莱布尼茨范文10篇

时间:2023-03-14 20:57:54

莱布尼茨范文篇1

一、符号逻辑:“通用数学语言”

莱布尼茨对数学问题的最早探索和最初贡献是试图沿着笛卡尔和霍布斯的思路建构所谓的“通用语言”。这种语言是一种用来代替自然语言的人工语言,它通过字母和符号进行逻辑分析与综合,把一般逻辑推理的规则改变为演算规则,以便更精确更敏捷地进行推理。([1],p.8)或者说,“通用语言”是一套表达思想和事物的符号系统,利用这些符号可以进行演算并推出各种知识。在《论组合术》中,二十岁的莱布尼茨曾立志要创设“一个一般的方法,在这个方法中所有推理的真实性都要简化为一种计算。同时,这会成为一种通用语言或文字,但与那些迄今为止设想出来的全然不同;因为它里面的符号甚至词汇要指导推理;错误,除去那些事实上的错误,只会是计算上的错误。形成或者发明这种语言或者记号会是非常困难的,但是可以不借助任何词典就很容易懂得它。”([2],p.123)在1679年9月8日给惠更斯的信中他又写道,有一个“完全不同于代数的新符号语言,它对于精确而自然地在脑子里再现(不用图形)依赖于想象的一切有很大的好处。……它的主要效用在于能够通过记号〔符号〕的运算完成结论和推理,这些记号不经过非常精细的推敲或使用大量的点和线会把它们混淆起来,因而不得不作出无穷多个无用的试验;另一方面,这个方法会确切而简单地导向〔所需要的〕结果。我相信力学差不多可以象几何学一样用这种方法去处理。”([3],p.151~152)

综合莱布尼茨零零碎碎的设想,他的宏伟规划大体旨在创造两种工具:其一是通用语言,其二是推理演算(calaulusratiocinator)。前者的主要使命是消除现存语言的局限性和不规则性,使新语言变成世界上人人会用的具有简明符号、合理规则的语言,规定符号的演变规则与运算规则,使逻辑演变依照一条明确的道路进行下去,进而解决所有可用语言表达的问题。

为此,莱布尼茨做了两方面的努力:一是寻找能够代表所有概念并可认作最根本的不可分析的符号;二是给出表述诸如断定、合取、析取、否定、全称、特殊、条件联结等形式概念的设计。关于第一方面,莱布尼茨首次设想用数目代表原初概念,而逻辑演算则用如同算术中的乘或除来代替。他认为用这种数字的不同方式排列组合,进行各种运算,就可产生无穷多的复合概念。这一思想后来改进为以素数代表基本概念,而复合词项即可借分解相应的数字成为它们的素数因子来加以分析。以“人是理智动物”为例,用素数“3”代表“动物”、“5”代表“理智”,则“人”即以“15=3.5”代表。为了更好地构设“通用语言”,莱布尼茨又以设想的“人类概念字母表”为语言词汇基础创制了一些逻辑符号,如“∪”(并)、“∩”(交)等,一直沿用下来。

关于第二方面,莱布尼茨的工作大致可以1679、1686、1690三个年代为标志划分为三个阶段。([4],pp.271~273)

第一阶段,莱布尼茨改进从数字代替概念以其演算,代之以对普通命题经验分析为基础的代数逻辑。他以全称肯定命题“a是b”的形式开始,提出五条基本演算规则:(1)ab是ba(交换律);(2)a是aa(重言律);(3)a是a(同一原则);(4)ab是a或ab是b(化简原则);(5)如a是b且b是c,则a是c(传递原则)。以此为据,他证明了同一和包含两个逻辑系词之间的重要关系,即,如a是b且b是a,则a与b是同一的。进而,他又提出四个定理:(1)如a是b且a是c,则a是bc;(2)如a是bc,则a是b且a是c;(3)如a是b,则ac是bc;(4)如a是b且c是d,则ac是bd。由此可见,莱布尼茨在第一阶段的逻辑演算已相当完善和科学化,为逻辑的系统化打下了坚实的基础。

第二阶段,莱布尼茨用等式符号作系词符号,借公式A=BY表述全称肯定命题(Y为一未确定的系数,用以修饰B而使B成为A的一部分),同时提出双重否定之为肯定,即“非非A=A”,并由此演释出一系列定理。为了进一步发展演算,莱布尼茨还试图通过与属性组合的关系,用代数方法来描述四个直言命题,甚至对四个直言命题的表示法提出了九个方案。

第三个阶段,莱布尼茨最有价值的工作是罗列了十四个基本命题:(1)A=A+A“+”表示逻辑相乘,下同);(2)如A=B且B=C,则A=C;(3)如A=B且B≠C,则A≠C;(4)如A=B,且B<C,则A<C;(5)如A=B且C<B,则C<A;(6)如A=B且C=D;则A+C=B+D;(7)如A=B,则A+C=B+C;(8)A<B,则A+C<B+C;(9)如A+B=A,则B<A;(10)如B<A,则A+B=A;(11)如A<B且B<C,则A<C;(12)如A<B且B<A,则A=B;(13)如A<C且B<C,则A+B<C;(14)如A<B且C<D,则A+C<B+D。为适应逻辑相除,他又引进逻辑相减运算,定义为:如B包含在A中且C包括除去内容B之外的整个A的内容,则A-B=C。如前例“人=动物+理智”即可推为“人-理智=动物”。

上述符号构设显示,莱布尼茨的中心思想是致力于以符号表示普遍概念的“通用语言”和以代换法进行数学演算他自称的“通用数学”。就今天的眼光看来,他实际上已经发现了符号逻辑的若干重要原则和定理,触及到后由哈米尔顿所阐发的谓项量化问题,认识到在直言与假言命题之间的基本类比(即原因包含它的结果正如主项包含它的谓项),并且把握了逻辑相加的问题,甚至讨论过非三段论的关系推理。因此,莱布尼茨实际上已探察到后来为布尔和施罗德所发展的逻辑代数的整个基础。数理逻辑学家有没有看过莱氏的著作,知道不知道莱氏的计划,但所作的研究大体上都是沿着莱氏所期望的方向进行的。”([5],p.10)所以,整个数学界都一致公认他是数理逻辑的首创者和真正奠基人。

莱布尼茨的符号数学研究在生前没有公布,结果使数理逻辑的发展延迟了一个半世纪。([4],p.119)可他关于微积分的成果却由于较早发表而惠泽数学界并引发一场争论持久的历史公案。

二、微积分:“理性的代数学”

1684年莱布尼茨在莱比锡的《教师学报》(ActaEruditorum)上首次发表了题为《关于求极大、极小和切线的新方法,也能用于分数和无理量的情形及非寻常类型的有关计算》(简称《新方法》)的文章。这是他关于微分计算要点的代表作,全文只有六页。1686年莱布尼茨又在《教师学报》上发表了题为《论一种深邃的几何学和不可分元分析以及无穷》一文。这是他最早发表的以讨论积分学为主的文章,实际可看作《新方法》的续篇。

莱布尼茨把最初的微积分称为求差的方法与求和的方法。他的基本思想是把一条曲线下的面积分割成许多小矩形与曲线之间微小直角三角形的两边分别是曲线上相邻两点的纵坐标和横坐标之差。当这两无限减小时,曲线上相邻两点便无限接近。联结这样两点就得出曲线在该点的切线。这就是求差的方法。求差的反面就是求和。当曲线下面的矩形被分割得无限小时,矩形上面的那个三角形可以忽略不计,此时就用这些矩形之和代表曲线下的面积。

早在1666年,莱布尼茨就发现帕斯卡算术三角形与调合三角形之间存在着有趣的关系。([6],pp.216~217)在帕斯卡三角形中,任意一个元素既等于其上一行左边各项之和,又等于其下一行相邻两项之差;而在调合三角形中,任一元素均是其下一行右边各项之和,也是紧靠其上两项之差。

算术三角形调合三角形

莱布尼茨在笔记中写出了各阶的差和微分:

自然数0,1,2,3,4,5,…y

一阶差1,1,1,1,1,1,…dy

二阶差0,0,0,0,0,…

自然数平方0,1,4,9,16,…y

一阶差1,3,5,7,…dy

二阶差1,2,2,2,…d(dy)

三阶差1,0,0,…

他把这些与微积分联系起来:一阶差相当于dy,它们的和等于y,如1+3+5+7=16。莱布尼茨认为,这种和与差之间的互逆性,与依赖于坐标之差的切线问题及依赖于坐标之和的求积问题的互逆性是一样的。差别仅在于帕斯卡算术三角形与调合三角形中的两个元素之差为有限值,而曲线的纵坐标之差是无穷小量。这说明他在考虑无穷小量的和差运算时,已将其与他早些时候关于有限量和差可逆性关系的研究联系起来。([10],p.392)由此也可看出莱布尼茨研究微积分的代数出发点,而不是几何出发点。(如[7],p.101)

为解决求积问题,莱布尼茨把流动纵坐标是y的平面曲线下的曲边梯形的面积用符号y表示。这样,曲线的纵坐标就与面积变量明显地联系起来。过了几年,他便用“sydx”表示面积,“∫”是“Sum(和)”的第一个字母“S”的拉长。

在求量的差即微分方面,莱布尼茨先是引进了符号“x/d”表示x的微分,意思是求“差”要关系到量的同次的降低,并且他还认为,如果同时出现不同阶的微分,则只留下最低阶的,而把所有高阶的微分舍去。至于这样做的理由,莱布尼茨虽提供了多种解释,但都不充分,其实毋宁说他是当作“公理”来使用的。后来,他将“x/d”改为“dx”,一直沿用至今。

从上述思路出发,莱布尼茨给出了微积分的基本公式:

d(x±y)=dx±dy(1)

d(xy)=xdy+ydx(2)

d(x/y)=ydx-xdy/y[2](3)

对于(2),他的推导是,令x、y分别成为x+dx、y+dy,则

(x+dx)(y+dy)=xdy+ydx+dxdy+xy于是d(xy)=(x+dx)(y+dy)-xy=xdy+ydx+dxdy

dxdy是比xdy+ydx高一阶的无限小量,可以舍去,所以d(xy)=xdy+ydx

用同样的方法也可推导出公式(1)和(3)。

有了微分法的基本运算律,对整指数的幂函数x[n]就有dx[n]=nx[n-1]。又由于求和是求差的逆运算,所以还有∫x[n]dx=1/n+1x[n+1](n≠-1)。这两个公式虽只对n是正整数情况而言,但莱布尼茨却断然宣布它们当n取其它数值时仍然成立。接着,莱布尼茨陆续地推导出指数和对数等超越函数的微分公式。

莱布尼茨的微积分算法是在解决几何和物理问题的过程中建立和完善起来的。他边建立新算法,边用这种算法解决当时物理学与几何学提出的疑难问题,有时还用老方法来解决问题以检验新方法的正确性。除了切线问题、极值问题、曲率问题、求积问题等几何问题,他还曾用新方法证明了光的折射定律。所有这些都显示了新算法比传统方法更加优越。

除了以上成果,莱布尼茨在微积分方面的具体研究还有:(1)复合函数的微分法则;(2)弧微分法则ds=根号下dx[,2]+dy[,2];(3)对数函数和指数函数的微分法则;(4)在积分号下对参变量求微分的方法;(5)曲线绕x轴旋转所成的旋转体体积公式V=π∫y[2]dx;(6)求切线、求最大值最小值以及求拐点的方法;(7)讨论曲率,密切圆和包络理论。([8],pp.394~395)

莱布尼茨微积分研究的背景与当时整个西欧的数学家们是一致的,他的工作基础也是建立在对无穷小的分析上。因此,此后很长一段时间,人们一直把微积分叫无穷小分析。由于莱布尼茨从有限差值开始无穷小的运算,因而他最初曾试图将实无穷小代之以与其成比例的有限数量,即不用dx、dy本身,而用它们的比值dy/dx。他以为把dx、dy看成有限量,问题就解决了。但是,比值dy/dx的获得同样需要说清dx、dy两个量本身的实际情况,而不能有半点含糊。于是,莱布尼茨提出用“充分大”和“充分小”去代替无穷大和无穷小。他解释说:“我们可以不用无穷大、无穷小,而用充分大和充分小的量,使得误差小于给定的误差限度,所以我们和阿基米德方式的不同之处仅仅在于表达方面,而我们的表达更为直接,更适合于发明家的艺术。”([8],p.401)为了更好地说明这一点,他不得不诉诸于感性的直观——物理或几何模型,用现实事物中量的不同层次的相对性解释无穷大和无穷小。所以有人说,莱布尼茨其实是半个理性主义,因为他在理性困厄之时,不得不借助经验。([9],p.130)例如,他认为点同直线不能相比,所以点加到直线上从直线上去掉等于不加也不减。于是,“当我们谈到有不同阶的无穷大与无穷小时,就象对恒星的距离而言,把太阳看成一个点;对地球半径而言,把普通的球看做一个点。这样,恒星的距离对于普通球的半径而言是无穷的无穷大,或无穷倍的无穷大。”[10]而“如果你不承认无限长、无限短线段具有形而上学的严密性,也不承认它们是实在的东西,那么你一定可以把它们当作一种能够缩短论证的思想的东西来使用,正如在普通分析中使用虚根一样,……老实说,我不十分相信除了把无限大、无限小看作理想的东西,看作有根据的假设,还有什么必要去考察他们,”甚至“我不相信确有无限大量和无限小量存在,它们只是虚构,但是对于缩短论证和在一般叙述中是有用的虚构。”[(10)]可见,莱布尼茨主要是把微积分当作了求得正确结果的一种方法,只要按这个方法去做,就能得出正确的结果,而不必关心基本概念怎样。事实上,莱布尼茨对于微积分基础的这种看似冒失的大胆相信态度,反倒可能促进了微积分及其应用的迅速发展。([11],p.359)

三、单子论:理性的僭越

莱布尼茨是古往今来唯一的一位驰骋于数学思想的两个宽广的、对偶的领域——分析与组合或连续和离散领域的数学大师,而且在每个领域都表现了人类的最高能力。([2],p.119)这除了他的已为人所周知的天赋和勤勉以外,就数学内部而言,最合理的解释应该是莱布尼茨数学研究的代数出发点和哲学研究方式。他的“通用语言”工作,今天看来实际上是在创立一种普遍适用的逻辑代数(数学)。而在微积分上,尽管他赞同那种认为无穷小需要一个几何学基础的偏见,但是他达到微积分的途径却是代数的和哲学的,而不是几何的。莱布尼茨的发现起因于寻找一个无限聚敛数列或交错级数1/1-1/3+1/5-1/7+……之和(=π/4)的方法(最后莱布尼茨给出了自己满意的最一般的公式:arctgx=x=x[,3]/3+x[,5]/5+x[,7]/c+……)。在莱布尼茨看来:微分学就是确定这种数列极限的一种方法,所以他才习惯于将无穷小等视作有限量;积分学则是发现数列总和的一种方法,因而他的积分总是今天所说的定积分,而不是牛顿的不定积分。([6],p.219)在莱布尼茨时代,几何学由于笛卡尔和费尔马杰出的工作而倍受数学界欢迎,莱布尼茨抱着“通用数学”的信念,企图运用几何方法解决代数问题,结果却将自己代数的观点导入几何学,从而做出了对“天地间通用的微积分”的发现。([12],p.170)因此,为了深入追索莱布尼茨数学创造的思想渊薮,必须诉诸他的数学观及所接受的研究传统。

