流风机范文10篇

时间:2023-04-06 13:38:23

流风机

流风机范文篇1

风机是火力发电厂中的关键辅机,轴流风机因效率高和能耗低而被广泛采用。在实际运行中,不少电厂因轴流风机特别是动叶可调轴流风机的可靠性差,频频发生故障,导致电厂非计划停机或减负荷,影响了机组发电量。近几年来,广东地区的几家电厂如珠江电厂4×300MW、南海电厂2×200MW、恒运C厂1×210MW均发生过动叶可调轴流风机断叶片事故,也有在同一电厂反复多次发生,严重影响机组安全满发。因此,从根本上解决这些问题,提高大型火电厂轴流风机运行的可靠性显得十分必要和迫切。

1电站风机可靠性概念

电站风机可靠性统计的状态划分如下:

送引风机运行可靠性可用以下两个重要参数说明。

式中tSH——运行小时数,指风机处于运行状态的小时数;

tUOH——非计划停运小时数,指风机处于非计划停运状态的小时数,亦称事故停运小时数。

90年代以前,我国大型电站(125MW及以上)锅炉风机引起的非计划停机和非计划降负荷较频繁,据统计,在125MW、200MW、300MW及600MW机组中,按电厂损失的等效停运小时算,送、引风机均排在影响因素的前10位,与发达国家的差距较大。

90年代以后,我国几个主要电站风机制造厂设备质量提高较快,针对我国电厂的实际情况,引进外国先进技术,使电站风机特别是动叶可调轴流风机的可靠性不断地得到提高。例如:1997年某鼓风机厂对其利用引进技术生产的、在15套300MW火电机组中使用的28台动叶可调轴流式送风机和24台动叶可调轴流式引风机进行可靠性分析,发现其运行率已达99%。其他厂家的产品的可靠性也有较大的提高。

2影响轴流风机可靠性的因素

2.1电站风机事故分类

第1类事故:风机故障引起火电机组退出运行。

第2类事故:风机故障只引起火电机组出力降低,还没有造成火电机组退出运行,或送、引风机仅有某一台退出运行。

第3类事故:风机损坏不严重,不需要送、引风机退出运行进行维修。

第1、2类事故直接影响风机运行可靠性,第3类则是潜在的影响因素。

2.2轴流风机主要故障

a)转子故障。如转子不平衡、转子振动等,最严重的甚至发生叶轮飞车事故。

b)叶片产生裂纹或断裂。在送、引风机上均有可能发生,近几年在多个大型电厂已发生多宗。

c)叶片磨损。主要是发生在引风机上。由于电除尘器投入时机掌握不好或电除尘器故障,造成引风机磨损。这是燃煤电站引风机最容易发生的故障。

d)轴承损坏。

e)电机故障。如过电流等,严重时烧坏电机。

f)油站漏油,调节油压不稳定。既影响风机的调节性能也威胁风机的安全。

2.3轴流风机发生故障的原因

2.3.1产品设计和制造方面

a)结构设计不合理,强度设计中未充分考虑动荷载。

b)气动设计不完善。对气动特性、膨胀不明。

c)叶片强度安全系数不够,叶片材质差。

d)叶片铸造质量差。

e)焊接、装配质量差。如叶片螺栓脱落打坏叶片等。

f)控制油站质量差。

g)监测、保护附件失灵。

2.3.2运行、检修方面

a)轴流风机长期在失速条件下工作,气流压力脉动幅值显著增加,叶片共振受损。

b)不按风机特性要求进行启动并车,风机工况与系统特性不匹配。

c)不投电除尘或电除尘效率低导致风机入口含尘浓度高。

d)两台风机并列运行时,两者工作点差异较大。

e)轴流风机喘振保护失灵。

f)无定期检修或检修不良。

2.3.3安装方面

a)轴系不平衡或联接不好,导致风机振动大、轴承、联轴器易损坏。

b)执行机构安装误差大,就地指示值与控制室反馈值不一致,导致操作不准确。

2.3.4风机选型与系统设计方面

风机选型不当造成风机实际运行点在不稳定气流区或接近甚至进入失速区,以及风机管路系统特性不合理,均可造成风机转子有关部件的疲劳与损坏。

3提高轴流风机可靠性的措施

3.1选型

电站锅炉风机的型式一般有离心式、静叶可调轴流和动叶可调轴流风机,应根据具体使用场合,经技术经济比较确定风机型式。3种风机的比较见表1。

表13种风机的比较

项目离心式静调轴流动调轴流

结构复杂程度低中高

对介质含尘量的适应性好中差

可比运行效率低中高

可比设备价格低中高

可靠性高中低

选择轴流风机时,设计点应落在效率最高、并在此基础上动叶角度再开大10°~15°的曲线上,这样,即使机组在低于额定工况下运行,风机仍可在最高效率区内运行。

对于燃煤锅炉,由于动叶可调轴流风机圆周速度高,考虑到磨损问题,宜采用中速,不宜选用过高转速。

3.2并联设计与运行

在选择动叶可调轴流风机的参数时,除了按有关规程规定给出裕度外,还要依据电厂实际情况,不仅考虑最大保证工况点(TB)、MCR工况、100%负荷工况,还要考虑点火工况以及风机安全并车工况。后两种工况往往被人忽视而给风机的调试与运行带来困难。故应特别注意动叶可调轴流风机的并联设计与运行。

两台风机并联运行在C点,但每台风机运行在各自特性曲线的A点上。当第1台风机保持同样叶片角度运行时,运行点将移到B点,第2台风机要启动并入时,关闭出口门启动,叶片角度调至最小。打开隔离门后,第2台风机将在D点运行,逐渐开大其角度,并调小第1台风机角度,它们的运行点将分别沿DE和BE线移动,到达E点时两台风机并联,再同时调节两台风机到所需的参数。

可以看出,当第1台风机运行点压力高于第2台风机失速线的最低点S的压力时,第2台风机启动将发生喘振,这时需降低第1台风机出力,使B点位于S点之下再启动第2台风机。

3.3其他设计措施

如果可以降低风机负荷,总是可以并车的,如燃油锅炉。但对于某些燃煤锅炉,例如中速直吹式制粉系统的冷一次风机,由于其制粉系统必须有一个最低的干燥出力要求和送粉压头,在风机出力下降受到限制的情况下,有两个方法解决并联运行问题。一是选择风机时计算好单台风机按要求工况运行时系统阻力,使S点高于该阻力线,这意味着设计点位于特性曲线更下端,以致压头较高风机效率较低。二是可以在轴流风机风道上加一个旁路再循环门,启动该风机时,先关闭出口门,打开循环门。待第2台风机越过失速线后打开出口门,关闭循环门,这样做的缺点是增加了初投资,增加了送风倒回泄漏的可能性。

在设计风机进出口连接管道时,要力求避免产生涡流的可能性,某些转弯处还应采取加装导流板的措施。

3.4调整与维护

a)必须确保动叶实际角度与就地指示值及与控制室反馈值相一致。若误差大,运行人员便难以判断动叶真实角度,从而影响运行工况。严重时,风机因长时间处于失速边缘或失速区内运行而导致断叶片事故的发生。

b)对于燃煤电站,不能让引风机长期在超标烟尘中受磨。解决轴流风机磨损问题的关键是降低风机入口含尘浓度和灰粒尺寸。为此,应加强清灰等工作。

c)加强对电除尘器的管理,确保电除尘器运行正常,减少烟尘对引风机叶片的磨损。

d)确保风机喘振保护正常投入。

流风机范文篇2

关键词:冷却塔轴流风机维护检修循环水

华北制药股份有限公司4个循环水系统共有冷却塔风机16台,其中L85A型3台,LF60型3台,LF47型10台,其结构示意图如图1。其每小时循环水冷却处理量19100吨,占公司总用水量的96.5%。作为大型化工制药企业,循环水用量大,水温要求低。这就决定了冷却塔风机作为循环水系统中的关键设备必须长时间安全连续运行。因此,也就要求必须做好冷却塔风机的维护与检修工作。经过对循环水冷却塔风机15年的使用与维护,总结经验教训形成了一套比较有效的维护与检修方案。

