冷却范文10篇

时间:2023-03-15 21:45:12

冷却范文篇1

以往计算冷却塔的水气参数时,把散热和散质分开计算,所以计算参数比较多。麦克尔引入了焓的概念,把散热和散质统一在焓中,减少了计算参数。全世界进行冷却塔的热力计算,较广泛地采用麦克尔公式。

设水传给空气流的总热量为,则在面积上的传热量为

它以水面饱和空气层的焓和湿空气中的焓之差,作为从水面向空气中散热的推动力。

实际应用于冷却塔的热力计算时,由于塔的填料形状一般较复杂,其表面面积不易精确决定。所以,常用填料体积代替其面积,则上式变为:

式中—填料的容积散质系数,

—填料体积,。

麦克尔公式中的容积散质系数,通常是通过模拟试验求得。

2.水的冷却过程

在冷却塔中水的冷却过程由水温、空气的干球温度、湿球温度决定。单位面积,单位时间的接触散热量为,蒸发散热量为。可分为下图所示的四种传热情况。

(1)水温大于气温。两种热量都由水面散向空气,,水温降低,水量产生蒸发损失。

(2),水温和气温相等。接触散热停止,蒸发散热照常进行,,水温降低,水量产生蒸发损失。

(3)。由于水温低于空气干球温度,从空气向水中产生接触传热;水面蒸发散热照常进行,,水温降低。

(4)。同(3)的传热情况,但,所以,即水温不再降低,但蒸发仍在发生。这是水冷却的极限情况,如果水温继续下降,将产生>水温又会升高,所以是水冷却的极限。

上述情况可用右图举例表示。图中横坐标为水温,纵坐标为单位冷却面积上的散热量。空气参数:干球温度26.6℃;湿球温度为15.7℃,大气压力;相对湿度0.27,散热系数。由图可见,随着水温的升高,总散热量也在增大,且蒸发散热量大于接触散热量。由于散热而使水温降低,当水温降到空气的干球温度26.6℃时,接触散热变为零,只剩下蒸发散热。当水温再降低,接触散热变为负值,即由空气向水传热,总散热量越来越小。当水温降到湿球温度15.7℃时,水的蒸发散热量等于空气向水中所输入的接触传热量,总散热量变为零,水温不再下降。当水温接近湿球温度时,焓差将很小,散热很慢,塔体积必须非常大。从经济出发,冷却后的水温,总要比空气的湿球温度高几度,即。()称冷却幅高,在设计中冷却幅高取3~5℃。

3.冷却极限的测定

上述水的冷却极限即为空气的湿球温度。当包纱布的温度计上的温度不变时,其指示的温度即为空气的湿球温度,这表示从纱布上蒸发的水变为水蒸气时,其所损失的热量等于由接触传热从空气中传给纱布的热量,二者平衡,所以湿球温度不再变化。这种说法漏掉了一种热量,即辐射传热。为了消除辐射热的影响,湿球温度计的包纱布部分必须通风。通风不改变辐射量,却使蒸发和接触散热量增大,但两者传热量之比例不变,这样一来,辐射热就可以忽略不计了。为达到以上效果,通过湿球部分的风速应达到3m/s以上,不然,测得结果必须作如下校正:

冷却范文篇2

论文摘要:利用数字化温度传感器、电磁流量计对高炉冷却水系统进行温度和流量参数的监测,同时根据这些数据以及历史记录和人工设定参数等进行分析和比较,确认高炉冷却水系统运行状态,并对不佳状态进行必要的调整。

引言

在高炉生产过程中,由于炉内反映产生大量的热量,任何炉衬材料都难以承受这样的高温作用,必须对其炉体进行合理的冷却,同时对冷却介质进行有效的控制,以便达到有效的冷却,使之既不危及耐火材料的寿命,又不会因为冷却元件的泄露而影响高炉的操作。因此对高炉冷却介质进行必要的监测和控制尤为重要。本文主要阐述对高炉水冷却部分进行监测和控制的一套系统构成及工作原理。

高炉冷却水系统比较重要的几个参数:

高炉冷却的作用:

1.降低炉衬温度,使炉衬保持一定的强度,维护合理的操作炉型,延长高炉寿命和安全生产。

2.形成保护性渣皮,铁壳和石墨层,保护炉衬并代替炉衬工作。

3.保护炉壳、支柱等金属结构,免受高温的影响,有些设备如风口、渣口、热风阀等用水冷却以延长其寿命。

4.有些冷却设备可起支撑部分砖衬的作用。

就其作用而言,相对重要的是降低温度,带走热量以形成保护性渣皮,维护合理炉型。因此冷却系统在不同位置带走热量的多少很重要,有冷却器的热平衡分析可知,冷却水带走的热量与水量、进出水温差、水的比热容成正比关系,而水的比热容是一个常量,所以对冷却水我们需要监测的重要参数是水流量和进出水温差。

我们通过在冷却器进水或出水支管上安装流量计来获取流量值,通过在进水和出水分别安装温度传感器来获取进出水温度,通过计算得到温差。

对高炉冷却水系统的控制与调节中主要是对水流量进行调节,调节冷却水流量的主要手段是调节控水阀门的开度和启动加压泵加大进水压力两种方式。

因此我们要做的就是监测高炉冷却水的进出水温差和流量,通过计算得出热流强度,再根据热流强度对高炉当前部位炉墙厚度等状况进行判断,并对局部水量或整体水量做适当的调整。

系统介绍

系统从功能上分为温度监测子系统、流量监测子系统、控制执行子系统、运算分析控制存储子系统和查询子系统五个部分(图1)。

温度监测子系统温度监测子系统构成

温度监测子系统设备主要包括:数字化温度传感器、总线连接器、温度采集器、数据转换器等。系统构造如下图(图2):

温度传感器

测温传感器采用的是美国进口的数字式温度传感元件,其精度高,抗干扰能力强,测温范围广等特点使得在低温测量系统中用量非常大。其外壳采用不锈钢制成,防水、耐腐蚀,可以在环境恶劣的测温环境下使用。该探头安装简单,拆换方便,可维护性好。

数字化温度传感器内部有独立的地址编号,系统可以根据次技术参数

工作电压:DC5V±10%

测量精度:±0.1℃

测温范围:-55℃~+125℃

通讯线:RVVP3x0.3(环境温度≤70℃)

或AFP3x0.3(环境温度≤220℃)

外形尺寸:探头长50mm,外螺纹M16

数字化温度传感器测温原理

图4数字化温度传感器测温原理

温度传感器的测温原理如图(图4)所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,温度传感器就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的基数分别置入减法计数器和温度寄存器中,减法计数器和温度寄存器被预置在-55℃所对应的一个基数值。减法计数器对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器的预置值减到0时温度寄存器的值将加1,减法计数器的预置将重新被装入,减法计数器重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图4中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值。

总线连接器

ST-X接线箱与ST-D保护箱组合,形成双层铁制外壳,坚固耐用,安装简便,并且防雨、防熏蒸、防腐蚀,外观美观大方,接线方便。内部接线端子,采用了进口产品,触点接触良好,接线方便快捷,易于维护。最多可以和10个温度传感器对应连接,有1路输出端子。

技术参数

端口数量:10通道

输入电压:DC5V±10%

环境温度:-40℃~+80℃

外形尺寸:260x230x90mm

总线连接器的作用是将数字化温度传感器简单的连接,重要是将传感器连接接点处放置于保护箱内,通过插接件及电路连接,保证电气连接的稳定性。

温度采集器

ST-A温度采集器的作用包括给数字化温度传感器提供电源,对多个数字化温度传感器进行温度采集并按照次序存贮到,采用先进的Lonworks技术,保证了系统的高速信息交换和数据采集,增强了系统的可靠性。温度采集器使用防水标准的机壳,可适应现场的恶劣环境,密闭性好,防熏蒸。而且温度采集器带有过压、过流、突波、隔离、雷击保护电路。测温传感器通过总线连接器连接到温度采集器,连接电缆长度最长可达100米,每个温度采集器可连接20个温度传感器。

技术参数:

输入电压:AC220V±20%

测温点数:20点

通讯方式:Lonworks现场总线

通讯距离:1800m(无中继)

外形尺寸:300x250x120mm

采样速率:5点/秒

工作温度:-20~+80℃

采集器以控制器为核心以电源为辅助,整和通讯、数据采集通道、声光指示等功能,形成完整的设备。

ST-N数据转换器

ST-N数据转换器是整套系统数据读入和发出命令的重要设备,是连接采集器和系统管理计算机的纽带。它把Lonworks总线数据转换成可以直接对计算机输入输出的RS232数据,有效的架起下位机和上位机之间的桥梁。数据转换器使用防爆标准的机壳,可适应现场的恶劣环境,密闭性好,防熏蒸。Lonworks网线的无中继最大传输距离大于1800米。

数据转换器在主控室安装,功能相对简单,用Lonworks通讯模块和RS232通讯电路构建,其他包括电源和状态指示部分。

1-wire总线

1-wire单总线是Maxim全资子公司Dallas的一项专有技术,与目前多数标准串行数据通信方式如SPI/I2C/MICROWIRE不同,它采用单根信号线,既传输时钟又传输数据,而且数据传输是双向的。它具有节省I/O口线资源,结构简单,成本低廉,便于总线扩展和维护等诸多优点。1-wire单总线适用于单个主机系统,能够控制一个或多个从机设备。当只有一个从机位于总线上时系统可按照单节点系统操作,而当多个从机位于总线上时则系统按照多节点系统操作。

时序:

采集器使用时间隙(timeslots)来读写数字化温度传感器的数据位和写命令字的位:

(1)初始化

时序见(图10)主机总线t0时刻发送一复位脉冲(最短为480us的低电平信号)接着在t1时刻释放总线并进入接收状态数字化温度传感器在检测到总线的上升沿之后等待15-60us接着温度传感器在t2时刻发出存在脉冲(低电平持续60-240us)如图中虚线所示

图10初始化

(2)写时间隙

当主机总线t0时刻从高拉至低电平时就产生写时间隙见图11图12从t0时刻开始15us之内应将所需写的位送到总线上传感器在t后15-60us间对总线采样若低电平写入的位是0见图11若高电平写入的位是1见图12连续写2位间的间隙应大于1us。

(3)读时间隙

机总线t0时刻从高拉至低电平时总线只须保持低电平1μs之后在t1时刻将总线拉高产生读时间隙读时间隙在t1时刻后t2时刻前有效t2距t0为15μs也就是说t2时刻前主机必须完成读位并在t0后的60μs-120μs内释放总线

冷却范文篇3

根据冷却数方程式表示的热力特性和阻力特性,可以综合计算得到设计或其它条件下的冷却水温。

根据设计条件及实测的热力、阻力特性,计算出冷却水温,与设计的进行比较,如前者的值等于或低于后者的值,则该冷却塔的冷却效果达到或优于设计值。

2.按实测冷却水温评价

通过验收试验,测得一组工况条件下的出塔冷却水温,由于试验条件与设计条件的差异,需通过换算方可比较,其比较的方法是:将实测的工况条件代入设计时提供的性能曲线或设计采用的计算方法和公式,计算出冷却水温,如果比实测的高,则说明新建或改建的冷却塔实际冷却效果要比设计的好,反之则说明冷却塔效果差。

这种用实测冷却水温的评价方法,计算简便,评价结果直感,试验时不需测量进塔风量,易保证测试结果的精度,但需设计单位提供一套性能曲线(操作曲线)或计算公式。

3.特性曲线评价法

3.1性能评价应用公式

式中——实测冷却能力;

——修正到设计条件下的冷却水量();

——设计冷却水量();

——试验条件下的实测风量();

——修正到设计工况条件下的气水比,

由于试验条件与设计条件存在差异,故需将试验条件下所测之数据,修正到设计条件下进行评价。

3.2设计工况点的决定

在作设计时,根据选定的塔型及淋水填料,可获得该冷却塔的热力特性,在双对数坐标纸上便可获得一条的设计特性曲线,如下图中直线1。

根据给定的冷却任务()假设不同的气水比,可获得不同的,将其描绘在图上,便可得冷却塔的工作特性曲线,如上图中曲线2,直线1和曲线2的交点。即为满足设计要求的工况点。

3.3试验条件的工况向设计条件修正

冷却塔进行验收试验或性能试验时,由于实测进塔空气量G,和设计空气量不可能完全相同,所以获得的直线和上图中的直线1不可能完全相同,而是另外一条和直线1平行的直线3。直线3和曲线2的交点c则表示修正到设计条件下的工作点,C点对应的气水比即为修正到设计工况条件下的气水比。

c点的获得,可由试验得到的冷却数和气水比点绘到冷却塔设计特性曲线图上,得试验点b,过b点作直线3平行于直线1,从而可得到直线3和曲线2交点c。

根据试验实测的空气量及修正后c点的气水比,便可得到修正后的冷却水量,即:

将上式代入便可求得实测冷却能力。如大于90%或95%,应视为达到设计要求;大于100%,应视为超过设计要求。

4.美国CTI机械通风冷却塔特性曲线评价法

此评价方法与上述的冷却塔性能评价方法基本相同,亦是以实测冷却能力

表示的,即:

所不同的是上式中进塔风量不是直接测定的,而是测定机械通风冷却塔的风机功率,根据风机功率再计算进塔风量。计算公式为:(kg/h)

式中——通过实测风机功率换算的风量();

——设计风量);

——实测风机功率();

——设计风机功率()。

风量求得后,其它计算方法均与前所述相同。

5.美国CTI机械通风冷却塔操作曲线评价法

(1)本法是由试验数据利用操作曲线评价机械通风冷却塔性能的方法,计算结果是以冷却能力表示。

(2)设计单位应提供相当于设计冷却水量的90%、100%、110%三组曲线组成的操作曲线图。每组曲线以湿球温度为横坐标,出塔水温为纵坐标,冷却幅宽火力参变数的列线图,如图(系列)所示。冷却幅宽曲线的变量至少要包括设计值,80%设计值和120%设计值三条冷却幅宽曲线。设计点应在曲线图上表示。

冷却范文篇4

关键词:冷却塔麦克尔公式

在湿式冷却塔中,热水将热量传给空气,由空气带走,散到大气中去。水向空气散热有三种形式:①接触散热;②蒸发散热;③辐射散热。冷却塔主要靠前两种散热,辐射散热量很小,可忽略不计。

两种不同温度的物质接触,热量从温度高的一方传向温度低的一方,称为接触散热。冷却塔中,当低温度空气通过高温度水面时,水面会通过接触散热,把热量传给空气。

蒸发散热通过物质交换完成,即通过水分子不断扩散到空气中来完成。水分子有着不同的能量,平均能量由水温决定。在水表面附近,一部分动能大的水分子,克服邻近水分子的吸引力,逃出水面而成为水蒸气。由于能量大的水分子逃离,水面附近的水体能量变小,因此水温降低,这就是蒸发散热。一般认为蒸发的水分子,首先在水表面形成一层薄的饱和空气层,其温度和水面温度相同,然后水蒸气从饱和层向大气中扩散,扩散的快慢取决于饱和层的水蒸气压力和大气的水蒸气压力差,即道尔顿(D0Lton)定律。

1.麦克尔(Merkel)公式

以往计算冷却塔的水气参数时,把散热和散质分开计算,所以计算参数比较多。麦克尔引入了焓的概念,把散热和散质统一在焓中,减少了计算参数。全世界进行冷却塔的热力计算,较广泛地采用麦克尔公式。

设水传给空气流的总热量为,则在面积上的传热量为

它以水面饱和空气层的焓和湿空气中的焓之差,作为从水面向空气中散热的推动力。

实际应用于冷却塔的热力计算时,由于塔的填料形状一般较复杂,其表面面积不易精确决定。所以,常用填料体积代替其面积,则上式变为:

式中—填料的容积散质系数,

—填料体积,。

麦克尔公式中的容积散质系数,通常是通过模拟试验求得。

2.水的冷却过程

在冷却塔中水的冷却过程由水温、空气的干球温度、湿球温度决定。单位面积,单位时间的接触散热量为,蒸发散热量为。可分为下图所示的四种传热情况。

(1)水温大于气温。两种热量都由水面散向空气,,水温降低,水量产生蒸发损失。

(2),水温和气温相等。接触散热停止,蒸发散热照常进行,,水温降低,水量产生蒸发损失。

(3)。由于水温低于空气干球温度,从空气向水中产生接触传热;水面蒸发散热照常进行,,水温降低。

(4)。同(3)的传热情况,但,所以,即水温不再降低,但蒸发仍在发生。这是水冷却的极限情况,如果水温继续下降,将产生>水温又会升高,所以是水冷却的极限。

上述情况可用右图举例表示。图中横坐标为水温,纵坐标为单位冷却面积上的散热量。空气参数:干球温度26.6℃;湿球温度为15.7℃,大气压力;相对湿度0.27,散热系数。由图可见,随着水温的升高,总散热量也在增大,且蒸发散热量大于接触散热量。由于散热而使水温降低,当水温降到空气的干球温度26.6℃时,接触散热变为零,只剩下蒸发散热。当水温再降低,接触散热变为负值,即由空气向水传热,总散热量越来越小。当水温降到湿球温度15.7℃时,水的蒸发散热量等于空气向水中所输入的接触传热量,总散热量变为零,水温不再下降。当水温接近湿球温度时,焓差将很小,散热很慢,塔体积必须非常大。从经济出发,冷却后的水温,总要比空气的湿球温度高几度,即。()称冷却幅高,在设计中冷却幅高取3~5℃。

冷却范文篇5

【关键词】:凝汽器;铜管;不锈钢;冷却管

凝汽器是凝汽式或抽汽凝汽式汽轮发电机组的重要辅机设备,凝汽器的运行情况的优劣直接影响到整个机组的正常运行。而冷却管腐蚀是影响凝汽器安全稳定运行的一个主要隐患。

我厂两台6MW机组均配用的是N-560型凝汽器,冷却管采用的是Φ20×1的黄铜管,材质为HSn70-1A。两台机组运行至今已有近九年的时间,凝汽器的冷却管出现了大面积的泄漏现象,已经严重影响机组的安全运行,虽经过部分换管,但问题始终不能从根本上解决。所以我们决定对凝汽器进行换管,并考虑对冷却管进行重新选材。

目前,国内凝汽器冷却管采用的管材主要有黄铜、白铜、钛合金和不锈钢等。钛合金作为冷却管的新型工程材料,对各种水质都具有极强的耐蚀性。作为最耐腐蚀的结构金属,其密度小、强度高,并且在沸水环境的研究中,钛的腐蚀阻力显著地高于铜镍合金。在其他材料不能耐受侵蚀的情况下,钛可以说是最佳选择。由于钛管价格昂贵及安装费高,西方国家和我国都只限于滨海电站和核电站中应用,连接造成的电偶腐蚀和管内结垢仍有待解决,这些都限制了它的全面推广。因此下面只对白铜、黄铜和不锈钢进行比较。

1.材料性能

国内外常用的铜管和不锈钢管的化学成分、物理和机械性能。可以看出,不锈钢管从材料性能上有以下几个优点:

1)不锈钢管材料的强度大于铜管,从而提高冷却水管在运行过程中对汽侧的高速蒸汽及水滴的抗冲击能力。

2)不锈钢管的弹性模量大于铜管,表明其抗拉强度好,线膨胀系数低于普通铜管,减少来自内部的应力。

3)不锈钢管抗结垢能力强,因为污垢层与不锈钢的热胀系数差别很大,当受热时,由于线型曲率变化不等而自动脱落。

4)在凝汽器的空气冷却区内,经常积聚一些不凝气体,主要由氨气、二氧化碳等,铜管对氨气产生的腐蚀极为敏感,造成氨腐蚀。相反,不锈钢管抗氨腐蚀能力很强。

5)由于不锈钢的抗拉强度和屈服强度较大,所以不锈钢的使用寿命也相应的延长,一般不锈钢管的使用寿命在20年左右,而铜管的使用寿命只有10年左右。

2.传热效果:

虽然从铜和不锈钢材料的导热率看,铜的导热率是不锈钢的10倍,但热交换器总的传热系数是由多个因素决定的。热交换器的传热过程如下:

在以上的三个传热过程中,除铜的导热率比不锈钢高以外,不锈钢管在以下的几个方面具备优势:

1)不锈钢管和铜管相比高粗糙度的金属表面不会形成稳定的水膜,出就是说水膜热阻较小,增强了蒸汽与管外壁的换热效果。

2)因不锈钢的强度较大,同规格的管子可做的比铜管薄,这样以来管子的导热效果也得到相应的提高。

3)因为不锈钢管的壁厚较薄,其相应的内表面积也比同直径的铜管大,因此其对流换热效果也相应提高。

综合以上的几个方面,通过计算可知,采用薄壁不锈钢管的凝汽器和采用铜管的凝汽器换热效果基本相当。

3.经济性。

目前,国内凝汽器用薄壁不锈钢焊接管的技术已日益成熟,其价格也有了大幅度的下降,采用同规格的薄壁不锈钢和采用铜管时的价格相差甚微。公务员之家

冷却范文篇6

关键词:新能源汽车;动力电池;冷却技术

新能源汽车的研发,通过电力能源取代传统燃油能源,可有效实现能源的节约,减少尾气排放,进一步符合我国节能环保工作的开展。此外,在汽车充电桩设施的布局下,可满足新能源汽车的续航需求,为电力能源与机械能源之间的转换提供基础保障。但电池装置在长时间驱动状态下,电能与热能之间的比例将呈现出负增长现象,当电池热能的产生高于热能输出时,则将加剧电力能源的损耗,缩减电池装置的使用寿命。电池冷却技术的应用,则可为电池装置进行热量管理,通过不同技术工艺、介质材料等,及时将电池装置产生的热量进行分散,以提高电池生命周期,为企业创造更大的经济利润。

一、新能源汽车动力电池概述

所谓新能源汽车动力电池,就是为新能源汽车提供动力的一种电源。就目前的市场来看,用来为新能源汽车提供动力的电源主要包括镍氢电池、铅酸电池、燃料电池和锂电池。以下是对几种常见的新能源汽车动力电池所进行的分析:

(一)镍氢电池

这种蓄电池的性能十分良好,具体应用中,可按照高压镍氢电池以及普通镍氢电池来进行划分。在新能源汽车中,该动力电池的主要应用优势是放电功率大、记忆效应小、使用寿命长、可循环使用。凭借着这些优势,这种动力电池已经在很多新能源汽车制造企业中得到了广泛应用。目前,这种蓄电池的发展已经比较成熟,我国也在其原材料加工方面具备了较为成熟的技术。因此,在新能源汽车的生产,这种蓄电池已经成为一个主要的动力来源方向。

(二)铅酸电池

就目前的新能源汽车动力电池市场来看,最具完善性且具备最成熟技术的就是铅酸电池。虽然此类电池在应用中存在技术水平不足、环保效果不佳等的问题,但是这种动力电池依然在新能源汽车中具备较好的发展前景。伴随着科学技术地不断发展,铅酸电池在技术方面也得到了不断优化,目前,其放电功率已经由原来的20Wh/kg提升到了现在的40Wh/kg,且使用寿命也实现了进一步延长,由原来的放电300次左右提升到了放电4000次以上。另外,当今的铅酸电池回收技术发展也十分迅速,该技术的发展让铅酸电池回收与再利用率超过了90%,有效解决了废弃铅酸电池污染环境等问题。由此可见,此类动力电池的研究正在朝着技术型和环保型的方向发展,而其发展空间也将越来越大。

