及新的能源供电模式和新型的用电设备配置,选择和制定能耗控制管理方案,在整体上对供用电设备进行协调控制,以实现楼宇用电的智能化,让终端用户直接感受到智能电网带来的经济效益和社会效益。

参考文献:

[1]赵洪飞.基于WSN的智能建筑能量管理系统研究与实现[D].济南:山东大学,2019.

能量管理系统范文篇6

关键词:电厂电能量自动采集系统平衡率

在电力市场运营过程中,买卖双方交易的物理量是电能量,对发、供电量、联络线交换电量、网损(线损)电量及分时、分类电量的采集、监视、统计、分析、运算是电力市场运营的主要内容;建设电能量自动采集系统是实现电力市场运营的基础。对火力发电厂,主要对发、供电量进行统计,对机组平衡率、交接班电量等进行统计计算,以加强管理,并采取相应措施降低损耗,提高效率。

以我们江苏新海发电有限为例,每天分四班,传统的方式是每次交接班时抄表,人工录入进行统计计算;这种人工抄表、统计不能满足实时、分时及动态分析管理的要求,电能量采集方式的改变已势在必行。江苏新海发电有限公司电能量自动采集系统于2001年9月底基本建成。该系统已采集了所有机组的全部电能量数据,完成了电能量的自动采集、存储、总加计算、统计、报表打印等功能;系统代替了人工抄表,提高了数据的同步性、及时性、准确性和完整性;系统对全公司发电情况和各类平衡率进行自动统计,提高了统计计算速度和自动化水平;利用系统进行分班次考核,提高了企业的管理水平和效率;各部门可通过Web查看所有数据和报表,进行不同的二次开发,提高了电能数据的利用率。系统(如图1所示)分主站和采集终端(ERTU)两部分,主站与ERTU之间采用网络通信方式进行数据传输。主站采用南京华瑞杰自动化设备有限公司的COM-2000系统、厂站采用该公司的MPE-III电能量远方数据终端。

1、江苏新海发电有限公司电能量自动采集系统配置

1.1主站系统配置

该系统采用高性能的PC机作为硬件平台,系统的数据库服务器采用双机备份,互为热备用,并保持数据的一致性;前置机负责采集数据,连接GPS用于全网对时,后置机负责处理并保存数据,报表工作站负责所有报表的编辑和打印,Web服务器提供Web浏览,各MIS工作站通过Web可查看所有数据和报表;主网采用10/100M网,由交换机来连接服务器和所有计算机。

系统操作系统采用目前广泛使用的、安全性能较高的Windows2000Server,网络通信采用TCP/TP协议,数据库采用具有Client/Server模式的商用数据管理系统SQLServer2000,编程全部采用VC、VB、Delphi等,集成EXCEL作为报表工具生成图文并茂的图形报表。

1.2主站系统主要功能模块

(1)数据库管理系统

COM-2000数据库管理系统采用标准的商用数据管理系统。数据处理是整个系统的核心,它涉及到数据结构、数据存取、数据维护、数据共享等多方面的管理

数据库大致分四部分,即系统信息数据库(档案信息库)、原始数据库、二次统计数据库和公式统计库。系统数据库存放了有关系统的配置、参数等信息,原始数据库主要数据来源于各采集终端的电表数据,二次统计数据库主要存放来源于原始数据库,经过计算、统计的数据。公式统计数据库来源于二次统计数据库,存放了公式的计算结果。

(2)WEB服务管理系统

WEB服务管理系统响应来自Internet/Intranet的WEB服务请求,提供客户端请求的数据库数据和WEB页面格式。

(3)前置通讯及数据处理管理系统

此系统完成电能量自动采集系统对采集终端数据的采集和处理,数据采集采用大容量高速数据传输部件,保证准确性。全部操作均为在线完成,随输随用,响应性好。具体功能为:对所接收的报文完成规约转换、系数处理和合理性检查,将处理结果交给数据库。可即时查看通讯状况及具体通讯报文。

(4)数据统计及公式管理系统

该系统完成统计计算公式的设定和定时统计任务,如班次电量、日电量、月电量、年电量及电能量总加、平衡、线损、变损等数据的定时统计任务。

(5)报表图形设置显示打印系统

用户可根据实际需要设置报表和图形显示的格式,完成班次电量、日电量、月电量、年电量等报表数据的定时打印,并可根据用户要求对任意电表、任意采集终端或全厂的历史数据的显示及打印。

(6)终端、电表参数设置下装及召唤系统

该系统完成从主站对采集终端中各电表的基值、转比、时段方案、PT、CT等参数的在线设置和下装,并在线查看终端、电表状态和参数。

(7)内部网络通讯管理系统

该系统是整个系统中各个子系统之间的纽带,其功能为:在操作系统所提供的网络支持的基础上实现面向应用的高层网络通讯;根据应用所定义的数据流动模式确定数据流向,提高应用的通信效率。该系统采用完全的Client/Server模式,基于TCP/TP协议,保证了整个平台在不同网络通信协议之间的可移植性。

(8)告警管理系统

该系统根据用户的要求和数据处理的结果,以及设备状态的变化,对系统中发生的特定变化进行提示和告警。如电量值越界、设备异常等,可进行弹出提示框、语音等多种方式告警,对告警信息,可进行打印和保存,可分时段查询和检索。

(9)远程诊断管理系统

该系统用以完成对用户已投运的系统的诊断和维护。系统可通过拨号MODEM和用户系统连接,对其运行情况进行分析诊断;可远程更新系统程序,排除系统故障;并可远程系统更新消息,提高系统使用水平。