1叶片2轮毂3风帽4减速机5传动轴6润滑油管

7电机8电机座9支撑主工字钢10减速机支座11风筒

图1冷却塔轴流风机结构示意图

1、减速机的维护与检修

减速机的主要部件是锥齿轮、伞齿轮、斜齿轮及滚动轴承。在负荷的长期作用下,齿轮常发生的失效形式是轮齿工作面磨损和点蚀。齿轮出现磨损或点蚀后,运动精度降低,噪音和振动增大。如果点蚀尺寸大,蚀坑往往成为疲劳源,最终导致轮齿疲劳断裂。因此每年要对齿轮接触精度和点蚀情况进行检查。接触精度的要求见表1。点蚀坑的尺寸长度不超过齿长的1/3和齿高的1/2。滚动轴承正常的失效形式是滚动体或内外圈滚道上的点蚀破坏。当点蚀破坏发生以后减速机会出现比较强烈的振动、噪声和发热现象。由于滚动轴承不宜经常拆卸,并且受到结构和安装位置所限,对滚动轴承直接检查比较困难。在停机后盘车,用听音棒贴住轴承函,仔细听轴承转动的声音,正常轴承转动的声音应是清脆、连续、均匀的。如果声音沉闷、断续、发卡说明轴承可能存在缺陷,要拆下进一步检查,确定失效后更换。此外,使用优质的润滑油并加入适当添加剂有助于延长齿轮、轴承的使用寿命。我公司定期对润滑油的粘度、酸值、机械杂质等重要指标进行化验,达不到标准及时更换。并且在L85A型、LF60型风机减速机中加入了亚米加904润滑油添加剂,此两种风机齿轮、轴承的设计寿命为50000小时,自1997年使用至今已连续运行60000余小时,历次检查齿轮、轴承都完好。

表1风机减速机齿轮接触精度要求名称按高度按长度侧隙范围

斜齿轮不小于60%不小于60%—70%0.12-0.22mm

锥齿轮不小于60%不小于70%0.15-0.35mm

2、联轴器维护与检修

联轴器直接关系到风机运行的平稳程度。我公司LF47型、L85A型、LF60型三种类型的冷却塔风机分别使用了,弹性圈柱销联轴器、弹性柱销联轴器、膜片联轴器。这三种联轴器都起着传递扭矩和缓冲减振的作用。其中,弹性圈柱销联轴器的橡胶弹性圈、弹性柱销联轴器橡胶接头、膜片联轴器的弹性膜片都是弹性元件,可以补偿轴线的相对位移。由于受到多次启动冲击,长期的振动磨损以及腐蚀、老化的影响,弹性元件会失效。因此,每年必须定期间检查。如果橡胶元件出现老化、磨损,弹性膜片出现倒伏或缺损都要及时更换。另外,在安装或检修时,为减小联轴器不对中的影响,两半联轴器的同轴度误差不超过0.1mm。

3、扇叶与风筒的检查与调整

扇叶与风筒一般都是玻璃钢材料制作。起抽风、导流作用。由于扇叶由轮毂中的夹块夹持,经过长时间运转扇叶可能会围绕中心转动,影响平衡引起振动。为此,每年必须要检查、调整扇叶角度。对扇叶的具体要求见表2。所有扇叶倾角允差不大于0.5°。为了提高风机的效率,扇叶与风筒间保持很小的间隙。由于风筒是玻璃钢材质刚度较差容易变形,所以大型风机的风筒除了肋筋还有拉筋,控制和调整风筒的圆度。经过长期运行,由于风筒螺栓和拉筋螺栓松动,拉筋磨损、折断,会引起风筒变形,变形严重时,扇叶会蹭到风筒,剧烈摩擦会使扇叶和风筒严重磨损,甚至折断扇叶。因此必须定期检查、调整风筒的圆度误差及扇叶与风筒间隙。根据不同的间隙要求,圆度误差控制在3~5mm。扇叶与风筒间隙要求见表3。另外,要定期检查风筒拉筋,当锈蚀磨损达到直径或壁厚的1/3时更换。

表4扇叶角度型号LF-47LF-60L-85A

角度°8.5±0.512±0.519±0.5

表3扇叶与风筒间隙型号LF-47LF-60LF-85A

间隙mm9-198-3020-35

4、润滑油系统的监测与维护

润滑油是风机的“血液”,存在于减速机、油管、油视镜内。润滑油泄漏减速机齿轮将有烧毁的危险。油管一般细而长容易折断,为此,每年至少要检查一次油管,当油管有裂口或壁厚减薄1mm时要更换油管。如果减速机使用的是骨架橡胶密封每年要更换一次,如果使用的是机械密封每年要检查摩擦副的磨损情况,有损坏要更换。风机运行时,由于挥发和渗漏润滑油会不断减少,要定时通过油视镜检查油位,当油位低于减速机1/2时要及时补充润滑油,如果润滑油油位下降过快,要停机检修。此外,减速机箱应安装温度传感器,在快速漏油未被及时发现时,减速机箱温度急速上升,应立刻停机,保护减速机内齿轮和轴承。1999年7月一台LF47型风机,由于未更换壁厚减薄油管,运行中油管断裂并且未能及时发现,致使减速机齿轮烧毁。直接损失近3万元,并且还影响循环水系统的运行。可见,对冷却塔风机润滑油系统监测与维护十分必要。

5、振动的监测

冷却塔风机是旋转设备。由于联轴器同轴度增大,旋转部件平衡状态劣化,基础强度降低,零部件磨损等原因冷却塔风机的振动烈度会发生变化。根据IS02372《旋转机械的振动烈度标准》和厂家提供的有关资料,振动速度长期运行不超过6.3mm/s,最大不超过10mm/s。大烈度的振动会使机组的连接螺栓松动,状况劣化甚至造成零部件失效。2000年10月一台LF60型风机,由于缺乏对振动的监测,经过长时间振动,地脚螺栓松动,风机发生位移,叶片与风筒摩擦造成叶片与风筒损伤,同时油管被拉断,由于停机及时才没有造成更大损失。因此,必须对风机的振动进行监测。当振动值超过标准时,应针对原因进行检修。另外,所有的螺栓、螺母应有止退措施尽量避免因振动引起螺栓松动发生事故。

6、腐蚀的监测与处理

流风机范文篇3

风机是火力发电厂中的关键辅机,轴流风机因效率高和能耗低而被广泛采用。在实际运行中,不少电厂因轴流风机特别是动叶可调轴流风机的可靠性差,频频发生故障,导致电厂非计划停机或减负荷,影响了机组发电量。近几年来,广东地区的几家电厂如珠江电厂4×300MW、南海电厂2×200MW、恒运C厂1×210MW均发生过动叶可调轴流风机断叶片事故,也有在同一电厂反复多次发生,严重影响机组安全满发。因此,从根本上解决这些问题,提高大型火电厂轴流风机运行的可靠性显得十分必要和迫切。

1电站风机可靠性概念

电站风机可靠性统计的状态划分如下:

送引风机运行可靠性可用以下两个重要参数说明。

式中tSH——运行小时数,指风机处于运行状态的小时数;

tUOH——非计划停运小时数,指风机处于非计划停运状态的小时数,亦称事故停运小时数。

90年代以前,我国大型电站(125MW及以上)锅炉风机引起的非计划停机和非计划降负荷较频繁,据统计,在125MW、200MW、300MW及600MW机组中,按电厂损失的等效停运小时算,送、引风机均排在影响因素的前10位,与发达国家的差距较大。

90年代以后,我国几个主要电站风机制造厂设备质量提高较快,针对我国电厂的实际情况,引进外国先进技术,使电站风机特别是动叶可调轴流风机的可靠性不断地得到提高。例如:1997年某鼓风机厂对其利用引进技术生产的、在15套300MW火电机组中使用的28台动叶可调轴流式送风机和24台动叶可调轴流式引风机进行可靠性分析,发现其运行率已达99%。其他厂家的产品的可靠性也有较大的提高。

2影响轴流风机可靠性的因素

2.1电站风机事故分类

第1类事故:风机故障引起火电机组退出运行。

第2类事故:风机故障只引起火电机组出力降低,还没有造成火电机组退出运行,或送、引风机仅有某一台退出运行。

第3类事故:风机损坏不严重,不需要送、引风机退出运行进行维修。

第1、2类事故直接影响风机运行可靠性,第3类则是潜在的影响因素。

2.2轴流风机主要故障

a)转子故障。如转子不平衡、转子振动等,最严重的甚至发生叶轮飞车事故。

b)叶片产生裂纹或断裂。在送、引风机上均有可能发生,近几年在多个大型电厂已发生多宗。

c)叶片磨损。主要是发生在引风机上。由于电除尘器投入时机掌握不好或电除尘器故障,造成引风机磨损。这是燃煤电站引风机最容易发生的故障。

d)轴承损坏。

e)电机故障。如过电流等,严重时烧坏电机。

f)油站漏油,调节油压不稳定。既影响风机的调节性能也威胁风机的安全。

2.3轴流风机发生故障的原因

2.3.1产品设计和制造方面

a)结构设计不合理,强度设计中未充分考虑动荷载。

b)气动设计不完善。对气动特性、膨胀不明。

c)叶片强度安全系数不够,叶片材质差。

d)叶片铸造质量差。

e)焊接、装配质量差。如叶片螺栓脱落打坏叶片等。

f)控制油站质量差。

g)监测、保护附件失灵。

2.3.2运行、检修方面

a)轴流风机长期在失速条件下工作,气流压力脉动幅值显著增加,叶片共振受损。

b)不按风机特性要求进行启动并车,风机工况与系统特性不匹配。

c)不投电除尘或电除尘效率低导致风机入口含尘浓度高。

d)两台风机并列运行时,两者工作点差异较大。

e)轴流风机喘振保护失灵。

f)无定期检修或检修不良。

2.3.3安装方面

流风机范文篇4

风机是火力发电厂中的关键辅机,轴流风机因效率高和能耗低而被广泛采用。在实际运行中,不少电厂因轴流风机特别是动叶可调轴流风机的可靠性差,频频发生故障,导致电厂非计划停机或减负荷,影响了机组发电量。近几年来,广东地区的几家电厂如珠江电厂4×300MW、南海电厂2×200MW、恒运C厂1×210MW均发生过动叶可调轴流风机断叶片事故,也有在同一电厂反复多次发生,严重影响机组安全满发。因此,从根本上解决这些问题,提高大型火电厂轴流风机运行的可靠性显得十分必要和迫切。