(三)燃料电池

燃料电池的主要工作原理是实现化学能到电能的转化,它属于一种化学装置,所以人们也将此类电池称为电化学发电器。新能源汽车生产和制造的过程中,燃料电池的主要优势不仅仅是很高的工作效率,同时其有害气体排放量以及噪声污染等都非常小。凭借着这些优势,这种动力电池在当今的新能源汽车制造领域中具有很大的发展空间。相比较西方的很多发达国家而言,我国在燃料电池方面的技术水平目前依然有待提升,无论是技术方面还是配套设施方面都有待进一步完善,其技术的设计与研发也存在较大难度。这就需要相关企业、研究人员和技术人员加大力度对此类动力电池进行研究,及时掌握其关键技术,使其在我国的新能源汽车上得以良好应用。

(四)锂电池

伴随着当今微电子技术的不断发展,锂电池也开始投入了大规模的生产与制造中。这种动力电池主要是将锂金属或锂合金用作阳极材料,对非水形式的电解质溶液加以科学应用,进而制造的一种新型蓄电池。将锂电池用作新能源汽车中的动力电池,其应用优势将十分显著,通过研究发现,这种动力电池的比功率可以达到1600Wh/kg,比能量可以达到150Wh/kg。另外,在我国电能技术的不断发展与完善中,这种动力电池的各项技术参数也在不断提升。就目前来看,锂电池的一个主要研究与发展方向是聚合物形式的锂电池,此类动力电池可按照三元锂电池以及锰酸锂电池等来进行划分,不同锂电池的应用性能并无很大差别,都可以在新能源汽车中加以合理应用,以此来实现新能源汽车动力的有效提供。由此可见,在我国的新能源汽车发展中,锂电池也是其动力电池的一个重要选择。

二、新能源汽车动力电池的冷却技术分析

就目前来看,在新能源汽车动力电池的具体应用中,其冷却技术主要包括气体介质冷却技术、液体介质冷却技术、相变介质冷却技术、热电制冷技术以及热管制冷技术。以下是对这几种主要冷却技术所进行的分析:

(一)气体介质冷却技术

气体介质冷却技术,主要是以空气作为热量传输介质,通过热能的热传递效应,令电池组实现降温处理。从整个构造来看,以空气为基础的介质在实现冷却功能时,整体结构较为简便,且机械化运作特点无须占用过多的资源,提高后期维护质量。通过对电池组所产生热力能源,界定出热量预期传递指标,保证系统在实现某一项功能指令时,可针对舱室以及不同结构进行针对化的热管理,进一步确保空间降温的时效性。从工作原理来看,气体介质冷却主要是依托车厢内风机设备或与空气调节装置相关联的机构为载体,实现能源的热传递:外部空气→风机→车厢空气调节装置→车身(动力电池组)→排气系统。从目前技术研发形式来看,受到汽车结构、汽车动力等方面的影响,在对气体介质冷却技术进行参数界定时,也呈现出一定的差异性。例如,科学家通过电池组外部空气流通速率,对电池组在车辆内的空间布局进行设定,以得出电池冷却的最大效率值;通过强制冷风处理模式,对电池组进行均衡式降温处理,在均匀性的冷却机制下,可对发热点进行均衡式降温,以提高实际降温速率;通过流体力学界定出不同气流层在实际导出过程中,气流分层与电池温度输出比值存在的线性关系,以得出不同送风形式对电池组温度所造成的相关影响。[1]

(二)液体介质冷却技术

液体介质冷却技术是以液态物体为介质,通过热传递实现对电池组的降温处理。与常见的气体介质相比,液体介质具有更高的比热容,且同体积吸取的热能较多,可有效提高系统换热效率。按照工作形式来看,液体介质的冷却可分为接触型冷却与非接触型冷却两种。接触型冷却是指电池组与冷却液体直接接触,通过将电池模块沉浸到液体中,令液体对电池组所产生的热量进行无差别吸收,以达到物理降温的效果。非接触型冷却则是指在电池组周围设定具有一定组织结构的冷却装置,液体通过在冷却装置中的循环流动,吸取电池组所产生的热量,这样一来,便可最大限度地对热量进行传递,此类冷却机制无须液体与电池组之间接触,在一定程度上增强冷却工作的稳定性效用。一般来讲,冷却介质多为乙醇物质、水的混合物。对于液体介质冷却技术的发展形势来看,液体冷却大多是以剂料组成、冷却结构等为主,通过介质与结构的同步优化,令整个冷却工作的开展具有针对性,乙二醇为介质的液体冷却体系,在实际应用过程中,可通过介质的多次循环,令整项温度调控实现规范化运作,这样一来,便可最大限度增强系统冷却效率,令电池组在固有极限值之下实现高效率运行。目前,液体冷却技术的实现多以冷却组、管道、液体介质流量等为主,通过对不同影响因素进行设定,分析出在某一类运行工下,液体冷却技术在具体落实中呈现出的功能属性。我国学者通过分析氢氟醚介质与其他液体介质之间的冷却效率,得出在同等对流传热机制下,液体介质发生相变所产生的冷却效能,可将整个温度维系在35℃~38℃的恒定范畴内,这样便可在冷却介质的冷却循环内,确保电池组温度值的降低呈现出恒定状态,以此来增强电池组的实际应用性能,保证其在固有生命周期内发挥出更大的价值。然而,液体介质冷却技术也存在一定的使用劣势,例如,非接触冷却工艺所搭载的金属设备,在整个系统运行过程中,将对系统能量产生一定的消耗,降低电池能源的供电性能;接触型冷却工艺在运行过程中,如果电池外部结构产生破损,将造成严重的安全事故。为此,在采用液体介质冷却技术时,必须从多个角度分析出当前工况操作形式下,冷却技术所能达到的最大冷却效果,然后结合汽车运行原理,真正实现节能化操作,增强电池组的使用寿命。[2]

(三)相变介质冷却技术

相变介质冷却技术作为近年来新兴的电池冷却工艺,其主要是通过相变材料,对当前系统存在的温度变化趋势进行分析,界定出不同操控工序下,能源转换所应具备的消耗值,然后结合材料本体的可塑性能,对电池组所产生的能量进行转换与释放,以保证电池组运行的稳定性。从技术发展形势来看,相变介质冷却技术的实现可进一步提高电池组的温控性能,整个系统所产生的热量可通过吸收与传递实时导出到外部,以提高系统热传递系数,为汽车稳定运行提供基础保障。与此同时,以相变介质为驱动的冷却技术,在具体应用过程中,可摒弃复杂的驱热系统,即为无须风机设备的驱动支持,便可实现低成本运行。此外,相变材料的应用,可有效解决局部温度过高的问题,令电池组实现整体均衡化降温。我国学者采用泡沫铜—脂肪烃蜡油作为管理系统,对新能源动力汽车的锂离子电池损耗情况进行模型建构,以验证不同工况下,冷却系统在具体实现某一项冷却功能时,其所能达到的最优比值。经过实践表明,以泡沫铜—脂肪烃蜡油为介质冷却系统,其所产生的性能参数明显高于空冷系统,且在低温条件下,电池工作所产生的温度系数呈现出离散属性,并且温度差值更为平均,局部发热问题的产生概率极低。国外研究学者则是在电池组上设定PCM模块,通过系统自动化监测,当电池组达到一定数值时,相变材料本体所设定的温度系数将随着系统温度的提升对热量及时导出,且此类温度变化进一步反映出材料的可塑属性,令温度在固定指标下得以散热处理。

(四)热电冷却技术

热电冷却技术主要是以电子元件为载体,通过热电发生反应,使得电池在运行过程中产生的热能进行电能转换,这样便可将余热当成是能源的重要驱动,进而作用到设备制冷器装置中,进行散热处理。国外学者针对热电冷却技术,研发一种热泵供给系统(BTMS),通过分析新能源汽车动力电池的锂离子在不同环境下呈现出的放电属性,得出在恒流放电模式下,锂离子的放电速率建模参数显示,与预设的热响应、能耗等相符合,其也证明了BTMS的可应用性能。Esfahanian等人则是在原有的热电技术上进行优化处理,通过空冷热原理的应用,进一步得出空间制温体系。在实践表明下,动力电池的外界环境如果高于42℃时,则电池温度将自动进行恒温处理,以保证电池组在35℃的最佳工作状态下。我国学者在原有的热电制冷技术之上,提出制冷器与热管理系统相结合的规划,通过实践证实,在恒流的放电频率下,制冷器可将电池组的温度恒定38℃以内,且作用到不同串联电池组上,其所形成的温度差值低于1℃。对于热电制冷技术来讲,在不同设备载体中,其均需要对电池组本体进行一个恒温设定,这样才可最大限度保证在生命周期内,电池组使用寿命的最大化。

