耐火范文10篇

时间:2023-03-25 15:53:04

耐火范文篇1

关键词:厂房耐火保护防火分区

轻型钢结构厂房办公楼具有造型美观、色彩鲜艳、建筑体型多样化、造价低、建设周期短、机械化程度高、安装施工简便、平面布局灵活易改造,同时钢材具有重量轻、材质均匀、力学计算模型与实际受力比较符合等诸多优点,所以在现代工业厂房中大量采用。但钢材也有一个致命的缺点:不耐火。钢材虽然是不燃材料,但在火灾高温作用下,其力学性能如屈服强度、弹性模量等却会随温度升高而降低,在550摄氏度左右时,降低幅度更为明显,一般在15min左右就会丧失承重能力而垮塌。

因此,对钢结构必须采取措施进行保护。一是对钢构件进行耐火保护,使其在火灾时温度升高不超过临界温度,结构在火灾中就能保护稳定性;二是对厂房内部进行有效的防火分区,防止火势向其他区域蔓延、扩散。不过对于现代轻钢结构厂房的大跨度、大空间来说,防火分区的设置具有一定难度。

1、轻钢结构厂房的防火分区

防火分区在普通民用建筑中较易实现,如在门、厅、楼梯等处采取一些技术措施,用防火墙、防火门、防火卷帘加水幕都可以较好地解决。若建筑内设有自动喷水灭火设备,每层最大允许防火分区面积还可以增加l倍。但若试图把这些技术措施转移至大面积的轻钢结构厂房,就会遇到新的问题。

1.1防火墙与防火分区

用防火墙将厂房分隔是不可能的。不仅因为厂房大空间被分割后影响其通透性,而且从生产工艺的连续性要求心以及厂房内物流组织的;顷畅性来说,也是不可行的。若从生产管理的角度看,业主也不会接受这样的方案。

1.2防火门、防火卷帘与防火分区

利用防火门与防火卷帘进行防火分区,在民用建筑中是轻而易举的。可面对大跨度的轻钢厂房(经常采用13~36m跨),就很难实现。这不仅因为没有如此跨度的卷帘,而且这样大的跨度,在收放时很难控制,容易卡在滑槽里。所以利用防火门、防火卷帘进行防火分区也是不可行的。

1.3自动喷水灭火与防火分区

既然《建筑设计防火规范》(GBJl6-87)规定,设自动喷水灭火装置的建筑,每层最大防火分区面积允许增加1倍。

那么可否采取设置自动喷水灭火装置呢?

首先,根据《自动喷水灭火系统设计规范》(GBJ84-85),高度超过8m的大空间建筑物,安装自动喷水灭火系统的作用不大,而单层轻钢结构厂房的高度一般都超过8m,其次,虽安装自动喷水灭火系统后,防火分区允许面积扩大1倍也无法覆盖全厂房。所以此方法不完全可行。

1.4防火带与防火分区

厂房内由于生产工艺边连续性的要求,无法设防火墙,可改设防火带。在有可燃构件的厂房中划出一段区域,将这个区域内的构件全部改用不燃性材料,并采取措施阴挡防火带一侧的烟火不会流窜至另一侧,从而直到防火分隔的作用。对防火带必须做到:1)防火带中的屋顶结构应用不燃性材料,其宽度不应小于6m,并高出相邻屋脊0.7m。2)防火带最好设在厂房内的通道部位,以得火灾时的安全疏散和扑救工作。3)防火带内不得堆放可燃物。

此法在实际实施过程中,从管理上不好控制防火带内无可燃物。并且在设计时对工艺布置限制大,影响工艺布置。

所以此方法实施有一定的难度。

1.5独立水幕与防火分区

水幕可以起防火墙的作用,用独立水幕作防火分隔,是一个非常好的方案。防火水幕带宜采用喷雾型喷头,也可采用雨淋式水幕喷头。水幕喷头的排列不应少于3排,防火水幕带形成的水幕宽度不宜小于5m,流量2L/(s-m)。这种分隔方式灵活,不像防火墙要把车间截断,也没有大跨度防火卷帘的麻烦,理论上多大跨度都可以。在正常生产时,就好象它不存在,一旦有火灾需要防火分隔时,它可以立即实现有效分隔。

但独立水幕作防火分隔也不是完美解决方案:1)需水量大。2)厂房内发生火灾开始往往是局部的,只需几个灭火器就能解决问题,可此时若启动水幕,会对生产设备造成破坏,由此造成的损失比局部火灾的损失更大。因此需严格控制水幕的启动时机,防止误动,所以设计时采用人工手动启动更合适。3)有效维护麻烦,无法试水检验水幕系统的可靠性。

2、轻钢结构厂房的耐火保护

由于钢结构达不规范要求的耐火极限,需采取相应的耐火保护措施。

2.1粘贴法与耐火保护

粘贴法就是将石棉硅酸钙、矿棉、轻质石膏等防火材料预制成板材,用胶粘贴在钢结构构件上。由于粘贴的轻质成型板材不耐撞击,而工业厂房柱下部分又难免有轻微磕碰;同时考虑到板材易受潮吸水,降低胶粘剂的粘接强度;此外,厂房内钢构件全部用板材覆盖不仅增加成本,而且影响原有钢骨的美感,业主很难认可这样的方案。

2.2吊顶法与耐火保护

吊顶法是用轻质、薄型、耐火的材料制作吊顶,把钢梁、钢屋架包藏在耐火材料组成的吊顶内。火灾时可以使钢梁、钢屋架的升温大为延缓,大提高钢结构的耐火能力。由于此种方法只保护了屋面钢构件,所以屋面吊顶下的其他钢构件如柱,还需采用其他方法加以保护。同时工业厂房内的屋面下,挂有大量的设备,如各种公用管线、悬挂吊车等,如做吊顶必然影响设备的使用及维护,而且设置吊顶会增加成本较多。这样的方案业主也很难认可。

2.3现浇法与耐火保护

现浇法一般用普通混凝土、或加气混凝土浇注包裹钢构件,是最可靠的钢结构防火方法。但采用此方法需支模、浇注、养护等,施工周期长,且增加构件的重量较多,成本增加大。此方法对轻钢结构厂房不可行。

2.4喷涂法与耐火保护

喷涂法是用喷涂机具将防火涂料直接喷在构件表面,形成保护层。钢结构防火涂料的防火原理有3个:1)涂层对钢基材起屏蔽作用,使钢结构不至于直接暴露在火焰高温中。2)涂层吸热后,部分物质分解放出的水蒸汽或其他不燃气体,起到消耗热量、降低火焰温度和燃烧速度、稀释氧气的作用。3)涂层本身多孔轻质和受热后形成碳化泡沫层,阻止了热量迅速向钢基材传递,推迟了钢基材强度的降低,从而提高了钢结构的耐火极限。

在喷涂钢结构防火涂料时,喷涂的厚度必须达到设计值,节点部位宜适当加厚,当遇有下列情况之一时,涂层内应设置与钢结构相连的钢丝网,以确保涂层牢固:1)梁承受冲击振动;2)设计层厚度大于40mm时;3)涂料粘结强度小于0.05Mpa;4)梁腹板高度大于1.5m。

喷涂法为一种最简单、最经济、最有效的做法,其价格低、重量轻、施工速度快、适用于形状复杂的钢构件。缺点是喷涂表面粗糙不平,不美观又易挂灰难于清理。此方法目前最适合于轻钢结构厂房,也为业主所接受。

耐火范文篇2

关键词:耐火材料;荷重软化温度;影响因素;质量控制

耐火材料作为高温工业的基础材料,其质量可靠性事关各类高温工业窑炉的运行安全。荷重软化温度是耐火材料高温性能的重要指标之一,它表示材料对高温和荷重同时作用的抵抗能力,在一定程度上表明材料在其使用条件相仿情况下的结构强度,也表示在此温度下材料出现了明显的塑性变形[1]。

1检测原理与标准现状

荷重软化温度是耐火材料在规定的升温条件下,承受恒定荷载产生规定变形时的温度。荷重软化温度的测试原理为圆柱体试样在规定的恒定载荷和升温速率下加热,直到其产生规定的压缩形变,记录升温时试样的形变,测定在产生规定形变量时的相应温度[2]。根据测试条件不同又主要分为示差法与非示差法两大类。目前与耐火材料相关的国内外荷重软化温度标准及主要技术特点见表1。

2检测结果的影响因素

本节对影响荷重软化温度检测结果的主要因素,如检验方法、设备条件、升温速率、载荷重量及材料本身等分别展开讨论分析。

2.1检验方法

通常来说,对于同一材料荷重软化温度的示差-升温法测试结果要比非示差-升温法测试结果要低20℃~30℃左右,甚至更多[3]。这是由于,测量装置本身结构不同所造成的,主要包含温度采集和试样变形量采集两个方面。一是温度采集方面,非示差-升温法的测温装置采用一端封闭的B型热电偶,测温端在试样高度的一半处,且在试样外表面,测量结果反映的是到达形变点时炉膛的实际温度。而示差-升温法使用的测温热电偶位于圆柱体试样内部的几何中心,测试结果反映的是试样当时本身的温度,已经消除了炉温与试样温度的温差影响,测试结果更加科学。二是试样变形量方面,示差-升温法采用的示差机构,考虑了整个加荷装置系统的变形量,并在最后的结果中扣除,因此检测结果的变形量为试样本身的变形量。而采用非示差-升温法,并没有考虑装置加荷系统的变形影响,所以检测结果是试样与装置加荷系统整体的变形量。因此,生产企业、用户和研究人员在检测荷重软化温度时,要避免因测试方法不同而导致争议。

2.2设备条件

目前荷重软化温度炉体主要采用封闭式与对开门式两种方式,刘晓磊等研究了不同设备条件(封闭式炉体、对开式炉体、石墨压棒、碳化硅压棒)对荷重软化温度结果准确度的影响。研究表明,在压棒相同而炉体不同时,因炉体保温效果良好,对检测结果的影响较小,可视为正常检测误差[4]。因此,现行标准下设备条件对检测结果影响基本可以忽略。

2.3升温速率

由于“热滞后”原因,按低速率4.5K/min~5.5K/min升温测得的荷重软化温度较低,而用高速率10K/min升温测得的荷重软化温度较高[5]。这是由于,外部温度急速升高而材料形变滞后所导致,升温越快,结果数值偏差越大。因此,在实际检测过程中,要严格按照标准规定速率升温,以保证检测结果的准确可靠。