1电站风机可靠性概念

电站风机可靠性统计的状态划分如下:

送引风机运行可靠性可用以下两个重要参数说明。

式中tSH——运行小时数,指风机处于运行状态的小时数;

tUOH——非计划停运小时数,指风机处于非计划停运状态的小时数,亦称事故停运小时数。

90年代以前,我国大型电站(125MW及以上)锅炉风机引起的非计划停机和非计划降负荷较频繁,据统计,在125MW、200MW、300MW及600MW机组中,按电厂损失的等效停运小时算,送、引风机均排在影响因素的前10位,与发达国家的差距较大。

90年代以后,我国几个主要电站风机制造厂设备质量提高较快,针对我国电厂的实际情况,引进外国先进技术,使电站风机特别是动叶可调轴流风机的可靠性不断地得到提高。例如:1997年某鼓风机厂对其利用引进技术生产的、在15套300MW火电机组中使用的28台动叶可调轴流式送风机和24台动叶可调轴流式引风机进行可靠性分析,发现其运行率已达99%。其他厂家的产品的可靠性也有较大的提高。

2影响轴流风机可靠性的因素

2.1电站风机事故分类

第1类事故:风机故障引起火电机组退出运行。

第2类事故:风机故障只引起火电机组出力降低,还没有造成火电机组退出运行,或送、引风机仅有某一台退出运行。

第3类事故:风机损坏不严重,不需要送、引风机退出运行进行维修。

第1、2类事故直接影响风机运行可靠性,第3类则是潜在的影响因素。

2.2轴流风机主要故障

a)转子故障。如转子不平衡、转子振动等,最严重的甚至发生叶轮飞车事故。

b)叶片产生裂纹或断裂。在送、引风机上均有可能发生,近几年在多个大型电厂已发生多宗。

c)叶片磨损。主要是发生在引风机上。由于电除尘器投入时机掌握不好或电除尘器故障,造成引风机磨损。这是燃煤电站引风机最容易发生的故障。

d)轴承损坏。

e)电机故障。如过电流等,严重时烧坏电机。

f)油站漏油,调节油压不稳定。既影响风机的调节性能也威胁风机的安全。

2.3轴流风机发生故障的原因

2.3.1产品设计和制造方面

a)结构设计不合理,强度设计中未充分考虑动荷载。

b)气动设计不完善。对气动特性、膨胀不明。

c)叶片强度安全系数不够,叶片材质差。

d)叶片铸造质量差。

e)焊接、装配质量差。如叶片螺栓脱落打坏叶片等。

f)控制油站质量差。

g)监测、保护附件失灵。

2.3.2运行、检修方面

a)轴流风机长期在失速条件下工作,气流压力脉动幅值显著增加,叶片共振受损。

b)不按风机特性要求进行启动并车,风机工况与系统特性不匹配。

c)不投电除尘或电除尘效率低导致风机入口含尘浓度高。

d)两台风机并列运行时,两者工作点差异较大。

e)轴流风机喘振保护失灵。

f)无定期检修或检修不良。

2.3.3安装方面

a)轴系不平衡或联接不好,导致风机振动大、轴承、联轴器易损坏。

b)执行机构安装误差大,就地指示值与控制室反馈值不一致,导致操作不准确。

2.3.4风机选型与系统设计方面

风机选型不当造成风机实际运行点在不稳定气流区或接近甚至进入失速区,以及风机管路系统特性不合理,均可造成风机转子有关部件的疲劳与损坏。

3提高轴流风机可靠性的措施

3.1选型

电站锅炉风机的型式一般有离心式、静叶可调轴流和动叶可调轴流风机,应根据具体使用场合,经技术经济比较确定风机型式。3种风机的比较见表1。

表13种风机的比较

项目离心式静调轴流动调轴流

结构复杂程度低中高

对介质含尘量的适应性好中差

可比运行效率低中高

可比设备价格低中高

可靠性高中低

选择轴流风机时,设计点应落在效率最高、并在此基础上动叶角度再开大10°~15°的曲线上,这样,即使机组在低于额定工况下运行,风机仍可在最高效率区内运行。

对于燃煤锅炉,由于动叶可调轴流风机圆周速度高,考虑到磨损问题,宜采用中速,不宜选用过高转速。

3.2并联设计与运行

在选择动叶可调轴流风机的参数时,除了按有关规程规定给出裕度外,还要依据电厂实际情况,不仅考虑最大保证工况点(TB)、MCR工况、100%负荷工况,还要考虑点火工况以及风机安全并车工况。后两种工况往往被人忽视而给风机的调试与运行带来困难。故应特别注意动叶可调轴流风机的并联设计与运行。

两台风机并联运行在C点,但每台风机运行在各自特性曲线的A点上。当第1台风机保持同样叶片角度运行时,运行点将移到B点,第2台风机要启动并入时,关闭出口门启动,叶片角度调至最小。打开隔离门后,第2台风机将在D点运行,逐渐开大其角度,并调小第1台风机角度,它们的运行点将分别沿DE和BE线移动,到达E点时两台风机并联,再同时调节两台风机到所需的参数。

可以看出,当第1台风机运行点压力高于第2台风机失速线的最低点S的压力时,第2台风机启动将发生喘振,这时需降低第1台风机出力,使B点位于S点之下再启动第2台风机。

3.3其他设计措施

如果可以降低风机负荷,总是可以并车的,如燃油锅炉。但对于某些燃煤锅炉,例如中速直吹式制粉系统的冷一次风机,由于其制粉系统必须有一个最低的干燥出力要求和送粉压头,在风机出力下降受到限制的情况下,有两个方法解决并联运行问题。一是选择风机时计算好单台风机按要求工况运行时系统阻力,使S点高于该阻力线,这意味着设计点位于特性曲线更下端,以致压头较高风机效率较低。二是可以在轴流风机风道上加一个旁路再循环门,启动该风机时,先关闭出口门,打开循环门。待第2台风机越过失速线后打开出口门,关闭循环门,这样做的缺点是增加了初投资,增加了送风倒回泄漏的可能性。

在设计风机进出口连接管道时,要力求避免产生涡流的可能性,某些转弯处还应采取加装导流板的措施。

3.4调整与维护

a)必须确保动叶实际角度与就地指示值及与控制室反馈值相一致。若误差大,运行人员便难以判断动叶真实角度,从而影响运行工况。严重时,风机因长时间处于失速边缘或失速区内运行而导致断叶片事故的发生。

b)对于燃煤电站,不能让引风机长期在超标烟尘中受磨。解决轴流风机磨损问题的关键是降低风机入口含尘浓度和灰粒尺寸。为此,应加强清灰等工作。

c)加强对电除尘器的管理,确保电除尘器运行正常,减少烟尘对引风机叶片的磨损。

d)确保风机喘振保护正常投入。

流风机范文篇5

关键词:整流变压器;整流柜;晶闸管;整流臂;纯水冷却系统;强油冷却风机

1纯水冷却装置

纯水冷却装置由板式换热器、纯水泵组、气水分离器、树脂塔、高位水箱及电气控制箱组成。其工作原理是从整流柜内输出载热纯水,经过气水分离器分离至板换1#和板换2#内部,冷却后返回整流柜纯水进口管道再次使用。目前循环纯水冷却装置在二次电流小于15kA时可以满足整流柜内各部件冷却条件。如二次电流大于15kA,冷却效果明显不足。夏天整流柜内各别部件温度能达到60℃以上。

2整流变强油风冷机组

整流变强油风冷机组由油泵、轴流风机、散热片、油管、电路控制箱组成。其工作原理是利用油泵将变压器油经过油管进入散热片,由散热片和风机组合向外传递热量,使高温的变压器油快速得到冷却,经过冷却后的变压器油重新返回变压器底部再次使用。