(五)热管冷却技术

热管冷却技术是通过填充相变介质的密封空心管装置,经由蒸发机构、冷凝机构,对电池组所产生的热能进行一系列的循环转化,实现制冷。热管冷却技术的工作原理,在运行过程中,以蒸发机构对电池组所产生的热量进行吸收,然后将此类热能作用到空心管内的液体介质中,使内部液体汽化。当液体汽化时,其所产生的气体将在密封空心管内产生一定的反作用气压,气体在下降势能的作用下,将导入到冷凝机构中,经过冷凝机构的液化处理,将把蒸汽机构所产生的气体转换为液体,然后经由循环装置流回到蒸发装置中,进而为后续汽化—液化的循环提供反应介质。从具体应用形式来看,热管冷却技术大多集中在模型优化体系中,即为以性能为主导的模型评价,通过各类数据信息的整合,界定出不同反应介质下数据参数与实际参数所呈现出的误差值,这样便可通过数据信息反映出热管冷却技术的冷却效果。对此,国外学者通过实验平台,分析出在单管热冷却技术下的锂电池冷却效能,通过不同温度的测定下,得出采用低流量的冷却环境,可更加快速地实现降温,这是由于同一阶段的低温环境中,冷却机构可更为容易吸收热量,且温差效果不会对固有温度指标造成较大的影响,以确保温度的精度控制。我国学者则是通过对热管长度、内部机构组成、喷雾模式等方面,分析出不同工况下电池组的冷却效率,通过实践研究表明,界定出热管长度、喷雾指标与电池组冷却具有一定的线性关系,即为热管长度越大、喷雾效率越高,则电池组的冷却效率越快,但上述两种反应模式的优化,将占据较大的空间资源、能源耗用资源。部分学者研究热动力电池下不同冷却技术的实际应用性能,通过分析比对,查证出冷却性能高低依次为热管冷却技术>液体介质冷却技术>空气介质冷却技术。在热管冷却技术的支持下,电池组的最佳温度可持续更长的时限,且不同电池组的温度差值较小,以增强电池的实际效能。

结语

综上所述,电池作为新能源汽车运行的驱动部件,通过电力能源的中枢供给,为汽车运行提供动力。对于整个电力供给系统而言,汽车动力电池在供应过程中呈现出一定的消耗性,其所产生的热能在一定程度上将耗损电池组装置的使用寿命。对于此,必须针对使用形式,分析出不同冷却技术的应用属性,进而为整项冷却工作的开展提供基础保障。

参考文献:

[1]蒋乐,张恒运,吴笑宇.电动汽车锂离子电池散热技术研究[J].农业装备与车辆工程,2019,57(12):19-22.

冷却范文篇7

关键词:整流变压器;整流柜;晶闸管;整流臂;纯水冷却系统;强油冷却风机

1纯水冷却装置

纯水冷却装置由板式换热器、纯水泵组、气水分离器、树脂塔、高位水箱及电气控制箱组成。其工作原理是从整流柜内输出载热纯水,经过气水分离器分离至板换1#和板换2#内部,冷却后返回整流柜纯水进口管道再次使用。目前循环纯水冷却装置在二次电流小于15kA时可以满足整流柜内各部件冷却条件。如二次电流大于15kA,冷却效果明显不足。夏天整流柜内各别部件温度能达到60℃以上。

2整流变强油风冷机组

整流变强油风冷机组由油泵、轴流风机、散热片、油管、电路控制箱组成。其工作原理是利用油泵将变压器油经过油管进入散热片,由散热片和风机组合向外传递热量,使高温的变压器油快速得到冷却,经过冷却后的变压器油重新返回变压器底部再次使用。

3整流装置冷却系统常见问题

3.1运行方式。目前陕西北元化工集团有限公司化工分公司整流柜运行方式问题存在如下。(1)302变电站一二期整流柜目前运行电流。该公司规定最大负荷16kA,整流柜额定电流17kA。2018年夏天电解槽产能测试单台电解槽运行电流16.3kA运行一个月,产能测试期间整流变压器室温度普遍在17:00时最高(47℃),整流柜内各元器件温度最高:快熔56.7℃(工艺规定)、整流臂温度39℃(工艺规定)、整流柜出口水温39℃(工艺规定水温控制在5~42℃)。综上所述,当整流柜运行电流在小于15kA运行时,循环纯水冷却装置可以满足整流柜内各部件冷却要求。如果整流柜运行电流在15.0~16.0kA运行时,循环纯水冷却装置冷却整流柜内部件效果明显不足,整流柜各元器件温度均已达到临界点,而目前三期建设完成,为满足公司产能要求,电解槽负荷电流后期仍然可能继续上升,因此,目前整流柜冷却装置夏天时已不能满足工艺要求。(2)该公司所使用的整流变压器,1302变电站容量29350kVA和2302变电站容量29280kVA各6台,其整流系统由一台整流变压器和两台整流主柜组成,俗称“一拖二”整流系统。通过强油风冷机组降温。1台油泵对应1组散热片及3台轴流风机,共计3台油泵、3组散热片及9台轴流风机。夏天当两台整流柜运行电流均在14kA左右,时整流变温度基本控制在50~60℃,当两台整流柜运行电流在16kA时,整流变温度上升至78℃且仍有上升趋势,所以对整流变散热系统(强油风冷机组)进行技改,在每组强油风冷机组增加6个纯水喷淋装置,当整流变温度上升至75℃以上时,手动开启喷淋装置进行降温,温度下降至55℃以下时关闭喷淋装置。3.2存在问题。(1)纯水喷淋装置纯水温度在24℃左右,而整流变油温75℃以上,变压器油换热后进入变压器,由于温差较大对变压器内部铁芯、绕组等损害较大,影响变压器使用寿命。(2)纯水喷淋装置使用过程中,散热片表面附着许多杂物,对散热片腐蚀较为严重,影响散热片使用寿命。(3)纯水生产费用较高,喷淋装置使用后无法回收造成浪费。

4整流系统现冷却装置运行方式

(1)目前纯水板换冷却运行方式(见图1)图1中循环水进口水压控制在0.15~0.20MPa。(2)强迫油循环风机冷却组运行方式。

5改造后冷却装置运行方式

5.1改造后纯水板式换热器运行方式。(1)春、冬两季用循环水冷却纯水,将7℃冷冻水进口阀门B1、出口阀门B2关闭,打开板式换热器循环水出口阀A2,打开循环水进口阀A1,循环水压力控制在0.10~0.22MPa。(2)夏、秋两季用冷冻水冷却纯水,将循环水进口阀门A1、出口阀门A2关闭,打开7℃冷冻水出口阀B2,打开7℃冷冻水进口阀B1,循环水压力控制在0.10~0.22MPa,改造后的板式换热器运行方式见图4。改造后优点:当整流柜内设备温度不高时,可以使用目前循环水降温的方法使其降温。当夏天环境温度高,循环水降温不能满足设备降温需求时,将循环水阀门关闭,切换至7℃冷冻水冷却,保证整流柜设备安全稳定运行。5.2改造后强油风冷机组运行方式。(见图5和图6)在原强油风冷机组基础上,给强油风冷机组散热片背面加三组(共计9台)与正面原轴流风机相同型号的轴流风机,即改造后散热片正反面共计18台轴流风机。改造后,当整流变环境温度较高时,开启新加轴流风机,增加冷空气循环速度,达到降低整流变温度的目的,杜绝因水冷却造成散热片腐蚀,影响散热片使用寿命。