(10)安全机制管理系统

该系统完成安全性校核,防止非法操作。对使用用户进行分级管理,根据用户的类别赋予不同的操作权限;在进行关键操作时,对使用者身份的操作权限进行合法性检查;记录关键操作过程,提高系统管理水平。1.3电能量采集装置

采用MPE-III电能量远方数据终端,装置采用交、直流双电源,同时对全厂的脉冲和数字电表进行采集。每时段的电能量均带时标,并保留1个月;采用Polling方式实现远程通信;具备接受当地或远方参数下装、自诊断、远方诊断、自恢复等功能;中文液晶显示;设置、查看、核对具有密码保护;具有输入、输出电压、电流保护、防雷保护、直流反极性输入保护。

1.4通信方式

主站系统与远方电能量采集终端之间的通信方式采用网络方式通讯,由于距离较小,各采集终端直接连接在主站系统网络交换机上。电能量采集终端与电能表之间直接通过RS-485口进行数据传输,对脉冲电表增加脉冲采集板。

2、火电厂电能量自动采集系统建设中的几个问题

2.1主站系统建设

(1)电能量自动采集系统有别于SCADA/EMS系统。当电力工业转向市场化运营后,电网的生产和经营工作将更加细化,电能量自动采集系统必将成为一个独立的系统。

(2)电能量自动采集系统的建设,必须符合相应的国家计量管理标准和技术规范。

(3)数据库的设计。在选用数据库时,一方面要考虑性能和功能;另一方面,还要考虑和现有调度自动化系统数据库的继承,以及开放平台和数据接口等问题。电能量自动采集系统数据库内容的设计,要涉及到今后兼容的问题。我国的电能量自动采集系统从无到有,市场规则一定会不断的修改和完善,应尽量减少和避免数据库结构和内容的变动。完善的数据库系统是研究和设计电能量自动采集系统的一项重要工作。

(4)系统的安全性。电能量自动采集系统实现的功能涉及到企业的切身利益,系统应当具备很强的抗干扰能力,系统运行必须稳定可靠。

(5)数据的完整性。由于电能消耗是前后连贯的,因此电能计量的是一系列随时间递增的电能量累加值,要求在计量、采集、传输、存储和处理的整个过程中,保证在任何环节出现故障时,都不允许丢失数据。特别是在进行分班次电能量统计和结算时,数据的完整性成为电能量自动采集系统的基础。系统数据处理应采用分层处理方式存储数据,确保电能量数据的安全性和完整性。

(6)数据的修改。系统必须保证采集的电能量原始数据完整准确。存入的原始电能量数据只能查看,不能修改;各电能量备份数据有权限才能修改,并保存修改记录档案。

(7)数据的可恢复性。对意外情况引起的系统故障,系统应具有恢复数据的能力,保证电能量数据的安全和完整。

(8)数据的及时性。电能量数据应以5min(或1min)为单位进行带时标采集、传送和存储,便于电能量的统计、分班次考核。

(9)系统的时间性,整个电力系统一直处于电能的发、变、输、配、用的动态平衡状态中,电力交易的产、售、购是同时进行的,电能量自动采集系统应以标准时钟(GPS)为基准,以保证各个计量点基于相同的时间基准完成对电能量的计量及电能量数据带时标的存储。主站系统连接GPS时钟,系统对采集终端对时,采集终端对电表对时(要求电表支持)。

(10)系统的容错性。电能量自动采集系统的软件和硬件设备应具有良好的容错能力。当各软件、硬件功能发生一般故障,以及运行人员或维护工程师在操作中发生一般性错误时,均不引起系统的主要功能丧失或影响系统的正常运行。

(11)系统的灵活性。目前我国的电力市场有其特殊性,电能量自动采集系统的应用功能应当具有很大的灵活性,能够适应政策和市场的变化,并符合不同用户的要求。

(12)系统的扩展性。系统设计必须采用标准化、模块化结构,功能扩展部分的安装要简单、方便,对系统不造成有害影响。

(13)系统的开放性。电能量自动采集系统在保证安全的情况下,要求系统的开放性强,保证电力市场运营的公平、公正、公开的原则,提高电力企业的信誉。

(14)系统的可维护性。电能量自动采集系统的软件和硬件设备应便于运行维护。系统应具有在线维护处理功能,电能量自动采集系统的维护处理必须在不中断和不干扰系统正常工作的情况下进行,确保系统安全。

(15)系统的接口。电能量自动采集主站系统要为SCADA、EMS以及MIS等系统提供标准接口,实现数据共享。

(16)系统的权限管理,系统的安全性、可靠性和数据的准确性,直接关系到企业的经济利益,电能量自动采集系统必须具有严格的权限管理功能。

2.2电能量采集终端

(1)采集终端要求有很高的稳定性和可靠性,主要部件应有备份。

(2)采集终端与电能表之间的通信宜采用RS-485数据通信。

2.3电能表

(1)电能表是电能量自动采集系统的基础,数量非常大。电能表要求运行稳定可靠、精度高、使用寿命长、通信可靠、易于安装维护等。

(2)电能表与电能量自动采集系统之间能进行自动对时,实现统一时钟,

能量管理系统范文篇7

关键词:地铁;低压;供电系统;节能降耗;技术

城市轨道交通供电系统的节能降耗一直以来受到业界人士的高度关注,提出了各类节能降耗实施方案,但其思路大都重点放在了设计和建设阶段。其中设计阶段主要考虑各级变电所与变压器的容量设置、中压网络电压等级及接线形式、运行方式、电缆的选择、牵引网的设置等;建设阶段主要考虑各种能耗设备的选型,在满足运营要求的前提下重点考虑节能指标。由于不同的地区气候条件不同,运营线路客流量不同,商业及办公模式也有所不同,因此,分析运营阶段能源需求,采用相应的管理手段也是实现节能降耗的重要措施。本文主要研究地铁线路运营阶段供电系统的节能降耗技术及相应管理措施。