2.4载荷重量

通过对黏土砖、高铝砖、硅砖三种类型同一块标砖中心部位钻取5个试样,用同一载荷软炉进行多次荷重软化开始温度试验,结果如表2所示。结果表明,载荷重量在0.2MPa~0.4MPa之间时,荷重软化温度测定结果整体趋势为试样的负荷量越大,其软化温度值越小,但综合来看对检测结果的影响不大,均在可接受误差范围之内。鉴于上述载荷重量对检验结果影响很小,可适当简化异形砖试样的荷重软化温度的载荷面积的测定。结果见表3。如蓄热室格子砖在确定其载荷面积时,通常用浸液称量法间接测量试样的体积[6],再除以高度值,进而计算出加荷面积,但整个过程繁琐不易操作。因此可采取标准格测定面积,将荷软试样置于标准格纸上,画出轮廓,通过数格子数的方法来确定载荷面积(不足半格不计数,多于半格计一格)。实验数据表明,标准格法同样能达到试样要求精度,误差很小,实际操作更方便快捷。

2.5材料特性

对于添加了高温膨胀剂(蓝晶石、红柱石、硅线石、碳化硅等)的不烧高铝质材料,如磷酸盐砖等,由于二次膨胀的原因,测出的荷重软化温度可能差异很大。图1为典型的磷酸盐砖和硅质耐火泥浆荷重软化温度位移-温度曲线图。可以看出,试样在加热过程中都存在二次膨胀过程,由于当前设备采集均为自动化设备,在检验时一旦触及提前设定的变形率时试验将立即停止,并记录当时的温度作为荷重软化温度值。如果二次膨胀初始点恰好为压缩变形点0.6%时,对试验结果影响将非常大。因此,针对特殊种类材质检测时,可将变形率设定为多点,如0.6%、1.0%、2.0%、4.0%等。

3检测结果的质量控制

针对上述各类影响的因素,对于检测结果质量控制显得尤为重要,而质控工作需要在做好温度、位移、压力等相关参数量值溯源工作前提开展。本节将对目前国内主流荷重软化温度检测YB/T370的方法进行重点阐述。

3.1量值溯源

选择具有相应资质的计量部门对荷重软化试验仪进行量值溯源,对结果按照下页表4要求进行逐项核查。

3.2质控方法

3.2.1标样比对对于可获得石英标样的实验室,可用标样(标准值为1386℃)进行测试,测量结果与标准值偏差应不超过标准样品的扩展不确定度(U=12℃)。3.2.2内部质控在YB/T370试验误差中规定:同一实验室同一样品不同试样的复验误差不超过20℃[7]。因此,对于同一实验室同一样品不同试样,可用同一台仪器进行重复测试或者用2台仪器分别测试,2次测试结果误差不得超过20℃;对于多台(n≥3)荷重软化试验仪的实验室,第i台仪器的测量结果应满足式(1):(1)式中:yi为第i台仪器的测量结果,℃;y为n台仪器测量结果的算术平均值,℃;U1ab为实验室测量结果的扩展不确定度,℃。3.2.3室间比对在YB/T370试验误差中规定:不同实验室同一样品不同试样的复验误差不超过30℃[7]。因此,当两家实验室间比对时,测量结果的误差不得超过30℃;当3家及以上实验室之间的比对,第i个参加实验室的测量结果可参照式(1)进行评价。为保证样品的均匀性和一致性,检测试样应从同一块外观检验合格的标型耐火制品中间相邻部位钻取,且应保证试样的高度方向为制品成型时的加压方向。

4结语

耐火材料作为一种非均质体材料,各处的性能均不完全相同,对于同一块耐火砖的相近部位取样检验其结果也不相同。在生产环节中的原料级配、成型压力与锤数、窑炉温度与气氛、烧成时间、冷却等综合作用下,同一批砖的质量总会参差不齐。此外,检验过程各操作环节中对检验结果造成的影响,尽管行业标准中规定了不同实验室同一块砖30℃的误差范围,但有时检测结果虽然在误差范围之内,对于产品判定却产生了不同的结果。因此,对于批次检验,必须严格按照统计学原理,科学设定检验结果范围。近年来的产品标准的制修订中,都给出了科学的范围,对于避免商检争议起到了很好的效果。此外,还需根据窑炉实际应用情况,科学界定材料使用性能与检验结果之间的差异,避免单纯依靠检验数据而否定材料的实际应用效果。

参考文献

[1]王秀芳,姜东梅.耐火材料荷重软化温度(非示差-升温法)标准样品的研制[J].耐火材料,2013,47(3):232-234.

[2]彭西高,程水明,李永刚,等.耐火材料荷重软化温度试验方法示差升温法:GB/T5989—2008[S].北京:中国标准出版社,2015.

[3]王东,赵维平,崔永凤,等.耐火材料荷重软化温度测试方法比较[J].山东冶金,2015,37(1):74-75.

[4]刘晓磊,翟耀杰,陈冰冰,等.设备条件对荷重软化温度检测结果准确度的影响[C]//2017年全国耐火原料学术交流会暨展览会论文集.郑州:耐火材料杂志社,2017:382-384.

[5]陶跃红,张尼尼.影响硅砖荷重软化温度的因素[J].玻璃与搪瓷,1993(6):22-30.

[6]高帅,张殿英,魏纯玉,等.蓄热室格子砖荷重软化温度试验方法[J].山东冶金,2009,31(1):75-76.

耐火范文篇3

上世纪70年代时,国际经济两次受到石油危机造成严重的损失。随着石油价格的不断攀升,建筑材料成本也在逐渐的增加,为了减少成本造成的压力,各国科研人员开始着重研发新型窑炉,带动了高温技术的重大改革,推动了建筑耐火材料的更新换代。将用油和气为燃料的水泥窑改造成以煤和废弃的热能原料为燃料进行加工,同时为了减少热损耗,开始大力推广预分解水泥生产技术。该技术的应用大大降低了热损耗,同时使生产能力大幅度提高,但是这种技术也存在一定的缺陷,对烧成条件的要求越来越严格。水泥预分解窑还以废弃的轮胎、橡胶、塑料和一些低品位高碳物质等作为燃料,虽然使资源损耗和水泥生产成本有所降低,但是这些燃料具有较多的挥发性的物质,从而造成了窑壁结皮,影响水泥窑的正常运转,对耐火材料造成了极大的损害。在进行玻璃熔制时,随着加工工艺的不断改善,浮法玻璃熔窑内的高温物理化学反应更加的强烈,对窑内的耐火材料使用条件提出了苛刻的要求。

2建筑材料中耐火材料的发展过程

我国在改革开始后,大量的引进了现代化的水泥、玻璃和陶瓷加工的生产技术,经过不断的学习和经验积累,具有类似属性的生产线大量出现。但是这些窑炉所使用的耐火材料始终都是依赖于进口。为了打破这一局面,从1981年开始,我国以中国建筑材料科学研究院等单位为主要研究部门,投入大量的资金用于新兴耐火材料的研发。在多次试验下,我国制造出了镁铬砖和尖晶石砖等材料用于水泥窑高温带的结合和多种耐火浇注料。直到上世纪90年代,我国完成了用于水泥窑、浮法玻璃窑和陶瓷的耐火材料研究,研发了熔铸错刚玉砖的氧化熔融工艺,随后又要发出了熔铸a一p氧化铝和熔铸p一氧化铝砖。我国开始将大量的冶金系统耐火材料投入到建材市场中。在国家政策的大力扶持下,大量的耐火材料企业如雨后春笋般出现,推动了我国耐火材料的发展,拉近了与发达国家间的差距。在过去的几年中,虽然我国工业用耐火建筑材料的技术水平得到了发展,但是能耗依然高于高达国家,我国经济遭到了能源问题的考验,为此,我国政府已经制定了一系列的产业政策,这一政策为我国工业用耐火建筑材料的发展提供了机会与挑战。在未来阶段下,工业用耐火建筑材料的发展需要满足两个要求,第一就是耐火材料产品结构需要满足节能要求;第二就是在耐火材料生成中,要尽可能的减低能耗。

3耐火材料技术进步的特点

3.1高纯化

耐火材料在提取技术不断进步的影响下,开始向着高纯化的方向发展。例如镁砂的提取,通过热选、浮选和海水提取等方式再配以钙硅比调整技术,从而形成具有高耐火性和高纯度的镁砂。高纯度的耐火原料为制造高性能的耐火材料提供了物质基础。

3.2不定形耐火材料

在一些发达国家中,在耐火材料总量中有一半是不定形耐火材料。不定形耐火材料在一定程度上都需要控制界面反应才能展现出特殊性能。例如,低水泥浇注料可以通过原料的组成成分、粒度和外加剂等进行控制。

3.3自动化

在进行耐火材料生产中例如原料配比、烧成过程和成品检验等一些劳动强度大、工作环境差的工序,可以借助计算机控制技术来完成。计算机控制技术有着高精确度和速度快的特点,能够保证设备高产优质安全运行。

3.4复合化

复合化就是将一种耐火材料中添加另外的耐火材料,以此来研究出新的材料,如水泥可以与硅莫砖、镁锆砖结合研发出新的材料,目前,已经产生了多种复合材料。一般情况下,复合性的耐火材料需要遵循几个原则,即耐高温性能、稳定性,并且在制造和使用温度下,各类不同的材料可以彼此共存,且侵蚀产物应该受到保护,如果无法控制这一问题,就要保证有害产物要在可控范围内,且在生产和使用过程中,严禁出现危险性和有害性物质。

4耐火材料技术的展望

4.1计算机辅助测试和分析技术

在信息技术不断进步的情况下,计算机技术得到了快速的发展。在耐火材料的研究过程中计算机的测试和分析技术发挥了重要的作用,对耐火材料的发展造成了极大的影响。例如,在计算机中可以对耐火材料的热力学进行演算,从而判断其物理化学反应的情况;通过电子图像技术对耐火材料中各种物质的含量、分布、性能和使用周期进行分析,为耐火材料技术的不断改善提供数据保障。

4.2计算机辅助工艺优化技术

通过上述从中可以看出计算机能够对以前无法进行运算的技术进行演算验证,在新型耐火材料的研发中提供技术保证。例如,利用计算机软件系统可以进行虚拟实验设计,从而从多元化和全方位的角度去分析实验,通过对工程数学、系统科学等多种学科的借助,通过计算机辅助设计出更加优化的加工工艺,使耐火材料从定性分析向着定量分析的升级。通过数字化技术进行材料工艺的研究能够实现新兴的以环保为前提的工艺技术。

4.3计算机集成现代制造技术

今后现代制造业必然会向着计算机集成制造的方向发展。所谓的计算机集成制造技术就是通过有效的方法将每一个独立的信息单元进行组合,将设计、制造和市场等信息进行统一的结合,从而建立一套有关数据的共享体系,通过计算机集成制造技术实现利益的最大化。

5结语

我国是世界上最大的耐火建筑材料生产国与消耗国,我国一直在积极研究新型工业用耐火建筑材料,在世界对低碳经济的关注下,我国工业用耐火材料必须要加强创新,不断调整现有的产品结果。实现耐火材料产业化发展,提升行业集中度,提升材料的使用效率,促进我国工业用耐火建筑材料的发展。

作者:杨博文 单位:湖南省长沙市周南中学

参考文献:

[1]刘迎利,王志辉,娄广辉,张伟伟.我国耐火材料行业现状及发展趋势[J].河南建材,2009(01).