莱布尼茨最早的思想活动是在哲学领域,这与其父作为一个道德哲学教授的影响有关。少年莱布尼茨读了不少古典哲学著作,入大学后又首先接受了雅可布·托马修斯教授严格的经院哲学训练。他的毕业论文Deprincipioindividui(《论个体原则》)就是维护经院哲学中唯名论派观点的。尽管莱布尼茨后来到巴黎去认真学习和研究数学,并且首先在数学上有了划时代的贡献,但作为其全部科学研究起点的思维观念与思想传统却是在早年打下的,而且一生基本没有什么大的变化。([13],p.164)这在他的著作《新系统》(1695)中有明确表述。

虽然莱布尼茨生前没有留下一部令自己满意的哲学著作,他在哲学方面的所有主要著作都是为了某个人而写,但他却是第一个创立独立哲学体系的德国人。这体系的“拱心石”通常称为“单子论”,他自己则称之为“前定和谐系统”。作为单子论核心范畴的单子是一种没有部分的只是组成复合物的单纯实体。([14],p.483)莱布尼茨认为单子具有六种规定性:(1)单子是最小的精神实体,它是能动的而又不具有广延(可分)性,因而是世界的实(主)体;(2)单子是上帝创造的,因其不能通过组合而生,只能凭创造而生,凭毁灭而亡;(3)单子是彻底孤立的实体,绝对封闭,各自独立;(4)每个单子各具不同的质,因其没有量的规定性,所以实际上存在着无限多样的单子;(5)单子运动变化的原因在自身,每个单子都是一个“力的中心”;(6)单子的基本属性是知觉,知觉反映自身和他物,因此每一个单子都是宇宙的一面永恒的镜子。从单子的规定出发,莱布尼茨提出了他的本体论原则:第一,连续性原则,认为宇宙是一个从低级到高级的发展过程;第二,前定和谐原则,认为各自独立的单子能同时一致行动的原因来自前定和谐;第三,普遍联系原则,认为整个宇宙中的单子和事物均处于普遍的相互联系之中。以上三个原则,连续性是用来调和事物质的对立的,前定和谐是用来调和“不可分点”(间断)与“连续性”的矛盾的,普遍联系则为了调合有限与无限、个别与一般、部分与整体的矛盾。[15]

上述本体论承诺决定了莱布尼茨的认识论必然是一种主张能动性然而却是唯心的先验论体系。它最终注定莱布尼茨的方法论只能是一种以逻辑为主干的多元方法论,既相信直觉,又看重形式。[15]他不仅承继了笛卡尔、斯宾诺莎一贯的唯理论传统,而且将理性主义原则扩展到在前者的哲学中遭拒斥的许多领域。他从哲学出发去理解科学活动及其本质,数学也仅是其哲学探索的一种智力模型。譬如,他的微分就是“原形先蕴”,通过形而上学的解释假定的。莱布尼茨注重运算的过程和探究结果。他在对待作为微积分逻辑基础的无穷小时,既不怯懦回避,也不轻易神秘化,而是从有限差开始,充满自信地大胆使用无穷小量及其阶,就如他自己所说,仅仅诉诸智力,更注重这种方法的运算性质。[16]他相信,假如他清楚地给出了适当的运算法则,并且把它们应用得恰当,就一定会得到某种合理的、正确的结果。他似乎觉得,根据充足理由(前定和谐)律,他就可以在这方面来实现从可能性到现实性的转变。([6],p.222)为此,他特别强调理论内容的形式化问题。他所建立的“通用数学”及无穷小量运算都是符号和术语体系的极好范例,是真正的现代意义形式化的始祖。

于是,我们不难理解,莱布尼茨为什么在离散与连续或组合与分析两个不同数学领域都表现出了同样的研究方式和最高创造力,因为它们在“理性”上是一致的。接续以“离散”为基础,是“离散”的连续,就如同“认识”不过是单子的活动而已。所以,莱布尼茨一直以代数的、有限的方法研究分析的、无限性的问题。这种研究在观念上从属于按照准确本体论原则建构起来的认识目的,它试图“在理智活动的各个领域内的那些早期传统间的看起来不可调和的矛盾冲突中创造出一个新的综合。”([17],p.4)

当然,莱布尼茨这种近于偏执和幻想式的理性主义传统,也使其数学研究遇到了许多困难。首先是在微积分的基本概念上,作为研究基础的无穷小量始终不明确,要么看作要多小有多小,要么看作理想之物,要么看作是纯粹然而有用的虚构,将科学基础概念的界定最终留给了信仰。其次是他的数学研究在逻辑上是不严谨的,尽管他发展了逻辑学,但其推导是不严格的,有主观臆造成分。特别是其微积分表示法的优越性更强烈地掩蔽了这一学科的逻辑基础,使之在严格论述方面走上了歧途。([12],p.234)至于他的理论推导中有时包含逻辑错误,如曾认为d(uv)=dudv、d(u/v)=du/dv(1675),这已属情理之中的事。他的零乱的工作如果不经Bernoulli兄弟整理加工,就很难有后来的局面。此外,英国科学家牛顿关于微积分严谨而扎实的工作更表明,对数学的发明与创造而言,理性主义方法也并不是唯一有效和可靠的途径。

四、流数术:数学需要两种传统

1705年《教师学报》上发表了一篇评述牛顿《求积术》的论文。文中说到,在那本书里只不过是把莱布尼茨的微分换成了流数。言下之意,两者实质上不外是同一样东西。这在那个极重个人荣誉的时代,无疑于掷出一枚重磅炸弹,立刻激起轩然大波,引发了究竟牛顿和莱布尼茨谁先发明了微积分的长时间争论。为此,英国皇家学会还于1712年在其《通讯》上公布了评判结果:“微分法和流数法是一回事,只是名称和记法不同而已;牛顿先生称之为瞬或流数的那些量,莱布尼茨先生称为微积分,并用牛顿先生不曾用过的记法,记作字母d。”([6],p.235)显然,上述两种看法是截然对立的。由于这种争论只是涉及发明的优先权问题,所以对微积分的进步没有任何益处。但争论也反映出一个问题,即当时的人们(包括牛顿和莱布尼茨本人)除了发觉两种微积分在概念和记法上不同外,并没有看出二者质的联系与差别。关于微积分的基础工作,是两个人去世后很久的事。

众所周知,就牛顿而言,他首先是个物理学家或主要是力学家。这不仅可以从其科学成就看出,而且在其对待微积分的方式上也表露得十分清楚。他称自己的微积分为流数术,即表明主要是为解决流体力学等问题而探讨和使用的新方法。牛顿关于微积分的主要著述有三部:《运用无穷多项方程的分析学》(1669)、《流数法和无穷级数》(1671)、《曲线求积术》(1690)。此外,他的代表作《自然哲学的数学原理》(1687)中也有不少论述。这些成果大致反映了牛顿对微积分的研究和认识的三个主要阶段。第一个阶段是静态的无穷小量方法阶段,他象费尔马等人一样把变量看作是无穷小元素的集合;第二个阶段是变量流动生成法阶段,认为变量是由点、线或面的连续运动产生的,因此把变量叫作流量,把变量的变化率叫流数;第三个阶段是最初比和最终比方法阶段,这种方法是牛顿对第一个阶段无穷小量方法的排除,转向极限观点。牛顿的微积分(流数术)中有三个重要概念:流量、流数和瞬。其中“瞬”是刚刚产生的一种无穷小量。这几个概念的提出,不仅使一切与变化率有关的问题有了统一认识和表述,而且直接揭示了原函数与导函数之间的可逆关系。由此可见,尽管牛顿后来用几何形式表述了微积分基本定理及其它一系列重要命题,但其把物理学作为出发点的做法却是十分明显的。就如他自己所说:“这里,流数术赖以建立的主要原理,及是取自理论力学中的一个非常简单的原理,这就是:数学量,特别是外延量,就可以看成是由连续轨迹运动产生的;而且所有不管什么量,都可以认为是在同样方式之下产生的,至少经过类比和调整后可以如此。因此在产生这些具有固定的、可确定的关系的量时,其相对速度一定有增减,因而也就可以作为一个问题提出如何去求它们。”([18],p.Ⅺ)所以,“甚至最草率的牛顿研究者也明显看到,牛顿是一位彻底的经验主义者。”([19],p.198)

从物理经验出发,牛顿把速度、距离、加速度等作为中心概念,以变量x和y的无穷小增量作为求流数(导数)的手段(当增量越来越小时,流数实际上就是增量比的极限);牛顿更多关心微积分的实际内容和基本方法,一些法则没有充分推广,对普通的讨论较少;他从变化率出发解决面积和体积问题,微分是其基础,通过微分及其逆来解决微积分问题。因此,作为自然科学家的牛顿处理问题十分严谨小心,讲究实在具体。人们认为他迟迟不发表微积分研究成果的原因,可能是因为没有为其基础找到合理的解释所致。德摩根甚至认为牛顿是由“一种病态的害怕别人反对的心理统治了他的一生。”([20],p.67)这和莱布尼茨那种从几何出发,整体求和的、注重推广和演绎的理性化方式大为不同。由此直接导致了他们所发明的微积分的基本差别:(1)莱布尼茨的微积分是由人工符号语言表述的法则与公式系统,他花了很多时间选择富有提示性的符号;牛顿的微积分主要是用自然语言进行叙述的数学体系,很少涉及符号,他基本认为符号无关紧要。(2)莱布尼茨的研究是从“整体”到“部分”,他首先讨论“和”即积分,用和来得到面积、体积或重心,其出发点是反微分;牛顿的研究是由“部分”到“整体”其基础是微分,他从变化率出发来解决面积和体积问题。(3)莱布尼茨的微分是高阶的,其积分是定积分;牛顿的微分是一阶的,其积分是不定积分。

但是,尽管在出发点、研究方式和表述形式上有巨大的差别,两人仍然创立了同一个微积分,并且彼此互补。经过他们的工作,微积分再不象希腊时期所有数学都是几何学的分支那样,被束缚在几何框架内,而是成为一个崭新的既不同于几何也不同于代数的独立的分析数学。并且,二人都不象他们的先驱那样仅限于解决某些实际问题,而是把微积分建立在一般问题和运算基础上,使之成为具有普遍性的通用方法。他们不再把微分问题和积分问题看作互不相干,而是找到了彼此的互逆关系,建立起微积分基本定理,使面积、体积及以往作为求和来处理的各种问题都归并为反微分,为求积运算开辟了一条新的便捷途径。这样,经过二人不懈的努力,微积分作为“天地间通用”的学科终于获得了资格证书。

在科学史上,几个人同时创造一项科学成就的事例并不少见。但是,牛顿和莱布尼茨各自从不同的研究传统出发发明了微积分,对数学的进步有着特别的意义。原因在于,微积分处于古代数学向近代数学转折的关节点上。经过微积分,近代以来的数学观及其方法论已大为改观,所以许多讨论近代数学的书往往称“微积分以来的数学”。([21],p.51)牛顿的工作无疑再一次表明了数学与经验的不可分割性,而莱布尼茨则以自己的探索证明了理性要素在近代数学发展中的增长。300年后的今天,数学哲学关于数学真理的实在性与非实在性问题的讨论进一步印证了两种数学传统对现代数学的发展都是必不可少的。

莱布尼茨范文篇2

莱布尼茨对数学问题的最早探索和最初贡献是试图沿着笛卡尔和霍布斯的思路建构所谓的“通用语言”。这种语言是一种用来代替自然语言的人工语言,它通过字母和符号进行逻辑分析与综合,把一般逻辑推理的规则改变为演算规则,以便更精确更敏捷地进行推理。([1],p.8)或者说,“通用语言”是一套表达思想和事物的符号系统,利用这些符号可以进行演算并推出各种知识。在《论组合术》中,二十岁的莱布尼茨曾立志要创设“一个一般的方法,在这个方法中所有推理的真实性都要简化为一种计算。同时,这会成为一种通用语言或文字,但与那些迄今为止设想出来的全然不同;因为它里面的符号甚至词汇要指导推理;错误,除去那些事实上的错误,只会是计算上的错误。形成或者发明这种语言或者记号会是非常困难的,但是可以不借助任何词典就很容易懂得它。”([2],p.123)在1679年9月8日给惠更斯的信中他又写道,有一个“完全不同于代数的新符号语言,它对于精确而自然地在脑子里再现(不用图形)依赖于想象的一切有很大的好处。……它的主要效用在于能够通过记号〔符号〕的运算完成结论和推理,这些记号不经过非常精细的推敲或使用大量的点和线会把它们混淆起来,因而不得不作出无穷多个无用的试验;另一方面,这个方法会确切而简单地导向〔所需要的〕结果。我相信力学差不多可以象几何学一样用这种方法去处理。”([3],p.151~152)

综合莱布尼茨零零碎碎的设想,他的宏伟规划大体旨在创造两种工具:其一是通用语言,其二是推理演算(calaulusratiocinator)。前者的主要使命是消除现存语言的局限性和不规则性,使新语言变成世界上人人会用的具有简明符号、合理规则的语言,规定符号的演变规则与运算规则,使逻辑演变依照一条明确的道路进行下去,进而解决所有可用语言表达的问题。

为此,莱布尼茨做了两方面的努力:一是寻找能够代表所有概念并可认作最根本的不可分析的符号;二是给出表述诸如断定、合取、析取、否定、全称、特殊、条件联结等形式概念的设计。关于第一方面,莱布尼茨首次设想用数目代表原初概念,而逻辑演算则用如同算术中的乘或除来代替。他认为用这种数字的不同方式排列组合,进行各种运算,就可产生无穷多的复合概念。这一思想后来改进为以素数代表基本概念,而复合词项即可借分解相应的数字成为它们的素数因子来加以分析。以“人是理智动物”为例,用素数“3”代表“动物”、“5”代表“理智”,则“人”即以“15=3.5”代表。为了更好地构设“通用语言”,莱布尼茨又以设想的“人类概念字母表”为语言词汇基础创制了一些逻辑符号,如“∪”(并)、“∩”(交)等,一直沿用下来。

关于第二方面,莱布尼茨的工作大致可以1679、1686、1690三个年代为标志划分为三个阶段。([4],pp.271~273)

第一阶段,莱布尼茨改进从数字代替概念以其演算,代之以对普通命题经验分析为基础的代数逻辑。他以全称肯定命题“a是b”的形式开始,提出五条基本演算规则:(1)ab是ba(交换律);(2)a是aa(重言律);(3)a是a(同一原则);(4)ab是a或ab是b(化简原则);(5)如a是b且b是c,则a是c(传递原则)。以此为据,他证明了同一和包含两个逻辑系词之间的重要关系,即,如a是b且b是a,则a与b是同一的。进而,他又提出四个定理:(1)如a是b且a是c,则a是bc;(2)如a是bc,则a是b且a是c;(3)如a是b,则ac是bc;(4)如a是b且c是d,则ac是bd。由此可见,莱布尼茨在第一阶段的逻辑演算已相当完善和科学化,为逻辑的系统化打下了坚实的基础。

第二阶段,莱布尼茨用等式符号作系词符号,借公式A=BY表述全称肯定命题(Y为一未确定的系数,用以修饰B而使B成为A的一部分),同时提出双重否定之为肯定,即“非非A=A”,并由此演释出一系列定理。为了进一步发展演算,莱布尼茨还试图通过与属性组合的关系,用代数方法来描述四个直言命题,甚至对四个直言命题的表示法提出了九个方案。