3整流装置冷却系统常见问题

3.1运行方式。目前陕西北元化工集团有限公司化工分公司整流柜运行方式问题存在如下。(1)302变电站一二期整流柜目前运行电流。该公司规定最大负荷16kA,整流柜额定电流17kA。2018年夏天电解槽产能测试单台电解槽运行电流16.3kA运行一个月,产能测试期间整流变压器室温度普遍在17:00时最高(47℃),整流柜内各元器件温度最高:快熔56.7℃(工艺规定)、整流臂温度39℃(工艺规定)、整流柜出口水温39℃(工艺规定水温控制在5~42℃)。综上所述,当整流柜运行电流在小于15kA运行时,循环纯水冷却装置可以满足整流柜内各部件冷却要求。如果整流柜运行电流在15.0~16.0kA运行时,循环纯水冷却装置冷却整流柜内部件效果明显不足,整流柜各元器件温度均已达到临界点,而目前三期建设完成,为满足公司产能要求,电解槽负荷电流后期仍然可能继续上升,因此,目前整流柜冷却装置夏天时已不能满足工艺要求。(2)该公司所使用的整流变压器,1302变电站容量29350kVA和2302变电站容量29280kVA各6台,其整流系统由一台整流变压器和两台整流主柜组成,俗称“一拖二”整流系统。通过强油风冷机组降温。1台油泵对应1组散热片及3台轴流风机,共计3台油泵、3组散热片及9台轴流风机。夏天当两台整流柜运行电流均在14kA左右,时整流变温度基本控制在50~60℃,当两台整流柜运行电流在16kA时,整流变温度上升至78℃且仍有上升趋势,所以对整流变散热系统(强油风冷机组)进行技改,在每组强油风冷机组增加6个纯水喷淋装置,当整流变温度上升至75℃以上时,手动开启喷淋装置进行降温,温度下降至55℃以下时关闭喷淋装置。3.2存在问题。(1)纯水喷淋装置纯水温度在24℃左右,而整流变油温75℃以上,变压器油换热后进入变压器,由于温差较大对变压器内部铁芯、绕组等损害较大,影响变压器使用寿命。(2)纯水喷淋装置使用过程中,散热片表面附着许多杂物,对散热片腐蚀较为严重,影响散热片使用寿命。(3)纯水生产费用较高,喷淋装置使用后无法回收造成浪费。

4整流系统现冷却装置运行方式

(1)目前纯水板换冷却运行方式(见图1)图1中循环水进口水压控制在0.15~0.20MPa。(2)强迫油循环风机冷却组运行方式。

5改造后冷却装置运行方式

5.1改造后纯水板式换热器运行方式。(1)春、冬两季用循环水冷却纯水,将7℃冷冻水进口阀门B1、出口阀门B2关闭,打开板式换热器循环水出口阀A2,打开循环水进口阀A1,循环水压力控制在0.10~0.22MPa。(2)夏、秋两季用冷冻水冷却纯水,将循环水进口阀门A1、出口阀门A2关闭,打开7℃冷冻水出口阀B2,打开7℃冷冻水进口阀B1,循环水压力控制在0.10~0.22MPa,改造后的板式换热器运行方式见图4。改造后优点:当整流柜内设备温度不高时,可以使用目前循环水降温的方法使其降温。当夏天环境温度高,循环水降温不能满足设备降温需求时,将循环水阀门关闭,切换至7℃冷冻水冷却,保证整流柜设备安全稳定运行。5.2改造后强油风冷机组运行方式。(见图5和图6)在原强油风冷机组基础上,给强油风冷机组散热片背面加三组(共计9台)与正面原轴流风机相同型号的轴流风机,即改造后散热片正反面共计18台轴流风机。改造后,当整流变环境温度较高时,开启新加轴流风机,增加冷空气循环速度,达到降低整流变温度的目的,杜绝因水冷却造成散热片腐蚀,影响散热片使用寿命。

5结语

流风机范文篇6

关键词地铁站台火灾排烟通风模式计算流体力学(CFD)

1引言

在地铁营建与运营过程中,地铁火灾是不容忽视的问题。1987年11月18日在伦敦King''''sCross地铁站发生一起大火,造成31人死亡,大量人员伤亡,成为震惊世界的重大火灾事故[1]。由于地铁建筑与外界的联系只有车站的出入口,而且站台和车厢内人员密集,一旦发生火灾危害极大。所以,虽然地铁火灾的发生是一个小概率事件,但必须引起人们的重视,并在地铁系统设计阶段就给予充分的考虑。

地下铁道火灾事故通常可以分为两种情况:车站火灾和区间隧道火灾;当列车在隧道发生火灾时应力争将列车开至临近车站疏散乘客,此时可按照车站站台火灾工况进行处理。一旦发生火灾不同的特点,应制定防排烟系统相应的优化运行模式。本文将以某一实际工程的地铁列车发生火灾集靠在单层站台作为研究对象,利用理论分析和CFD的数值模拟分析等方法探讨最优的通风排烟模式。

自1974年计算流体力学(ComputationalFluidDynamics:CFD)如用于通风空调领域拟分析以来,CFD技术越来越多地应用于指导空调通风建筑的气流场和温度场院的设计及分析。利用CFD技术,通过计算机求解流体流动所遵循的控制方程,可以获得流体流动区域内的流速、温度、组分浓度等物理量的详细分布情况,从而指导和优化设计。本次模拟采用的是由清华大学建筑环境与设备研究所开发的通风三维流动、传热与燃烧的数值模拟软件STACH-3,其曾应用于地铁隧道区间的火灾模拟分析,其模拟结果在火源附近以外的区域均与实测结果有较好的吻合[2]。

2研究对象物理模型

2.1站台土建结构

研究对象为一单层侧式站台,有效空间中长120m,宽16.8m,高4.65m,其断面示意图如图1所示。站台有四个出入口。

图1站台断面示意图

2.2站台通风系统

本站台利用机械通风来保持站台合适温度,带走负荷。正常环控工况下,站台两端上方各设1台轴流风机(可反转)向站台送风,如图2的示;同时各设有1台轴流风机负责从站台地板下空间抽取排风,形成了站台端部集中送风、站台地板下空间作为回/排风道,均匀排风的站送、站排的通风形式。每台风机风量为60m3/s左右,全压1000Pa。

图2站台正常工况通风系统示意图(平面图)

当站台发生火灾时,将利用正常工况下的集中送风口作为集中排烟风口使用,由车站进出口时风。此时,通过阀门的切换,可以将正常工况下的回风机与送风机并联运行,通过原集中送风口将站台的烟气及时排向地面。邻近站台的通风系统与此站台一致。

2.3火源强度设定

火灾强度的合理设定一直是地铁火灾工况模拟分析中的难点。目前由于权威的实测数据,所以在本次模拟计算中参考了国内其他地铁设计采用的火灾强度,为10.5MW。

3可能的通风模式

站台发生火灾时主要依靠的是布置在站台两端的正常工况下的集中送风口进行排烟,由于排烟口的集中布置,不同的风机运行模式对通风排烟的效果相差很大,而且列车发生火灾位置不同也会有很大的影响。因此需要针对不同的火灾发生位置,研究如何合理调动站台的四台风机,以保证有最大的安全区和安全疏散通道,让乘客和工作人员安全撤离火灾现场。利用CFD软件模拟火灾发生时的气流场和温度场,为研究和分析合理的风机运行模式提供了有利的手段。

按照我国的《地下铁道设计规范》[3]基本要求,考虑列车两种位置(列车头部、中部)发生火灾的情况,分别制定了站台防排烟系统的可能运行模式,如表1所示。在这些运行模式中,只考虑邻近区间或者站台的风机联合工作,其他区间或者站台风机运行工况影响较小,可以不予考虑。图3为模拟站台列车火灾采用的物理模型。

图3侧式站台列车火灾通风排烟物理模型

防排烟系统的各种可能运行模式表1

工况1:列车中部发生火灾

模式1.1关闭原送风机,站台两端各开一台排风机

模式1.2站台两端各开两台风机排风,原送风机逆转作排风机

模式1.3关闭原送风机,站台两端各开一台排风机,邻近区间或站台各开1台排风机

模式1.4站台两端各开两台风机排风,原送风机逆转作排风机;邻近区间或站台各开1台排风机

工况2:列车头部或者尾部发生火灾

模式2.1关闭原送风机,站以两端各开一台排风机

模式2.2靠近火灾一侧开启两台排风机,原送风机逆转作排风机,另一端两风机均关闭

模式2.3靠近火灾一侧开启两台排风机,原送风机逆转作排风机,另一端两风机均关闭;同时开启一台右侧邻近火灾区域

的区间风机或者站台风机排风

模式2.4靠近火灾一侧开启两台排风机,原送风机逆转作排风机,另一端开启一台送风机

模式2.5靠近火灾一侧开启两台排风机,原送风机逆转作排风机,另一端两风机均关闭;同时开启一台右侧邻近火灾区域

的区间风机或站台风机排风

表2详细给出了在上述各种模式下,由网络流动计算模型计算得出的从出入口和站台左右隧道进入站台的风量。

表2

左隧道进风量右隧道进风量出入口进风总量出入口平均风速

模式1.131.930.962.81.16

模式1.263.461.41252.31

模式1.3-56.3-49.51061.96

模式1.4-85-781633.02

模式2.131.930.962.81.16

模式2.22628621.15

模式2.335-3841.56

模式2.47015.830.80.57

模式2.580-17541

注:1.表格中风量的单位均为m3/s,风速的单位为m/s;