[2]王铁铮,辛明,傅莉莉,霍江平,潘尚心,李超文.中国耐火材料生产与进出口六十年情况简要回顾[J].耐火材料,2009(03).

耐火范文篇4

关键词:钢结构耐火性措施

引言

建筑钢结构的优点多多,相比较传统的混凝土结构和砌体结构等,它性能稳定,质量轻强度高,抗震性能好,施工时可以在厂房进行加工再到现场装配,不仅装配的完整度好精密度高,而且能够大大的加快施工进度缩短工期。同时它还被称为“绿色建筑”,基础造价低,材料可回收和再生,节能、省地、节水。作为一种绿色环保建筑,近年来,钢结构住宅已被建设部列为重点推广项目。然而,这么好的建筑结构形式却有一处致命伤,那就是耐火性能差。由于钢结构建筑本身具有一定的可燃物,而钢结构本身又有受热强度降低极易造成建筑物倒塌等特性,因此钢结构建筑一旦发生火灾往往造成群死群伤等恶性火灾事故的发生。最典型的例子就是美国的“911”事件,事件的主角是美国世贸中心大楼,是典型的钢结构高层建筑,坐落于美国纽约市曼哈顿闹市区南部、纽约海港旁,由5幢建筑物组成,其主楼呈双塔形,使用钢材7.8万吨,楼的有密置的钢柱,墙面由铝板和玻璃窗组成,素有“世界之窗”之称。“9.11”恐怖袭击中,在大火的作用下主楼仅仅经过30分钟便轰然倒塌,造成了死亡2797人、损失360亿美元的举世震惊惨案。因此,要想大力推广钢结构,首先必须提高钢结构的耐火性,只有这样,才能使这种节能环保的建筑结构得到普及并真正发挥它的优势。

一、钢结构的耐火性能

钢结构的耐火性能取决于钢材,钢材本身不燃烧,也具有较好的耐热性,但是钢材不耐高温,随着温度的升高,钢材的强度是呈下降趋势的,同时变形增大。在200℃以内,钢材性能没有很大变化:430℃~540℃之间强度急剧下降;600℃时强度很低不能承担荷载。

基于钢材的这种物理性能,在火灾发生时,当温度达到450℃~650℃时钢结构就会失去承载能力,发生很大的形变,导致钢柱、钢梁弯曲,结果因变形过大而不能继续工作,甚至垮塌。

一旦遇到高温,钢结构构件的变形甚至失效是无法避免的,我们只能尽可能的提高它的耐火极限,使钢结构不至于在发生火灾后立即失效倒塌。根据实验室测得的数据,常用钢结构构件的耐火极限只有15~30min。在国家标准《建筑设计防火规范》(GBJ16-87)、《高层民用建筑设计防火规范》(GB50045-95)中规定一级耐火等级建筑的防火墙、柱和承重墙、楼梯间墙及梁的耐火极限为3小时和2小时。对比可见未覆盖耐火保护层的钢构件的耐火极限距离防火规范的要求相差很大,根本不能满足火灾情况下对建筑防火的要求。要克服钢结构材料在实际应用中防火性能方面的不足,必须从多方面入手提高其耐火性能,以达到规范所规定的耐火等级要求。

二、提高钢结构耐火性能的措施

2.1应用建筑耐火、耐候钢一般的钢材耐火性差,但是可以通过相关技术手段,改变钢材的材料组份,加入特定的成分,改变钢材的结构及金相组织,提高钢材本身的耐火性和耐候性。这就是耐火、耐候钢。这种钢材在温度达600℃时,强度下降不到30%,此外由于它的耐火性表较好,可以在施工时适当减小保护层的厚度,甚至可以不涂防锈漆,这样可以节省一定成本。应用耐火、耐候钢是治本良方,应该大力推广,目前,我国已有多家企业可以生产建筑用耐火、耐候钢,这为钢结构建筑提供了良好的用材来源。

2.2采用抗火能力强的结构形式和构件纯钢结构的耐火性比较差,但是可以适当结合混凝土组成混合构件,或在一些关键部位直接采用钢筋混凝土结构。例如柱子可以采用钢管混凝土柱,这样可以很有效提高耐火极限,而且钢管直径(或边长)越大,耐火时间越长,直径500mm的圆钢管混凝土柱,当涂敷厚15mm的隔热型防火涂料时即可满足3h的耐火时间。而像楼板和楼梯这样对防火要求较高的构件还是应该尽可能采用钢筋混凝土结构。

2.3采取合理的钢构件防火构造处理方案钢结构防火保护构造作法应合理、坚固、经济、易于施工,并利于装修。当有非燃烧体的围护或分隔构件与钢构件处于同一轴线时,可利用非燃墙体本身为钢构件提供防火保护,而不需另做防火保护层。而对那些裸露在外的钢构件,则应采用合理的防火保护构造作法。

2.4实施有效的的防火保护方法常用的钢结构防火保护方法有外包混凝土保护、外包钢丝网水泥砂浆、外包防火板材和喷涂防火涂料等。外包混凝土保护就是用混凝土将钢构件完全包裹起来,在混凝土中还应配置构造钢筋防止混凝土脱落。钢丝网水泥砂浆防火保护是用金属网抹50#砂浆做保护层,也是一种传统的施工方法。外包防火板材可以选用纤维增强水泥板(如TK板、FC板)、石膏板、硅酸钙板、蛭石板等非燃材料的防火板将钢构件包裹起来。公务员之家:

耐火范文篇5

近几年来,镇党委、政府紧紧围绕市委、市政府提出的“打造工业强市,再创经济优势”的指导思想,以工业经济发展为重点,突出镇域专业经济特色,强力打造全国耐火材料专业镇,初步形成了在全省乃至在全国比较突出的集群优势,成为具有产业特色、又有一定影响力和辐射力的耐火材料专业镇。

一、专业镇建设的背景

*经济是依靠耐火材料发展起来的资源型经济,经过30多年的积累发展,初步形成了具有一定经济规模和市场占有量优势。近年来,随着耐火材料资源的枯竭,如何利用有限资源保持可持续发展,成为摆在*经济发展面前的一个重要课题。为迅速冲出和打破这一困境,*镇党委、政府经过认真研究,决定派员出外考察,学习借鉴南方沿海发达地区专业镇建设的成功经验,通过考察论证,结合*经济发展实际,使他们最终选择了建设耐火材料专业镇,加快发展镇域经济之路。据此,2001年他们制定了《*镇建设“全国耐火材料专业镇”(2001—2005)发展规划》,并于2002年项目通过河南省社会科学院、省社会发展研究中心、省科委、公务员之家版权所有省科技局、省耐材协会、郑州大学高温材料研究所等单位专家的论证,为打造耐火材料专业镇,保持经济可持续发展奠定了基础。

二、专业镇建设的成效

(一)全镇经济总量快速增长。自2001年提出打造全国耐火材料专业镇的目标之后,到2002年税收突破4000万元,比2000年的3000万元增加1000万元;2003年税收突破5000万元,每年递增1000万元;2004年全镇完成税收8702万元(不含退税部分),同比增长64.6%,同口径净增4000多万元。财政收入完成2628万元,同比增长88.3%。2003年被国家建设部确定为“全国重点镇”。目前,耐火材料工业经济收入占全镇经济总量的75%,耐火材料上交税金占全镇税金总额的80%以上。

(二)初步实现了耐材行业量的扩张。目前,全镇有各类耐火材料企业200余家,生产能力达70余万吨。尤其是2002年全镇新上、技改、扩建项目94个,2003年新上、技改、扩建项目188个,今年新上、技改、扩建项目62个,三年间形成了一个工业项目投资高潮,实现了耐材企业量的扩张,初步形成了以东方、豫华、京华、顺兴和康华为龙头,以一大批具有较强实力的企业为骨干,以众多的小企业为补充的规模促动格局。东方企业集团股份有限公司2004年上交税金突破3200万元,带动了一大批中小企业的发展)。

(三)耐材企业技术装备水平不断提高。2001年前,全镇隧道窑、梭式窑、煤气发生炉等装备处于空白,如今全镇拥有各类遂道窑20余条,梭式窑10座,先进的电炉设备5座,有4家企业采用了煤气发生炉。90%的企业采取了环保治理措施,新上项目和技术改造项目使全镇耐材企业技术装备水平得到了空前改善和较大提高,为企业发展增添了后劲。

(四)名优产品不断涌现。据调查统计,近几年来,*耐材行业先后开发出了近百种产品,其中20多种产品分别获得“部级新产品奖”、“省(部)级科技进步奖”、“省(部)级优秀新产品奖”、“河南省名优产品”、“河南省高新技术产品”等荣誉称号。最近,又有3种新产品正在申请国家专利和科技成果奖。目前,全镇可生产耐材、钢铁、水泥、电力、玻璃、炼焦、有色金属等不同行业所需要的不同型号的产品。产品销往全国各地并打入国际市场,“东方”、“豫华”、“顺兴”、“京华”、“康华”等耐材商标均被同行业认可。

(五)地域形象明显提升。*全国耐火材料专业镇的建设,有力的打造和提升了*镇的地域形象。《中央电视台》、《人民日报》、《科技日报》曾先后对*耐火材料专业镇建设情况进行了报道,有效地提高了*地域特色品牌的知名度。

三、存在问题

*耐火材料专业镇的建设,虽然初步取得了规模集群优势,全镇经济发展也初步具备了专业镇的特征,但在打造专业强镇方面还存在着以下亟待解决的问题。

(一)耐材资源日趋萎缩枯竭。目前,*耐火材料原料来源除本地外,主要靠禹州、平陌等地供应。随着生产规模的扩张,对外地原料依赖性将逐渐加大,这对*耐火材料产业发展影响极大。

(二)区位地理条件的制约。*镇位于*市南部丘陵半丘陵山区,北临小铁路,南迎高崖头,中间狭长地带,又多断层和煤矿搬陷区,目前,已出现企业无处可建,交通道路前修后陷状况,直接制约着经济发展。

(三)企业装备水平低。目前,全镇200多家耐火材料企业,大部分企业仍然处在作坊生产状态,先进窑炉少,低水平重复设备多,整体上仍然存在着低、小、散、慢、差的问题。

(四)国家环保治理的冲击。中央明确指出:经济发展不能以牺牲环境为代价,不能牺牲子孙后代利益为代价。国家对环保不达标的企业,将一律取缔关停。这对*耐材专业镇建设将是一个冲击。