第三个阶段,莱布尼茨最有价值的工作是罗列了十四个基本命题:(1)A=A+A“+”表示逻辑相乘,下同);(2)如A=B且B=C,则A=C;(3)如A=B且B≠C,则A≠C;(4)如A=B,且B<C,则A<C;(5)如A=B且C<B,则C<A;(6)如A=B且C=D;则A+C=B+D;(7)如A=B,则A+C=B+C;(8)A<B,则A+C<B+C;(9)如A+B=A,则B<A;(10)如B<A,则A+B=A;(11)如A<B且B<C,则A<C;(12)如A<B且B<A,则A=B;(13)如A<C且B<C,则A+B<C;(14)如A<B且C<D,则A+C<B+D。为适应逻辑相除,他又引进逻辑相减运算,定义为:如B包含在A中且C包括除去内容B之外的整个A的内容,则A-B=C。如前例“人=动物+理智”即可推为“人-理智=动物”。

上述符号构设显示,莱布尼茨的中心思想是致力于以符号表示普遍概念的“通用语言”和以代换法进行数学演算他自称的“通用数学”。就今天的眼光看来,他实际上已经发现了符号逻辑的若干重要原则和定理,触及到后由哈米尔顿所阐发的谓项量化问题,认识到在直言与假言命题之间的基本类比(即原因包含它的结果正如主项包含它的谓项),并且把握了逻辑相加的问题,甚至讨论过非三段论的关系推理。因此,莱布尼茨实际上已探察到后来为布尔和施罗德所发展的逻辑代数的整个基础。数理逻辑学家有没有看过莱氏的著作,知道不知道莱氏的计划,但所作的研究大体上都是沿着莱氏所期望的方向进行的。”([5],p.10)所以,整个数学界都一致公认他是数理逻辑的首创者和真正奠基人。

莱布尼茨的符号数学研究在生前没有公布,结果使数理逻辑的发展延迟了一个半世纪。([4],p.119)可他关于微积分的成果却由于较早发表而惠泽数学界并引发一场争论持久的历史公案。

二、微积分:“理性的代数学”

1684年莱布尼茨在莱比锡的《教师学报》(ActaEruditorum)上首次发表了题为《关于求极大、极小和切线的新方法,也能用于分数和无理量的情形及非寻常类型的有关计算》(简称《新方法》)的文章。这是他关于微分计算要点的代表作,全文只有六页。1686年莱布尼茨又在《教师学报》上发表了题为《论一种深邃的几何学和不可分元分析以及无穷》一文。这是他最早发表的以讨论积分学为主的文章,实际可看作《新方法》的续篇。

莱布尼茨把最初的微积分称为求差的方法与求和的方法。他的基本思想是把一条曲线下的面积分割成许多小矩形与曲线之间微小直角三角形的两边分别是曲线上相邻两点的纵坐标和横坐标之差。当这两无限减小时,曲线上相邻两点便无限接近。联结这样两点就得出曲线在该点的切线。这就是求差的方法。求差的反面就是求和。当曲线下面的矩形被分割得无限小时,矩形上面的那个三角形可以忽略不计,此时就用这些矩形之和代表曲线下的面积。

早在1666年,莱布尼茨就发现帕斯卡算术三角形与调合三角形之间存在着有趣的关系。([6],pp.216~217)在帕斯卡三角形中,任意一个元素既等于其上一行左边各项之和,又等于其下一行相邻两项之差;而在调合三角形中,任一元素均是其下一行右边各项之和,也是紧靠其上两项之差。

算术三角形调合三角形

莱布尼茨在笔记中写出了各阶的差和微分:

自然数0,1,2,3,4,5,…y

一阶差1,1,1,1,1,1,…dy

二阶差0,0,0,0,0,…

自然数平方0,1,4,9,16,…y

一阶差1,3,5,7,…dy

二阶差1,2,2,2,…d(dy)

三阶差1,0,0,…

他把这些与微积分联系起来:一阶差相当于dy,它们的和等于y,如1+3+5+7=16。莱布尼茨认为,这种和与差之间的互逆性,与依赖于坐标之差的切线问题及依赖于坐标之和的求积问题的互逆性是一样的。差别仅在于帕斯卡算术三角形与调合三角形中的两个元素之差为有限值,而曲线的纵坐标之差是无穷小量。这说明他在考虑无穷小量的和差运算时,已将其与他早些时候关于有限量和差可逆性关系的研究联系起来。([10],p.392)由此也可看出莱布尼茨研究微积分的代数出发点,而不是几何出发点。(如[7],p.101)

为解决求积问题,莱布尼茨把流动纵坐标是y的平面曲线下的曲边梯形的面积用符号y表示。这样,曲线的纵坐标就与面积变量明显地联系起来。过了几年,他便用“sydx”表示面积,“∫”是“Sum(和)”的第一个字母“S”的拉长。

在求量的差即微分方面,莱布尼茨先是引进了符号“x/d”表示x的微分,意思是求“差”要关系到量的同次的降低,并且他还认为,如果同时出现不同阶的微分,则只留下最低阶的,而把所有高阶的微分舍去。至于这样做的理由,莱布尼茨虽提供了多种解释,但都不充分,其实毋宁说他是当作“公理”来使用的。后来,他将“x/d”改为“dx”,一直沿用至今。

从上述思路出发,莱布尼茨给出了微积分的基本公式:

d(x±y)=dx±dy(1)

d(xy)=xdy+ydx(2)

d(x/y)=ydx-xdy/y[2](3)

对于(2),他的推导是,令x、y分别成为x+dx、y+dy,则

(x+dx)(y+dy)=xdy+ydx+dxdy+xy于是d(xy)=(x+dx)(y+dy)-xy=xdy+ydx+dxdy

dxdy是比xdy+ydx高一阶的无限小量,可以舍去,所以d(xy)=xdy+ydx

用同样的方法也可推导出公式(1)和(3)。

有了微分法的基本运算律,对整指数的幂函数x[n]就有dx[n]=nx[n-1]。又由于求和是求差的逆运算,所以还有∫x[n]dx=1/n+1x[n+1](n≠-1)。这两个公式虽只对n是正整数情况而言,但莱布尼茨却断然宣布它们当n取其它数值时仍然成立。接着,莱布尼茨陆续地推导出指数和对数等超越函数的微分公式。

莱布尼茨的微积分算法是在解决几何和物理问题的过程中建立和完善起来的。他边建立新算法,边用这种算法解决当时物理学与几何学提出的疑难问题,有时还用老方法来解决问题以检验新方法的正确性。除了切线问题、极值问题、曲率问题、求积问题等几何问题,他还曾用新方法证明了光的折射定律。所有这些都显示了新算法比传统方法更加优越。

除了以上成果,莱布尼茨在微积分方面的具体研究还有:(1)复合函数的微分法则;(2)弧微分法则ds=根号下dx[,2]+dy[,2];(3)对数函数和指数函数的微分法则;(4)在积分号下对参变量求微分的方法;(5)曲线绕x轴旋转所成的旋转体体积公式V=π∫y[2]dx;(6)求切线、求最大值最小值以及求拐点的方法;(7)讨论曲率,密切圆和包络理论。([8],pp.394~395)

莱布尼茨微积分研究的背景与当时整个西欧的数学家们是一致的,他的工作基础也是建立在对无穷小的分析上。因此,此后很长一段时间,人们一直把微积分叫无穷小分析。由于莱布尼茨从有限差值开始无穷小的运算,因而他最初曾试图将实无穷小代之以与其成比例的有限数量,即不用dx、dy本身,而用它们的比值dy/dx。他以为把dx、dy看成有限量,问题就解决了。但是,比值dy/dx的获得同样需要说清dx、dy两个量本身的实际情况,而不能有半点含糊。于是,莱布尼茨提出用“充分大”和“充分小”去代替无穷大和无穷小。他解释说:“我们可以不用无穷大、无穷小,而用充分大和充分小的量,使得误差小于给定的误差限度,所以我们和阿基米德方式的不同之处仅仅在于表达方面,而我们的表达更为直接,更适合于发明家的艺术。”([8],p.401)为了更好地说明这一点,他不得不诉诸于感性的直观——物理或几何模型,用现实事物中量的不同层次的相对性解释无穷大和无穷小。所以有人说,莱布尼茨其实是半个理性主义,因为他在理性困厄之时,不得不借助经验。([9],p.130)例如,他认为点同直线不能相比,所以点加到直线上从直线上去掉等于不加也不减。于是,“当我们谈到有不同阶的无穷大与无穷小时,就象对恒星的距离而言,把太阳看成一个点;对地球半径而言,把普通的球看做一个点。这样,恒星的距离对于普通球的半径而言是无穷的无穷大,或无穷倍的无穷大。”[10]而“如果你不承认无限长、无限短线段具有形而上学的严密性,也不承认它们是实在的东西,那么你一定可以把它们当作一种能够缩短论证的思想的东西来使用,正如在普通分析中使用虚根一样,……老实说,我不十分相信除了把无限大、无限小看作理想的东西,看作有根据的假设,还有什么必要去考察他们,”甚至“我不相信确有无限大量和无限小量存在,它们只是虚构,但是对于缩短论证和在一般叙述中是有用的虚构。”[(10)]可见,莱布尼茨主要是把微积分当作了求得正确结果的一种方法,只要按这个方法去做,就能得出正确的结果,而不必关心基本概念怎样。事实上,莱布尼茨对于微积分基础的这种看似冒失的大胆相信态度,反倒可能促进了微积分及其应用的迅速发展。([11],p.359)

三、单子论:理性的僭越

莱布尼茨是古往今来唯一的一位驰骋于数学思想的两个宽广的、对偶的领域——分析与组合或连续和离散领域的数学大师,而且在每个领域都表现了人类的最高能力。([2],p.119)这除了他的已为人所周知的天赋和勤勉以外,就数学内部而言,最合理的解释应该是莱布尼茨数学研究的代数出发点和哲学研究方式。他的“通用语言”工作,今天看来实际上是在创立一种普遍适用的逻辑代数(数学)。而在微积分上,尽管他赞同那种认为无穷小需要一个几何学基础的偏见,但是他达到微积分的途径却是代数的和哲学的,而不是几何的。莱布尼茨的发现起因于寻找一个无限聚敛数列或交错级数1/1-1/3+1/5-1/7+……之和(=π/4)的方法(最后莱布尼茨给出了自己满意的最一般的公式:arctgx=x=x[,3]/3+x[,5]/5+x[,7]/c+……)。在莱布尼茨看来:微分学就是确定这种数列极限的一种方法,所以他才习惯于将无穷小等视作有限量;积分学则是发现数列总和的一种方法,因而他的积分总是今天所说的定积分,而不是牛顿的不定积分。([6],p.219)在莱布尼茨时代,几何学由于笛卡尔和费尔马杰出的工作而倍受数学界欢迎,莱布尼茨抱着“通用数学”的信念,企图运用几何方法解决代数问题,结果却将自己代数的观点导入几何学,从而做出了对“天地间通用的微积分”的发现。([12],p.170)因此,为了深入追索莱布尼茨数学创造的思想渊薮,必须诉诸他的数学观及所接受的研究传统。

莱布尼茨最早的思想活动是在哲学领域,这与其父作为一个道德哲学教授的影响有关。少年莱布尼茨读了不少古典哲学著作,入大学后又首先接受了雅可布·托马修斯教授严格的经院哲学训练。他的毕业论文Deprincipioindividui(《论个体原则》)就是维护经院哲学中唯名论派观点的。尽管莱布尼茨后来到巴黎去认真学习和研究数学,并且首先在数学上有了划时代的贡献,但作为其全部科学研究起点的思维观念与思想传统却是在早年打下的,而且一生基本没有什么大的变化。([13],p.164)这在他的著作《新系统》(1695)中有明确表述。

虽然莱布尼茨生前没有留下一部令自己满意的哲学著作,他在哲学方面的所有主要著作都是为了某个人而写,但他却是第一个创立独立哲学体系的德国人。这体系的“拱心石”通常称为“单子论”,他自己则称之为“前定和谐系统”。

作为单子论核心范畴的单子是一种没有部分的只是组成复合物的单纯实体。([14],p.483)莱布尼茨认为单子具有六种规定性:(1)单子是最小的精神实体,它是能动的而又不具有广延(可分)性,因而是世界的实(主)体;(2)单子是上帝创造的,因其不能通过组合而生,只能凭创造而生,凭毁灭而亡;(3)单子是彻底孤立的实体,绝对封闭,各自独立;(4)每个单子各具不同的质,因其没有量的规定性,所以实际上存在着无限多样的单子;(5)单子运动变化的原因在自身,每个单子都是一个“力的中心”;(6)单子的基本属性是知觉,知觉反映自身和他物,因此每一个单子都是宇宙的一面永恒的镜子。从单子的规定出发,莱布尼茨提出了他的本体论原则:第一,连续性原则,认为宇宙是一个从低级到高级的发展过程;第二,前定和谐原则,认为各自独立的单子能同时一致行动的原因来自前定和谐;第三,普遍联系原则,认为整个宇宙中的单子和事物均处于普遍的相互联系之中。以上三个原则,连续性是用来调和事物质的对立的,前定和谐是用来调和“不可分点”(间断)与“连续性”的矛盾的,普遍联系则为了调合有限与无限、个别与一般、部分与整体的矛盾。[15]

上述本体论承诺决定了莱布尼茨的认识论必然是一种主张能动性然而却是唯心的先验论体系。它最终注定莱布尼茨的方法论只能是一种以逻辑为主干的多元方法论,既相信直觉,又看重形式。[15]他不仅承继了笛卡尔、斯宾诺莎一贯的唯理论传统,而且将理性主义原则扩展到在前者的哲学中遭拒斥的许多领域。他从哲学出发去理解科学活动及其本质,数学也仅是其哲学探索的一种智力模型。譬如,他的微分就是“原形先蕴”,通过形而上学的解释假定的。莱布尼茨注重运算的过程和探究结果。他在对待作为微积分逻辑基础的无穷小时,既不怯懦回避,也不轻易神秘化,而是从有限差开始,充满自信地大胆使用无穷小量及其阶,就如他自己所说,仅仅诉诸智力,更注重这种方法的运算性质。[16]他相信,假如他清楚地给出了适当的运算法则,并且把它们应用得恰当,就一定会得到某种合理的、正确的结果。他似乎觉得,根据充足理由(前定和谐)律,他就可以在这方面来实现从可能性到现实性的转变。([6],p.222)为此,他特别强调理论内容的形式化问题。他所建立的“通用数学”及无穷小量运算都是符号和术语体系的极好范例,是真正的现代意义形式化的始祖。

于是,我们不难理解,莱布尼茨为什么在离散与连续或组合与分析两个不同数学领域都表现出了同样的研究方式和最高创造力,因为它们在“理性”上是一致的。接续以“离散”为基础,是“离散”的连续,就如同“认识”不过是单子的活动而已。所以,莱布尼茨一直以代数的、有限的方法研究分析的、无限性的问题。这种研究在观念上从属于按照准确本体论原则建构起来的认识目的,它试图“在理智活动的各个领域内的那些早期传统间的看起来不可调和的矛盾冲突中创造出一个新的综合。”([17],p.4)

当然,莱布尼茨这种近于偏执和幻想式的理性主义传统,也使其数学研究遇到了许多困难。首先是在微积分的基本概念上,作为研究基础的无穷小量始终不明确,要么看作要多小有多小,要么看作理想之物,要么看作是纯粹然而有用的虚构,将科学基础概念的界定最终留给了信仰。其次是他的数学研究在逻辑上是不严谨的,尽管他发展了逻辑学,但其推导是不严格的,有主观臆造成分。特别是其微积分表示法的优越性更强烈地掩蔽了这一学科的逻辑基础,使之在严格论述方面走上了歧途。([12],p.234)至于他的理论推导中有时包含逻辑错误,如曾认为d(uv)=dudv、d(u/v)=du/dv(1675),这已属情理之中的事。他的零乱的工作如果不经Bernoulli兄弟整理加工,就很难有后来的局面。此外,英国科学家牛顿关于微积分严谨而扎实的工作更表明,对数学的发明与创造而言,理性主义方法也并不是唯一有效和可靠的途径。