2.数值前如有负号,表示为出风状态。

4分析与讨论

对于站台火灾问题,选取最佳的通风方式首先应该满足两个基本原则,1)从进出口来的风要保证一定的速度,以有效压制烟气的扩散,保证人员撤离通道安全。2)尽可能不要让烟过多扩散进入周围隧道,否则这将会为后期周围隧道烟气处理带来麻烦。按照上述的原则,首先对上述两种火灾工况下的各种模式进行比选。对于火灾工况1,模式1.3和模式1.4都由于邻近的区间或站台排风机的作用,使得从出入口进来的新鲜气流迅速被隧道带走,同时也将带走大量的烟气,虽然进出口风速很大,排烟效果却不好。对于模式1.1和模式1.2,后者从出入口和隧道的来流风速大约是前者的2倍,而且在模式1.2中出入口平均风速达到2.3m/s,更加安全。

图4和图5比较了模式1.1和模式1.2的三维温度场在站台人头部水平高度的断面的分布情况,从图中可知,由于隧道主要靠在站台两端的风口排烟,而且火源在列车中部,所以在站台中央温度高,聚集了大量的热量和烟气。相反,在出入口到站台两侧,新鲜气流较多,相对来说是比较安全的区域。对比模式1.1和模式1.2,可知模式1.1由于从进出口来流风量不够,不能有效带走聚集于站台中央的热量和烟气,导致在出入口到站台两侧的区间温度和烟气浓度均较高,这样在整个站台的安全区域就几乎没有,给人员的逃生带来极大的危险。而模式1.2由于从进出口的风速比较模式1.1提高了一倍,能较有效带走热量和烟气,能形成较大的安全区域,相对而言更有利于乘客逃生和救生人员开展灭火救灾工作。以上分析说明,对于工况1通风模式1.2是最优的。

图4模式1.1在站台人头部水平高度的温度分布等温线图

图5模式1.2在站台人头部水平高度的温度分布等温线图

对于工况2,模式2.4进出口风速过低,首先舍去。模式2.5,有一定量的烟气扩散到右边隧道,也不可取。比较模式2.2和模式2.3,后者从进出口和左边隧道的来流风速都高于前者,虽然模式2.3会有少量的烟气扩散到右边隧道中,但综合比较模式2.3是更好的方案。

图6和图7比较了模式2.1和模式2.3的三维温度场在站台人头部水平高度的断面的分布。从图中可知,由于火灾发生在列车的头部,所以产生的高温烟气能很快从临近火源的端部风口迅速排出。对于这种送排风系统的地铁站台,列车头部(尾部)发生火灾是比中部的安全区域,而模式2.3的安全区域大于模式2.1,更有利于乘客逃生。以上分析说明,对于工况2通风模式2.3是最优的。

图6模式2.1在站台人头部水平高度的温度分布等温线图

图7模式2.3在站台人头部水平高度的温度分布等温线图

5结论

综上所述,针对本文研究的单层站台列车火灾问题有以下几点结论:

1)发生火灾事故时候,风机的启停和转动方向均应根据火灾发生的实际情况来确定,不同的通风方式,其效果可能相差很大。利用CFD的模拟分析软件,可以直观有效地判断通风方式的优劣。

2)如果列车中部发生火灾,建议采取模式1.2的通风方式,即站台两端的四台风机均作排风使用。

3)如果列车头部发生火灾,建议采取上述所述的模式1.3,即靠近火灾一侧开启两台排风机,另一端两风机均关闭;同时开启一台邻近火灾的区间风机或者站台风机排风。

本实例选取的是偏大的火灾强度,是偏安全的设计。由于火灾强度直接影响模拟分析结果,同时影响通风模式的选取,从而影响系统的经济性,所以确定作为设计标准的符合实际情况的列车火灾强度是亟待研究的问题。

参考文献

1K.Moodie,King''''sCrossFire.Damageassessmentandoverviewofthetechnicalinvestigation,FireSafetyJournal,18(1)1992p13~33

流风机范文篇7

轴流风机由于其效率高和耗能少而被广泛采用。随着轴流风机市场份额的不断加大,风机叶片的设计不断更新,因此对风机叶片机械加工的工艺研究,实现风机叶片的厂内自制,具有重要的意义。风机叶片由柳叶形变截面型面和菱形头齿型叶根构成,风机叶片的汽道型线弦宽较宽,且最大厚度很薄,加工过程中易变形。风机叶片为齿型叶根纵槽装配,为装配需要,叶根齿型应加工成圆弧。按型线图纸要求,齿型叶根齿间的相对位置公差为±0.01mm,由此可见,风机叶片的加工具有很大困难。因此对风机叶片机械加工的质量控制至关重要。

2现状调查

某机组高压缸第0级由动叶片、隔叶件、锁块三部分组成,其中动叶片由柳叶形变截面型面和菱形头齿型叶根构成,内背径向方向没有径向角;隔叶件带有菱形头齿型叶根,内背径向方向均带有径向角,不带有汽道型线;将隔叶件锯断即为锁块。为保证装配要求,需要严格控制柳叶形变截面型面和菱形头齿型叶根以及径向节距。我们先投入30块叶片试加工,并对这30块叶片进行数据统计,列出了菱形头齿型叶根、柳叶型汽道、径向节距等关键工序超差统计见表1。

3制定活动目标

根据设计部门提供的产品图要求及叶片装配要求,我们制定了以下活动目标:(1)内弧与样板漏光间隙:进汽边四分之一弧段和出汽边三分之一弧段≤0.08mm,中间部分≤0.12mm。(2)背弧与样板漏光间隙:进汽边四分之一弧段和出汽边三分之一弧段≤0.08mm,中间部分≤0.12mm。(3)内弧样板卡角漏光0.05~0.15mm。(4)叶根扩大处与中间体高度量具比较允许高出0~0.20mm。(5)叶根齿型与样板比较测量,工作面完全贴合,样板卡脚允许漏光0.15~0.30mm。(6)试件投影检查合格后,方能成批加工。

4原因分析和要因确认

造成该风机叶片超差的可能原因见表2。针对超差因果图,并经现场验证、测量、调查分析,对末端因素进行逐条确认,确认叶片超差主要由表3中的四大因素导致。针对分析的主要原因,借鉴以往加工经验,我们制定了相应的对策,见表4。

5具体实施

根据制定的对策,我们逐项进行了具体实施:

(1)要求操作者严格执行工艺,严禁加工时串序现象,在周期和质量冲突时,以质量为主,工艺员和检查员严把质量关。

(2)机叶片为齿型叶根纵槽装配(见图1)。为装配需要,叶根齿型应加工成圆弧。按型线图纸要求,齿型叶根齿间的相对位置公差为±0.01mm。为保证此公差,在方钢毛坯状态下加工叶根,采用整体型线刀具,配合圆盘铣床加工。由于型线铣刀有一定的厚度,在加工齿型时铣刀前刀面加工好的圆弧齿型会被后刀面刮削,造成干涉现象。叶根齿型与中间体之间有高高的圆弧台阶,干涉对这个高台阶会有很大的影响,造成大面积的过切现象。对于此级叶片铣削叶根时,型线铣刀在最大实体的基础上端面留量0.30mm,避免出现过切现象。叶根中间体台阶处单独加工一刀,利用数控立铣差补加工圆弧面,与齿型接平,保证产品图设计要求。

(3)风机叶片汽道为柳叶形变截面型面,叶片弦宽大,厚度薄。叶片汽道弦宽49.92mm,最大厚度只有5.8074mm,这样的叶片在加工中很容易变形。针对这种情况,我们采用四联动数控机床,以进汽侧、叶根齿顶、背径向面定位,出汽侧、内径向面用有铜堆焊的压板压紧,叶顶用顶针顶紧,一次装夹的状态下,完成汽道内背弧的加工(见图2)。

流风机范文篇8

[论文摘要]锅炉燃烧离不开锅炉的风系统,风系统包括二次风系统、一次风系统、扫描冷却风系统和炉顶密封风系统。各系统的风均有相应的风机提供。以某热电有限公司2-300MW机组工程4#锅炉烟风系统为例分别讲述了AN轴流式吸风机、FAF轴流式送风机、离心风机的安装步骤。

该热电有限公司2×300MW机组工程#4锅炉烟风系统安装按平衡通风设计,满足一次风机、送风机、吸风机在锅炉低负荷工况或一侧风机故障时单侧运行,空预器进出口烟风道上均设有隔离门。送风机采用50%容量的动叶可调轴流风机两台,吸风机采用静叶可调轴流风机两台,一次风机采用50%容量的定速单吸离心风机两台。