1地铁供电系统电能消耗分析

城市轨道交通供电系统负责提供车辆及设备运行所需的电能,主要由高压供电源系统、牵引供电系统和低压配电系统3大部分组成。其中高压供电源系统主要是从城市电网引入110kV等级电压,通过主变电所降压后分配给降压所和牵引所,为电客车和动力照明设备提供电能,该部分的电能消耗主要为设备运行中的线路损耗、空载损耗、热损耗等,已在设计阶段有所考虑。本文以贵阳地铁某线路为例,主要分析运营阶段牵引供电系统和低压配电系统的电能消耗问题。统计贵阳地铁某线路运营一年的平均电能消耗如表1、图1所示。1.1牵引供电系统在运营中的电能消耗。牵引供电系统由牵引变电所、牵引网、钢轨、回流线等部分组成,其电能消耗主要为电客车的运行牵引消耗,同时也是城市轨道交通供电系统中能源消耗的主要部分。在城市轨道交通运营中,牵引能耗主要与行车间隔、载客量、线路坡度、运营速度和运营时间等因素有关。1.2低压配电系统在运营中的电能消耗。低压配电系统由降压变电所和动力照明配电线路等组成,为车辆段、车场、车站、区间、各类照明、办公、商业、电扶梯、风机空调、水泵等动力设备及通信、信号、自动化等设备提供电源。在城市轨道交通运营中,低压配电系统能耗主要由以下几部分组成:(1)地铁通风制冷、给排水系统能量消耗。通风制冷、给排水系统能耗仅次于牵引供电系统的能耗,这2个系统含有冷水机组、冷却泵、冷冻泵、各大风机、消防水泵、污水泵,需要消耗较多能量,而且地铁在运营期间,空调通风制冷系统长时间处于固定运行模式,能量消耗巨大,且单一运行模式还会缩短空调的使用寿命,导致地铁空调通风系统的能量消耗增加。(2)地铁门梯系统能量消耗。地铁规模不断扩大,设备众多,各大地铁站使用电梯的种类也不尽相同,如杂物梯、自动扶梯、客梯、货梯等,这些电梯和扶梯设备在运营时间段需要保持在启动状态;各地铁车站的站台门在运营时间段根据电客车的到出站情况随时开关,这些大型动力设备运行均需消耗大量的电能。(3)地铁照明系统能量消耗。地铁照明系统对于地铁运营非常重要,其能量消耗较大,照明装置类型繁多。由于地铁车站基本设置在地下,照明设备不仅在站台和站厅需要设置,在设备房、办公区、隧道区间、电缆通道等区域均需设置,且基本保持全天24h不间断照明,因此整条地铁线路的照明电能消耗量也较大。(4)其他系统消耗电能。地铁信号、自动售检票、综合自动化等系统在地铁运营中为弱电设备,但为保障多个弱电系统设备的稳定运行,必须确保全天24h不间断供电及为弱电设备蓄电池充电,虽然单个设备用电量不大,但各系统设备较多,综合用电量则相当大。另外,地铁运营中还涉及办公用电以及物业开发等商业用电,办公电能消耗主要为车站及车辆段和停车场办公环境中空调设备、照明设备、电梯设备、办公设备等;商业电能消耗主要为地铁站物业开发、地铁站商业建设施工、商铺开发用电等。