四、流数术:数学需要两种传统

1705年《教师学报》上发表了一篇评述牛顿《求积术》的论文。文中说到,在那本书里只不过是把莱布尼茨的微分换成了流数。言下之意,两者实质上不外是同一样东西。这在那个极重个人荣誉的时代,无疑于掷出一枚重磅炸弹,立刻激起轩然大波,引发了究竟牛顿和莱布尼茨谁先发明了微积分的长时间争论。为此,英国皇家学会还于1712年在其《通讯》上公布了评判结果:“微分法和流数法是一回事,只是名称和记法不同而已;牛顿先生称之为瞬或流数的那些量,莱布尼茨先生称为微积分,并用牛顿先生不曾用过的记法,记作字母d。”([6],p.235)显然,上述两种看法是截然对立的。由于这种争论只是涉及发明的优先权问题,所以对微积分的进步没有任何益处。但争论也反映出一个问题,即当时的人们(包括牛顿和莱布尼茨本人)除了发觉两种微积分在概念和记法上不同外,并没有看出二者质的联系与差别。关于微积分的基础工作,是两个人去世后很久的事。

众所周知,就牛顿而言,他首先是个物理学家或主要是力学家。这不仅可以从其科学成就看出,而且在其对待微积分的方式上也表露得十分清楚。他称自己的微积分为流数术,即表明主要是为解决流体力学等问题而探讨和使用的新方法。牛顿关于微积分的主要著述有三部:《运用无穷多项方程的分析学》(1669)、《流数法和无穷级数》(1671)、《曲线求积术》(1690)。此外,他的代表作《自然哲学的数学原理》(1687)中也有不少论述。这些成果大致反映了牛顿对微积分的研究和认识的三个主要阶段。第一个阶段是静态的无穷小量方法阶段,他象费尔马等人一样把变量看作是无穷小元素的集合;第二个阶段是变量流动生成法阶段,认为变量是由点、线或面的连续运动产生的,因此把变量叫作流量,把变量的变化率叫流数;第三个阶段是最初比和最终比方法阶段,这种方法是牛顿对第一个阶段无穷小量方法的排除,转向极限观点。牛顿的微积分(流数术)中有三个重要概念:流量、流数和瞬。其中“瞬”是刚刚产生的一种无穷小量。这几个概念的提出,不仅使一切与变化率有关的问题有了统一认识和表述,而且直接揭示了原函数与导函数之间的可逆关系。由此可见,尽管牛顿后来用几何形式表述了微积分基本定理及其它一系列重要命题,但其把物理学作为出发点的做法却是十分明显的。就如他自己所说:“这里,流数术赖以建立的主要原理,及是取自理论力学中的一个非常简单的原理,这就是:数学量,特别是外延量,就可以看成是由连续轨迹运动产生的;而且所有不管什么量,都可以认为是在同样方式之下产生的,至少经过类比和调整后可以如此。因此在产生这些具有固定的、可确定的关系的量时,其相对速度一定有增减,因而也就可以作为一个问题提出如何去求它们。”([18],p.Ⅺ)所以,“甚至最草率的牛顿研究者也明显看到,牛顿是一位彻底的经验主义者。”([19],p.198)

从物理经验出发,牛顿把速度、距离、加速度等作为中心概念,以变量x和y的无穷小增量作为求流数(导数)的手段(当增量越来越小时,流数实际上就是增量比的极限);牛顿更多关心微积分的实际内容和基本方法,一些法则没有充分推广,对普通的讨论较少;他从变化率出发解决面积和体积问题,微分是其基础,通过微分及其逆来解决微积分问题。因此,作为自然科学家的牛顿处理问题十分严谨小心,讲究实在具体。人们认为他迟迟不发表微积分研究成果的原因,可能是因为没有为其基础找到合理的解释所致。德摩根甚至认为牛顿是由“一种病态的害怕别人反对的心理统治了他的一生。”([20],p.67)这和莱布尼茨那种从几何出发,整体求和的、注重推广和演绎的理性化方式大为不同。由此直接导致了他们所发明的微积分的基本差别:(1)莱布尼茨的微积分是由人工符号语言表述的法则与公式系统,他花了很多时间选择富有提示性的符号;牛顿的微积分主要是用自然语言进行叙述的数学体系,很少涉及符号,他基本认为符号无关紧要。(2)莱布尼茨的研究是从“整体”到“部分”,他首先讨论“和”即积分,用和来得到面积、体积或重心,其出发点是反微分;牛顿的研究是由“部分”到“整体”其基础是微分,他从变化率出发来解决面积和体积问题。(3)莱布尼茨的微分是高阶的,其积分是定积分;牛顿的微分是一阶的,其积分是不定积分。

但是,尽管在出发点、研究方式和表述形式上有巨大的差别,两人仍然创立了同一个微积分,并且彼此互补。经过他们的工作,微积分再不象希腊时期所有数学都是几何学的分支那样,被束缚在几何框架内,而是成为一个崭新的既不同于几何也不同于代数的独立的分析数学。并且,二人都不象他们的先驱那样仅限于解决某些实际问题,而是把微积分建立在一般问题和运算基础上,使之成为具有普遍性的通用方法。他们不再把微分问题和积分问题看作互不相干,而是找到了彼此的互逆关系,建立起微积分基本定理,使面积、体积及以往作为求和来处理的各种问题都归并为反微分,为求积运算开辟了一条新的便捷途径。这样,经过二人不懈的努力,微积分作为“天地间通用”的学科终于获得了资格证书。

在科学史上,几个人同时创造一项科学成就的事例并不少见。但是,牛顿和莱布尼茨各自从不同的研究传统出发发明了微积分,对数学的进步有着特别的意义。原因在于,微积分处于古代数学向近代数学转折的关节点上。经过微积分,近代以来的数学观及其方法论已大为改观,所以许多讨论近代数学的书往往称“微积分以来的数学”。([21],p.51)牛顿的工作无疑再一次表明了数学与经验的不可分割性,而莱布尼茨则以自己的探索证明了理性要素在近代数学发展中的增长。300年后的今天,数学哲学关于数学真理的实在性与非实在性问题的讨论进一步印证了两种数学传统对现代数学的发展都是必不可少的。

同样,莱布尼茨关于通用数学语言的构想,由于过份浪漫和理性化,也只是在200年后才找到自己数学的“经验”基础,从而经过皮亚诺、罗素等人的工作部分地成为现实。其思想为后来的逻辑经验主义者特别是卡尔纳普等人所继承和推广,开启了人工语言学的先河。这种状况与其说是历史造成的,毋宁说是数学和科学自身的特性使然。

数学的发展再一次证明了经验主义传统和理性主义传统同为科学进步的思想源泉,它们之间的一定的张力状态是数学能够顺利发展的思维基础,而牛顿治学的严肃审慎与莱布尼茨运思的浪漫机警同为科学工作者的必备素养。

参考文献

[1]《莱布尼茨自然哲学著作选》,祖庆年译,中国社会科学出版社,1985年4月第1版。

[2]E.T.Bell.MANOFMATHEMATICS,DoverPublicationsNewYork1963.

[3]G.T.Kneebone,MATHMATICALLOGICANDFOUNDATIONSOFMATHEMATICS.

[4]马玉珂主编:《西方逻辑史》,中国人民大学出版社,1985年6月第1版。

[5]莫绍揆:《数理逻辑初步》,上海人民出版社,1980年8月第1版。

[6]卡尔·B.波耶:《微积分概念史》,上海人民出版社,1977年9月第1版。

[7]周述歧:《微积分思想简史》,中国人民大学出版社,1987年8月第1版。

[8]朱学志等:《数学的历史、思想和方法》,哈尔滨出版社,1990年12月第1版。

[9]陈宣良:《理性主义》,四川人民出版社,1988年5月第1版。

[10]J.M.Child,TheEarlyMathematicalManuscriptsofLeibniz,OpenCourt,1920.

[11]C.H.爱德华:《微积分发展史》,北京出版社,1987年12月第1版。

[12]E.克拉默:《大学数学》(原名“TheNatureandProgressofModernMathematics”—现代数学的本质与成长》,复旦大学出版社,1987年6月第1版。

[13]黑格尔:《哲学史讲演录》第四卷,商务印书馆,1978年12月第1版。

[14]《十六——十八世纪西欧各国哲学》,商务印书馆,1975年版。

莱布尼茨范文篇3

一、符号逻辑:“通用数学语言”

莱布尼茨对数学问题的最早探索和最初贡献是试图沿着笛卡尔和霍布斯的思路建构所谓的“通用语言”。这种语言是一种用来代替自然语言的人工语言,它通过字母和符号进行逻辑分析与综合,把一般逻辑推理的规则改变为演算规则,以便更精确更敏捷地进行推理。([1],p.8)或者说,“通用语言”是一套表达思想和事物的符号系统,利用这些符号可以进行演算并推出各种知识。在《论组合术》中,二十岁的莱布尼茨曾立志要创设“一个一般的方法,在这个方法中所有推理的真实性都要简化为一种计算。同时,这会成为一种通用语言或文字,但与那些迄今为止设想出来的全然不同;因为它里面的符号甚至词汇要指导推理;错误,除去那些事实上的错误,只会是计算上的错误。形成或者发明这种语言或者记号会是非常困难的,但是可以不借助任何词典就很容易懂得它。”([2],p.123)在1679年9月8日给惠更斯的信中他又写道,有一个“完全不同于代数的新符号语言,它对于精确而自然地在脑子里再现(不用图形)依赖于想象的一切有很大的好处。……它的主要效用在于能够通过记号〔符号〕的运算完成结论和推理,这些记号不经过非常精细的推敲或使用大量的点和线会把它们混淆起来,因而不得不作出无穷多个无用的试验;另一方面,这个方法会确切而简单地导向〔所需要的〕结果。我相信力学差不多可以象几何学一样用这种方法去处理。”([3],p.151~152)

综合莱布尼茨零零碎碎的设想,他的宏伟规划大体旨在创造两种工具:其一是通用语言,其二是推理演算(calaulusratiocinator)。前者的主要使命是消除现存语言的局限性和不规则性,使新语言变成世界上人人会用的具有简明符号、合理规则的语言,规定符号的演变规则与运算规则,使逻辑演变依照一条明确的道路进行下去,进而解决所有可用语言表达的问题。

为此,莱布尼茨做了两方面的努力:一是寻找能够代表所有概念并可认作最根本的不可分析的符号;二是给出表述诸如断定、合取、析取、否定、全称、特殊、条件联结等形式概念的设计。关于第一方面,莱布尼茨首次设想用数目代表原初概念,而逻辑演算则用如同算术中的乘或除来代替。他认为用这种数字的不同方式排列组合,进行各种运算,就可产生无穷多的复合概念。这一思想后来改进为以素数代表基本概念,而复合词项即可借分解相应的数字成为它们的素数因子来加以分析。以“人是理智动物”为例,用素数“3”代表“动物”、“5”代表“理智”,则“人”即以“15=3.5”代表。为了更好地构设“通用语言”,莱布尼茨又以设想的“人类概念字母表”为语言词汇基础创制了一些逻辑符号,如“∪”(并)、“∩”(交)等,一直沿用下来。

关于第二方面,莱布尼茨的工作大致可以1679、1686、1690三个年代为标志划分为三个阶段。([4],pp.271~273)

第一阶段,莱布尼茨改进从数字代替概念以其演算,代之以对普通命题经验分析为基础的代数逻辑。他以全称肯定命题“a是b”的形式开始,提出五条基本演算规则:(1)ab是ba(交换律);(2)a是aa(重言律);(3)a是a(同一原则);(4)ab是a或ab是b(化简原则);(5)如a是b且b是c,则a是c(传递原则)。以此为据,他证明了同一和包含两个逻辑系词之间的重要关系,即,如a是b且b是a,则a与b是同一的。进而,他又提出四个定理:(1)如a是b且a是c,则a是bc;(2)如a是bc,则a是b且a是c;(3)如a是b,则ac是bc;(4)如a是b且c是d,则ac是bd。由此可见,莱布尼茨在第一阶段的逻辑演算已相当完善和科学化,为逻辑的系统化打下了坚实的基础。

第二阶段,莱布尼茨用等式符号作系词符号,借公式A=BY表述全称肯定命题(Y为一未确定的系数,用以修饰B而使B成为A的一部分),同时提出双重否定之为肯定,即“非非A=A”,并由此演释出一系列定理。为了进一步发展演算,莱布尼茨还试图通过与属性组合的关系,用代数方法来描述四个直言命题,甚至对四个直言命题的表示法提出了九个方案。

第三个阶段,莱布尼茨最有价值的工作是罗列了十四个基本命题:(1)A=A+A“+”表示逻辑相乘,下同);(2)如A=B且B=C,则A=C;(3)如A=B且B≠C,则A≠C;(4)如A=B,且B<C,则A<C;(5)如A=B且C<B,则C<A;(6)如A=B且C=D;则A+C=B+D;(7)如A=B,则A+C=B+C;(8)A<B,则A+C<B+C;(9)如A+B=A,则B<A;(10)如B<A,则A+B=A;(11)如A<B且B<C,则A<C;(12)如A<B且B<A,则A=B;(13)如A<C且B<C,则A+B<C;(14)如A<B且C<D,则A+C<B+D。为适应逻辑相除,他又引进逻辑相减运算,定义为:如B包含在A中且C包括除去内容B之外的整个A的内容,则A-B=C。如前例“人=动物+理智”即可推为“人-理智=动物”。

上述符号构设显示,莱布尼茨的中心思想是致力于以符号表示普遍概念的“通用语言”和以代换法进行数学演算他自称的“通用数学”。就今天的眼光看来,他实际上已经发现了符号逻辑的若干重要原则和定理,触及到后由哈米尔顿所阐发的谓项量化问题,认识到在直言与假言命题之间的基本类比(即原因包含它的结果正如主项包含它的谓项),并且把握了逻辑相加的问题,甚至讨论过非三段论的关系推理。因此,莱布尼茨实际上已探察到后来为布尔和施罗德所发展的逻辑代数的整个基础。数理逻辑学家有没有看过莱氏的著作,知道不知道莱氏的计划,但所作的研究大体上都是沿着莱氏所期望的方向进行的。”([5],p.10)所以,整个数学界都一致公认他是数理逻辑的首创者和真正奠基人。

莱布尼茨的符号数学研究在生前没有公布,结果使数理逻辑的发展延迟了一个半世纪。([4],p.119)可他关于微积分的成果却由于较早发表而惠泽数学界并引发一场争论持久的历史公案。

二、微积分:“理性的代数学”

1684年莱布尼茨在莱比锡的《教师学报》(ActaEruditorum)上首次发表了题为《关于求极大、极小和切线的新方法,也能用于分数和无理量的情形及非寻常类型的有关计算》(简称《新方法》)的文章。这是他关于微分计算要点的代表作,全文只有六页。1686年莱布尼茨又在《教师学报》上发表了题为《论一种深邃的几何学和不可分元分析以及无穷》一文。这是他最早发表的以讨论积分学为主的文章,实际可看作《新方法》的续篇。

莱布尼茨把最初的微积分称为求差的方法与求和的方法。他的基本思想是把一条曲线下的面积分割成许多小矩形与曲线之间微小直角三角形的两边分别是曲线上相邻两点的纵坐标和横坐标之差。当这两无限减小时,曲线上相邻两点便无限接近。联结这样两点就得出曲线在该点的切线。这就是求差的方法。求差的反面就是求和。当曲线下面的矩形被分割得无限小时,矩形上面的那个三角形可以忽略不计,此时就用这些矩形之和代表曲线下的面积。