5结语

冷却范文篇8

关键词:冷却顶板结构对流辐射

1.概述

冷却顶板空调系统主要靠冷辐射面提供冷量。目前国外已有许多专家学者对冷却吊顶空调系统进行了大量的理论和实验研究,主要包括该系统的设计方法、室内热环境及其控制方法、系统的能耗指标等。而且,在德国和北欧已有很多应用冷却吊顶空调系统的工程实例,冷却吊顶设备也不断地更新换代,该系统大有替代传统全空气空调系统的趋势。本文从理论上对冷却吊顶空调系统的结构、换热计算及空气处理过程进行了分析,并依据换热分析结果对冷却吊顶的结构设计提出了一些改进意见。

2.冷却顶板的结构分析

冷却顶板水管与金属顶板可以制作成一体,直接形成一顶板单元(见图1a),或者通过传热片把水管和金属顶板联结起来,形成一吊顶单元(见图1b),另外水管也可以以毛细管的形式镶嵌在顶板内,组装成一安装单元(见图1c)。

一体式结构复杂,工期较长,不能保证质量;镶嵌式需要较高的机械工艺成本较大另外对水质要求较高;而单元式可以以产品的形式在工厂内部进行组装,效率较高质量有保证,所以建筑业和现代工业的不断发展,单元式应该是今后发展的趋势。图2即为笔者曾经参与设计的冷却顶板结构形式,图3为其正视图放大图。

该系统水管紧贴顶板,为了保证水管与顶板紧密结合,每根管分别由管槽压紧,管槽与顶板之间的连接方式采用闪光对焊形式的点焊机点焊,不影响顶板外表面美观,这些工艺都在工厂内进行。

顶板单元之间的联结方式可以采用两端带接头的柔性软管连接,或者根据水管材料不同,若水管为塑料管,如PR、PR-T等管材,采用电热熔焊方式较好;若水管为铜管,采用直接焊接方式也可接受,为满足防火需要,可采用无明火的高频焊机焊接方式。

3.冷却顶板系统换热分析

冷却顶板的传热有两种形式,即辐射和自然对流。两者的传热比例取决于顶板的物理特性以及顶板附近的空气流动形式,其比值大小很难通过仪器测量直接得出,但是我们可以通过所建模型的分析估计该比值的范围,为空调系统的设计提供参考。

在同样的供水温度下,由于冷却顶板结构不同,传热效果不同。不同形式的冷却顶板表面温度是不一样的,显然,相比较来说,供水到冷却顶板表面的热阻小时,具有更强的优势,这样在顶板表面温度相等的情况下,供水温度可适当提高,提高了制冷机组的COP值,同时减轻结露的危险,一般情况下当供水温度为16°C时,表面平均温度为17.5°C,是可以接受的。

现取一模型房间,已知条件如下:

辐射顶面ts=17.5°C,室内tN=26.0°C,周围墙壁温度tq=29°C,地面温度td=29°C。取模型空间几何尺寸:长×宽×高=3.3m×6.6m×2.9m。

3.1单位面积顶板辐射换热量计算:

其冷却顶板表面发射率ε1=0.9,墙体和地面发射率ε2=0.8,组成封闭腔的表面间的辐射换热量计算公式为:

式中:

F1=21.78m2,F2=79.2m2

所以:

3.2单位面积顶板对流换热量计算:

对流采用水平放置冷面朝下的自然对流计算公式。

特性尺度

由定性温度tm确定空气的物性值:tm=(17.5+26)/2=21.8°C

查得空气的物性参数:

λf=2.6×10-2W/(m.°C);ν=15.26×10-6;Pr=0.703;

,属于紊流状态。

由文献(1)查表7-6,得下式中的C=0.15,n=1/3,则:

3.3计算结果分析:

由以上计算,可知总换热效率为:

其中,辐射换热约占总换热的65%,对流换热约占总换热的35%。由于冷却顶板具有噪音很少,舒适度高等优点,可以适用于高档住宅及高档写字楼等场所。

4.空气处理过程分析

冷却顶板只能除去显热负荷,无法除去湿负荷,因此冷却顶板设计中有一点是不容忽视的,即在一定的空气状态下,当整个制冷系统处于温度最低点时,冷却顶板表面温度可能会降到室内空气露点温度以下,从而出现结露的危险。因此,为避免结露,应通过调节水系统或空气系统,使供水温度高于空气露点温度。出于此种考虑,供水温度一般为16℃左右,对相对湿度较高的送风进行除湿处理,使其露点温度低于14℃。

空气的除湿过程有两种方式,一是采用传统的空调方式,即送风由冷水盘管或制冷剂直接蒸发进行冷却除湿,盘管表面温度必须低于送风露点温度以进行除湿处理,空气经过此处理过程后会过冷,因此在送入室内之前往往需要进行再热处理;另一种方法是采用转轮硅胶除湿器进行除湿处理,因而比较适用于送风温度相对而言比较高时需要去湿的场合。单独采用第一种方式,由于空气处理后过冷,还需要进行热处理,显然不是节能之举。对于第二种方式,由于除湿时潜热转换为显热,送风温度过高,也不适用于一般空调系统。因此,可以采用两种方式的综合,其空气处理过程及焓湿图如图4、图5所示。

空气通过转轮硅胶除湿器后,温度上升,一部分进入供水为16°C的冷水盘管,由感温器控制其开启程度,然后与旁通的一部分混合。达到送风状态点O,送风温度和室内温度相同取26°C。冷却顶板承担建筑冷负荷等所有的显热负荷,冷水盘管承担新风负荷和其它的潜热负荷。具体送风方式可以采用侧送风或孔板送风,以便在顶板表面形成一层相对干燥的空气贴附保护层,阻止下部吸收了热量特别是潜热而对流上升的空气与顶板的直接接触,促使顶板一直在干燥状态下运行,减少细菌滋生的机会,延长吊顶的使用寿命。

5.结论

通过以上的分析,我们可以得出以下结论:

5.1进行冷却顶板结构设计时,尽量减少供水与顶板表面之间的热阻,采用单元式冷却顶板,可以减少安装时间保证顶板质量。

5.2根据算例,在自然对流的情况下,单位面积换热量大约为88.98W/m2其中辐射换热约占总换热的65%,对流换热约占总换热的35%,采用强制对流,增大顶板表面和内墙表面发射率,其换热效率增加是显而易见的。

5.3对于送风方式应采用先由转轮硅胶除湿器除湿,然后通过冷却盘管的一部分和旁通的另一部分混合达到与室内等温的送风状态,并且保证在顶板表面形成一层干燥的空气保护层,这样具有较高的舒适度,可以有效解决顶板的结露问题,减少细菌滋生的机会。

参考文献:

1.陆耀庆.实用供热空调设计手册.北京:中国建筑工业出版社,1994

2.章熙民,任泽霈,梅飞鸣.传热学(第二版).北京:中国建筑工业出版社,1993

3.姚仲鹏,王瑞君,张晖.传热学.北京:北京理工大学出版社,1995

冷却范文篇9

摘要:自从通用变频调速器问世以来,变频调速技术在各个领域得到了广泛应用,变频调速器以节能、安全、高品质的质量等优点,在实际应用中得到了很大发展,随着电子技术的飞速发展,变频调速器的功能也越来越强,尤其充分利用变频调速器内置的PID调节功能,对合理设计变频调速设备,保证正常生产等方面有着非常重要意义。

关键词:55KW循环冷却水泵系统改造变频调速器

以往我公司的循环冷却水系统采用了二台循环水泵(一用一备)以恒速泵的方式供水,通常情况下水压波动很大,能量损耗大,一旦发生车间用水量大时管网压力会迅速下降,而车间停止或减少用水量时,管网压力又会急速上升,实际上间接的流量改变导致管网压力改变造成了循环泵的输出功率损失,循环泵的出口压力不稳定而造成了循环泵的工作点发生变化,从而使循环泵组本身的效率变差,无形中增加了电能的消耗和设备的机械磨损,容易造成设备故障率的升高,而为了保证生产正常,达到车间预期冷却效果,平时循环泵后的压力保持过高,这样相对的在恒速循环泵供水管网中用水流量大时管网压力底,用水流量小时管网压力高的现况;公司对车间循环水使用情况没有具体的什么规定和约束,时有发生车间已经不用循环水了而循环泵却是开的;有时也由于循环水池水位过底而使泵组吸不到水也不知道,循环泵组却在空载运行既浪费了电力能源也加速了泵组的机械磨损;另一方面循环水泵的拖动电机启动方式采用星-三角降压瞬时启动,启动时的冲击波造成了电网的不稳定和循环泵组的机械性能受损。鉴于以上几点有意改用变频调速闭环控制方式来控制。