2地铁供电系统节能降耗管理及应用

2.1基于大数据建立完善的智能化能源管理系统。传统城市轨道交通工程设置能源管理系统较少,且仅限于对部分能耗数据进行收集、存储并供用户集中查询,收集的数据较为粗放,无法有效对运营节能降耗管理进行分析和指导。针对该现状,提出建立一套完善的基于大数据的智能化能源管理系统。2.1.1智能化能源管理系统网络架构。根据地铁供电系统的实际情况,将能源管理系统设计为由计量终端、能源管理系统子站、能源管理系统主站3大部分构成。计量终端主要由智能电度计量表、通信设备和用电设备构成,智能电度计量表按照不同供电设备的电压等级、每个车站的不同区域、不同用电设备和不同用户进行安装,实行分类、分项和分户计量,重点计量末端设备的能耗,并通过通信设备将相关数据传输给能源管理子站。能源管理系统子站设于各车站内,主要由网络设备构成,负责将计量终端智能计量表采集的开关柜、配电箱、环控电控柜、配电控制箱等设备电能参数集中处理后上传给能源管理系统主站。能源管理系统主站为中央级,设于车辆段,主要包括数据存储与分析服务器、数据查询服务器、线路级数据采集服务器、工作站、打印机和网络设备。主站通过网络与各子站系统进行通信,采集全线路的能耗参数及主要设备的状态信息,完成数据采集、存储管理、统计分析,建立设备运行状态的统计和分析系统,建立设备评价、服务评价及用能效果评价指标体系,指导能耗管理工作的开展。2.1.2智能化能源管理系统的功能及应用。智能化能源管理系统主要以分类、分项、分户的形式采集供电系统各环节的用能数据,并将相关数据植入地铁能耗管理数据库内,建立用能模型,实现如下能耗管理需求,指导能源管理工作。能耗管理架构如图2所示。(1)能源管理部门对正常运营、办公和商业用电量进行核算,将核算后的数据按照每户每月正常用电需求在系统中设置能量消耗上限值,当用户能耗超限系统将自动报警,方便管理人员及时对超限能耗用户的使用情况进行核查,判断是否存在非正常用电情况。(2)通过系统采集用电数据对车站同类设备不同区域、不同时段的用电情况进行统计、分析、对比,管理人员可通过分析结果及时发现设备的不正常运行情况及是否存在设备老化耗能情况。(3)通过系统采集车站不同类型设备的用电量并进行对比分析,管理人员可重点对能耗较大的设备系统采取节能减排措施,在不影响正常运行的情况下降低能量消耗。(4)采集同一条线路不同车站的电能使用情况,并按照总体使用、分类使用、分项使用、分户使用进行分析排名,指导管理人员提出合理的节能减排方案。(5)通过数据采集和分析可以按月、年以图表的形式显示用户分类、分项和分户用能情况,管理人员可对能量消耗较大的车站、用电设备、用电商户进行分析,提出合理的节能措施。(6)系统可通过数据采集在大数据库中与国内各条线路重点设备系统能量消耗情况进行数据对比分析,管理人员根据数据对比及时掌握本线路的能量管理情况,向能量管理较好地铁线路的运营单位学习交流,进一步完善能源管理。2.2牵引供电系统节能降耗管理。根据贵阳地铁运营总结分析,地铁牵引供电系统电能消耗占整个供电系统电能消耗近一半,在设计和现有设备不变的前提下,通过如下技术管理手段可以降低地铁供电系统的牵引能耗。2.2.1通过合理调整行车间隔节约能耗。根据贵阳地铁某线路首通段运营日报统计计算,每月电客车的空载运营里程约为13000km,载客运行里程约为250000km,牵引能耗估算式为A空=ΔA×G空×M空(1)A载=ΔA×G空×M空+ΔA×G定×M载(2)式中,A空为空载能耗;A载为定额载客能耗;ΔA为单位能耗,取值0.052kW•h/t•km;M空为空驶里程;M载为载客运行里程;G空为电客车空载重量;G定为电客车定额载客重量。电客车为B型车4动2拖,Mp=35t,Tc=33t,电客车自重35×4+33×2=206t;每人平均按60kg,定员1460人,客重为1460×0.06=87.6t。通过上式计算发现每年的牵引空载能耗约为1671072kW•h,损耗量相当大,仅低于线路损耗。因此,运营指挥中心应对地铁线路的乘客乘车高峰、平稳、低谷等各个时间段进行调查分析,制定合理的行车计划,在客流高峰期提高行车密度,在客流低谷时间段增大行车间隔,同时根据早、晚期间客流的情况调整首末班车的开行时间(如在节假日和大型公共活动期间可以推迟末班车,提前首班车),在满足客流需求的前提下,适当安排各时间段列车的开行对数和速度,提高列车满载率,减少列车空驶距离。2.2.2通过合理调整行车速度实现节约能耗。假设车辆的运行阻力为FW,制动速度为v,列车总重量为M,车辆的制动距离为S,则产生的制动能量为E=Mv2/2−FWS由式(3)可以看出,车辆制动初速度越大所产生的制动能量也会越大,同时制动距离和制动时间越长,列车再生制动能量也越大。因此根据客流量的实际情况调整行车速度,在客流高峰期提高行车速度,在客流平稳期适当降低行车速度,在客流低谷时间段大幅降低行车速度,从而降低列车制动能量消耗。2.2.3提高再生制动能量吸收装置的应用。车辆制动分为电制动和空气制动,电制动又分为再生电制动和电阻制动,当再生制动失效时自动转为电阻制动。车辆再生制动产生的反馈能量一般约为牵引能量的30%,而这些再生能量被列车自用电消耗一部分,并按比例(一般为20%~80%,取决于列车运行密度和区间距离)被其他相邻取流列车吸收和利用,剩余部分将主要被车辆的吸收电阻以发热的方式消耗。当线路行车间隔较大时,再生制动能量由车辆吸收的几率较小,由于车辆的制动主要发生在运行过程中,如果再生能量由车辆吸收电阻吸收,必将带来隧道和地下车站的温升问题,同时也增加了地下车站内空调系统的负荷,造成大量的能源消耗,增加运营成本。因此贵阳地铁牵引供电系统配置了再生能量吸收装置以实现制动能量的回收和再利用,并在运营期间加强运营辅助设备的管理,提高再生能量回馈装置的利用率,降低电能消耗。2.3低压配电系统节能降耗管理。2.3.1结合季节气候特点,合理启动通风空调用量。贵阳地处西南地区,春、秋季节气候凉爽,温差不大,平均温度在15℃左右,可尽量减少通风空调的启用,节约电能消耗。根据目前贵阳地铁的调查研究,在春、秋季节地下车站站台层和站厅层仅启动1/3数量的空调即可,地面车站的站台和站厅层可充分利用自然通风,仅启用小系统,满足设备房的通风即可。夏季相对温度稍高,为科学合理地开启空调,在空调系统内安装温控启动装置,实现车站不同区域按照不同的温度调节启动空调的数量。冬季气温相对较低,地下站台和站厅层仅开启通风功能即可,实现节能降耗。2.3.2充分利用变频技术。在地铁低压配电系统中,电扶梯和风机系统是能源消耗较大的系统和设备,且运行时间长。在电扶梯系统中使用变频技术,实行分时管理,自动变速,客流高峰时段采用高频率运转,非高峰时段人流量降低时转为低频率运转,在无人乘梯时供电频率降到最低,可以极大降低能源的消耗,在节约客流通行时间的同时达到了节能的目的。在通风空调系统中使用变频技术,取代传统的风机风量和给水量的控制功能,通过变频调速器调节流量,可以极大降低电能的消耗。根据统计分析,在通风空调系统中使用变频技术,可以节约20%~50%电能。2.3.3充分利用自然能源。在车辆段、停车场、车站室外广场、站口外、高架区间等室外区域,增设太阳能照明设备,在日常照明中只开启太阳能照明灯,满足室外照明,有效降低照明能耗。2.3.4控制区域照度和照明时长。在地铁站口和地面站站台、站厅层照明设备上装设光照控制器,通过光照控制照明灯的启停,达到节能的目的;对站厅和站台层照明设备按照不同区域客流的不同,合理开启照明设备,且照明设备上装设时间控制器控制启停,实现夜间停运后自动关闭大部分照明设备;对设备巡视通道、设备房、办公房等不常用照明的区域安装声控设备,实现声控启停;对车站相关显示、指示类设备的照明在非运营时间段进行自动关闭设置,实现节能降耗。