早在1666年,莱布尼茨就发现帕斯卡算术三角形与调合三角形之间存在着有趣的关系。([6],pp.216~217)在帕斯卡三角形中,任意一个元素既等于其上一行左边各项之和,又等于其下一行相邻两项之差;而在调合三角形中,任一元素均是其下一行右边各项之和,也是紧靠其上两项之差。

算术三角形调合三角形

莱布尼茨在笔记中写出了各阶的差和微分:

自然数0,1,2,3,4,5,…y

一阶差1,1,1,1,1,1,…dy

二阶差0,0,0,0,0,…

自然数平方0,1,4,9,16,…y

一阶差1,3,5,7,…dy

二阶差1,2,2,2,…d(dy)

三阶差1,0,0,…

他把这些与微积分联系起来:一阶差相当于dy,它们的和等于y,如1+3+5+7=16。莱布尼茨认为,这种和与差之间的互逆性,与依赖于坐标之差的切线问题及依赖于坐标之和的求积问题的互逆性是一样的。差别仅在于帕斯卡算术三角形与调合三角形中的两个元素之差为有限值,而曲线的纵坐标之差是无穷小量。这说明他在考虑无穷小量的和差运算时,已将其与他早些时候关于有限量和差可逆性关系的研究联系起来。([10],p.392)由此也可看出莱布尼茨研究微积分的代数出发点,而不是几何出发点。(如[7],p.101)

为解决求积问题,莱布尼茨把流动纵坐标是y的平面曲线下的曲边梯形的面积用符号y表示。这样,曲线的纵坐标就与面积变量明显地联系起来。过了几年,他便用“sydx”表示面积,“∫”是“Sum(和)”的第一个字母“S”的拉长。

在求量的差即微分方面,莱布尼茨先是引进了符号“x/d”表示x的微分,意思是求“差”要关系到量的同次的降低,并且他还认为,如果同时出现不同阶的微分,则只留下最低阶的,而把所有高阶的微分舍去。至于这样做的理由,莱布尼茨虽提供了多种解释,但都不充分,其实毋宁说他是当作“公理”来使用的。后来,他将“x/d”改为“dx”,一直沿用至今。

从上述思路出发,莱布尼茨给出了微积分的基本公式:

d(x±y)=dx±dy(1)

d(xy)=xdy+ydx(2)

d(x/y)=ydx-xdy/y[2](3)

对于(2),他的推导是,令x、y分别成为x+dx、y+dy,则

(x+dx)(y+dy)=xdy+ydx+dxdy+xy于是d(xy)=(x+dx)(y+dy)-xy=xdy+ydx+dxdy

dxdy是比xdy+ydx高一阶的无限小量,可以舍去,所以d(xy)=xdy+ydx

用同样的方法也可推导出公式(1)和(3)。

有了微分法的基本运算律,对整指数的幂函数x[n]就有dx[n]=nx[n-1]。又由于求和是求差的逆运算,所以还有∫x[n]dx=1/n+1x[n+1](n≠-1)。这两个公式虽只对n是正整数情况而言,但莱布尼茨却断然宣布它们当n取其它数值时仍然成立。接着,莱布尼茨陆续地推导出指数和对数等超越函数的微分公式。

莱布尼茨的微积分算法是在解决几何和物理问题的过程中建立和完善起来的。他边建立新算法,边用这种算法解决当时物理学与几何学提出的疑难问题,有时还用老方法来解决问题以检验新方法的正确性。除了切线问题、极值问题、曲率问题、求积问题等几何问题,他还曾用新方法证明了光的折射定律。所有这些都显示了新算法比传统方法更加优越。

除了以上成果,莱布尼茨在微积分方面的具体研究还有:(1)复合函数的微分法则;(2)弧微分法则ds=根号下dx[,2]+dy[,2];(3)对数函数和指数函数的微分法则;(4)在积分号下对参变量求微分的方法;(5)曲线绕x轴旋转所成的旋转体体积公式V=π∫y[2]dx;(6)求切线、求最大值最小值以及求拐点的方法;(7)讨论曲率,密切圆和包络理论。([8],pp.394~395)

莱布尼茨微积分研究的背景与当时整个西欧的数学家们是一致的,他的工作基础也是建立在对无穷小的分析上。因此,此后很长一段时间,人们一直把微积分叫无穷小分析。由于莱布尼茨从有限差值开始无穷小的运算,因而他最初曾试图将实无穷小代之以与其成比例的有限数量,即不用dx、dy本身,而用它们的比值dy/dx。他以为把dx、dy看成有限量,问题就解决了。但是,比值dy/dx的获得同样需要说清dx、dy两个量本身的实际情况,而不能有半点含糊。于是,莱布尼茨提出用“充分大”和“充分小”去代替无穷大和无穷小。他解释说:“我们可以不用无穷大、无穷小,而用充分大和充分小的量,使得误差小于给定的误差限度,所以我们和阿基米德方式的不同之处仅仅在于表达方面,而我们的表达更为直接,更适合于发明家的艺术。”([8],p.401)为了更好地说明这一点,他不得不诉诸于感性的直观——物理或几何模型,用现实事物中量的不同层次的相对性解释无穷大和无穷小。所以有人说,莱布尼茨其实是半个理性主义,因为他在理性困厄之时,不得不借助经验。([9],p.130)例如,他认为点同直线不能相比,所以点加到直线上从直线上去掉等于不加也不减。于是,“当我们谈到有不同阶的无穷大与无穷小时,就象对恒星的距离而言,把太阳看成一个点;对地球半径而言,把普通的球看做一个点。这样,恒星的距离对于普通球的半径而言是无穷的无穷大,或无穷倍的无穷大。”[10]而“如果你不承认无限长、无限短线段具有形而上学的严密性,也不承认它们是实在的东西,那么你一定可以把它们当作一种能够缩短论证的思想的东西来使用,正如在普通分析中使用虚根一样,……老实说,我不十分相信除了把无限大、无限小看作理想的东西,看作有根据的假设,还有什么必要去考察他们,”甚至“我不相信确有无限大量和无限小量存在,它们只是虚构,但是对于缩短论证和在一般叙述中是有用的虚构。”[(10)]可见,莱布尼茨主要是把微积分当作了求得正确结果的一种方法,只要按这个方法去做,就能得出正确的结果,而不必关心基本概念怎样。事实上,莱布尼茨对于微积分基础的这种看似冒失的大胆相信态度,反倒可能促进了微积分及其应用的迅速发展。([11],p.359)

三、单子论:理性的僭越

莱布尼茨是古往今来唯一的一位驰骋于数学思想的两个宽广的、对偶的领域——分析与组合或连续和离散领域的数学大师,而且在每个领域都表现了人类的最高能力。([2],p.119)这除了他的已为人所周知的天赋和勤勉以外,就数学内部而言,最合理的解释应该是莱布尼茨数学研究的代数出发点和哲学研究方式。他的“通用语言”工作,今天看来实际上是在创立一种普遍适用的逻辑代数(数学)。而在微积分上,尽管他赞同那种认为无穷小需要一个几何学基础的偏见,但是他达到微积分的途径却是代数的和哲学的,而不是几何的。莱布尼茨的发现起因于寻找一个无限聚敛数列或交错级数1/1-1/3+1/5-1/7+……之和(=π/4)的方法(最后莱布尼茨给出了自己满意的最一般的公式:arctgx=x=x[,3]/3+x[,5]/5+x[,7]/c+……)。在莱布尼茨看来:微分学就是确定这种数列极限的一种方法,所以他才习惯于将无穷小等视作有限量;积分学则是发现数列总和的一种方法,因而他的积分总是今天所说的定积分,而不是牛顿的不定积分。([6],p.219)在莱布尼茨时代,几何学由于笛卡尔和费尔马杰出的工作而倍受数学界欢迎,莱布尼茨抱着“通用数学”的信念,企图运用几何方法解决代数问题,结果却将自己代数的观点导入几何学,从而做出了对“天地间通用的微积分”的发现。([12],p.170)因此,为了深入追索莱布尼茨数学创造的思想渊薮,必须诉诸他的数学观及所接受的研究传统。

莱布尼茨最早的思想活动是在哲学领域,这与其父作为一个道德哲学教授的影响有关。少年莱布尼茨读了不少古典哲学著作,入大学后又首先接受了雅可布·托马修斯教授严格的经院哲学训练。他的毕业论文Deprincipioindividui(《论个体原则》)就是维护经院哲学中唯名论派观点的。尽管莱布尼茨后来到巴黎去认真学习和研究数学,并且首先在数学上有了划时代的贡献,但作为其全部科学研究起点的思维观念与思想传统却是在早年打下的,而且一生基本没有什么大的变化。([13],p.164)这在他的著作《新系统》(1695)中有明确表述。

虽然莱布尼茨生前没有留下一部令自己满意的哲学著作,他在哲学方面的所有主要著作都是为了某个人而写,但他却是第一个创立独立哲学体系的德国人。这体系的“拱心石”通常称为“单子论”,他自己则称之为“前定和谐系统”。作为单子论核心范畴的单子是一种没有部分的只是组成复合物的单纯实体。([14],p.483)莱布尼茨认为单子具有六种规定性:(1)单子是最小的精神实体,它是能动的而又不具有广延(可分)性,因而是世界的实(主)体;(2)单子是上帝创造的,因其不能通过组合而生,只能凭创造而生,凭毁灭而亡;(3)单子是彻底孤立的实体,绝对封闭,各自独立;(4)每个单子各具不同的质,因其没有量的规定性,所以实际上存在着无限多样的单子;(5)单子运动变化的原因在自身,每个单子都是一个“力的中心”;(6)单子的基本属性是知觉,知觉反映自身和他物,因此每一个单子都是宇宙的一面永恒的镜子。从单子的规定出发,莱布尼茨提出了他的本体论原则:第一,连续性原则,认为宇宙是一个从低级到高级的发展过程;第二,前定和谐原则,认为各自独立的单子能同时一致行动的原因来自前定和谐;第三,普遍联系原则,认为整个宇宙中的单子和事物均处于普遍的相互联系之中。以上三个原则,连续性是用来调和事物质的对立的,前定和谐是用来调和“不可分点”(间断)与“连续性”的矛盾的,普遍联系则为了调合有限与无限、个别与一般、部分与整体的矛盾。[15]

上述本体论承诺决定了莱布尼茨的认识论必然是一种主张能动性然而却是唯心的先验论体系。它最终注定莱布尼茨的方法论只能是一种以逻辑为主干的多元方法论,既相信直觉,又看重形式。[15]他不仅承继了笛卡尔、斯宾诺莎一贯的唯理论传统,而且将理性主义原则扩展到在前者的哲学中遭拒斥的许多领域。他从哲学出发去理解科学活动及其本质,数学也仅是其哲学探索的一种智力模型。譬如,他的微分就是“原形先蕴”,通过形而上学的解释假定的。莱布尼茨注重运算的过程和探究结果。他在对待作为微积分逻辑基础的无穷小时,既不怯懦回避,也不轻易神秘化,而是从有限差开始,充满自信地大胆使用无穷小量及其阶,就如他自己所说,仅仅诉诸智力,更注重这种方法的运算性质。[16]他相信,假如他清楚地给出了适当的运算法则,并且把它们应用得恰当,就一定会得到某种合理的、正确的结果。他似乎觉得,根据充足理由(前定和谐)律,他就可以在这方面来实现从可能性到现实性的转变。([6],p.222)为此,他特别强调理论内容的形式化问题。他所建立的“通用数学”及无穷小量运算都是符号和术语体系的极好范例,是真正的现代意义形式化的始祖。

于是,我们不难理解,莱布尼茨为什么在离散与连续或组合与分析两个不同数学领域都表现出了同样的研究方式和最高创造力,因为它们在“理性”上是一致的。接续以“离散”为基础,是“离散”的连续,就如同“认识”不过是单子的活动而已。所以,莱布尼茨一直以代数的、有限的方法研究分析的、无限性的问题。这种研究在观念上从属于按照准确本体论原则建构起来的认识目的,它试图“在理智活动的各个领域内的那些早期传统间的看起来不可调和的矛盾冲突中创造出一个新的综合。”([17],p.4)

当然,莱布尼茨这种近于偏执和幻想式的理性主义传统,也使其数学研究遇到了许多困难。首先是在微积分的基本概念上,作为研究基础的无穷小量始终不明确,要么看作要多小有多小,要么看作理想之物,要么看作是纯粹然而有用的虚构,将科学基础概念的界定最终留给了信仰。其次是他的数学研究在逻辑上是不严谨的,尽管他发展了逻辑学,但其推导是不严格的,有主观臆造成分。特别是其微积分表示法的优越性更强烈地掩蔽了这一学科的逻辑基础,使之在严格论述方面走上了歧途。([12],p.234)至于他的理论推导中有时包含逻辑错误,如曾认为d(uv)=dudv、d(u/v)=du/dv(1675),这已属情理之中的事。他的零乱的工作如果不经Bernoulli兄弟整理加工,就很难有后来的局面。此外,英国科学家牛顿关于微积分严谨而扎实的工作更表明,对数学的发明与创造而言,理性主义方法也并不是唯一有效和可靠的途径。

四、流数术:数学需要两种传统

1705年《教师学报》上发表了一篇评述牛顿《求积术》的论文。文中说到,在那本书里只不过是把莱布尼茨的微分换成了流数。言下之意,两者实质上不外是同一样东西。这在那个极重个人荣誉的时代,无疑于掷出一枚重磅炸弹,立刻激起轩然大波,引发了究竟牛顿和莱布尼茨谁先发明了微积分的长时间争论。为此,英国皇家学会还于1712年在其《通讯》上公布了评判结果:“微分法和流数法是一回事,只是名称和记法不同而已;牛顿先生称之为瞬或流数的那些量,莱布尼茨先生称为微积分,并用牛顿先生不曾用过的记法,记作字母d。”([6],p.235)显然,上述两种看法是截然对立的。由于这种争论只是涉及发明的优先权问题,所以对微积分的进步没有任何益处。但争论也反映出一个问题,即当时的人们(包括牛顿和莱布尼茨本人)除了发觉两种微积分在概念和记法上不同外,并没有看出二者质的联系与差别。关于微积分的基础工作,是两个人去世后很久的事。

众所周知,就牛顿而言,他首先是个物理学家或主要是力学家。这不仅可以从其科学成就看出,而且在其对待微积分的方式上也表露得十分清楚。他称自己的微积分为流数术,即表明主要是为解决流体力学等问题而探讨和使用的新方法。牛顿关于微积分的主要著述有三部:《运用无穷多项方程的分析学》(1669)、《流数法和无穷级数》(1671)、《曲线求积术》(1690)。此外,他的代表作《自然哲学的数学原理》(1687)中也有不少论述。这些成果大致反映了牛顿对微积分的研究和认识的三个主要阶段。第一个阶段是静态的无穷小量方法阶段,他象费尔马等人一样把变量看作是无穷小元素的集合;第二个阶段是变量流动生成法阶段,认为变量是由点、线或面的连续运动产生的,因此把变量叫作流量,把变量的变化率叫流数;第三个阶段是最初比和最终比方法阶段,这种方法是牛顿对第一个阶段无穷小量方法的排除,转向极限观点。牛顿的微积分(流数术)中有三个重要概念:流量、流数和瞬。其中“瞬”是刚刚产生的一种无穷小量。这几个概念的提出,不仅使一切与变化率有关的问题有了统一认识和表述,而且直接揭示了原函数与导函数之间的可逆关系。由此可见,尽管牛顿后来用几何形式表述了微积分基本定理及其它一系列重要命题,但其把物理学作为出发点的做法却是十分明显的。就如他自己所说:“这里,流数术赖以建立的主要原理,及是取自理论力学中的一个非常简单的原理,这就是:数学量,特别是外延量,就可以看成是由连续轨迹运动产生的;而且所有不管什么量,都可以认为是在同样方式之下产生的,至少经过类比和调整后可以如此。因此在产生这些具有固定的、可确定的关系的量时,其相对速度一定有增减,因而也就可以作为一个问题提出如何去求它们。”([18],p.Ⅺ)所以,“甚至最草率的牛顿研究者也明显看到,牛顿是一位彻底的经验主义者。”([19],p.198)