四、思考与建议

调查表明,*经济具有明显的资源型经济特征。随着改革开放近二十年来的开采利用,当地资源已进入了萎缩期,加之国家产业政策、资源和环境的制约,这对打造耐材专业强镇是一个很大的挑战。为此,在未来的经济转型中,用现代技术改造传统产业,大力发展高科技术,用科技化带动产业化发展是最佳选择。

(一)大力优化发展环境。环境也是生产力,抓环境就是抓机遇,抓开放,抓发展。在优化环境方面,要重点加快道路建设,发展园区经济,治理环境污染,遏制生态恶化,改善人居条件,提高生存质量,为企业发展提供一个优良环境。

(二)加快企业园区化布局。园区化是南方沿海地区专业镇建设的一个成功经验。它可以有效的合理配置资源,减少投资成本,有助于小城镇框架的形成。同时,要进一步做好小城镇总体规划及镇区详细规划的修编工作,以规划为龙头,把耐火材料工业园区建设同小城镇建设有机结合起来,走耐火材料园区化的发展道路。

(三)强化项目建设。创建全国耐火材料专业镇,仅靠现有项目是不够的,要通过招商引资、撬动民间资本,新上一批高科技含量项目,通过项目建设提高生产能力和生产水平,增强专业镇的凝聚力和辐射力。

(四)加大科技产品研发力度。市场的竞争归根到底是高科技产品的竞争。要不断加大科技研发力度,提高产品的科技含量。一是鼓励企业与国家科研部门和大专院校联姻,成立产、学、研联合体,开发研制特新产品,促动产品更新换代。二是成立工业中专学校,培养耐材专业技术人才、提高员工的技术水平和素质。三是建立人才引进培育机制,创造留人、用人的宽松环境,依靠人才,依靠科技创新来推动产业发展。四是建立先进的科研开发机构,通过耐火材料科技产品的开发,占领行业制高点,带动行业发展。五是通过科技开发和科学经营,培育过硬的产品和品牌,培育具有竞争力、辐射力和影响力的龙头企业。

(五)加大企业整合力度。要以市场需求为原则,在企业规模、生产分工、经营管公务员之家版权所有理等方面实行最有利于发展的整合。通过合资经营、参股经营、租赁转让、挂靠管理、整体购买、企业扩建等形式,培育龙头企业,从而提高企业的规模档次和抗御市场风险的能力。

耐火范文篇6

1国内外防火规范的比较

1.1高层建筑划分《民用建筑设计通则》(GB50352-2005)规定,建筑高度大于100m的民用建筑为超高层建筑。《住宅建筑规范》(GB50368-2005)规定,35层及35层以上的住宅建筑应设置自动喷水灭火系统和火灾自动报警系统。《高层民用建筑设计防火规范》(GB50045-95,2005年版)规定,当高层建筑的建筑高度超过250m时,建筑设计采取的特殊的防火措施,应提交国家消防主管部门组织专题研究、论证。美国《国际建筑规范》(2009年版)规定,有人员使用的楼面到消防车可以到达的地面的高差大于22.9m的建筑为高层建筑。对于建筑高度小于等于128m的建筑,可采用ⅠB类耐火等级的结构替代ⅠA类耐火等级的结构,但承重柱的耐火极限不应降低。英国《建筑设计、管理及使用消防安全技术规范》(BS9999∶2008)规定,顶层楼板到地面的高度超过18m时,应设置消防电梯和防烟楼梯间且前室内设置消火栓。此外该规范按照顶层楼面高度的不同对建筑耐火等级作了规定,如A2类建筑(人员处于清醒状态且熟悉环境,火灾增长速率为中速火),当顶层楼面高度超过60m时,构件耐火极限不低于2.50h。法国《高层建筑防火安全法规》(2007年版)规定,建筑高度大于50m的住宅及建筑高度大于28m的其他类型的建筑为高层建筑,建筑高度大于200m的建筑为超高层建筑。1972年的国际高层建筑会议将高层建筑分为4类:第一类为9~16层(最高50m),第二类为17~25层(最高75m),第三类为26~40层(最高100m),第四类为40层以上(高于100m)。由此可见,各国对于高层建筑均作了规定,但对超高层建筑的划分并不完全一致。有关高层建筑高度划分标准如下:美国23m、英国30m、法国28m(其中住宅50m)、我国24m,可见几个国家的规定相对而言差别不大,总体上,我国的规定比较适中。我国和法国明确界定了超高层建筑的划分高度,我国为100m,法国为200m,其中我国规范对建筑高度大于250m的建筑作了专门要求。美国和英国没有单独规定超高层建筑,但从消防救援以及建筑耐火等级角度对超过某一建筑高度的高层建筑作了特殊规定。如美国规定对于建筑高度小于等于128m的建筑,可采用ⅠB类耐火等级的结构替代ⅠA类耐火等级的结构,但承重柱的耐火极限不应降低;英国规定人员处于清醒状态且熟悉环境、火灾增长速率为中速火的建筑,当顶层楼面高度超过60m时,承重构件耐火极限均不低于2.50h。

1.2耐火等级各国规范均根据建筑高度及使用功能规定了相应建筑的耐火等级,有关超高层民用建筑主要承重构件的耐火极限要求对比情况见表1。从表1可以看出我国规范中有关柱、梁、承重墙等承重构件的耐火极限要求与其他国家的规定比较接近,但楼板的耐火极限相对偏低。根据国内建筑火灾统计资料,火灾延续时间在1.50h以内的占88%,在1.00h以内的占80%。与之对应国内规范将一级耐火等级建筑物楼板的耐火极限定为1.50h,二级耐火等级建筑物楼板的耐火极限定为1.00h。我国二级耐火等级建筑占多数,这样大部分一、二级耐火等级建筑不会被烧垮。当然,建筑构件的耐火极限定得越高,发生火灾时烧垮的可能性就越小,但建筑的造价要增加。

1.3防火间距各国规范均通过限定防火间距作为防止火灾在建筑之间蔓延的措施,美国规范详细规定了建筑相邻部位的开口要求,当间距大于9.1m时,则对外墙耐火极限没有要求。英国采用相邻建筑外墙所受热辐射强度来确定防火间距,以是否达到引燃木材的热辐射强度12.6kW•m-2作为判定条件,要求建筑到达公共边界或者假定的边界(而非相邻建筑物)的距离为其达到热辐射要求的计算距离的一半。例如,在火灾规模为30MW的情况下,距离着火建筑7.9m的距离处即可达到12.6kW•m-2的辐射强度,从而可以引燃木材。所以在这种情况下,要求其到达与相邻建筑公共边界的距离取7.9m的一半,即不小于4m。法国规范要求相邻高层建筑外墙的耐火极限不低于2.00h或具有8m的防火间距。我国规范也有限制外墙开口的类似规定,如开口面积小于外墙面积的5%时,防火间距可减少25%。对于耐火等级均为一、二级的相邻建筑,高民用层建筑与相邻高层建筑的防火间距为13m,与相邻多层建筑的防火间距为9m。我国规范中有关高层建筑与多层建筑的防火间距规定与国外规范相比较为接近。

1.4避难设施避难层(间)作为高层建筑尤其是超高层建筑重要的安全疏散设施,各国规范均有详细规定。美国规范规定电梯候梯厅在采取防烟措施的条件下可兼做避难区域,同时对避难区域提出了双向疏散要求。对人员疏散存在困难的医疗建筑,美国规范要求可供患者睡觉休息或治疗的楼层以及其他人员荷载超过50人的楼层均应采用挡烟设施分为至少两个烟气控制区,并对该类建筑中的避难区域面积作了规定,卧床病人按照2.8m2•人-1、其他人按照0.56m2•人-1确定避难面积。英国规范允许避难区域设置在受保护的楼梯间内。此外,美国、英国规范均考虑了使用轮椅等行动不便人员的避难需求,其每人占用的面积美国为0.9m2,英国为1.3m2。我国规范对超高层公共建筑设置避难层作了明确的规定,但对超高层住宅建筑,《民用建筑设计通则》要求设置避难层(间),而防火设计规范没有相应的规定,有关超高层住宅设置避难设施的技术要求仍需要进一步完善。

1.5消防救援确保火灾情况下消防车辆能够迅速到达着火建筑,提供消防救援人员进入建筑物的入口,对于营救建筑内的被困人员、降低火灾损失具有重要意义,国内外规范对消防车道(包括其宽度、通行高度和坡度、回转场地等)及消防扑救作业面(包括长度、与建筑的距离等)均有所规定。美国规范中消防车辆可到达的位置与建筑内设置消防设施的情况有关,当建筑内设有自动喷水灭火系统时,该距离可相应增加,如消防车道应能到达距建筑入口15m的位置,此外建筑物外墙与消防车道的距离不应超过46m,当设有自动喷水灭火系统时可增加到137m。英国规范规定消防车应能到达距消防水泵接合器18m的位置。法国规范规定消防车道与建筑物的距离不应大于30m。我国规范通过规定消防车登高操作场地的布置要求,限定其与建筑的距离不宜小于5m,且不大于10m。同时规定消防车与消防水泵接合器的距离为15m~40m。可见国内外规范对消防车到达位置与建筑之间的距离要求比较接近,一般控制在15m~40m的范围内。关于超过一定长度的袋形消防车道应设置回车场地的要求,美国规范规定为46m,英国规范为20m。我国规范规定尽头式消防车道应设置回车道或回车场,但未明确其长度要求,应进一步细化该规定。

2超高层民用建筑防火设计加强措施

综上所述,针对建筑高度大于100m的超高层民用建筑的防火设计,提出如下加强措施:

2.1耐火等级我国规范规定超高层民用建筑的耐火等级为一级,从前文对国内外超高层民用建筑主要承重结构构件的耐火极限对比分析可以看出,我国对于一级耐火等级建筑要求其楼板的耐火极限为1.50h,而国外规范的相关要求均不低于2.00h,可见我国规范对建筑楼板的耐火极限要求相对偏低。为给超高层民用建筑的消防救援以及人员安全疏散提供更有利的条件,建议提高楼板的耐火极限。目前,我国有关楼板的构造做法及耐火性能见表2。由表2可以看出,在楼板厚度为100mm(保护层厚度为10mm),其耐火极限可达到2.00h,楼板厚度达到120mm(保护层厚度为20mm)时,耐火极限可达2.65h。结合国外规范的相关要求和我国实际的楼板构造做法情况,对超高层民用建筑楼板的耐火极限提出如下要求:超高层民用建筑楼板的耐火极限不应低于2.00h。