3结语

地铁供电节能降耗技术应用的意义重大,符合可持续发展战略要求,同时也是城市地铁运行系统长足稳定发展的需要。因此,必须从多方面入手,充分运用现代化先进技术、先进设备,如大数据技术、变频技术、智能技术等,提升地铁设备运行的整体效率,实现节能减排,保障地铁的运行更加安全可靠、绿色环保。

参考文献:

[1]韩钰婷.地铁低压供电系统节能降耗浅析[J].电子技术与软件工程,2018(8):223-223.

[2]朱麟.地铁低压供电系统节能降耗意义浅析[J].科技创新导报,2016,13(19):30,32.

[3]张杨.地铁低压供电系统节能降耗措施分析[J].科技创新与应用,2017(12):239-239.

能量管理系统范文篇8

关键词:电厂电能量自动采集系统平衡率

在电力市场运营过程中,买卖双方交易的物理量是电能量,对发、供电量、联络线交换电量、网损(线损)电量及分时、分类电量的采集、监视、统计、分析、运算是电力市场运营的主要内容;建设电能量自动采集系统是实现电力市场运营的基础。对火力发电厂,主要对发、供电量进行统计,对机组平衡率、交接班电量等进行统计计算,以加强管理,并采取相应措施降低损耗,提高效率。

以我们江苏新海发电有限为例,每天分四班,传统的方式是每次交接班时抄表,人工录入进行统计计算;这种人工抄表、统计不能满足实时、分时及动态分析管理的要求,电能量采集方式的改变已势在必行。江苏新海发电有限公司电能量自动采集系统于2001年9月底基本建成。该系统已采集了所有机组的全部电能量数据,完成了电能量的自动采集、存储、总加计算、统计、报表打印等功能;系统代替了人工抄表,提高了数据的同步性、及时性、准确性和完整性;系统对全公司发电情况和各类平衡率进行自动统计,提高了统计计算速度和自动化水平;利用系统进行分班次考核,提高了企业的管理水平和效率;各部门可通过Web查看所有数据和报表,进行不同的二次开发,提高了电能数据的利用率。系统(如图1所示)分主站和采集终端(ERTU)两部分,主站与ERTU之间采用网络通信方式进行数据传输。主站采用南京华瑞杰自动化设备有限公司的COM-2000系统、厂站采用该公司的MPE-III电能量远方数据终端。

1、江苏新海发电有限公司电能量自动采集系统配置

1.1主站系统配置

该系统采用高性能的PC机作为硬件平台,系统的数据库服务器采用双机备份,互为热备用,并保持数据的一致性;前置机负责采集数据,连接GPS用于全网对时,后置机负责处理并保存数据,报表工作站负责所有报表的编辑和打印,Web服务器提供Web浏览,各MIS工作站通过Web可查看所有数据和报表;主网采用10/100M网,由交换机来连接服务器和所有计算机。

系统操作系统采用目前广泛使用的、安全性能较高的Windows2000Server,网络通信采用TCP/TP协议,数据库采用具有Client/Server模式的商用数据管理系统SQLServer2000,编程全部采用VC、VB、Delphi等,集成EXCEL作为报表工具生成图文并茂的图形报表。

1.2主站系统主要功能模块

(1)数据库管理系统

COM-2000数据库管理系统采用标准的商用数据管理系统。数据处理是整个系统的核心,它涉及到数据结构、数据存取、数据维护、数据共享等多方面的管理

数据库大致分四部分,即系统信息数据库(档案信息库)、原始数据库、二次统计数据库和公式统计库。系统数据库存放了有关系统的配置、参数等信息,原始数据库主要数据来源于各采集终端的电表数据,二次统计数据库主要存放来源于原始数据库,经过计算、统计的数据。公式统计数据库来源于二次统计数据库,存放了公式的计算结果。

(2)WEB服务管理系统

WEB服务管理系统响应来自Internet/Intranet的WEB服务请求,提供客户端请求的数据库数据和WEB页面格式。

(3)前置通讯及数据处理管理系统

此系统完成电能量自动采集系统对采集终端数据的采集和处理,数据采集采用大容量高速数据传输部件,保证准确性。全部操作均为在线完成,随输随用,响应性好。具体功能为:对所接收的报文完成规约转换、系数处理和合理性检查,将处理结果交给数据库。可即时查看通讯状况及具体通讯报文。

(4)数据统计及公式管理系统

该系统完成统计计算公式的设定和定时统计任务,如班次电量、日电量、月电量、年电量及电能量总加、平衡、线损、变损等数据的定时统计任务。

(5)报表图形设置显示打印系统

用户可根据实际需要设置报表和图形显示的格式,完成班次电量、日电量、月电量、年电量等报表数据的定时打印,并可根据用户要求对任意电表、任意采集终端或全厂的历史数据的显示及打印。