从物理经验出发,牛顿把速度、距离、加速度等作为中心概念,以变量x和y的无穷小增量作为求流数(导数)的手段(当增量越来越小时,流数实际上就是增量比的极限);牛顿更多关心微积分的实际内容和基本方法,一些法则没有充分推广,对普通的讨论较少;他从变化率出发解决面积和体积问题,微分是其基础,通过微分及其逆来解决微积分问题。因此,作为自然科学家的牛顿处理问题十分严谨小心,讲究实在具体。人们认为他迟迟不发表微积分研究成果的原因,可能是因为没有为其基础找到合理的解释所致。德摩根甚至认为牛顿是由“一种病态的害怕别人反对的心理统治了他的一生。”([20],p.67)这和莱布尼茨那种从几何出发,整体求和的、注重推广和演绎的理性化方式大为不同。由此直接导致了他们所发明的微积分的基本差别:(1)莱布尼茨的微积分是由人工符号语言表述的法则与公式系统,他花了很多时间选择富有提示性的符号;牛顿的微积分主要是用自然语言进行叙述的数学体系,很少涉及符号,他基本认为符号无关紧要。(2)莱布尼茨的研究是从“整体”到“部分”,他首先讨论“和”即积分,用和来得到面积、体积或重心,其出发点是反微分;牛顿的研究是由“部分”到“整体”其基础是微分,他从变化率出发来解决面积和体积问题。(3)莱布尼茨的微分是高阶的,其积分是定积分;牛顿的微分是一阶的,其积分是不定积分。

但是,尽管在出发点、研究方式和表述形式上有巨大的差别,两人仍然创立了同一个微积分,并且彼此互补。经过他们的工作,微积分再不象希腊时期所有数学都是几何学的分支那样,被束缚在几何框架内,而是成为一个崭新的既不同于几何也不同于代数的独立的分析数学。并且,二人都不象他们的先驱那样仅限于解决某些实际问题,而是把微积分建立在一般问题和运算基础上,使之成为具有普遍性的通用方法。他们不再把微分问题和积分问题看作互不相干,而是找到了彼此的互逆关系,建立起微积分基本定理,使面积、体积及以往作为求和来处理的各种问题都归并为反微分,为求积运算开辟了一条新的便捷途径。这样,经过二人不懈的努力,微积分作为“天地间通用”的学科终于获得了资格证书。

在科学史上,几个人同时创造一项科学成就的事例并不少见。但是,牛顿和莱布尼茨各自从不同的研究传统出发发明了微积分,对数学的进步有着特别的意义。原因在于,微积分处于古代数学向近代数学转折的关节点上。经过微积分,近代以来的数学观及其方法论已大为改观,所以许多讨论近代数学的书往往称“微积分以来的数学”。([21],p.51)牛顿的工作无疑再一次表明了数学与经验的不可分割性,而莱布尼茨则以自己的探索证明了理性要素在近代数学发展中的增长。300年后的今天,数学哲学关于数学真理的实在性与非实在性问题的讨论进一步印证了两种数学传统对现代数学的发展都是必不可少的。

同样,莱布尼茨关于通用数学语言的构想,由于过份浪漫和理性化,也只是在200年后才找到自己数学的“经验”基础,从而经过皮亚诺、罗素等人的工作部分地成为现实。其思想为后来的逻辑经验主义者特别是卡尔纳普等人所继承和推广,开启了人工语言学的先河。这种状况与其说是历史造成的,毋宁说是数学和科学自身的特性使然。

数学的发展再一次证明了经验主义传统和理性主义传统同为科学进步的思想源泉,它们之间的一定的张力状态是数学能够顺利发展的思维基础,而牛顿治学的严肃审慎与莱布尼茨运思的浪漫机警同为科学工作者的必备素养。

参考文献

[1]《莱布尼茨自然哲学著作选》,祖庆年译,中国社会科学出版社,1985年4月第1版。

[2]E.T.Bell.MANOFMATHEMATICS,DoverPublicationsNewYork1963.

[3]G.T.Kneebone,MATHMATICALLOGICANDFOUNDATIONSOFMATHEMATICS.

[4]马玉珂主编:《西方逻辑史》,中国人民大学出版社,1985年6月第1版。

[5]莫绍揆:《数理逻辑初步》,上海人民出版社,1980年8月第1版。

[6]卡尔·B.波耶:《微积分概念史》,上海人民出版社,1977年9月第1版。

[7]周述歧:《微积分思想简史》,中国人民大学出版社,1987年8月第1版。

[8]朱学志等:《数学的历史、思想和方法》,哈尔滨出版社,1990年12月第1版。

[9]陈宣良:《理性主义》,四川人民出版社,1988年5月第1版。

[10]J.M.Child,TheEarlyMathematicalManuscriptsofLeibniz,OpenCourt,1920.

[11]C.H.爱德华:《微积分发展史》,北京出版社,1987年12月第1版。

[12]E.克拉默:《大学数学》(原名“TheNatureandProgressofModernMathematics”—现代数学的本质与成长》,复旦大学出版社,1987年6月第1版。

[13]黑格尔:《哲学史讲演录》第四卷,商务印书馆,1978年12月第1版。

[14]《十六——十八世纪西欧各国哲学》,商务印书馆,1975年版。

[15]刘啸霆:“莱布尼茨哲学体系论”,河南师范大学学报,1995年第2期。

[16]刘啸霆:“莱布尼兹:微积分学中的理性倾向”,自然辩证法研究,1991年第12期。

[17]G.MacDonaldRoss,LEIBNIZ,UxfordOniversityPress1984.

[18]IsaacNenton,THEMETHODOFFLUXIONSANDINFINITESERIESWITHITSAPPLICATIONTOTHEGEOMETRYOFCURVELINES,TranslatedbyF.Colson.1736.Pref.

[19]E.A.伯特:《近代物理科学的形而上学基础》,四川教育出版社,1994年8月第1版。

莱布尼茨范文篇4

一、符号逻辑:“通用数学语言”

莱布尼茨对数学问题的最早探索和最初贡献是试图沿着笛卡尔和霍布斯的思路建构所谓的“通用语言”。这种语言是一种用来代替自然语言的人工语言,它通过字母和符号进行逻辑分析与综合,把一般逻辑推理的规则改变为演算规则,以便更精确更敏捷地进行推理。([1],p.8)或者说,“通用语言”是一套表达思想和事物的符号系统,利用这些符号可以进行演算并推出各种知识。在《论组合术》中,二十岁的莱布尼茨曾立志要创设“一个一般的方法,在这个方法中所有推理的真实性都要简化为一种计算。同时,这会成为一种通用语言或文字,但与那些迄今为止设想出来的全然不同;因为它里面的符号甚至词汇要指导推理;错误,除去那些事实上的错误,只会是计算上的错误。形成或者发明这种语言或者记号会是非常困难的,但是可以不借助任何词典就很容易懂得它。”([2],p.123)在1679年9月8日给惠更斯的信中他又写道,有一个“完全不同于代数的新符号语言,它对于精确而自然地在脑子里再现(不用图形)依赖于想象的一切有很大的好处。……它的主要效用在于能够通过记号〔符号〕的运算完成结论和推理,这些记号不经过非常精细的推敲或使用大量的点和线会把它们混淆起来,因而不得不作出无穷多个无用的试验;另一方面,这个方法会确切而简单地导向〔所需要的〕结果。我相信力学差不多可以象几何学一样用这种方法去处理。”([3],p.151~152)

综合莱布尼茨零零碎碎的设想,他的宏伟规划大体旨在创造两种工具:其一是通用语言,其二是推理演算(calaulusratiocinator)。前者的主要使命是消除现存语言的局限性和不规则性,使新语言变成世界上人人会用的具有简明符号、合理规则的语言,规定符号的演变规则与运算规则,使逻辑演变依照一条明确的道路进行下去,进而解决所有可用语言表达的问题。

为此,莱布尼茨做了两方面的努力:一是寻找能够代表所有概念并可认作最根本的不可分析的符号;二是给出表述诸如断定、合取、析取、否定、全称、特殊、条件联结等形式概念的设计。关于第一方面,莱布尼茨首次设想用数目代表原初概念,而逻辑演算则用如同算术中的乘或除来代替。他认为用这种数字的不同方式排列组合,进行各种运算,就可产生无穷多的复合概念。这一思想后来改进为以素数代表基本概念,而复合词项即可借分解相应的数字成为它们的素数因子来加以分析。以“人是理智动物”为例,用素数“3”代表“动物”、“5”代表“理智”,则“人”即以“15=3.5”代表。为了更好地构设“通用语言”,莱布尼茨又以设想的“人类概念字母表”为语言词汇基础创制了一些逻辑符号,如“∪”(并)、“∩”(交)等,一直沿用下来。

关于第二方面,莱布尼茨的工作大致可以1679、1686、1690三个年代为标志划分为三个阶段。([4],pp.271~273)

第一阶段,莱布尼茨改进从数字代替概念以其演算,代之以对普通命题经验分析为基础的代数逻辑。他以全称肯定命题“a是b”的形式开始,提出五条基本演算规则:(1)ab是ba(交换律);(2)a是aa(重言律);(3)a是a(同一原则);(4)ab是a或ab是b(化简原则);(5)如a是b且b是c,则a是c(传递原则)。以此为据,他证明了同一和包含两个逻辑系词之间的重要关系,即,如a是b且b是a,则a与b是同一的。进而,他又提出四个定理:(1)如a是b且a是c,则a是bc;(2)如a是bc,则a是b且a是c;(3)如a是b,则ac是bc;(4)如a是b且c是d,则ac是bd。由此可见,莱布尼茨在第一阶段的逻辑演算已相当完善和科学化,为逻辑的系统化打下了坚实的基础。

第二阶段,莱布尼茨用等式符号作系词符号,借公式A=BY表述全称肯定命题(Y为一未确定的系数,用以修饰B而使B成为A的一部分),同时提出双重否定之为肯定,即“非非A=A”,并由此演释出一系列定理。为了进一步发展演算,莱布尼茨还试图通过与属性组合的关系,用代数方法来描述四个直言命题,甚至对四个直言命题的表示法提出了九个方案。

第三个阶段,莱布尼茨最有价值的工作是罗列了十四个基本命题:(1)A=A+A“+”表示逻辑相乘,下同);(2)如A=B且B=C,则A=C;(3)如A=B且B≠C,则A≠C;(4)如A=B,且B<C,则A<C;(5)如A=B且C<B,则C<A;(6)如A=B且C=D;则A+C=B+D;(7)如A=B,则A+C=B+C;(8)A<B,则A+C<B+C;(9)如A+B=A,则B<A;(10)如B<A,则A+B=A;(11)如A<B且B<C,则A<C;(12)如A<B且B<A,则A=B;(13)如A<C且B<C,则A+B<C;(14)如A<B且C<D,则A+C<B+D。为适应逻辑相除,他又引进逻辑相减运算,定义为:如B包含在A中且C包括除去内容B之外的整个A的内容,则A-B=C。如前例“人=动物+理智”即可推为“人-理智=动物”。

上述符号构设显示,莱布尼茨的中心思想是致力于以符号表示普遍概念的“通用语言”和以代换法进行数学演算他自称的“通用数学”。就今天的眼光看来,他实际上已经发现了符号逻辑的若干重要原则和定理,触及到后由哈米尔顿所阐发的谓项量化问题,认识到在直言与假言命题之间的基本类比(即原因包含它的结果正如主项包含它的谓项),并且把握了逻辑相加的问题,甚至讨论过非三段论的关系推理。因此,莱布尼茨实际上已探察到后来为布尔和施罗德所发展的逻辑代数的整个基础。数理逻辑学家有没有看过莱氏的著作,知道不知道莱氏的计划,但所作的研究大体上都是沿着莱氏所期望的方向进行的。”([5],p.10)所以,整个数学界都一致公认他是数理逻辑的首创者和真正奠基人。

莱布尼茨的符号数学研究在生前没有公布,结果使数理逻辑的发展延迟了一个半世纪。([4],p.119)可他关于微积分的成果却由于较早发表而惠泽数学界并引发一场争论持久的历史公案。

二、微积分:“理性的代数学”

1684年莱布尼茨在莱比锡的《教师学报》(ActaEruditorum)上首次发表了题为《关于求极大、极小和切线的新方法,也能用于分数和无理量的情形及非寻常类型的有关计算》(简称《新方法》)的文章。这是他关于微分计算要点的代表作,全文只有六页。1686年莱布尼茨又在《教师学报》上发表了题为《论一种深邃的几何学和不可分元分析以及无穷》一文。这是他最早发表的以讨论积分学为主的文章,实际可看作《新方法》的续篇。

莱布尼茨把最初的微积分称为求差的方法与求和的方法。他的基本思想是把一条曲线下的面积分割成许多小矩形与曲线之间微小直角三角形的两边分别是曲线上相邻两点的纵坐标和横坐标之差。当这两无限减小时,曲线上相邻两点便无限接近。联结这样两点就得出曲线在该点的切线。这就是求差的方法。求差的反面就是求和。当曲线下面的矩形被分割得无限小时,矩形上面的那个三角形可以忽略不计,此时就用这些矩形之和代表曲线下的面积。

早在1666年,莱布尼茨就发现帕斯卡算术三角形与调合三角形之间存在着有趣的关系。([6],pp.216~217)在帕斯卡三角形中,任意一个元素既等于其上一行左边各项之和,又等于其下一行相邻两项之差;而在调合三角形中,任一元素均是其下一行右边各项之和,也是紧靠其上两项之差。

算术三角形调合三角形

莱布尼茨在笔记中写出了各阶的差和微分:

自然数0,1,2,3,4,5,…y

一阶差1,1,1,1,1,1,…dy

二阶差0,0,0,0,0,…

自然数平方0,1,4,9,16,…y

一阶差1,3,5,7,…dy

二阶差1,2,2,2,…d(dy)

三阶差1,0,0,…

他把这些与微积分联系起来:一阶差相当于dy,它们的和等于y,如1+3+5+7=16。莱布尼茨认为,这种和与差之间的互逆性,与依赖于坐标之差的切线问题及依赖于坐标之和的求积问题的互逆性是一样的。差别仅在于帕斯卡算术三角形与调合三角形中的两个元素之差为有限值,而曲线的纵坐标之差是无穷小量。这说明他在考虑无穷小量的和差运算时,已将其与他早些时候关于有限量和差可逆性关系的研究联系起来。([10],p.392)由此也可看出莱布尼茨研究微积分的代数出发点,而不是几何出发点。(如[7],p.101)

为解决求积问题,莱布尼茨把流动纵坐标是y的平面曲线下的曲边梯形的面积用符号y表示。这样,曲线的纵坐标就与面积变量明显地联系起来。过了几年,他便用“sydx”表示面积,“∫”是“Sum(和)”的第一个字母“S”的拉长。

在求量的差即微分方面,莱布尼茨先是引进了符号“x/d”表示x的微分,意思是求“差”要关系到量的同次的降低,并且他还认为,如果同时出现不同阶的微分,则只留下最低阶的,而把所有高阶的微分舍去。至于这样做的理由,莱布尼茨虽提供了多种解释,但都不充分,其实毋宁说他是当作“公理”来使用的。后来,他将“x/d”改为“dx”,一直沿用至今。