2.2防火间距我国规范中有关高层建筑与多层建筑的防火间距规定与国外规范相比较为接近。此外,规范中规定在设有防火墙等条件下,高层建筑与相邻建筑的间距可以不限或不小于4m。对于超高层民用建筑,较大的防火间距除有利于防止火灾在建筑之间的蔓延外,也为消防救援提供了有利的条件。考虑到我国超高层建筑的数量及相应的救援和管理条件,建议即使在采取设置防火墙等措施的条件下,也不应调整超高层民用建筑与相邻其他建筑的防火间距。为此,提出如下建议:超高层民用建筑与相邻民用建筑的防火间距应符合高层民用建筑与民用建筑防火间距的相关规定,其间距在采取设置防火墙等措施的条件下也不应减小。超高层民用建筑与工业建筑的防火间距(包括与甲类厂房,与甲类仓库,与甲、乙、丙类液体储罐,与可燃气体储罐,与可燃材料堆场的防火间距)应符合高层民用建筑与工业建筑防火间距的规定,其间距在采取设置防火墙等措施的条件下也不应减小。

2.3避难设施避难层(间)作为高层建筑尤其是超高层建筑重要的安全疏散设施,各国规范均有详细规定。我国《高层民用建筑设计防火规范》对高层公共建筑设置避难层作了明确的规定,但对高层住宅建筑的避难层设置没有提出要求。仅在《民用建筑设计通则》中有高层住宅需要设置避难层(间)的规定。因此,我国建筑防火设计规范中有关超高层住宅设置避难设施的技术要求仍需要进一步完善。可以结合住宅建筑的特点,设置避难间。同时参考美国、英国等国家的规范对医疗建筑的避难区域或使用轮椅等行动不便人员的避难需求的规定,我国建筑设计防火规范在规定高层建筑安全疏散设施时也应考虑行动不便人员的避难需求,为该类人员的安全疏散提供可靠的保障。此外,对于高层建筑避难间的具体设置高度要求,需要考虑到当前消防车辆救援高度一般在50m的实际情况。为此,提出如下具体建议:建筑高度大于50m的高层病房楼,其50m以上楼层每层应设置避难间。建筑高度大于54m的住宅建筑,其54m以上楼层每层应设置避难间。

2.4消防救援《建筑设计防火规范》(整合修订稿)对消防灭火救援要求的规定,补充了现行相关国家标准在消防救援规定方面的不足,但对需要设置回车场的尽头式消防车道的长度要求需补充规定。结合道路中心线间的距离不宜大于160m的规定建议取1/4,即40m。此外,超高层住宅建筑与其他使用功能的建筑上下组合建造时,其裙房屋面如果兼做消防车登高操作场地,应对其屋面板的耐火极限提高要求,以确保消防救援作业的安全,可考虑与防火墙的耐火极限要求一致,即3.00h。为此,提出如下具体建议:一是长度超过40m的尽头式消防车道应该设置回车道或回车场。二是超高层住宅建筑与其他使用功能的建筑合建,住宅部分通过裙房屋面疏散且裙房屋面用作消防车登高操作场地时,裙房屋面板的耐火极限不应低于3.00h。

3结论

基于上述比较分析,对于超高层民用建筑的防火要求,笔者建议在《建筑设计防火规范》(整合修订送审稿)中增加以下规定:

3.1耐火等级。超高层民用建筑耐火等级不应低于一级,其楼板的耐火极限不应低于2.00h。

3.2防火间距。超高层民用建筑与相邻民用建筑的防火间距应符合高层民用建筑与民用建筑防火间距的相关规定,其间距在采取设置防火墙等措施的条件下不应减小;超高层民用建筑与工业建筑的防火间距(包括与甲类厂房,与甲类仓库,与甲、乙、丙类液体储罐,与可燃气体储罐,与可燃材料堆场的防火间距)应符合高层民用建筑与工业建筑防火间距的规定,其间距在采取设置防火墙等措施的条件下也不应减小。

耐火范文篇7

关键词:矿物绝缘电缆重要场所危险场所消防电气火灾安全性

矿物绝缘电缆(MineralInsulatedCables)简称MI电缆,是一种无机材料电缆。电缆外层为无缝铜护套,护套与金属线芯之间是一层经紧密压实的氧化镁绝缘层。按用途不同可分为:配线电缆(WiringCables)、加热电缆和加热元件(HeatingCablesandHeatingElements)、热电偶电缆及补偿电缆(ThermocoupleCablesandCompensating)、特种电缆(SpecialCables),在实际应用中最常用的是配线电缆,本文着重介绍配线电缆在工程应用中的主要特性。

安全性:

据统计,1997年我国电气火灾发生次数占火灾总次数的26.5%,造成的损失为总损失的43.9%。1998年相应比例为27.5%和37.3%,电气火灾的发生次数以及所造成的损失均属各类火灾之首。据分析,其中由线路引发的占电气火灾的一半之多,所以合理地选择电缆是避免电气火灾或即使发生火灾也能可靠保证消防设备供电的连续性,进而尽早灭火,减少损失的重要环节。

矿物绝缘电缆是由铜和氧化镁制成。铜的熔点为1083℃,氧化镁的熔点是2800℃。所以在其温度不超过1000℃时,电缆结构不会出现问题。因此在绝大部分场所是不会因熔化或燃烧而解体的,更不会传播火种。

矿物绝缘电缆是由无机材料制成,它不会放出任何烟雾和有害气体,而相比之下,传统的电缆(包括阻燃、低烟低卤、低烟无卤和其相应的耐火电缆)在着火、被火烧或长期过载绝缘受损时烟雾和有害气体都会存在。聚氯乙烯绝缘电缆的烟雾中有大量的CO、CO2和氯化物,其它电缆的烟雾中还会含有溴化物、氟化物和硫化氢,这些物质对人的危害是很大的。根据美国海军工程标准NES713提供数据,一些有害气体很少量就会造成人体的极大伤害(见表1)。含氯化物的电缆燃烧时产生HCL气体会使弱电系统损坏。矿物绝缘电缆在火灾时,可保证3小时以上的持续供电时间,远远大于国家规范的要求。

在耐过电压方面,传统电缆在超过其极限耐压值发生意外时被击穿,绝缘层被损坏,电缆必须更换,而矿物绝缘电缆击穿的是击穿处的空气电离作用,氧化镁熔化后成份不会改变。所以矿物绝缘电缆在耐过电压和性能稳定性方面远远优于传统电缆。

在防水、防爆方面,矿物绝缘电缆是最安全的电缆。由于其护套是无缝铜管,水、油和气体不会渗透到电缆内部,在有腐蚀性的特性场所可加装PVC护套,多种的防护措施使其有极高的安全性。在耐机械损伤方面,矿物绝缘电缆可经受剧烈的机械破坏,而不会损害其导电性能,在电缆外径变形到原外径1/3的情况下仍可正常工作。在耐辐照方面,因为其为无机材料制成,材料自身时性稳定,可长期保持较高绝缘电阻,而传统电缆其绝缘层在强辐照下很容易老化,绝缘特性降低出现危险。

从上述各方面的比较可以看出,矿物绝缘电缆是最安全的电缆。

二.耐火性

目前常用的聚氯乙烯电缆(普通型、阻燃型、耐火型等)最高使用温度为70℃,超过此温度绝缘层老化加速,寿命缩短,进而引发火灾。按照英国BS6387电缆耐火特性测试标准,只有矿物绝缘电缆能满足以下三种测试:

A明火燃烧950℃,持续3小时

B明火燃烧650℃,喷淋水持续15分钟

C明火燃烧950℃,每隔30秒用重物撞击,

国产的耐火电缆(NH—VV)只能满足GB12666.6-90耐火测试中A类测试:明火燃烧950℃,持续90分钟。而大多数厂家生产的耐火电缆仅能满足B类测试;明火燃烧750℃,持续90分钟。下面引用公安部四川消防科研所和浙江久立耐火电缆有限公司做的几种电缆短样随炉温变化的耐火实验数据(见表3):由实验结果可以看出矿物绝缘电缆的耐火特性是十分优秀的,即使其它任何电缆附加保护装置也无法与其相比。

三.高可靠性

一种定义耐火电缆的依据是GB12666.6-90《电线电缆耐火性试验方法》和IEC331(1970),这一标准定义:“耐火电缆是在长时间燃烧以及长时间燃烧后仍能继续正常工作的电缆;假设火的大小足以破坏施加火焰处的有机材料。”就其结构而言,耐火电缆就是在导电线芯上缠绕云母带再挤塑料绝缘和护套,从试验内容上是一种单一的火焰燃烧环境。对于电缆系统而言,结构的破坏和热绝缘的损坏并不重要,主要判断准则是该电缆在整个火灾过程中维持电路的完整性如何。而在火灾现场各种外界因素的作用很多,如重物冲击,对于外层烧毁而使内部绝缘层变得结构疏松的耐火电缆来说,就如雪上加霜,稳定性大打折扣,虽然可以在线路上加防火措施也很难弥补其先天的不足,而矿物绝缘电缆内部结构紧密,铜外套在高温下不会脱落,即有重物冲击,一般情况下只会变形而不会断裂,它有先天的优越性。所以在耐火性能上矿物绝缘电缆占有绝对的优势。电缆除了火的作用外,建筑物的移动、振动以及水的冲击对电缆有更加不良的作用。从公安部四川消防科研所及浙江久立耐火电缆有限公司作的模拟实体火灾电缆特性实验报告中就可看出,见表4、表5。

矿物绝缘电缆在带15KW水泵负载的实验中,可以发现在水喷淋冲击其所载电流几乎没有变化,所以矿物绝缘电缆的耐火性能是极为可靠的。

四.耐久性

正常使用电缆寿命是由其绝缘层的完好程度来决定的。塑料电缆中寿命较长为交联聚乙烯绝缘电缆。在完全正常的使用条件下,最长的使用寿命是40年左右,聚氯乙烯绝缘电缆的使用寿命约为20年。如果出现过载情况发生,寿命会大幅度降低,如果发生局部火灾,电缆受损还必须更换。按建筑物正常的使用寿命计算,电缆也至少得更换2次以上。

矿物绝缘电缆的寿命取决于铜护套的氧化速度,其氧化速度与其工作温度有关,即使在250℃下长期使用,需要2.57年才使铜护套氧化0.025mm,表6列出了不同温度下铜护套的氧化速率。

由此表中数据可以看出,即使是最小规格的矿物绝缘电缆(其铜护套厚度为0.46mm)其寿命也可达数百年,远远超过建筑物的使用寿命而实际上电缆也不可能长期在250℃下使用。即使铜护套氧化,其氧化物-氧化铜仍是良导体,对其性能的影响很小。所以,矿物绝缘电缆是一种“永久性电缆”。