自从通用变频调速器问世以来,变频调速技术在各个领域得到了广泛应用,变频调速器以节能、安全、高品质的质量等优点,在实际应用中得到了很大发展,随着电子技术的飞速发展,变频调速器的功能也越来越强,尤其充分利用变频调速器内置的PID调节功能,对合理设计变频调速设备,保证正常生产等方面有着非常重要意义。公司的循环水泵供水系统通过变频调速器改变泵组的出水能力来适应各车间对流量的需求,当循环水泵的转速改变时,扬程特性随着改变,而管阻特性则不变,则调节了管网压力流量。由于在不同的时间段,车间用水量变化是很大的,为了节约能源,本着多用多开多送,少用少开少送的原则,故通常需要“1控X”的切换。若供水不足,自动提升循环泵的转速来增大泵组出口流量压力或启动2号泵组进行变频控制;反之,当车间用水量减少时则先停止2号泵组退出工作,仅由1号泵组变频控制系统供水。变频调速器已具有内置PID调节运算功能,使采集到的压力信号(DC4—20mA)经过PID调节比较处理后得到新的频率给定信号输出(DC4—20mA),决定变频调速器输出频率的大小,从而改变了循环泵的转速大小来实现管网压力恒定,构成了闭环定值控制系统,能按需自动调速,实现管网水压实时调节的平稳恒定,避免水压流量波动造成的冲击损耗;合理对PID的参数值设定,可以大大减少系统供水管网水压过高过底所带来的功率损耗,节约能源和减少机械磨损。此外,通过变频调速器对循环泵电机启动过程的过渡性设置,使得泵组的启动电流平缓增大,连续启动运行,避免了常规快速启动电机产生大电流对电网的冲击和所产生的机械冲击;从而有效的降低轴承和其他易损件的磨损,普遍减少机械应力,具有节电和延长电机、泵组使用寿命的功效。

另外对循环水池的水位情况及冷却踏的风机运行情况与循环泵组变频调速闭环控制系统进行连锁工作。根据水池水位决定开机,一当水池水位过底可以连锁自动打开补充进水阀们给水池加水,直到达到预定水位。这样保证了整个系统正常运行的可控性。

冷却范文篇10

关键词地铁喷雾冷却冷水机组喷雾间接蒸发冷却冷凝器

0引言

近年来,我国大力发展城市轨道交通,尤其鼓励地铁的发展,继北京、上海、广州、深圳多条地铁线开通运营后,很多大型城市正在或即将修建地铁,由于地铁站空调系统需要对冷却水进行降温,因此,在地铁建设中不可避免会涉及冷却塔的设置问题。由于地铁线路所经过的区域多是城市繁华地带,地面上设置冷却塔的空间有限或根本没有,将冷却塔安装在地面上不仅影响城市景观和规划,而且给周围环境带来噪声污染和卫生隐患。因此,研究地铁专用的冷却器替代目前设置在地面的冷却塔,对解决地铁冷却塔设置的问题具有现实意义。

目前地铁空调冷却水系统中所采用的冷却塔是针对设置在室外进行设计制造的,分为横流式和逆流式两种,冷却塔体积巨大,塑料填料间距很小,安装于地铁排风通道中必然影响地铁排风;为避免冷却水被外界空气污染,冷却水不宜与外界空气接触,因此,普通开式冷却塔不宜用于地铁空调系统,而封闭式冷却塔和蒸发式冷凝器由于换热效率等问题而不适合在地铁站中使用,本文提出新型闭式喷雾冷却器和新型喷雾冷凝器两种方案,并对其进行简要分析。

1喷雾冷却技术研究成果

自Maclaine-cross和Banks建立间接蒸发冷却计算模型以来,国内外专家学者以此为基础对喷雾间接蒸发冷却技术进行了大量的研究。杨强生等人基于Merkel方程,实验研究了喷雾空气冷却器的传热传质过程,通过回归的方法得到容积散质系数的关联式[1]。梅国晖等人研究了高温表面喷雾冷却传热系数、气水雾化喷嘴最佳气水比和喷射方向对喷雾冷却换热的影响,研究表明,喷雾冷却过程存在最佳气水比,但最佳气水比不是固定不变的,它随着水压的增加而减小;在低水流密度下,喷射角90°处喷雾传热系数最大,其他喷射角度的传热系数大致以喷射角90°处对称,在高水流密度下,随喷射角度增加而显著增加[2-4]。刘振华通过数值计算方法讨论了液滴与空气速度比和喷雾条件之间的相互关系,认为在自由射流情况下,速度比的变化使流体形成在喷嘴附近的非稳定区和下游的稳定区,在均一流情况下则不存在非稳定区,在稳定区内速度比与模型类别、喷雾距离和初始速度无关;在喷雾距离大于0.5m后,可认为速度比进入稳定区,其大小取决于液滴直径和空气冲击速度,空气冲击速度越大,速度比越接近1,液滴直径越小;液滴直径小于100μm,可认为速度比等于1,对工程计算没有影响[5]。JunghoKim详尽研究了喷雾冷却的传热机理和目前喷雾冷却模型的优缺点,研究了物体表面形状、喷雾倾斜角度和重力对喷雾冷却的影响[6]。最近,美国国家航空航天局的EricA.Silk等人研究了3种强化表面的喷雾冷却效果和喷射倾斜角度(喷射轴向与物体表面法向夹角)对喷雾冷却的影响,在喷雾温度为20.5℃时,分析了冷却水管采用3种不同肋片表面对冷却效果的影响,研究表明,相对于平表面而言,直肋片表面热流密度最大,且喷射倾斜角度为30°时,热流密度可提高75%[7]。

2喷雾冷却与淋水冷却的比较

2.1能耗比较

开式喷雾通风冷却塔由于采用喷雾装置,改变了机械通风冷却塔的工艺结构,不需要淋水填料,所需的风机功率很小甚至不需要风机,因此,节省设备的初投资和运行维护费用,表1是一种喷雾冷却塔与机械通风冷却塔能耗比较[8]。

2喷雾冷却与淋水冷却的比较

2.1能耗比较

开式喷雾通风冷却塔由于采用喷雾装置,改变了机械通风冷却塔的工艺结构,不需要淋水填料,所需的风机功率很小甚至不需要风机,因此,节省设备的初投资和运行维护费用,表1是一种喷雾冷却塔与机械通风冷却塔能耗比较[8]。

从表1可以看出,当冷却水量从75m3/h增加到700m3/h时,在没有考虑普通冷却塔配套设施能耗和运行费用的基础上,喷雾冷却塔与相应规格的机械通风冷却塔相比,综合节能效率在30%~50%之间,喷雾冷却效益显著。

喷雾冷却器设置在地铁排风通道内,水雾与冷却器表面的换热量最终必须由通道内排风带走,因此,空气的温湿度决定了冷却器的换热效果,而通道内空气的温湿度与室外空气温湿度差别很大,因此,实现相同排热量所需冷却器的体积相对会大一些,相应设备功率会增大,这样,不可避免地要增加部分能耗和初投资及运行费用。

由于冷却塔设置在地铁排风通道内,必然会造成通道的排风断面减小,排风阻力增大,由局部阻力计算公式可知,局部阻力与通道的局部阻力系数和速度的二次幂的乘积成正比,当通道排风断面减小一半时,则局部阻力将为原来的4倍,因此,要实现相同排风量,排风机的功率可能会增大。