从上述思路出发,莱布尼茨给出了微积分的基本公式:

d(x±y)=dx±dy(1)

d(xy)=xdy+ydx(2)

d(x/y)=ydx-xdy/y[2](3)

对于(2),他的推导是,令x、y分别成为x+dx、y+dy,则

(x+dx)(y+dy)=xdy+ydx+dxdy+xy于是d(xy)=(x+dx)(y+dy)-xy=xdy+ydx+dxdy

dxdy是比xdy+ydx高一阶的无限小量,可以舍去,所以d(xy)=xdy+ydx

用同样的方法也可推导出公式(1)和(3)。

有了微分法的基本运算律,对整指数的幂函数x[n]就有dx[n]=nx[n-1]。又由于求和是求差的逆运算,所以还有∫x[n]dx=1/n+1x[n+1](n≠-1)。这两个公式虽只对n是正整数情况而言,但莱布尼茨却断然宣布它们当n取其它数值时仍然成立。接着,莱布尼茨陆续地推导出指数和对数等超越函数的微分公式。

莱布尼茨的微积分算法是在解决几何和物理问题的过程中建立和完善起来的。他边建立新算法,边用这种算法解决当时物理学与几何学提出的疑难问题,有时还用老方法来解决问题以检验新方法的正确性。除了切线问题、极值问题、曲率问题、求积问题等几何问题,他还曾用新方法证明了光的折射定律。所有这些都显示了新算法比传统方法更加优越。

除了以上成果,莱布尼茨在微积分方面的具体研究还有:(1)复合函数的微分法则;(2)弧微分法则ds=根号下dx[,2]+dy[,2];(3)对数函数和指数函数的微分法则;(4)在积分号下对参变量求微分的方法;(5)曲线绕x轴旋转所成的旋转体体积公式V=π∫y[2]dx;(6)求切线、求最大值最小值以及求拐点的方法;(7)讨论曲率,密切圆和包络理论。([8],pp.394~395)

莱布尼茨微积分研究的背景与当时整个西欧的数学家们是一致的,他的工作基础也是建立在对无穷小的分析上。因此,此后很长一段时间,人们一直把微积分叫无穷小分析。由于莱布尼茨从有限差值开始无穷小的运算,因而他最初曾试图将实无穷小代之以与其成比例的有限数量,即不用dx、dy本身,而用它们的比值dy/dx。他以为把dx、dy看成有限量,问题就解决了。但是,比值dy/dx的获得同样需要说清dx、dy两个量本身的实际情况,而不能有半点含糊。于是,莱布尼茨提出用“充分大”和“充分小”去代替无穷大和无穷小。他解释说:“我们可以不用无穷大、无穷小,而用充分大和充分小的量,使得误差小于给定的误差限度,所以我们和阿基米德方式的不同之处仅仅在于表达方面,而我们的表达更为直接,更适合于发明家的艺术。”([8],p.401)为了更好地说明这一点,他不得不诉诸于感性的直观——物理或几何模型,用现实事物中量的不同层次的相对性解释无穷大和无穷小。所以有人说,莱布尼茨其实是半个理性主义,因为他在理性困厄之时,不得不借助经验。([9],p.130)例如,他认为点同直线不能相比,所以点加到直线上从直线上去掉等于不加也不减。于是,“当我们谈到有不同阶的无穷大与无穷小时,就象对恒星的距离而言,把太阳看成一个点;对地球半径而言,把普通的球看做一个点。这样,恒星的距离对于普通球的半径而言是无穷的无穷大,或无穷倍的无穷大。”[10]而“如果你不承认无限长、无限短线段具有形而上学的严密性,也不承认它们是实在的东西,那么你一定可以把它们当作一种能够缩短论证的思想的东西来使用,正如在普通分析中使用虚根一样,……老实说,我不十分相信除了把无限大、无限小看作理想的东西,看作有根据的假设,还有什么必要去考察他们,”甚至“我不相信确有无限大量和无限小量存在,它们只是虚构,但是对于缩短论证和在一般叙述中是有用的虚构。”[(10)]可见,莱布尼茨主要是把微积分当作了求得正确结果的一种方法,只要按这个方法去做,就能得出正确的结果,而不必关心基本概念怎样。事实上,莱布尼茨对于微积分基础的这种看似冒失的大胆相信态度,反倒可能促进了微积分及其应用的迅速发展。([11],p.359)

三、单子论:理性的僭越

莱布尼茨是古往今来唯一的一位驰骋于数学思想的两个宽广的、对偶的领域——分析与组合或连续和离散领域的数学大师,而且在每个领域都表现了人类的最高能力。([2],p.119)这除了他的已为人所周知的天赋和勤勉以外,就数学内部而言,最合理的解释应该是莱布尼茨数学研究的代数出发点和哲学研究方式。他的“通用语言”工作,今天看来实际上是在创立一种普遍适用的逻辑代数(数学)。而在微积分上,尽管他赞同那种认为无穷小需要一个几何学基础的偏见,但是他达到微积分的途径却是代数的和哲学的,而不是几何的。莱布尼茨的发现起因于寻找一个无限聚敛数列或交错级数1/1-1/3+1/5-1/7+……之和(=π/4)的方法(最后莱布尼茨给出了自己满意的最一般的公式:arctgx=x=x[,3]/3+x[,5]/5+x[,7]/c+……)。在莱布尼茨看来:微分学就是确定这种数列极限的一种方法,所以他才习惯于将无穷小等视作有限量;积分学则是发现数列总和的一种方法,因而他的积分总是今天所说的定积分,而不是牛顿的不定积分。([6],p.219)在莱布尼茨时代,几何学由于笛卡尔和费尔马杰出的工作而倍受数学界欢迎,莱布尼茨抱着“通用数学”的信念,企图运用几何方法解决代数问题,结果却将自己代数的观点导入几何学,从而做出了对“天地间通用的微积分”的发现。([12],p.170)因此,为了深入追索莱布尼茨数学创造的思想渊薮,必须诉诸他的数学观及所接受的研究传统。

莱布尼茨最早的思想活动是在哲学领域,这与其父作为一个道德哲学教授的影响有关。少年莱布尼茨读了不少古典哲学著作,入大学后又首先接受了雅可布·托马修斯教授严格的经院哲学训练。他的毕业论文Deprincipioindividui(《论个体原则》)就是维护经院哲学中唯名论派观点的。尽管莱布尼茨后来到巴黎去认真学习和研究数学,并且首先在数学上有了划时代的贡献,但作为其全部科学研究起点的思维观念与思想传统却是在早年打下的,而且一生基本没有什么大的变化。([13],p.164)这在他的著作《新系统》(1695)中有明确表述。

虽然莱布尼茨生前没有留下一部令自己满意的哲学著作,他在哲学方面的所有主要著作都是为了某个人而写,但他却是第一个创立独立哲学体系的德国人。这体系的“拱心石”通常称为“单子论”,他自己则称之为“前定和谐系统”。作为单子论核心范畴的单子是一种没有部分的只是组成复合物的单纯实体。([14],p.483)莱布尼茨认为单子具有六种规定性:(1)单子是最小的精神实体,它是能动的而又不具有广延(可分)性,因而是世界的实(主)体;(2)单子是上帝创造的,因其不能通过组合而生,只能凭创造而生,凭毁灭而亡;(3)单子是彻底孤立的实体,绝对封闭,各自独立;(4)每个单子各具不同的质,因其没有量的规定性,所以实际上存在着无限多样的单子;(5)单子运动变化的原因在自身,每个单子都是一个“力的中心”;(6)单子的基本属性是知觉,知觉反映自身和他物,因此每一个单子都是宇宙的一面永恒的镜子。从单子的规定出发,莱布尼茨提出了他的本体论原则:第一,连续性原则,认为宇宙是一个从低级到高级的发展过程;第二,前定和谐原则,认为各自独立的单子能同时一致行动的原因来自前定和谐;第三,普遍联系原则,认为整个宇宙中的单子和事物均处于普遍的相互联系之中。以上三个原则,连续性是用来调和事物质的对立的,前定和谐是用来调和“不可分点”(间断)与“连续性”的矛盾的,普遍联系则为了调合有限与无限、个别与一般、部分与整体的矛盾。[15]

上述本体论承诺决定了莱布尼茨的认识论必然是一种主张能动性然而却是唯心的先验论体系。它最终注定莱布尼茨的方法论只能是一种以逻辑为主干的多元方法论,既相信直觉,又看重形式。[15]他不仅承继了笛卡尔、斯宾诺莎一贯的唯理论传统,而且将理性主义原则扩展到在前者的哲学中遭拒斥的许多领域。他从哲学出发去理解科学活动及其本质,数学也仅是其哲学探索的一种智力模型。譬如,他的微分就是“原形先蕴”,通过形而上学的解释假定的。莱布尼茨注重运算的过程和探究结果。他在对待作为微积分逻辑基础的无穷小时,既不怯懦回避,也不轻易神秘化,而是从有限差开始,充满自信地大胆使用无穷小量及其阶,就如他自己所说,仅仅诉诸智力,更注重这种方法的运算性质。[16]他相信,假如他清楚地给出了适当的运算法则,并且把它们应用得恰当,就一定会得到某种合理的、正确的结果。他似乎觉得,根据充足理由(前定和谐)律,他就可以在这方面来实现从可能性到现实性的转变。([6],p.222)为此,他特别强调理论内容的形式化问题。他所建立的“通用数学”及无穷小量运算都是符号和术语体系的极好范例,是真正的现代意义形式化的始祖。

于是,我们不难理解,莱布尼茨为什么在离散与连续或组合与分析两个不同数学领域都表现出了同样的研究方式和最高创造力,因为它们在“理性”上是一致的。接续以“离散”为基础,是“离散”的连续,就如同“认识”不过是单子的活动而已。所以,莱布尼茨一直以代数的、有限的方法研究分析的、无限性的问题。这种研究在观念上从属于按照准确本体论原则建构起来的认识目的,它试图“在理智活动的各个领域内的那些早期传统间的看起来不可调和的矛盾冲突中创造出一个新的综合。”([17],p.4)

当然,莱布尼茨这种近于偏执和幻想式的理性主义传统,也使其数学研究遇到了许多困难。首先是在微积分的基本概念上,作为研究基础的无穷小量始终不明确,要么看作要多小有多小,要么看作理想之物,要么看作是纯粹然而有用的虚构,将科学基础概念的界定最终留给了信仰。其次是他的数学研究在逻辑上是不严谨的,尽管他发展了逻辑学,但其推导是不严格的,有主观臆造成分。特别是其微积分表示法的优越性更强烈地掩蔽了这一学科的逻辑基础,使之在严格论述方面走上了歧途。([12],p.234)至于他的理论推导中有时包含逻辑错误,如曾认为d(uv)=dudv、d(u/v)=du/dv(1675),这已属情理之中的事。他的零乱的工作如果不经Bernoulli兄弟整理加工,就很难有后来的局面。此外,英国科学家牛顿关于微积分严谨而扎实的工作更表明,对数学的发明与创造而言,理性主义方法也并不是唯一有效和可靠的途径。

四、流数术:数学需要两种传统

1705年《教师学报》上发表了一篇评述牛顿《求积术》的论文。文中说到,在那本书里只不过是把莱布尼茨的微分换成了流数。言下之意,两者实质上不外是同一样东西。这在那个极重个人荣誉的时代,无疑于掷出一枚重磅炸弹,立刻激起轩然大波,引发了究竟牛顿和莱布尼茨谁先发明了微积分的长时间争论。为此,英国皇家学会还于1712年在其《通讯》上公布了评判结果:“微分法和流数法是一回事,只是名称和记法不同而已;牛顿先生称之为瞬或流数的那些量,莱布尼茨先生称为微积分,并用牛顿先生不曾用过的记法,记作字母d。”([6],p.235)显然,上述两种看法是截然对立的。由于这种争论只是涉及发明的优先权问题,所以对微积分的进步没有任何益处。但争论也反映出一个问题,即当时的人们(包括牛顿和莱布尼茨本人)除了发觉两种微积分在概念和记法上不同外,并没有看出二者质的联系与差别。关于微积分的基础工作,是两个人去世后很久的事。

众所周知,就牛顿而言,他首先是个物理学家或主要是力学家。这不仅可以从其科学成就看出,而且在其对待微积分的方式上也表露得十分清楚。他称自己的微积分为流数术,即表明主要是为解决流体力学等问题而探讨和使用的新方法。牛顿关于微积分的主要著述有三部:《运用无穷多项方程的分析学》(1669)、《流数法和无穷级数》(1671)、《曲线求积术》(1690)。此外,他的代表作《自然哲学的数学原理》(1687)中也有不少论述。这些成果大致反映了牛顿对微积分的研究和认识的三个主要阶段。第一个阶段是静态的无穷小量方法阶段,他象费尔马等人一样把变量看作是无穷小元素的集合;第二个阶段是变量流动生成法阶段,认为变量是由点、线或面的连续运动产生的,因此把变量叫作流量,把变量的变化率叫流数;第三个阶段是最初比和最终比方法阶段,这种方法是牛顿对第一个阶段无穷小量方法的排除,转向极限观点。牛顿的微积分(流数术)中有三个重要概念:流量、流数和瞬。其中“瞬”是刚刚产生的一种无穷小量。这几个概念的提出,不仅使一切与变化率有关的问题有了统一认识和表述,而且直接揭示了原函数与导函数之间的可逆关系。由此可见,尽管牛顿后来用几何形式表述了微积分基本定理及其它一系列重要命题,但其把物理学作为出发点的做法却是十分明显的。就如他自己所说:“这里,流数术赖以建立的主要原理,及是取自理论力学中的一个非常简单的原理,这就是:数学量,特别是外延量,就可以看成是由连续轨迹运动产生的;而且所有不管什么量,都可以认为是在同样方式之下产生的,至少经过类比和调整后可以如此。因此在产生这些具有固定的、可确定的关系的量时,其相对速度一定有增减,因而也就可以作为一个问题提出如何去求它们。”([18],p.Ⅺ)所以,“甚至最草率的牛顿研究者也明显看到,牛顿是一位彻底的经验主义者。”([19],p.198)

从物理经验出发,牛顿把速度、距离、加速度等作为中心概念,以变量x和y的无穷小增量作为求流数(导数)的手段(当增量越来越小时,流数实际上就是增量比的极限);牛顿更多关心微积分的实际内容和基本方法,一些法则没有充分推广,对普通的讨论较少;他从变化率出发解决面积和体积问题,微分是其基础,通过微分及其逆来解决微积分问题。因此,作为自然科学家的牛顿处理问题十分严谨小心,讲究实在具体。人们认为他迟迟不发表微积分研究成果的原因,可能是因为没有为其基础找到合理的解释所致。德摩根甚至认为牛顿是由“一种病态的害怕别人反对的心理统治了他的一生。”([20],p.67)这和莱布尼茨那种从几何出发,整体求和的、注重推广和演绎的理性化方式大为不同。由此直接导致了他们所发明的微积分的基本差别:(1)莱布尼茨的微积分是由人工符号语言表述的法则与公式系统,他花了很多时间选择富有提示性的符号;牛顿的微积分主要是用自然语言进行叙述的数学体系,很少涉及符号,他基本认为符号无关紧要。(2)莱布尼茨的研究是从“整体”到“部分”,他首先讨论“和”即积分,用和来得到面积、体积或重心,其出发点是反微分;牛顿的研究是由“部分”到“整体”其基础是微分,他从变化率出发来解决面积和体积问题。(3)莱布尼茨的微分是高阶的,其积分是定积分;牛顿的微分是一阶的,其积分是不定积分。