制粉系统采用中速磨冷一次风机正压直吹式。其密封系统采用母管制的密封风系统,每台炉设2台离心式密封风机,一台运行,一台为备用状态。

根据施工图纸要求:送风机、吸风机、一次风机、磨煤机密封风机都布置在锅炉房零米层,送风机对称布置在炉架两侧预热器冷空气仓的位置,中心线与锅炉纵向中心线垂直,其起重机械扩侧应为HB36B建筑塔吊,固侧应为KH180履带吊;吸风机对称布置在电除尘器后面,中心线与锅炉纵向中心线平行,其起重机械为KH180履带吊;一次风机对称布置在预热器出口水平烟道的下方,其起重机械为KH180履带吊;密封风机布置在炉内预热器进口空气管道的下方,用卷扬机进行配合安装。

一、在施工作业中具体的步骤

(一)AN轴流式吸风机作业方法

该类风机安装的一般性规律,是以机壳装配(后导叶和叶轮外壳)为基准和固定端;其进气箱、集气器和前导叶为前(近电机方向)热膨胀滑动端,其扩压器和扩压器芯筒为向后(远电机方向)热膨胀滑动端。

其具体安装顺序步骤和要求如下:

1.将全部机件存放于基础附近,清理杂物,除毛刺,准备起吊设施。

2.基础清理干净,检查各部分基础标高、各基础孔尺寸;将各部分垫铁、基础板与支腿连接后安放好。基础板找平,检查标高。

3.将机壳装配(后导叶组件与叶轮外壳组件)并在一起联好后吊入预定位置,穿好地脚螺栓。用框式水平仪找正机壳装配的垂直度和水平度。同时,保持机壳轴线与风机进出口管道一致。

4.粗找正后,可对后导叶组件和叶轮外壳组件的基础进行一次灌浆。水泥达到规定硬度后,复查找正情况;无误后紧固地脚螺栓达到所需力矩。

5.将扩压器外壳下半部联好后吊入预定位置,一面与后导叶外壳法兰螺栓相连,另一面将支腿圆弧板与支腿和扩压器外壳分段点焊,焊牢。

6.依次联接小集流器、前导叶组件、大集流器、进气箱各部件下半部。注意:按要求在法兰间加密封材料,其进气箱支腿和圆弧调整好位置后电焊点牢。注意在前后支腿点焊以前,应严格保证其机壳装配的垂直度,防止外悬重力过大,防止倾斜及机壳装配地脚螺栓松动,如吊装就位时不能及时点焊支腿,应用枕木和千斤顶支牢,以保证安全。

7.按总装图要求对进气箱滑动支腿和扩压器滑动支腿安装。注意螺栓头部外露部分适当加长,以后要加一滑动压板位置(如总装图示)。支腿和支腿圆弧板焊接时注意对称分段焊接,以减少焊接变形。

8.安装主轴承座,按要求加装防松垫,按规定力矩拧紧联接螺栓;拧紧后按图安装径向测温元件。按图安装前后冷风罩和轴向测温元件,其中锥形冷风罩上半部分可最后装。

9.吊装叶轮,按规定力矩紧固压盖螺栓,盘车检查轮毂与后导叶芯筒间的轴间隙,叶顶与机壳内壁间的径向间隙尺寸。

10.叶轮侧半联轴器(Form03)与叶轮连接,按规定力矩拧紧螺栓。

11.按图示安装电机端联轴器(Form01),将电机粗定位于预定位置。

12.吊装传扭中间轴,其拧紧力矩应达到要求。吊装前建议在电机端准备一个门形架,其转轴与叶轮端联好后,另一端用滑轮吊在门形架中,调好高度,尽早与电机端联轴器联好。注意:在吊装过程中当叶轮端联好后,另一端偏移距离不得超过5㎜。否则将对膜片联轴器的弹性性能造成不良影响,甚至可能造成联轴器损坏。

13.按AN系列轴流风机转轴系找正原理示意图:以叶轮端半联轴器和电机主轴水平为基准,找平找正。应保证叶轮端后导叶组件中主轴承座位置的热膨胀补偿量,即电机水平位置的预抬量(具体数据见总装图)。应以两个联轴器膜片间的张口值来保证,其张口值大小,可通过计算得知;按一般的比例,其张口值约0.20㎜(因烟气温度也是控制在一定范围内)即可。

14.电机基础、进气箱基础、扩压器基础二次灌浆,达到规定硬度后拧紧地脚螺栓,复查张口数值。

15.组装扩压器芯筒,传扭中间轴护管,轴封筒等。

16.组装冷风管护筒,冷风管路安装,油管安装。

17.进气箱、大集流器、前导叶、小集流器等上半部、扩压器上半部安装。注意各法兰之间加装密封材料,须现场封焊的圆法兰及对口板外不加密封材料(参见风机总装图)。

18.调整前,导叶开启程度应基本保持一致,建议在0度时(即前导叶叶片与主轴中心线平行时)调整和检查。

19.安装前导叶操作执行机构,注意叶片开启,机壳外的指示执行器的指示应保持一致。

20.按图纸要求安装冷却风机、加油装置、现场测温、测振装置、防喘振报警装置(若有)等(具体见各装配图)。

21.安装进出口膨胀节、内外保温防护层,整个风机与管道系统连接。

(二)轴向预拉量的调整

由于该类风机在热态工况时,烟温较高,传扭中间轴较长,其轴热膨胀量较大(约5~10MM)。因此在冷态安装时应将单个联轴器的安装间隙比自然间隙预拉开2.5~5MM。

1.设备清点、检查。在设备到货的情况下,对设备进行清点检查。

2.基础划线、垫铁配置,纵横中心线相对锅炉中心线偏差不大于20mm。地脚螺栓箱标高误差不大于10mm,相对之间误差不大于2mm。

3.轴承组安装。轴承组就位安装,要求:中心距误差5mm,标高误差10mm,轴承组中心线的水平度公差0.1mm/m。调整调平螺栓,紧固地脚螺栓。

4.进气室、扩散器的安装。进气室、扩散器就位,安装好地脚螺栓,通过调整垫铁使之与主轴承风筒对正,其标高允许偏差为0~-10mm,水平度偏差不大于3mm。两者与主轴承风筒之间的间隙按图纸要求为20mm。5.电机找正和连轴器的安装。风机和电机轴线同轴度公差0.05mm。联轴器端面之间间隙应均匀,间隙偏差不得大于0.08mm。

6.风机的润滑

(1)油站及油管道安装中,严格遵照供油装置的厂家所提出的技术要求进行施工。在需要润滑的各个部位,添加图纸或说明书要求的润滑油或润滑脂。

(2)管道安装力求走向合理,工艺美观,回油管需有3.5的倾斜。油箱及附件检查、清洗,油箱用煤油做渗油试验,冷油器按其工作压力的1.25倍作水压试验,附件清洗后,喷油恢复。

(3)对油管路系统进行油冲洗,冲洗化验合格方可具备试运转条件。

二、离心风机作业方法

(一)设备检查、检修

1.检查叶轮旋转方向、叶片弯曲方向、机壳出风口角度应与图纸相符(特别注意叶轮的左右旋之分);

2.机壳、转子外观应无裂纹、砂眼、漏焊等缺陷;机壳内部耐磨衬板应牢固、平整、无松动现象;

3.入口调节挡板门应零件齐全、无变形、损伤,且动作灵活同步、固定牢固;

4.轴承冷却水室水压实验应严密不漏,按1.25倍工作压力进行水压试验;叶轮与轴装配应装配正确,不松动;轴承型号及间隙应符合设计,用压保险丝法检测各间隙;风机轴承推力间隙应在0.3~0.4mm之间,用压保险丝检查,膨胀间隙应符合图纸规定;安装时应使轴承纵横中心偏差=10mm,轴水平度偏差=0.1mm/m;

5.拆卸下来的零件应妥善保管按顺序编号,放置在干净的地方,以免带上杂物,不可碰伤。

(二)离心风机安装方法

1.首先,检查地基的外形尺寸、各预留空洞的中心尺寸;地基外型尺寸偏差应在±20mm范围内,各预留空洞的中心尺寸偏差应在±10mm之间;基础划线,以主厂房建筑基点或锅炉纵横中心线为基准,测得基础纵横主中心线偏差应在±10mm,中心线距离偏差应为±3mm,基础标高应在±5mm之间;

2.凿平地基,放置地脚螺栓、布置垫铁,垫铁组一般为2平1斜3付垫铁,厚的放下面,斜垫铁应成对使用;并伸出机框约20mm;找正后应焊牢、不许松动;垫铁应放置在设备主受力台板、机框立筋处或地脚螺栓两侧,在不影响二次灌浆的情况下尽量靠近地脚螺栓孔;

3.机壳下半部粗定位:注意厂家的安装标记,通常揂敗B号各位一台,就位前注意区分与进出口风管的关系、叶轮旋向等;