五.经济性

电缆的经济性应从两方面考虑:一是初投资、二是运行费用。

从初投资方面,由于矿物绝缘电缆的结构与材料和其他电缆不同,同截面电缆单位长度的价格要比聚氯乙烯绝缘电缆(包括阻燃和耐火电缆)高,但是矿物绝缘电缆的使用温度为95℃,IEC364-5-52394年修订版规定裸矿物绝缘电缆使用温度可达105℃,因而载流量要比耐火电缆高得多。若按允许温升到90℃来选择矿物绝缘电缆,在25mm2以下时,其截面比耐火电缆小一个截面等级,而35mm2及以上时(35mm2及以上的矿物绝缘电缆为单芯结构),可以小两到三个截面等级。相对于耐火电缆单纯从价格上相差不大,在矿物绝缘电缆相对与耐火PVC电缆NH-VV(70℃)、耐火PVC钢带铠装电缆NH-VV22(70℃)、耐火低烟无卤电缆NH-DW-YJE(90℃)的性格比较中,相同载流量下的价格差在-22%—37%之间,这个比较是在以下条件下进行的:

载流量按照环境温度30℃。

NH-VV电缆及NH-DW-YJE电缆价格按照国家红本价格下浮30%计算。NH-VV22电缆价格按照国家红本价格下浮35%计算。

矿物绝缘电缆的护套替代DE线。

可以看出矿物绝缘的价格并不是很高,但其优异的性能指标是其它传统电缆无法比的,所以矿物绝缘电缆的性价比是非常高的。

矿物绝缘电缆比密集型母线槽(三相五线)的价格优势更为明显,200—1000/A时密集型母线槽比其贵604%—147%,而且耐火及施工费用方面矿物绝缘电缆有很大的优势。

矿物绝缘电缆可以直接明敷,不需其它的防火附件(如防火桥架或耐火线槽等),桥架或线槽部分可以节省很多的资金,因为矿物绝缘电缆的外层为铜护套可以作为接地线,节省一根电缆,而且接地效果和可靠性更好,也节省了相应的施工费用。矿物绝缘电缆施工方便,节省施工时间和强度,其弯曲半径小于传统电缆,节省空间。

如浙江久立耐火电缆有限公司在人民大会堂大礼堂改造工程中,采用矿物绝缘电缆的工程总造价是采用耐火电缆方式的97.59%,而且施工周期短,施工用料少,工人劳动强度降低,劳动用工的工时数为采用耐火电缆的38%。

从使用费用方面,矿物绝缘电缆允许在更高的温度下使用,截面35mm2及以上为单芯结构,散热条件好,只需明设,而其它电缆,尤其是消防用电线路必须加以保护(如明敷穿钢管做防火处理、耐火线槽或暗设埋入混凝土中等),这样就会使电缆比在其明敷时载流量更低,同截面时损耗比矿物绝缘电缆要大得多。在电压降方面,矿物绝缘电缆也远优于传统电缆。表7中更出了矿物绝缘电缆与聚氯乙烯绝缘电缆的载流量及电压降的对比,可以明显看出矿物绝缘电缆的优势。

表中环境温度均为30℃,矿物绝缘电缆温升至护套温度为70℃,聚氯乙烯电缆温升至芯线温度70℃。

相同截面截流量的增加可以减小占用的空间,电压降的降低不仅可以提高电源使用效率,还可以提高受电设备的使用寿命和可靠性,而且上述的比较中只是一次性投资的比较,还未考虑聚氯乙烯电缆由于自然老化在20—40年就要更换的因素。所以在经济性方面从整体考虑,矿物绝缘电缆优于传统电力电缆。

六.易于施工

相同截面下,矿物绝缘电缆的外径、体积、重量比传统电缆小得多。据俄罗斯学者计算,在1050A的三相交流线路中,矿物绝缘电缆与橡皮绝缘电缆相比,重量轻30%,外型尺寸小67%。美国电气保险商试验室(UL)确认矿物绝缘电缆比其他电缆穿刚性电缆管(RigidConduit)重量轻60%,所需空间少80%。另外矿物绝缘电缆允许的弯曲半径比其它电缆小得多,其弯曲半径根据规格不同在电缆外径的2—6倍之间,远比传统电缆的10—30倍要小,所以安装的要求比传统电缆宽松,所需的空间也小,劳动强度也低,尤其是在改造工程中,其优势更为明显。所以矿物绝缘电缆在施工便捷方面远优于传统电缆。

在国外矿物绝缘电缆已得到广泛应用,其领域包括民用及公用建筑、机场、地铁、医院、古建筑、加油站、船坞、冶金等等。在国内近几年才开始应用。1999年建设部发行了矿物绝缘电缆的施工图集,其可靠性得到了认可,并将以其十分优越的性能在今后的工程使用中得到更加广泛的认同。

参考文献

1.〈〈民用建筑电气计规范〉〉JGJ/T16-92中国计划出版社1993

2.〈〈电源质量问题初探〉〉国际铜业学会(中国)

耐火范文篇8

摘要:消防设备电气配线设计矿物绝缘电缆

火灾发生时消防设备的正常运行对于人员平安疏散、控制火势蔓延、减少火灾损失有十分重要的功能。因此消防设备的电气配电线路配电系统应满足可靠性、耐火性、平安性、有效性、科学性的要求,以保证火灾时消防设备供电不会中断,保障人身平安,保证供电持续时间,确保供电质量并力求系统接线简单,投资省、运行费用低。

1.消防设备电气配线设计

在对消防电气配线的具体设计过程中,以《火灾自动报警系统设计规范》为主,以《高层民用建筑设计防火规范》、《民用建筑设计防火规范》为辅,同时兼顾《民用建筑电气设计规范》,根据不同消防设备其配电线路应选用耐火配线或耐热配线。消防设备的耐火配线是指按照时间-温度标准曲线对消防设备配电线路进行试验,从受火的功能起,到火灾升温达到840℃时,在30min内仍能继续有效供电的线路;消防设备的耐热配线是指按照时间-温度标准曲线的1/2曲线,对消防设备配电线路进行试验,从受到火的功能起,到火灾升温达到380℃时,在15min内仍能有效供电的线路。建筑消防设备配电线路的具体防火设计,应将变配电所低压母线、应急母线和动力电缆出线到具体消防设备最末级配电箱的所有配电线路作为耐火耐热配线的考虑范围,并分不同系统考虑各自消防设备的耐火耐热配线方案。

1.1火灾自动报警系统配电线路

火灾自动报警系统的报警线路可采用耐热配线,火灾自动报警系统的联动线路则应采用耐火配线,其目的是保证在火灾自动报警系统瘫痪状态下,消防控制中心仍然能够通过手动操作起动各消防设备。

1.2消火栓泵、喷淋泵等配电线路

消火栓系统加压泵、水喷淋系统加压泵、水幕系统加压泵等消防水泵的配电线路包括消防供电电源干线和各水泵电动机配电支线两部分。水泵房供电电源应为双电源末端切换,一般由建筑物变配电所低压配电柜直接提供和自备发电机房供给。消防供电电源干线应采用耐火配线,水泵电动机配电支线路可采用耐热配线,条件许可时也可采用耐火配线。

1.3气体、卤代烷等灭火设备配电线路

气体、卤代烷等灭火设备控制盘的电源由双电源末端切换供给,电源线-控制盘-电磁线圈-起动回路配电采用耐火配线,其他线路(包括探测器、报警器、指示灯、电动关闭门窗等)可选用耐热配线。。

1.4防排烟系统的装置配电线路

防排烟系统包括送风机、排烟机、70℃防火阀、280℃防火排烟阀等各类阀门以及送风口、排烟口等装置。它们一般布置较为分散,其配电线路防火既要考虑供电主回路,也要考虑联动控制线路。防排烟装置配电线路应选用耐火配线,联动和控制线路也应采用耐火配线。另外,根据规范要求,分支线不得穿越不同的防火分区。

1.5防火卷帘门、常开防火门配电线路

在火灾初期,防火卷帘门起着人员疏散、防止火灾蔓延的功能,所以配电线路应可靠。一般情况下,防火卷帘门电源引自建筑各楼层或同一防火分区内带双电源切换的配电箱,经分配后向各防火卷帘门专用控制箱(该控制箱设在防火卷帘门顶部)供电,供电方式采用放射式。当防火卷帘门水平配电线路较长时,应采用耐火配线,以确保火灾时仍能可靠供电并使防火卷帘门有效动作,防止火势蔓延。

常开防火门配电一般应采用耐火配线,以确保火灾时常开防火门可靠关闭,防止火势蔓延。

1.6消防电梯配电线路

消防电梯电源必须采用专线。工程设计中消防电梯配电一般由高层建筑的变配电所低压配电柜敷设一路专线至位于顶层的消防电梯机房,另一路专线由地下室自备发电机房引来,线路较长且路径复杂。为提高供电可靠性,消防电梯配电线路应采用耐火配线。

1.7火灾应急照明线路

火灾应急照明包括疏散指示、火灾事故照明和备用照明。疏散指示采用带蓄电池的应急指示标志,火灾事故照明采用带蓄电池的应急照明灯,备用照明则利用双电源切换来实现。高层建筑的火灾应急照明线路应采用耐火配线。

1.8消防广播、通信等配电线路

火灾事故广播、消防电话、火灾警铃等设备的电气配线可采用耐热配线。

根据国内外电线电缆产品的发展和对电气线路的保护方式的探究结果,对消防设备的耐火配线应优先选用矿物绝缘电缆,也可选用封闭式桥架等有效保护的耐火电缆或穿金属管并埋设在不燃烧体结构内,且保护层厚度≥30mm。耐热配线可选用摘要:线路明敷时,采用穿金属管或金属线槽保护并应用防火涂料提高线路的耐火性能;当采用阻燃和耐火电缆时,可不穿金属管保护,但应敷在电缆井内或电缆沟内或吊顶内有防火保护办法的封闭式线槽内,但当和延燃电缆敷设在同一竖井时,二者之间应用耐火材料分隔开。消防控制设备工作接地应采用专用的25mm2以上铜芯控制干线。

2矿物绝缘电缆用于消防设备电气配线的探索

2.1矿物绝缘电缆简介

矿物绝缘电缆(MineralInsulatedCables),是由铜芯、铜护套和氧化镁绝缘等全无机物组成的电缆。因其采用独特的制造方式,使氧化镁绝缘材料高度紧密地压实在电缆的无缝铜护套中,和铜芯、铜护套共同形成密实的一体,因而具有良好的耐火、耐高温、载流量大、防水、耐腐蚀、耐机械损伤、耐辐照及电磁相容性、美观大方等特征,同时该电缆在火灾条件下不会放出任何烟雾、卤素及有毒有害气体。同时矿物绝缘电缆的铜护套可作为地线使用,和其它类型相比可减少一根芯线,只需明敷,轻易安装,加之使用寿命长,可以预期在消防设备的电气配线中采用矿物绝缘电缆会产生良好的经济效益和社会效益。