2.2费用比较

假定某地铁制冷站冷却塔选用横流式冷却塔,型号为DBHZ2—600,9.6万元/台,设计进、出口水温分别为37℃/32℃,湿球温度为28℃,占地面积43m2,高度为3.61m,风机功率为12kW,风量为351m3/h,A声级噪声为56.6dB;循环水泵选用1台轴流泵,流量为400m3/h,功率为7.5kW,凝结水泵选用1台轴流泵,流量为750m3/h,功率为3kW,水泵费用为0.75万元;循环水泵运行费用为5.58万元/a,凝结水泵运行费用为2.23万元/a(电费为0.85元/(kWh),水费为2.8元/t,水、电价来自于重庆市自来水公司和重庆市电力公司;冷却塔和水泵信息来自阿里巴巴网2007-3-15报价)。

冷却塔的运行费用包括水泵的运行费用和补给水的费用,要维持冷却系统正常运转,需定期补给循环水,年补给水量ΔL为[9]

式中Q为冷却水的循环量,t/h;K为系数,取0.14;h为冷却塔全年运行时间,h;m为冷却倍率,取60。

假定系统全天运行24h,一年按365d计算,求得年补给水量应为66225.6t,年补水费为18.54万元,冷却塔风机年运行费用为8.94万元,则冷却塔年运行费用为35.29万元。假设采用喷雾冷却的设备费用与采用机械通风冷却塔的设备费用相同,但由于喷雾所需水量为机械通风的补水量的5%,因此,在不考虑冷却塔运行费用的基础上,仅系统补水水费一项就可节约17万元左右。

2.3耗水量比较

如上所述,假定某地铁制冷站采用机械通风冷却塔时需要冷却水量为600m3/h,配套冷却塔进、出口水温为37℃/32℃。假定喷雾温度为34℃,含湿量为34.94g/kg,蒸发率为0.6~0.8,那么喷雾速率1.8~2.4kg/s就可实现冷却水降温,全年所需水量为1763~2645t。若采用机械通风冷却塔,如上述计算可知,年补水量为66225.6t,同样,采用喷淋水冷却时,按相关规范,最小喷淋水量为100kg/(m3·h),远远大于喷雾冷却所需水量[10],因此,单从耗水量而言,冷却方式宜采取喷雾冷却。

3喷雾间接蒸发冷却器与喷雾间接蒸发冷却冷凝器

3.1喷雾间接蒸发冷却器

喷雾冷却塔与普通机械通风冷却塔不同之处在于喷雾装置的应用,喷雾装置是一种射流元件,是喷雾冷却塔的核心部件,它取代了传统冷却塔的填料和风机,通过喷嘴产生的内旋流作用,有效地保证了低压状态的雾化度,利用低压液流通过旋流雾化喷头形成雾化,喷雾流的反作用力推动它作反向旋转,产生由下部吹向雾流的风力,雾化水滴与进塔空气在雾化状态条件下进行换热,达到预期的降温效果[8]。

喷雾冷却塔结构简单,质量轻,噪声低,耐腐蚀,不易堵塞,使用寿命长,除了省却风机、填料,降低成本费用外,还降低了塔体的自重,减少由填料阻塞引起的冷却塔维修,冷却效果稳定,但是由于它和普通开式冷却塔一样与外界空气直接接触,不能保证冷却水水质,而且冷却效果易受空气参数影响。

封闭式冷却塔由于冷却水在处理过程中不与外界空气接触,冷却水质不会受到外界的污染,但地铁空调系统中如果采用喷淋水来冷却封闭式冷却塔内的冷却水,不仅冷却效果劣于普通开式冷却塔,冷却塔的体积非常大,而且由于存在大量的飘逸损失,喷淋水用水量大,与将冷却塔设置在地面相比得不偿失,因此,综合喷雾冷却塔和封闭式冷却塔的优点,本文提出了一种新型的封闭式喷雾冷却器。

喷雾间接蒸发冷却器利用气水雾化喷嘴将经过处理的少量水雾化,喷到冷却器表面,形成一层均匀水膜,通过水膜蒸发实现冷却器内部冷却水降温。它既能保证冷却水不受污染,又能达到冷却效果,而且由于喷雾所用的水经过适当的处理,不会堵塞喷雾装置,能缓解冷却盘表面结垢问题。喷雾间接蒸发冷却器研究的核心问题是雾化效果和水膜的完整性、均匀性和厚度。

3.2喷雾间接蒸发冷却冷凝器

蒸发式冷凝器是目前制冷系统中常用的一种间接蒸发冷却设备,主要特点是耗水量少,节电和结构紧凑,占地面积小,热效率高。一般水冷式冷凝器每kg冷却水能带走4~6kJ的热量,而蒸发式冷凝器每kg水蒸发能带走约580kJ的热量,所以蒸发式冷凝器的理论耗水量只有一般水冷式冷凝器的1%。考虑冷却水的飞溅以及蒸发、溢水等损失,实际耗水量约为一般水冷式冷凝器循环水量的5%~10%。

由于喷雾冷却能在冷却器表面形成相对完整均匀的水膜,冷却效率更高,所需水量少,目前喷雾冷却多用于高温物体表面的冷却降温,因此,研发一种耗水量少的新型喷雾间接蒸发冷却冷凝器,可以解决地铁空调系统设置冷却塔的问题。

该方案的最大优势在于不用设置冷却塔,节省冷却塔及配套设施的初投资和运行产生的环境问题,采用喷雾冷却的方法,由于所需的水量很少,喷雾水源问题就很容易解决,可以对喷雾所用的水进行软化处理,防止堵塞喷雾装置和缓解冷凝器表面结垢。

喷雾间接蒸发冷却冷凝器实质上是本文所述喷雾间接蒸发冷却器的一个改进方案,要开发它,除了要解决闭式喷雾冷却器的雾化效果,水膜均匀性、完整性和厚度等问题以外,还必须与厂商协商设置冷凝器与冷水机组设备接口,对管道进行保温,研究冷凝器与机组距离对系统其他设备性能的影响,确定机组性能随二者间距变化的曲线,这其中涉及系统压力损失、制冷剂压力与机组压力匹配等问题。

4结论

本文的两种方案可实现地铁空调系统冷却塔不设在城市地面上的设想,能节省目前冷却水系统中部分辅助设备的初投资和运行费用,机组制冷量越大,节水效益越明显,特别是在缺水地区,该项技术的效益更为明显,但是,还有以下问题需要解决:

1)保证喷雾压力的相对稳定,维持运行压力在适当范围内,使冷却效果不受流量变动等的影响。

2)研发一套喷雾装置,使换热器表面水膜完整、均匀,且厚度很小,通过该装置实现间歇喷雾冷却,建立喷雾评价指标体系。

3)研发换热效率高、空气侧阻力小的新型换热器。

4)建立喷雾间接蒸发冷却器性能评价指标体系。

5)喷雾水软化处理,缓解冷却器表面结垢。

6)解决喷雾冷却冷凝器与机组的集成问题及建立相应的评价指标体系。

参考文献:

[1]杨强生,铙钦阳,范云良.喷雾强化空气冷却器的实验研究[J].上海交通大学学报,1999,33(3):313-317

[2]梅国晖,武荣阳,孟红记,等.气水雾化喷嘴最佳气水比的确定[J].钢铁钒钛,2004,25(2):49-51

[3]梅国晖,孟红记,谢植.喷射方向对喷雾冷却换热的影响[J].东北大学学报:自然科学版,2004,25(4):374-377

[4]梅国晖,武荣阳,孟红记,等.高温表面喷雾冷却传热系数的理论分析[J].冶金能源,2004,23(6):18-22

[5]刘振华.微细喷雾时喷雾气流中液滴和空气速度比的研究[J].上海交通大学学报,1996,30(3):97-102

[6]KimJungho.Spraycoolingheattransfer:thestateoftheart[J].InternationalJournalofHeatandFluidFlow,2007,28(4),753-767

[7]SilkEA,KimJungho,KigerK.Spraycoolingofenhancedsurfaces:impactofstructuredsurfacegeometr

yandsprayaxisinclination[J].InternationalJournalofHeatandMassTransfer,2006,49(25):4910-4920

[8]胡国林,李丽萍.一种新型喷雾通风冷却塔[J].给水排水,2001,27(4):90-91