4.将集流器喇叭口插入叶轮内用铁丝固定后,将整个转动组吊入预定位置;安装地脚螺栓,地脚螺栓的弯曲度应≤L/100(L为地脚螺栓的长度),地脚螺栓底端不应接触孔底、孔壁。地脚螺栓应受力均匀、并螺栓外露2~3扣;然后松开铁丝将集流器下部与机壳下半部用螺栓固定初步调整叶轮与喇叭口的间隙。

5.风机转动组找平、找正:风机主轴与轴承座之间的垂直度采用如下方法找正:将磁力座贴在主轴上,将百分表表头指向轴承外圈或轴承座弹位端面上(既上端盖加工面上);此时旋转主轴一周以上其表针读数不大于0.15mm即可,此读数值为该轴承座与主轴的垂直情况。

6.电动机找平、找正:调整风机与电机主轴同轴度(既联轴器找平找正)。用三块百分表找正,轴向两块、径向一块;每盘动轴90度,记录数据,测量其上下左右的读数,调整同轴度,使其误差≤0.05mm;且两靠背轮之间应有10mm间隙。找正后,复查轴中心高度等部分数据,做好记录。

7.在风机找正后,进行机壳上半部扣盖、集流器与机壳安装就位,两机壳之间应垫石棉绳;拧紧连接螺栓,四边螺栓应受力均匀;以叶轮为基准,再次调整叶轮与喇叭口的间隙。

流风机范文篇9

摘要:锅炉燃烧离不开锅炉的风系统,风系统包括二次风系统、一次风系统、扫描冷却风系统和炉顶密封风系统。各系统的风均有相应的风机提供。以某热电有限公司2-300MW机组工程4#锅炉烟风系统为例分别讲述了AN轴流式吸风机、FAF轴流式送风机、离心风机的安装步骤。

该热电有限公司2×300MW机组工程#4锅炉烟风系统安装按平衡通风设计,满足一次风机、送风机、吸风机在锅炉低负荷工况或一侧风机故障时单侧运行,空预器进出口烟风道上均设有隔离门。送风机采用50%容量的动叶可调轴流风机两台,吸风机采用静叶可调轴流风机两台,一次风机采用50%容量的定速单吸离心风机两台。

制粉系统采用中速磨冷一次风机正压直吹式。其密封系统采用母管制的密封风系统,每台炉设2台离心式密封风机,一台运行,一台为备用状态。

根据施工图纸要求:送风机、吸风机、一次风机、磨煤机密封风机都布置在锅炉房零米层,送风机对称布置在炉架两侧预热器冷空气仓的位置,中心线与锅炉纵向中心线垂直,其起重机械扩侧应为HB36B建筑塔吊,固侧应为KH180履带吊;吸风机对称布置在电除尘器后面,中心线与锅炉纵向中心线平行,其起重机械为KH180履带吊;一次风机对称布置在预热器出口水平烟道的下方,其起重机械为KH180履带吊;密封风机布置在炉内预热器进口空气管道的下方,用卷扬机进行配合安装。

一、在施工作业中具体的步骤

(一)AN轴流式吸风机作业方法

该类风机安装的一般性规律,是以机壳装配(后导叶和叶轮外壳)为基准和固定端;其进气箱、集气器和前导叶为前(近电机方向)热膨胀滑动端,其扩压器和扩压器芯筒为向后(远电机方向)热膨胀滑动端。

其具体安装顺序步骤和要求如下:

1.将全部机件存放于基础附近,清理杂物,除毛刺,准备起吊设施。

2.基础清理干净,检查各部分基础标高、各基础孔尺寸;将各部分垫铁、基础板与支腿连接后安放好。基础板找平,检查标高。

3.将机壳装配(后导叶组件与叶轮外壳组件)并在一起联好后吊入预定位置,穿好地脚螺栓。用框式水平仪找正机壳装配的垂直度和水平度。同时,保持机壳轴线与风机进出口管道一致。

4.粗找正后,可对后导叶组件和叶轮外壳组件的基础进行一次灌浆。水泥达到规定硬度后,复查找正情况;无误后紧固地脚螺栓达到所需力矩。

5.将扩压器外壳下半部联好后吊入预定位置,一面与后导叶外壳法兰螺栓相连,另一面将支腿圆弧板与支腿和扩压器外壳分段点焊,焊牢。

6.依次联接小集流器、前导叶组件、大集流器、进气箱各部件下半部。注意:按要求在法兰间加密封材料,其进气箱支腿和圆弧调整好位置后电焊点牢。注意在前后支腿点焊以前,应严格保证其机壳装配的垂直度,防止外悬重力过大,防止倾斜及机壳装配地脚螺栓松动,如吊装就位时不能及时点焊支腿,应用枕木和千斤顶支牢,以保证安全。

7.按总装图要求对进气箱滑动支腿和扩压器滑动支腿安装。注意螺栓头部外露部分适当加长,以后要加一滑动压板位置(如总装图示)。支腿和支腿圆弧板焊接时注意对称分段焊接,以减少焊接变形。

8.安装主轴承座,按要求加装防松垫,按规定力矩拧紧联接螺栓;拧紧后按图安装径向测温元件。按图安装前后冷风罩和轴向测温元件,其中锥形冷风罩上半部分可最后装。

9.吊装叶轮,按规定力矩紧固压盖螺栓,盘车检查轮毂与后导叶芯筒间的轴间隙,叶顶与机壳内壁间的径向间隙尺寸。

10.叶轮侧半联轴器(Form03)与叶轮连接,按规定力矩拧紧螺栓。

11.按图示安装电机端联轴器(Form01),将电机粗定位于预定位置。

12.吊装传扭中间轴,其拧紧力矩应达到要求。吊装前建议在电机端准备一个门形架,其转轴与叶轮端联好后,另一端用滑轮吊在门形架中,调好高度,尽早与电机端联轴器联好。注意:在吊装过程中当叶轮端联好后,另一端偏移距离不得超过5㎜。否则将对膜片联轴器的弹性性能造成不良影响,甚至可能造成联轴器损坏。

13.按AN系列轴流风机转轴系找正原理示意图:以叶轮端半联轴器和电机主轴水平为基准,找平找正。应保证叶轮端后导叶组件中主轴承座位置的热膨胀补偿量,即电机水平位置的预抬量(具体数据见总装图)。应以两个联轴器膜片间的张口值来保证,其张口值大小,可通过计算得知;按一般的比例,其张口值约0.20㎜(因烟气温度也是控制在一定范围内)即可。

14.电机基础、进气箱基础、扩压器基础二次灌浆,达到规定硬度后拧紧地脚螺栓,复查张口数值。

15.组装扩压器芯筒,传扭中间轴护管,轴封筒等。

16.组装冷风管护筒,冷风管路安装,油管安装。

17.进气箱、大集流器、前导叶、小集流器等上半部、扩压器上半部安装。注意各法兰之间加装密封材料,须现场封焊的圆法兰及对口板外不加密封材料。

18.调整前,导叶开启程度应基本保持一致,建议在0度时(即前导叶叶片与主轴中心线平行时)调整和检查。

19.安装前导叶操作执行机构,注意叶片开启,机壳外的指示执行器的指示应保持一致。

20.按图纸要求安装冷却风机、加油装置、现场测温、测振装置、防喘振报警装置(若有)等。

21.安装进出口膨胀节、内外保温防护层,整个风机与管道系统连接。

(二)轴向预拉量的调整

由于该类风机在热态工况时,烟温较高,传扭中间轴较长,其轴热膨胀量较大(约5~10MM)。因此在冷态安装时应将单个联轴器的安装间隙比自然间隙预拉开2.5~5MM。

1.设备清点、检查。在设备到货的情况下,对设备进行清点检查。

2.基础划线、垫铁配置,纵横中心线相对锅炉中心线偏差不大于20mm。地脚螺栓箱标高误差不大于10mm,相对之间误差不大于2mm。

3.轴承组安装。轴承组就位安装,要求:中心距误差5mm,标高误差10mm,轴承组中心线的水平度公差0.1mm/m。调整调平螺栓,紧固地脚螺栓。

4.进气室、扩散器的安装。进气室、扩散器就位,安装好地脚螺栓,通过调整垫铁使之与主轴承风筒对正,其标高允许偏差为0~-10mm,水平度偏差不大于3mm。两者与主轴承风筒之间的间隙按图纸要求为20mm。

5.电机找正和连轴器的安装。风机和电机轴线同轴度公差0.05mm。联轴器端面之间间隙应均匀,间隙偏差不得大于0.08mm。

6.风机的润滑

(1)油站及油管道安装中,严格遵照供油装置的厂家所提出的技术要求进行施工。在需要润滑的各个部位,添加图纸或说明书要求的润滑油或润滑脂。

(2)管道安装力求走向合理,工艺美观,回油管需有3.5的倾斜。油箱及附件检查、清洗,油箱用煤油做渗油试验,冷油器按其工作压力的1.25倍作水压试验,附件清洗后,喷油恢复。