(6)终端、电表参数设置下装及召唤系统

该系统完成从主站对采集终端中各电表的基值、转比、时段方案、PT、CT等参数的在线设置和下装,并在线查看终端、电表状态和参数。

(7)内部网络通讯管理系统

该系统是整个系统中各个子系统之间的纽带,其功能为:在操作系统所提供的网络支持的基础上实现面向应用的高层网络通讯;根据应用所定义的数据流动模式确定数据流向,提高应用的通信效率。该系统采用完全的Client/Server模式,基于TCP/TP协议,保证了整个平台在不同网络通信协议之间的可移植性。

(8)告警管理系统

该系统根据用户的要求和数据处理的结果,以及设备状态的变化,对系统中发生的特定变化进行提示和告警。如电量值越界、设备异常等,可进行弹出提示框、语音等多种方式告警,对告警信息,可进行打印和保存,可分时段查询和检索。

(9)远程诊断管理系统

该系统用以完成对用户已投运的系统的诊断和维护。系统可通过拨号MODEM和用户系统连接,对其运行情况进行分析诊断;可远程更新系统程序,排除系统故障;并可远程系统更新消息,提高系统使用水平。

(10)安全机制管理系统

该系统完成安全性校核,防止非法操作。对使用用户进行分级管理,根据用户的类别赋予不同的操作权限;在进行关键操作时,对使用者身份的操作权限进行合法性检查;记录关键操作过程,提高系统管理水平。.3电能量采集装置

采用MPE-III电能量远方数据终端,装置采用交、直流双电源,同时对全厂的脉冲和数字电表进行采集。每时段的电能量均带时标,并保留1个月;采用Polling方式实现远程通信;具备接受当地或远方参数下装、自诊断、远方诊断、自恢复等功能;中文液晶显示;设置、查看、核对具有密码保护;具有输入、输出电压、电流保护、防雷保护、直流反极性输入保护。

1.4通信方式

主站系统与远方电能量采集终端之间的通信方式采用网络方式通讯,由于距离较小,各采集终端直接连接在主站系统网络交换机上。电能量采集终端与电能表之间直接通过RS-485口进行数据传输,对脉冲电表增加脉冲采集板。

2、火电厂电能量自动采集系统建设中的几个问题

2.1主站系统建设

(1)电能量自动采集系统有别于SCADA/EMS系统。当电力工业转向市场化运营后,电网的生产和经营工作将更加细化,电能量自动采集系统必将成为一个独立的系统。

(2)电能量自动采集系统的建设,必须符合相应的国家计量管理标准和技术规范。

(3)数据库的设计。在选用数据库时,一方面要考虑性能和功能;另一方面,还要考虑和现有调度自动化系统数据库的继承,以及开放平台和数据接口等问题。电能量自动采集系统数据库内容的设计,要涉及到今后兼容的问题。我国的电能量自动采集系统从无到有,市场规则一定会不断的修改和完善,应尽量减少和避免数据库结构和内容的变动。完善的数据库系统是研究和设计电能量自动采集系统的一项重要工作。

(4)系统的安全性。电能量自动采集系统实现的功能涉及到企业的切身利益,系统应当具备很强的抗干扰能力,系统运行必须稳定可靠。

(5)数据的完整性。由于电能消耗是前后连贯的,因此电能计量的是一系列随时间递增的电能量累加值,要求在计量、采集、传输、存储和处理的整个过程中,保证在任何环节出现故障时,都不允许丢失数据。特别是在进行分班次电能量统计和结算时,数据的完整性成为电能量自动采集系统的基础。系统数据处理应采用分层处理方式存储数据,确保电能量数据的安全性和完整性。

(6)数据的修改。系统必须保证采集的电能量原始数据完整准确。存入的原始电能量数据只能查看,不能修改;各电能量备份数据有权限才能修改,并保存修改记录档案。

(7)数据的可恢复性。对意外情况引起的系统故障,系统应具有恢复数据的能力,保证电能量数据的安全和完整。

(8)数据的及时性。电能量数据应以5min(或1min)为单位进行带时标采集、传送和存储,便于电能量的统计、分班次考核。

(9)系统的时间性,整个电力系统一直处于电能的发、变、输、配、用的动态平衡状态中,电力交易的产、售、购是同时进行的,电能量自动采集系统应以标准时钟(GPS)为基准,以保证各个计量点基于相同的时间基准完成对电能量的计量及电能量数据带时标的存储。主站系统连接GPS时钟,系统对采集终端对时,采集终端对电表对时(要求电表支持)。

(10)系统的容错性。电能量自动采集系统的软件和硬件设备应具有良好的容错能力。当各软件、硬件功能发生一般故障,以及运行人员或维护工程师在操作中发生一般性错误时,均不引起系统的主要功能丧失或影响系统的正常运行。

(11)系统的灵活性。目前我国的电力市场有其特殊性,电能量自动采集系统的应用功能应当具有很大的灵活性,能够适应政策和市场的变化,并符合不同用户的要求。

(12)系统的扩展性。系统设计必须采用标准化、模块化结构,功能扩展部分的安装要简单、方便,对系统不造成有害影响。

(13)系统的开放性。电能量自动采集系统在保证安全的情况下,要求系统的开放性强,保证电力市场运营的公平、公正、公开的原则,提高电力企业的信誉。

(14)系统的可维护性。电能量自动采集系统的软件和硬件设备应便于运行维护。系统应具有在线维护处理功能,电能量自动采集系统的维护处理必须在不中断和不干扰系统正常工作的情况下进行,确保系统安全。