2.2国外标准规范对矿物绝缘电缆用于消防设备电气配线的规定或推荐情况

由于矿物绝缘电缆可以从根本上解决电气线路的平安新问题,国际上很多国家的有关建筑物标准和规范对在哪些场合和部位一定要用矿物绝缘电缆,在哪些场合或部位推荐使用都有具体明确的规定。下面粗略介绍一下国外标准规范对矿物绝缘电缆用于消防设备电气配线的规定或推荐情况摘要:

2.2.1英国国家标准中的规定或推荐情况

(1)BS5839建筑物的火灾探测和报警系统(Firedetectionandalarmsystems)第一部份系统设计、安装和维护的实施法规(Part1Codeofpracticeforsystemdesigninstallationandservicing)

(2)BS5266-1摘要:1999应急照明第1部份摘要:除影院及用于娱乐的非凡建筑物外的其它建筑物的应急照明(Emergencylighting–Part1摘要:Codeofpracticefortheemergencylightingofpremisesotherthancinemasandcertainotherspecifiedpremisesusedforentertainment)

2.2.2澳大利亚国家标准中的规定或推荐情况

(1)线路规则(Wiringrules)

(2)AS2941-1995固定消防装置—泵站系统(Fixedfireprotectioninstallations–Pumpsetsystems)

(3)AS2293建筑物中应急疏散照明(Emergencyevacuationlightinginbuildings)第1部份摘要:安装要求(Part1摘要:Installationrequirements)

2.2.3美国国家标准中的规定或推荐情况

(1)NFPA70国家电气法规(NationalElectricalCode)

在上述标准中,都将矿物绝缘电缆列入作为规定或推荐选用的菜单中,而且规定在火灾时间较长的情况下使用的,则应选用矿物绝缘电缆,假如选取用其它电缆则必须埋设在建筑物的不燃烧结构中或用隔板将电缆和其它重大危险区域隔开,并应有附加的机械保护。

2.3国内对矿物绝缘电缆的生产和探究情况

我国对矿物绝缘电缆的探究开发较晚,1968年上海电缆探究所开始探究用于反应堆堆芯测量用探测电缆,70年代开始探究电力用配线电缆;80年代初沈阳电缆厂六分厂开发了小规格的电力用配线电缆和加热电缆,80年代中期北京东风电缆厂从意大利LMI公司引进全套矿物绝缘电缆生产技术革新和部份设备,因种种没有正式生产并将设备转给哈尔滨电缆厂,也没有投入生产,80年代末上海电缆探究所将矿物绝缘电缆生产技术转让给湖州久立耐火电缆有限公司[现改名为泰科热控(湖州有限公司)形成生产线,在1996年国家计委将矿物绝缘电缆列为“国家重大科技成果产业化项目”后引进国外关键生产设备,建成规模较大生产水平较高的生产车间,90年代中后期江苏等地的几家电缆厂也建成有生产车间。

为了了解矿物绝缘电缆在高暖和实际火灾中能否对消防设备保持良好的供电能力,参照国外的试验探究,公安部四川消防科学探究所和有关电缆企业共同进行了电缆短样随炉升温的耐火试验和上述电缆用不同敷设方式的模拟实体火灾电缆特性试验探究。

(1)电缆短样试验

电缆短样随炉升温试验样品分别为摘要:矿物绝缘电缆、普通聚氯乙烯电缆、阻燃电缆、隔氧层阻燃电缆、耐火电缆。把电缆同时并排的放在烧结炉中加热升温,电缆的两端伸出炉外,分别连接电源和指示灯用于观察失效温度和时间。从试验结果中可以得出,在高温或火灾情况下,一般电缆(包括耐火电缆、隔氧层电缆),在明敷或穿管保护下都满足不了消防系统供电线路的平安要求,只有矿物绝缘电缆,在明敷的情况下就可以完全解决新问题。

(2)模拟实体火灾试验

参照英国消防探究所的实体火灾试验方案,公安部四川消防科研所的有关电缆企业共同对上述电缆分别选用五种敷设方式(支架裸敷、支架穿管明敷、防火桥架内明敷、防火桥架内穿管、穿管埋墙暗敷)进行了模拟实体火灾试验探究。

探究结果表明摘要:在1小时的实体火灾试验中,电缆的耐火性能,明敷矿物绝缘电缆优于其它类型的电缆,并能保持对电气设备的正常供电能力;普通聚氯乙烯电缆五种敷设方式全部失效;阻燃电缆和隔氧层阻燃电缆除穿管埋墙暗敷外全部失效;耐火电缆除有防火桥架保护和埋墙暗敷外全部失效。矿物绝缘电缆还能够在火灾中承受试验重物坠落的冲击,能够经受喷淋水的冲击,能再次正常通电启动相关供电设备,完全能够在火灾条件下保持规定时间的消防供电。另外普通电缆、阻燃电缆、阻燃隔氧层电缆及耐火电缆,在明敷及穿钢管并施防火涂料保护时,其持续供电时间均未达到30分钟,这对于消防控制室、消防水泵、消防电梯、防排烟设施等供电时间较长的消防设备供电是不利的。

根据以上探究结果和参照国外标准,我国对《高层民用建筑设计防火规范》进行了修订,《高层民用建筑设计防火规范》中“消防电源及其配电”一节已修订为摘要:

9.1.4消防用电设备的配电线路应符合下列规定

9.1.4.1当采用暗敷设时,应敷设在不燃烧体结构内,且保护层厚度不宜小于30mm。

9.1.4.2当采用明敷设时,除矿物绝缘类不燃性电缆外,应采用有防火保护的金属管或封闭式金属线槽保护。

9.1.4.3当采用阻燃和耐火电缆时,可不穿金属管保护,但应敷在电缆井内或电缆沟内或吊顶内有防火保护办法的封闭式线槽内。

9.1.4.4对供电时间要求较长的消防设备供电线路,当采用明敷设时,宜采用矿物绝缘电缆,或封闭式防火桥架等有效保护的耐火类电缆。

相信通过这次对《高层民用建筑设计防火规范》的修订和实施,我国对矿物绝缘电缆的使用会有一个很大的发展,从而为在火灾情况下消防设备的正常运行、人员的疏散和营救提供有力的技术保障。

参考文献

1.蒋永琨等高层建筑消防设计手册上海同济大学出版社1995

耐火范文篇9

关键词:性能化;防火设计;结构;耐火性能分析

20世纪70年代“性能化防火设计”的概念被提出。性能化防火设计是指根据工程使用功能和消防安全要求,运用消防安全工程学原理,采用先进适用的计算分析工具和方法,通过对建筑环境中设定火灾场景的火灾风险量化和分析进而对建设工程消防设计、方案进行综合分析评估,判断建筑抵御火灾的性能指标是否满足预设的消防安全目标,从而优化消防设计方案的工作方法。结构耐火性能分析是建筑性能化防火设计的主要内容之一。本文详细梳理结构耐火性能分析的一般实施过程,通过对各阶段的把握和准确理解,提高结构专业从业人员对建筑性能化防火设计的理解和解决问题的能力。

1结构耐火性能分析要点

1.1明确目的。结构耐火性能分析的首要目的即为验算结构和构件的耐火性能是否满足现行规范要求。通常来讲,建筑方案的确定是以消防安全设计符合规范为前提的,建筑性能化防火设计也不例外。与传统设计方法不同的是,性能化防火设计对现行规范难以解决的消防设计问题给予了科学的延伸,但这并不意味着性能化防火设计突破了规范,而是以等同于现行规范的安全水平为前提的。因此,无论是传统的建筑防火设计方法还是性能化防火设计,结构耐火性能分析的目的都是不变的。1.2明确方法。从建筑和结构两方面分析确定,我们通常采用两种结构耐火性能分析的方法。第一种方法,验算结构和构件的耐火极限是否满足规范的要求。结构和构件的耐火极限要求在《建筑设计防火规范》GB50016和其他相关的国家标准中均有严格且明确的规定。通过对耐火极限的限定,在建筑专业考量上已经满足各方面防火安全的要求,因而等同于结构的耐火性能满足设计要求。第二种方法,规范规定的耐火极限的火灾温度场作用下,结构和构件的承载能力是否大于荷载效应组合。目前,相关规范的编制过程中也提出了基于计算的结构及构件抗火验算方法。将火灾发生的概率数字化,定义为偶然荷载工况。因此,放宽结构验算标准,即火灾下只验算结构或构件的承载力极限状态,对正常使用极限状态不做验算要求。承载力极限状态一般包括:1)轴心受力构件截面屈服;2)受弯构件产生足够的塑性铰而成为可变机构;3)构件整体丧失稳定;4)构件达到不适于继续承载的变形[1]。一般的建筑结构仅需验算构件的承载能力,而对于比较重要的建筑结构还要进行整体结构的承载能力验算。从安全和可靠性上考虑,以上两种方法是等效的。1.3明确影响因素。1.3.1结构的类型。钢结构的耐火性能较差,需要对钢构件采取一定的保护措施;钢筋混凝土结构比单纯的钢结构耐火性能有所提高,处于被包裹状态下的钢筋会得到有效保护,从而提高结构的耐火性能;钢—混凝土组合结构是将型钢埋入钢筋混凝土结构,型钢得到一定厚度的混凝土包裹后,大大提高了材料的耐火性能,因而此种结构形式是目前为止耐火性能最好的结构类型之一。1.3.2结构的荷载比。这里所谓的荷载比指的是结构承受荷载与其所能承受的极限荷载的比值。对于结构材料,随着温度的升高,其承载能力会逐步降低。对于荷载比较大的结构而言,伴随火场温度的升高,这种材料受力缺陷同样会被温度放大,因而荷载比越大,构件的耐火极限越小。1.3.3结构所处的火灾规模。火灾规模包括火灾温度和火灾持续时间。火灾温度是构件升温的原动力,它主要通过对流和辐射两种方式将热量向构件传递。作为构件升温的驱动者,火灾规模对构件温度场有明显的影响。与此同时,温度越高,结构材料性能劣化越严重[1]。1.4明确分析模型的选取。综合国内外普遍运用的结构耐火性能计算方法,一般包括三种方法:1)整体结构计算模型;2)子结构计算模型;3)单一构件计算模型。我国在关于钢结构防火技术方面也做出了尝试,相关规范也在不断完善之中。关于钢结构的耐火性能计算(也可称为抗火验算)规范大多以结构的跨度、是否采用预应力方式等参数做出规定,重要性结构要求采用整体结构计算模型补充验算;一般结构的相对重要部分可采用子结构计算模型,并要求考虑相应的边界条件予以限定;单一构件计算模型适用于对结构局部体系的某一处构件抗火验算,是结构耐火性能计算的基本方法。