(3)对油管路系统进行油冲洗,冲洗化验合格方可具备试运转条件。

二、离心风机作业方法

(一)设备检查、检修

1.检查叶轮旋转方向、叶片弯曲方向、机壳出风口角度应与图纸相符(特别注意叶轮的左右旋之分);

2.机壳、转子外观应无裂纹、砂眼、漏焊等缺陷;机壳内部耐磨衬板应牢固、平整、无松动现象;

3.入口调节挡板门应零件齐全、无变形、损伤,且动作灵活同步、固定牢固;

4.轴承冷却水室水压实验应严密不漏,按1.25倍工作压力进行水压试验;叶轮与轴装配应装配正确,不松动;轴承型号及间隙应符合设计,用压保险丝法检测各间隙;风机轴承推力间隙应在0.3~0.4mm之间,用压保险丝检查,膨胀间隙应符合图纸规定;安装时应使轴承纵横中心偏差=10mm,轴水平度偏差=0.1mm/m;

5.拆卸下来的零件应妥善保管按顺序编号,放置在干净的地方,以免带上杂物,不可碰伤。

(二)离心风机安装方法

1.首先,检查地基的外形尺寸、各预留空洞的中心尺寸;地基外型尺寸偏差应在±20mm范围内,各预留空洞的中心尺寸偏差应在±10mm之间;基础划线,以主厂房建筑基点或锅炉纵横中心线为基准,测得基础纵横主中心线偏差应在±10mm,中心线距离偏差应为±3mm,基础标高应在±5mm之间;

2.凿平地基,放置地脚螺栓、布置垫铁,垫铁组一般为2平1斜3付垫铁,厚的放下面,斜垫铁应成对使用;并伸出机框约20mm;找正后应焊牢、不许松动;垫铁应放置在设备主受力台板、机框立筋处或地脚螺栓两侧,在不影响二次灌浆的情况下尽量靠近地脚螺栓孔;

3.机壳下半部粗定位:注意厂家的安装标记,通常揂敗B号各位一台,就位前注意区分与进出口风管的关系、叶轮旋向等;

4.将集流器喇叭口插入叶轮内用铁丝固定后,将整个转动组吊入预定位置;安装地脚螺栓,地脚螺栓的弯曲度应≤L/100(L为地脚螺栓的长度),地脚螺栓底端不应接触孔底、孔壁。地脚螺栓应受力均匀、并螺栓外露2~3扣;然后松开铁丝将集流器下部与机壳下半部用螺栓固定初步调整叶轮与喇叭口的间隙。

5.风机转动组找平、找正:风机主轴与轴承座之间的垂直度采用如下方法找正:将磁力座贴在主轴上,将百分表表头指向轴承外圈或轴承座弹位端面上(既上端盖加工面上);此时旋转主轴一周以上其表针读数不大于0.15mm即可,此读数值为该轴承座与主轴的垂直情况。

6.电动机找平、找正:调整风机与电机主轴同轴度(既联轴器找平找正)。用三块百分表找正,轴向两块、径向一块;每盘动轴90度,记录数据,测量其上下左右的读数,调整同轴度,使其误差≤0.05mm;且两靠背轮之间应有10mm间隙。找正后,复查轴中心高度等部分数据,做好记录。公务员之家

7.在风机找正后,进行机壳上半部扣盖、集流器与机壳安装就位,两机壳之间应垫石棉绳;拧紧连接螺栓,四边螺栓应受力均匀;以叶轮为基准,再次调整叶轮与喇叭口的间隙。

流风机范文篇10

关键词:双风机并联运行;风压控制;变频器

新钢集团公司热连轧厂1#、2#加热炉燃烧系统,设计由两台风机给1个加热炉供风,共4台风机。系统采用风机进风口调节风压和风量的设计。1#、2#加热炉燃烧系统每台风机的出风口都设置有1个电动切断阀,当风机停用时自动关闭,以防止空气倒灌入风机,而需要风机启动时又能快速打开。原加热炉燃烧系统所需风量和风压发生变化时,由助燃风机的入口调节阀对系统风量和风压进行调节,因为风机为工频满负荷运行,依靠调节阀控制进风的大小,仍然会引起助燃空气过剩,造成燃烧不充分,只能进行放散,不仅浪费了大量的能源,而且对大气也造成一定的污染。

1存在的问题

2015年公司为减少能源浪费,对助燃风机进行了变频器控制系统改造,引进了广州智光公司的“高压智能变频节电系统”,对热连轧厂2座加热炉助燃风机进行了节能改造,该产品运用“功率裂变”与高压“再生”技术,主要应用于风机、泵类负载场合。但这次设备技术改造完成后,试生产就发现不能满足节能要求,当变频器控制系统对风机进风口调节风压和风量时,热负荷一波动,风机就出现串风、喘振现象,根本无法根据风压进行频率自动调节,为了维持生产,热连轧厂只能把变频器的频率一直设定在50Hz上运行,改造项目迟迟无法投入运行。

2问题分析

(1)两台型号相同的风机并联后,最大风量可达到两风机总风量的90%左右。风机的性能曲线和管网特性曲线的交点称为工作点,风机运行的工作点应该在稳定的区域,两台性能相同的风机并联工作,他们的性能曲线可能基本相同,但它们的管网特性曲线也非常重要。分析发现,1#风机的直管段比2#的长4米多,2台风机的管网特性不相同,风机的工作点相差很大。两台性能相差很大的风机并联工作,容易引起倒灌和喘振现象。如图一所示。图一助燃风机工艺图(2)助燃风机采用变频调节风机风量,对于离心式风机来讲,风机的风量与转速成正比,风机的风压与转速的平方成正比,风机的轴功率与转速的立方成正比。如果风机转速降一倍,提供的风量也降一倍,风压会变为原来的1/4,转矩将变为用来的1/8。转矩减小将使风机运行的工作点进入不稳定区。图二中所示的曲线1在低速时的负载转矩比额定转矩小很多,如果用风量大幅度调整必然会引起风机进入性能不稳定区。

3两台风机负荷平衡攻关经过分析

2台风机并联运行,只要是热负荷发生变化(特别是变小),两台风机各自的工作点就发生变化,进入到不稳定区。压力高的风会向压力小的风机一边倒流,使能力小的风机不但不能送风反而灌风,因而依靠频率PID调节风压就显得太单调,不能满足工艺控制要求了,因此我们采取了以下攻关措施对风机负荷平衡进行了攻关。(1)修改风压自动调节程序,根据燃烧所需风量,进行速度分程控制(见表一)。表一风量与风压给定值对照表在热负荷不同的情况下,单纯运用风压控制不能满足控制要求,还需要考量用风量,把各段支管的风量进行累加作为总的用风量。用风量不同,变频器风压PID调节自动调节的给定也不同,同时用风量也作为入口风门调节的依据。(2)对各烧嘴助燃空气阀位的手动给定进行斜坡控制。加热炉操作人员习惯在减风过程中,直接把阀位由90%减到10%,这样会引起用风量和风压激烈波动,自动控制系统无法正常调整过来,从而打破了2台风机的负荷平衡状态。只要在程序中把空气阀位的手动给定进行斜坡控制,在不影响操作人员习惯的基础上,减少人为操作引起的激烈热负荷变化,风压控制的扰动减小,系统更加稳定。(3)风门开度前馈控制。在急剧减风情况下,风机容易产生憋压和灌风,这就需要应用入口调节阀的开度进行前馈控制,用风量一减少就直接把风门开度调到设定值(见表二),不需要经过自动调节系统,提高了响应速度。表二风量与入口调节阀开度对照表通过控制程序的优化,对用风量的变化率进行监控,用风量一减少就直接把风门开度调到对照表中的设定阀位,不需经过PID计算,提高了响应速度。控制入口阀门的大小直接就控制了风量和风压,避免风机的工作点运行到不稳定区。正常工况下,变频器和调节阀都在PID调节。(4)风压的过程值和给定值都经过开方处理后,作为转速PID调节的给定和过程值进行控制,控制的精度更好。(5)对P参数进行量化给定,当热负荷的变化率不同时P参数也不同。

4结束语

在冶金系统耗能设备中,针对不同的工艺情况做到精细化控制,生产效益就有很大的提升空间,加热炉双风机变频器改造后通过控制系统优化,节能效果达到40%,实现了节能改造的预期目标。

作者:蔡建辉 黄光辉 陈卫军 王淑华 单位:新钢集团公司

参考文献

[1]胡兵,李龙涛.加热炉助燃风机并联工作控制系统[J].冶金自动化,2001,(01).

[2]何川,郭立君.泵与风机(第四版)[M].北京:中国电力出版社,2007.

[3]周静,盛赛斌,白俊刚,等.轴流风机喘振机理及预防措施[J].电力建设,2001,(05):58-60,63.