(15)系统的接口。电能量自动采集主站系统要为SCADA、EMS以及MIS等系统提供标准接口,实现数据共享。

(16)系统的权限管理,系统的安全性、可靠性和数据的准确性,直接关系到企业的经济利益,电能量自动采集系统必须具有严格的权限管理功能。

2.2电能量采集终端

(1)采集终端要求有很高的稳定性和可靠性,主要部件应有备份。

(2)采集终端与电能表之间的通信宜采用RS-485数据通信。

2.3电能表

(1)电能表是电能量自动采集系统的基础,数量非常大。电能表要求运行稳定可靠、精度高、使用寿命长、通信可靠、易于安装维护等。

(2)电能表与电能量自动采集系统之间能进行自动对时,实现统一时钟,

能量管理系统范文篇9

【关键词】无线传感器;驱动;自供能

现阶段,随着技术水平的日益提高,传感器已经成为了各种尖端仪器设备中所广泛使用的一种重要的元器件。传感器具有多功能化、智能化、体积小、信息接收快等特点,具有极强的适应性,能够充分的与各种设施设备相融合。并且在近几年来,分布式无线传感器得到了广泛的应用,通过大量的使用这种无线传感器节点所组成的无线传感器网络,以其体积小,环境适应力强等特点,受到了相关人士的广泛关注。与此同时,随着研究的逐渐深入,传统传感器的劣势也越来越凸显出来。一般来说,传统传感器的供能方式一般采用电池供电,这样一来就导致了传统传感器的整体体积变大,同时使用寿命较短,并且还会存在一定程度上的污染。鉴于这种情况,传感器的自供能研究就显得尤为重要。经过研究发现,振动这种能量方式,在各种各样复杂的环境下都能够很好的发挥其作用,因此我们可以采用振动驱动的自供能方式,从而替代无线传感器的电池供电方式,对于传感器节点的性能来说可谓是一个相当大的提升。

1振动驱动的能量收集装置浅析

通过振动驱动的自供能无线传感器,其根本原理就是电磁感应的合理运用。在这个能量收集的过程中,通过振动-电磁能量的收集装置,根据电磁感应的方式,从而使线圈和永磁体发生一定强度的相对振动,这样就使线圈中的磁通量发生变化。通过这种反应形式,就能够产生相应的感应电动势,振动能便能够成功的转化成为电能。图1直线型振动-电磁能量收集装置结构示意图一般来说,我们采用直线型振动-电磁能量收集装置来完成无线传感器自供能的能量收集工作,这种装置的工作机理是通过线圈与永磁体之间的振动位移,从而完成能量的收集工作。具体的结构如图1所示。从图中我们可以看出,这种装置的功能区分可以分为两部分,第一部分是振动能量转换系统,第二部分是磁电能量转换系统。这两部分系统相辅相成,共同构成了整套的振动-电磁能量收集装置。其中,振动能量转换系统的决定因素,是由振动能量的收集效率,以及振子振动的特性所共同决定的。而磁电能量转换系统的决定因素,是由磁电转换效率以及电能输出特性所决定的,这一点需要相关的研究人员着重把握。

2振动驱动自供能无线传感器节点设计的具体方案

对于振动驱动自供能无线传感器节点来说,其最重要的作用之一就是能量的采集与转换,把握住这一点,我们才能够在后续的设计工作中做到性能与耐用性的统筹兼顾。整个自供能无线传感器节点,由振动-电磁能量收集装置、电源管理系统以及控制电路所共同构成。其中振动-电磁能量收集装置是整个节点的能量供应大闸,可以说它是整个节点电力供应系统的枢纽;电源管理系统的主要作用,就是将能量收集装置中所输出的交流信号转化为直流信号,这样后续的控制电路与射频电路便能够直接使用该能量信号;另外我们还要注意一点,那就是能量收集装置在工作过程中会受到输出功率的限制,这样也就导致了能量收集装置无法为后续的电路进行实时供电,这样一来,电源管理系统当中就要安装电能储存装置,从而保障后续电路的工作。而控制电路所要做的就是一个统筹工作,对整个节点的硬件系统进行整体的控制管理,从而确保节点工作的稳定性。在电源管理系统的设计中,我们要着重发挥系统的整流、储能作用。在电源管理芯片的选择上,我们可以采用美国linear公司所生产的型号LTC3588芯片。这种芯片的最大优势,在于其内部能够集成全波桥式整流电路,该类型电路具有损耗低、控制输出电压等优势。在储能装置的选择上,我们采用超级电容作为储能装置.控制电路的设计,可以说是整个设计方案中最为重要,也是要最为小心谨慎的一项设计工作。控制电路所承担的任务中的重要一项,就是对传感器内部的数据进行采集和转换工作。因此这也就造成了控制器需要长时间不间断的工作。鉴于这种情况,我们在控制芯片的选择上,一定要选用功耗相对较低的控制芯片,这样能够最大限度的保障控制电路的稳定运行。

3总结

无线传感器的自供电,是随着技术的发展与完善所必须要去具备的重要特性。本文对振动驱动无线传感器节点设计进行了重点分析。通过上文的设计方案,能够使节点在运行过程中能量的损耗降至最低,同时保证了节点运行的稳定性。是一项具有重要实践意义的研究。作者简介:葛雯,女,电气工程及其自动化专业,硕士研究生。

参考文献

[1]张震,孙士娇,郭徽等.振动驱动自供能无线传感器节点设计研究[J].电脑迷,2017.(11):56.