2结构耐火性能分析步骤

结构耐火性能分析包括温度场分析和温度场下结构的安全性分析。建筑火灾模型和建筑材料的热工参数是进行结构温度场分析的基础资料。同样,高温下建筑材料的力学性能是建筑结构高温下安全性分析的基础资料。同时,进行建筑结构高温下安全性分析还需要确定火灾时的荷载。2.1结构温度场的建立。确定建筑火灾温度场需要火灾模型。《建筑设计防火规范》GB50016提出可采用ISO834标准升温曲线作为一般建筑室内火灾的火灾模型。实际中,受建筑室内可燃物数量和分布、建筑空间大小及通风形式等因素的影响,建筑火灾千差万别,为了更加准确的确定火灾温度场,也可采用火灾模拟软件对建筑火灾进行数值模拟。火灾模型确定之后,即可对结构及构件进行传热分析,确定火灾作用下建筑结构及构件的温度。方法及相应选取的参数本文不作详述。2.2结构材料温度性能确定。结构材料的高温性能参数是直接影响耐火性能计算的重要参数。实际操作中,通常以传统材料的性能指标通过温度性能折减系数的方式加以表达。不同材料的温度折减系数,需要通过大量的试验数据推导、计算模拟分析等手段获得,并在实践检验过程中不断修正。2.3结构火灾状态下荷载效应组合。火灾作用工况是一种偶然荷载工况,按照《建筑结构荷载规范》的相关要求按偶然设计状况的作用效应组合确定,火灾下结构的温度标准值采用分项系数加以调整。2.4结构的抗火验算。不同结构形式的抗火验算略有不同,一般方法归纳为:1)设定结构初期状态参数;2)计算结构在满足要求的温度场下承受预期荷载的内力组合;3)计算结构温度场下承载力;4)对比计算结果是否满足,如不满足则调整初期状态参数重复以上步骤,直至满足要求。需要说明的是,基于性能化防火设计的要求,对于一些体型复杂,重要性高的建筑结构,需要考虑温度场下材料本构关系的变化、结构的内力重分布、整体结构的倒塌破坏过程,这就需要对火灾下建筑结构的行为进行准确确定。结构耐火性能分析是个复杂过程,本文仅针对建筑性能化防火设计所涉及到的有关方面做了一些介绍和概括,文中某些提法或理解也不免存在偏差,希望能够得到相关专业从业人员的批评和指正。

参考文献:

耐火范文篇10

[论文摘要]重点分析影响循环流化床锅炉运行周期的前期设备管理、控制风量、负荷以及锅炉防磨等运行中的问题,并提出解决办法。

一、前言

循环流化床锅炉作为一种高效、低污染的新型锅炉,采用流态化循环燃烧,燃料适应性好,可燃用烟煤、无烟煤、贫煤,也可燃用褐煤、煤泥、煤矸石等低热值燃料,且燃烧效率高,达94%。由于采用低温燃烧,大幅降低氮氧化合物的排放量,另一显著特点是可燃用高硫煤,通过向炉内添加石灰石,显著地降低二氧化硫排放浓度,以达到良好的环保效果。另外,灰渣活性较好,可以用做水泥等材料的掺合料。纵观我国循环流化床锅炉的运行情况,磨损严重和运行周期短的问题已成为普遍现象,主要表现在炉膛水冷壁、省煤器、过热器的磨损,耐火材料的脱落损坏等。下面结合我公司2台哈锅产260t/h和两台东锅产410t/h循环流化床锅炉的运行情况,分析一下循环流化床锅炉延长运行周期,稳定生产方法。

二、注重设备前期管理

(一)搞好设备的进厂检验

目前,由于国家加强环境保护的执法力度,政策上对循环流化床锅炉的倾斜,循环流化床锅炉纷纷上马,很大程度上拉动了锅炉市场。特别是循环流化床锅炉,行情紧俏,供不应求。许多锅炉厂超出生产能力,为此,各锅炉用户应严把进厂检验这一关。尤其是易磨损部件、承压部件的检验,详查随机资料,特别是出厂检验报告,以确保整体质量,为以后的长周期运行做好基础保障。

(二)严格建设安装标准

在锅炉的建设过程中,要严格按照安装规程。特别是一些重要的尺寸,膨胀缝,一定要严格控制。因为电站锅炉的蒸汽初参数较高,钢材的热膨胀值较大。稍有偏差,很容易造成局部应力集中,变形损坏。这主要集中在让管道的弯头部位或焊接部位。另外,要注意施工的工序,要有先有后。

(三)筑炉工作及耐火材料

由于近些年循环流化床锅炉行业的兴旺发达,耐火材料市场表现活跃,各商家纷纷抢占市场,热闹异常。在短短十余年中,耐火材料的生产厂家,从产量到质量,从品种到规模,都有了迅猛的发展。市场上有时出现鱼目混珠、以假乱真的现象,为此用户要谨慎招标采购。建议在选择耐火材料时,应当详细而广泛的进行考察论证,确保用上货真价实、性能优良的耐火材料,确保锅炉不至于因耐火材料而影响长周期运行。在选择好耐火材料供方的基础上,还要注重耐火材料的施工工艺,因为这也直接影响锅炉的安全运行。基于以上两点,要重点作好耐火材料的养护工作,人们习惯上在筑炉结束,将外护板全部焊接完成后,按部就班地进行烘炉。殊不知,水蒸气在护板内侧反复蒸发与冷凝,影响耐火材料的烘干与烧结。为此,建议在有条件的情况下,尽量在烘炉结束后再做外护板。或者在护板上预留排气孔,保障水汽的及时排除。根据耐火材料的固有特性及施工工艺,制定适宜的烘炉曲线,并严格按烘炉曲线进行。特别是在投煤初期,一定要限制升温速度。往往有些厂家,在启炉的过程中,迫不及待的过早投煤,没有达到煤的燃点,由于反应滞后。随着温度的逐渐升高,一旦达到着火点,则发生爆燃现象.炉膛突然严重正压,床层温度急剧上升,温升高达100℃/min。对耐火材料和锅炉受热面产生强烈的热冲击,对炉体产生损伤性的破坏。

三、运行操作过程中应注意的问题

(一)控制适宜的床温

在运行过程中要加强对料层温度监视,一般将料层温度控制在850℃-950℃之间,温度过高,容易使流化床体结焦造成停炉事故;温度太低易发生低温结焦及灭火。必须严格控制料层温度最高不能超过970℃,最低不应低于800℃。在锅炉运行中,当料层温度发生变化时,可通过调节给煤量、一次风量及送回燃烧室的返料量,调整料层温度在控制范围之内。如料层温度超过970℃时,应适当减少给煤量、相应增加一次风量并减少返料量,使料层温度降低;如料层温度低于800℃时,应首先检查是否有断煤现象,并适当增加给煤量,减少一次风量,加大返料量,使料层温度升高。一旦料层温度低于700℃,应做压火处理,需待查明温度降低原因并排除后再启动。

(二)控制适宜的负荷

根据实际运行情况来看,循环流化床锅炉的负荷最好不要超过额定负荷,以控制在80~95%为理想。在此负荷下,操作稳定,效率较高,磨损较轻,运行周期较长。因为,在超负荷情况下,循环倍率增加,流化风量加大,存在后燃现象,造成后部高温,甚者造成返料器结焦,危及锅炉的安全运行。

(三)运行过程中的参数调整

基于循环流化床的燃烧机理,需要合理的控制炉膛差压、料层差压、流化风量、循环倍率、蒸发量。如果炉膛差压过低,有可能是返料量不够,分离效率低造成的。这将同时造成尾部受热面的加速磨损,过热器、省煤器的磨损泄漏。料层差压偏低,则炉膛蓄热量少,一旦给煤出现问题,容易灭火。如果料层差压偏高,则需较大的流化风量,又增加动力消耗和磨损。事实证明,超负荷运行,得不偿失,将付出巨大的代价。

(四)控制好入炉煤的颗粒度

由于一些厂家为了节省投资将给煤由两级破碎改为一级破碎,造成给煤颗粒度太大,有的颗粒度竟达30~50mm,严重影响了床料的流化,易造成结焦现象的发生,堵塞落渣管,甚至造成大面积结焦而停炉。所以控制好入炉煤的颗粒度是至关重要的。有的电厂在原煤破碎前上了筛分设备进行破碎前预筛分,这不仅减少了破碎机的磨损而且减少了厂用电的消耗。(五)杜绝野蛮开停炉

强行降温、急剧升温、快速升压都危及到锅炉的安全运行。锅炉故障停炉后,急于检修,强制通风降温,由于各部位的膨胀系数不一致、温度不一致,很容易造成炉墙,炉管的损坏。另外,在锅炉启动时,急于求成,快速升压、升温,膨胀不到位,损坏锅炉。特别是点火初期,过早投煤造成煤炭爆燃,床温骤然升高。强大的热冲击,造成耐火材料快速膨胀,产生皲裂或金属焊缝拉伤。

四、关于循环流化床锅炉的防磨问题

(一)水冷壁的防磨

根据循环流化床锅炉的运行机理,炉膛内是典型的气固两相流,高强度的物料反混,对膜式水冷壁产生冲刷磨蚀。通常的处理办法是在卫燃带覆盖耐火材料,结果造成磨损区域上移,只好再次覆盖耐火材料,如此反复,最终以传热面积减少更换水冷壁管而告终。另一种办法是进行喷涂耐磨材料,但喷涂材料的上部区域磨损较严重。目前,尚没有发现经济实用的解决办法。

(二)分离器的防磨

在炉膛出口处,为了达到较高的气固分离效率,对高温烟气进行节流加速,对中心筒和分离器产生磨损。使中心筒变形穿孔和旋风分离器耐火材料的损坏。为此,在旋风分离器耐火材料的施工中,选择耐磨性能强的材料,同时要严格控制烟气进口和中心筒的安装尺寸。

(三)过热器的防磨

分离后的烟气,经扩压以5~10m/s的速度冲向过热器,在通过第一排过热器管后,流通截面减小,烟气节流加速,冲刷磨损第二排管;同时伴随着局部小面积的急剧磨损。可以在第二排过热器管前加装防磨罩,同时调整运行风量,避免烟气流通偏流,形成烟气走廊。

(四)省煤器的磨损

与过热器相类似,一般采取加防磨罩的办法进行处理。比较好一点的办法是采用热管式省煤器。