能量管理系统范文篇10

关键词:电动汽车;控制器;现状;趋势

大力发展新能源汽车、加快交通能源转型是实现汽车工业可持续发展的重要途径。如今,中国已经成为全球最大的新能源汽车市场,我国新能源车企如何乘着政策东风在市场上站稳脚跟是决定我国汽车行业成败的关键。其中,在电动汽车核心控制器技术领域实现重大突破是重要环节。

1电动汽车核心控制器发展现状

(1)整车控制器。整车控制器(VehicleControlUnit,简称VCU)是实现整车控制决策的核心控制单元,对电动汽车的动力性、经济性、安全性及舒适性有很大影响。VCU通过采集油门踏板、挡位、刹车踏板等信号来判断当前需要的整车工作模式(充电模式或行驶模式),采取闭环控制从而计算出当前车辆所需的实际转矩[1];负责整车网络中信息的组织与传输、网络状态的监控、网络节点的管理、信息优先权的动态分配以及网络故障的诊断与处理;对制动能量回馈进行控制。目前整车控制器技术在国外已趋于成熟,各汽车电子零部件巨头如博世、法雷奥都纷纷进行整车控制器研发和生产。部分汽车设计公司,如AVL、RICARDO,也为整车厂商提供整车控制技术方案,在电动汽车整车控制器领域也有不少成功案例。国产厂商大多已具备自主研发生产整车控制器并进行整车控制系统设计的能力,如比亚迪、北汽等企业均为自己配套。(2)电机控制器。电机控制器(MotorControlUnit,简称MCU),MCU是控制主牵引电源与电机之间能量传输的装置。主要作用是控制驱动电机三相输入交流电的电压、电流、相序及频率来调校整车各项性能,完成对电动机转矩、转速、转向及能量回收的控制,保障车辆的基本安全及精准操控。我国驱动电机已基本实现国产化,但电机控制器在功率密度、芯片集成设计、热管理设计等方面与国外差距较大。我国电力电子技术起步相对较晚,部分电机电控核心组件如IGBT芯片仍不具备完全自主生产能力,这使得国内电机控制器的功率密度水平和国外量产产品存在较大差距。以IGBT模块为例,作为新能源汽车驱动系统和直流充电桩的核心器件,其成本占新能源整车成本的10%,占充电桩成本的20%。中国作为世界上最大的功率半导体市场,占世界市场份额达50%以上,但中高端IGBT功率半导体主流器件,基本被欧美与日本等国外厂商垄断,如英飞凌、三菱、日立、东芝等。(3)电池管理系统。电池管理系统(BatteryManagementSystem,简称BMS),是衔接电池组、整车控制器和驱动电机控制器的重要纽带,是动力电池组的核心技术,也是整车企业最为关注的核心技术。电池管理系统的主要任务是监测动力电池组的单体电压、温度、总电压和总电流的状态,与整车进行数据通讯,预测电池的荷电状态,管控电池循环寿命,进行电池热管理及电芯均衡管理,对电池出现的故障进行诊断和报警,延长其使用寿命等功能[2]。国外比较早就开始研究电动汽车,且研究初期就比较重视BMS的研究。经过政府和各大企业几十年的努力,来自美、日、韩、德的诸多汽车行业巨头,如SK、DENSO、LGChem等,已经占据电池管理系统领域的半壁江山。我国开始研究BMS起步较晚,在市场占有率上落后于国外产品。但在政府的大力支持、高校的努力推动下和企业的积极进取下,一大批像比亚迪、宁德时代、派司德科等优质企业已经在全球崭露头角。

2电动汽车核心控制器发展趋势

(1)整车控制器。随着电动汽车市场逐渐繁荣与成熟,新能源汽车供应链企业之间加强协作是未来的发展方向。整车控制器企业将与动力电池、电机、整车厂商等企业协同发展,在动力电池、驱动系统和整车之间寻求最佳方案。具备电动汽车整车控制技术的企业将逐渐发展成为方案提供商,专门进行软件层面的系统设计以及整车性能试验调试等。而硬件部分将逐渐趋于专业化,由专门的汽车电子企业研发生产。(2)电机控制器。电机控制器作为驱动电机系统的核心部件,其发展趋势主要集中在以下四个方面:一是高度集成化带来的安全性能提升。目前,电机控制器、车载充电机、DC/DC、电动空调系统等高压部件已经实现集成化,其高压安全、温度控制、电磁兼容等性能将更加严格;二是高功率密度化。依据各类车辆对动力性能的要求及车辆总布置的空间需要,提高电机控制器对电能的可承载能力、体积随分装向小型化发展是实现电机控制器高功率密度的重要途径;三是高压化。IGBT的耐压能力也将由650V往更高的750V乃至1200V发展;四是电磁兼容性能提升,EMC等级将会达到更高的Class5水平。(3)电池管理系统。目前,国内在BMS性能方面和国外顶尖水平相比,还存在不小差距,仍然是我国电动汽车发展的一块短板。其发展趋势主要有四大方面:一是电池状态估算技术的提升。利用建立更加可靠的电池模型、电池测试大数据等分析手段,补偿电池老化而导致的模型变化,优化充、放电控制算法,进一步提高SOC、SOH等技术精度;二是电芯均衡管理向非能量耗散型转化,提高能量的利用率;三是动力电池热管理由风冷技术向具有换热系数高、热容量大、冷却速度快的液冷技术发展;四是进一步升级BMS自诊断技术,提前预防BMS系统失效。

3结束语

伴随着新能源汽车的进一步推广,新能源汽车产业也将迎来更大的发展契机。在展望新能源汽车快速发展的同时,也必须清楚地看到当前仍然还面临着的诸多重大挑战。我国新能源汽车企业要正确把握电动汽车三大核心控制器的发展方向,加大对技术创新和新产品研发的投入,以领先的技术、良好的品质引领新能源汽车行业发展潮流,为我国新能源汽车产业的快速发展提供可靠的保障。

参考文献:

[1]纯电动汽车关键技术[J].变频器世界,2018(06):43-46.