但是,尽管在出发点、研究方式和表述形式上有巨大的差别,两人仍然创立了同一个微积分,并且彼此互补。经过他们的工作,微积分再不象希腊时期所有数学都是几何学的分支那样,被束缚在几何框架内,而是成为一个崭新的既不同于几何也不同于代数的独立的分析数学。并且,二人都不象他们的先驱那样仅限于解决某些实际问题,而是把微积分建立在一般问题和运算基础上,使之成为具有普遍性的通用方法。他们不再把微分问题和积分问题看作互不相干,而是找到了彼此的互逆关系,建立起微积分基本定理,使面积、体积及以往作为求和来处理的各种问题都归并为反微分,为求积运算开辟了一条新的便捷途径。这样,经过二人不懈的努力,微积分作为“天地间通用”的学科终于获得了资格证书。

在科学史上,几个人同时创造一项科学成就的事例并不少见。但是,牛顿和莱布尼茨各自从不同的研究传统出发发明了微积分,对数学的进步有着特别的意义。原因在于,微积分处于古代数学向近代数学转折的关节点上。经过微积分,近代以来的数学观及其方法论已大为改观,所以许多讨论近代数学的书往往称“微积分以来的数学”。([21],p.51)牛顿的工作无疑再一次表明了数学与经验的不可分割性,而莱布尼茨则以自己的探索证明了理性要素在近代数学发展中的增长。300年后的今天,数学哲学关于数学真理的实在性与非实在性问题的讨论进一步印证了两种数学传统对现代数学的发展都是必不可少的。

同样,莱布尼茨关于通用数学语言的构想,由于过份浪漫和理性化,也只是在200年后才找到自己数学的“经验”基础,从而经过皮亚诺、罗素等人的工作部分地成为现实。其思想为后来的逻辑经验主义者特别是卡尔纳普等人所继承和推广,开启了人工语言学的先河。这种状况与其说是历史造成的,毋宁说是数学和科学自身的特性使然。

数学的发展再一次证明了经验主义传统和理性主义传统同为科学进步的思想源泉,它们之间的一定的张力状态是数学能够顺利发展的思维基础,而牛顿治学的严肃审慎与莱布尼茨运思的浪漫机警同为科学工作者的必备素养。

参考文献

[1]《莱布尼茨自然哲学著作选》,祖庆年译,中国社会科学出版社,1985年4月第1版。

[2]E.T.Bell.MANOFMATHEMATICS,DoverPublicationsNewYork1963.

[3]G.T.Kneebone,MATHMATICALLOGICANDFOUNDATIONSOFMATHEMATICS.

[4]马玉珂主编:《西方逻辑史》,中国人民大学出版社,1985年6月第1版。

[5]莫绍揆:《数理逻辑初步》,上海人民出版社,1980年8月第1版。

[6]卡尔·B.波耶:《微积分概念史》,上海人民出版社,1977年9月第1版。

[7]周述歧:《微积分思想简史》,中国人民大学出版社,1987年8月第1版。

[8]朱学志等:《数学的历史、思想和方法》,哈尔滨出版社,1990年12月第1版。

[9]陈宣良:《理性主义》,四川人民出版社,1988年5月第1版。

[10]J.M.Child,TheEarlyMathematicalManuscriptsofLeibniz,OpenCourt,1920.

[11]C.H.爱德华:《微积分发展史》,北京出版社,1987年12月第1版。

[12]E.克拉默:《大学数学》(原名“TheNatureandProgressofModernMathematics”—现代数学的本质与成长》,复旦大学出版社,1987年6月第1版。

[13]黑格尔:《哲学史讲演录》第四卷,商务印书馆,1978年12月第1版。

[14]《十六——十八世纪西欧各国哲学》,商务印书馆,1975年版。

[15]刘啸霆:“莱布尼茨哲学体系论”,河南师范大学学报,1995年第2期。

[16]刘啸霆:“莱布尼兹:微积分学中的理性倾向”,自然辩证法研究,1991年第12期。

[17]G.MacDonaldRoss,LEIBNIZ,UxfordOniversityPress1984.

[18]IsaacNenton,THEMETHODOFFLUXIONSANDINFINITESERIESWITHITSAPPLICATIONTOTHEGEOMETRYOFCURVELINES,TranslatedbyF.Colson.1736.Pref.

[19]E.A.伯特:《近代物理科学的形而上学基础》,四川教育出版社,1994年8月第1版。

莱布尼茨范文篇5

莱布尼茨对数学问题的最早探索和最初贡献是试图沿着笛卡尔和霍布斯的思路建构所谓的“通用语言”。这种语言是一种用来代替自然语言的人工语言,它通过字母和符号进行逻辑分析与综合,把一般逻辑推理的规则改变为演算规则,以便更精确更敏捷地进行推理。([1],p.8)或者说,“通用语言”是一套表达思想和事物的符号系统,利用这些符号可以进行演算并推出各种知识。在《论组合术》中,二十岁的莱布尼茨曾立志要创设“一个一般的方法,在这个方法中所有推理的真实性都要简化为一种计算。同时,这会成为一种通用语言或文字,但与那些迄今为止设想出来的全然不同;因为它里面的符号甚至词汇要指导推理;错误,除去那些事实上的错误,只会是计算上的错误。形成或者发明这种语言或者记号会是非常困难的,但是可以不借助任何词典就很容易懂得它。”([2],p.123)在1679年9月8日给惠更斯的信中他又写道,有一个“完全不同于代数的新符号语言,它对于精确而自然地在脑子里再现(不用图形)依赖于想象的一切有很大的好处。……它的主要效用在于能够通过记号〔符号〕的运算完成结论和推理,这些记号不经过非常精细的推敲或使用大量的点和线会把它们混淆起来,因而不得不作出无穷多个无用的试验;另一方面,这个方法会确切而简单地导向〔所需要的〕结果。我相信力学差不多可以象几何学一样用这种方法去处理。”([3],p.151~152)

综合莱布尼茨零零碎碎的设想,他的宏伟规划大体旨在创造两种工具:其一是通用语言,其二是推理演算(calaulusratiocinator)。前者的主要使命是消除现存语言的局限性和不规则性,使新语言变成世界上人人会用的具有简明符号、合理规则的语言,规定符号的演变规则与运算规则,使逻辑演变依照一条明确的道路进行下去,进而解决所有可用语言表达的问题。

为此,莱布尼茨做了两方面的努力:一是寻找能够代表所有概念并可认作最根本的不可分析的符号;二是给出表述诸如断定、合取、析取、否定、全称、特殊、条件联结等形式概念的设计。关于第一方面,莱布尼茨首次设想用数目代表原初概念,而逻辑演算则用如同算术中的乘或除来代替。他认为用这种数字的不同方式排列组合,进行各种运算,就可产生无穷多的复合概念。这一思想后来改进为以素数代表基本概念,而复合词项即可借分解相应的数字成为它们的素数因子来加以分析。以“人是理智动物”为例,用素数“3”代表“动物”、“5”代表“理智”,则“人”即以“15=3.5”代表。为了更好地构设“通用语言”,莱布尼茨又以设想的“人类概念字母表”为语言词汇基础创制了一些逻辑符号,如“∪”(并)、“∩”(交)等,一直沿用下来。

关于第二方面,莱布尼茨的工作大致可以1679、1686、1690三个年代为标志划分为三个阶段。([4],pp.271~273)

第一阶段,莱布尼茨改进从数字代替概念以其演算,代之以对普通命题经验分析为基础的代数逻辑。他以全称肯定命题“a是b”的形式开始,提出五条基本演算规则:(1)ab是ba(交换律);(2)a是aa(重言律);(3)a是a(同一原则);(4)ab是a或ab是b(化简原则);(5)如a是b且b是c,则a是c(传递原则)。以此为据,他证明了同一和包含两个逻辑系词之间的重要关系,即,如a是b且b是a,则a与b是同一的。进而,他又提出四个定理:(1)如a是b且a是c,则a是bc;(2)如a是bc,则a是b且a是c;(3)如a是b,则ac是bc;(4)如a是b且c是d,则ac是bd。由此可见,莱布尼茨在第一阶段的逻辑演算已相当完善和科学化,为逻辑的系统化打下了坚实的基础。

第二阶段,莱布尼茨用等式符号作系词符号,借公式A=BY表述全称肯定命题(Y为一未确定的系数,用以修饰B而使B成为A的一部分),同时提出双重否定之为肯定,即“非非A=A”,并由此演释出一系列定理。为了进一步发展演算,莱布尼茨还试图通过与属性组合的关系,用代数方法来描述四个直言命题,甚至对四个直言命题的表示法提出了九个方案。

第三个阶段,莱布尼茨最有价值的工作是罗列了十四个基本命题:(1)A=A+A“+”表示逻辑相乘,下同);(2)如A=B且B=C,则A=C;(3)如A=B且B≠C,则A≠C;(4)如A=B,且B<C,则A<C;(5)如A=B且C<B,则C<A;(6)如A=B且C=D;则A+C=B+D;(7)如A=B,则A+C=B+C;(8)A<B,则A+C<B+C;(9)如A+B=A,则B<A;(10)如B<A,则A+B=A;(11)如A<B且B<C,则A<C;(12)如A<B且B<A,则A=B;(13)如A<C且B<C,则A+B<C;(14)如A<B且C<D,则A+C<B+D。为适应逻辑相除,他又引进逻辑相减运算,定义为:如B包含在A中且C包括除去内容B之外的整个A的内容,则A-B=C。如前例“人=动物+理智”即可推为“人-理智=动物”。

上述符号构设显示,莱布尼茨的中心思想是致力于以符号表示普遍概念的“通用语言”和以代换法进行数学演算他自称的“通用数学”。就今天的眼光看来,他实际上已经发现了符号逻辑的若干重要原则和定理,触及到后由哈米尔顿所阐发的谓项量化问题,认识到在直言与假言命题之间的基本类比(即原因包含它的结果正如主项包含它的谓项),并且把握了逻辑相加的问题,甚至讨论过非三段论的关系推理。因此,莱布尼茨实际上已探察到后来为布尔和施罗德所发展的逻辑代数的整个基础。数理逻辑学家有没有看过莱氏的著作,知道不知道莱氏的计划,但所作的研究大体上都是沿着莱氏所期望的方向进行的。”([5],p.10)所以,整个数学界都一致公认他是数理逻辑的首创者和真正奠基人。

莱布尼茨的符号数学研究在生前没有公布,结果使数理逻辑的发展延迟了一个半世纪。([4],p.119)可他关于微积分的成果却由于较早发表而惠泽数学界并引发一场争论持久的历史公案。

二、微积分:“理性的代数学”

1684年莱布尼茨在莱比锡的《教师学报》(ActaEruditorum)上首次发表了题为《关于求极大、极小和切线的新方法,也能用于分数和无理量的情形及非寻常类型的有关计算》(简称《新方法》)的文章。这是他关于微分计算要点的代表作,全文只有六页。1686年莱布尼茨又在《教师学报》上发表了题为《论一种深邃的几何学和不可分元分析以及无穷》一文。这是他最早发表的以讨论积分学为主的文章,实际可看作《新方法》的续篇。

莱布尼茨把最初的微积分称为求差的方法与求和的方法。他的基本思想是把一条曲线下的面积分割成许多小矩形与曲线之间微小直角三角形的两边分别是曲线上相邻两点的纵坐标和横坐标之差。当这两无限减小时,曲线上相邻两点便无限接近。联结这样两点就得出曲线在该点的切线。这就是求差的方法。求差的反面就是求和。当曲线下面的矩形被分割得无限小时,矩形上面的那个三角形可以忽略不计,此时就用这些矩形之和代表曲线下的面积。

早在1666年,莱布尼茨就发现帕斯卡算术三角形与调合三角形之间存在着有趣的关系。([6],pp.216~217)在帕斯卡三角形中,任意一个元素既等于其上一行左边各项之和,又等于其下一行相邻两项之差;而在调合三角形中,任一元素均是其下一行右边各项之和,也是紧靠其上两项之差。

算术三角形调合三角形

莱布尼茨在笔记中写出了各阶的差和微分:

自然数0,1,2,3,4,5,…y

一阶差1,1,1,1,1,1,…dy

二阶差0,0,0,0,0,…

自然数平方0,1,4,9,16,…y

一阶差1,3,5,7,…dy

二阶差1,2,2,2,…d(dy)

三阶差1,0,0,…

他把这些与微积分联系起来:一阶差相当于dy,它们的和等于y,如1+3+5+7=16。莱布尼茨认为,这种和与差之间的互逆性,与依赖于坐标之差的切线问题及依赖于坐标之和的求积问题的互逆性是一样的。差别仅在于帕斯卡算术三角形与调合三角形中的两个元素之差为有限值,而曲线的纵坐标之差是无穷小量。这说明他在考虑无穷小量的和差运算时,已将其与他早些时候关于有限量和差可逆性关系的研究联系起来。([10],p.392)由此也可看出莱布尼茨研究微积分的代数出发点,而不是几何出发点。(如[7],p.101)

为解决求积问题,莱布尼茨把流动纵坐标是y的平面曲线下的曲边梯形的面积用符号y表示。这样,曲线的纵坐标就与面积变量明显地联系起来。过了几年,他便用“sydx”表示面积,“∫”是“Sum(和)”的第一个字母“S”的拉长。

在求量的差即微分方面,莱布尼茨先是引进了符号“x/d”表示x的微分,意思是求“差”要关系到量的同次的降低,并且他还认为,如果同时出现不同阶的微分,则只留下最低阶的,而把所有高阶的微分舍去。至于这样做的理由,莱布尼茨虽提供了多种解释,但都不充分,其实毋宁说他是当作“公理”来使用的。后来,他将“x/d”改为“dx”,一直沿用至今。

从上述思路出发,莱布尼茨给出了微积分的基本公式:

d(x±y)=dx±dy(1)

d(xy)=xdy+ydx(2)

d(x/y)=ydx-xdy/y[2](3)

对于(2),他的推导是,令x、y分别成为x+dx、y+dy,则

(x+dx)(y+dy)=xdy+ydx+dxdy+xy于是d(xy)=(x+dx)(y+dy)-xy=xdy+ydx+dxdy

dxdy是比xdy+ydx高一阶的无限小量,可以舍去,所以d(xy)=xdy+ydx

用同样的方法也可推导出公式(1)和(3)。

有了微分法的基本运算律,对整指数的幂函数x[n]就有dx[n]=nx[n-1]。又由于求和是求差的逆运算,所以还有∫x[n]dx=1/n+1x[n+1](n≠-1)。这两个公式虽只对n是正整数情况而言,但莱布尼茨却断然宣布它们当n取其它数值时仍然成立。接着,莱布尼茨陆续地推导出指数和对数等超越函数的微分公式。

莱布尼茨的微积分算法是在解决几何和物理问题的过程中建立和完善起来的。他边建立新算法,边用这种算法解决当时物理学与几何学提出的疑难问题,有时还用老方法来解决问题以检验新方法的正确性。除了切线问题、极值问题、曲率问题、求积问题等几何问题,他还曾用新方法证明了光的折射定律。所有这些都显示了新算法比传统方法更加优越。

除了以上成果,莱布尼茨在微积分方面的具体研究还有:(1)复合函数的微分法则;(2)弧微分法则ds=根号下dx[,2]+dy[,2];(3)对数函数和指数函数的微分法则;(4)在积分号下对参变量求微分的方法;(5)曲线绕x轴旋转所成的旋转体体积公式V=π∫y[2]dx;(6)求切线、求最大值最小值以及求拐点的方法;(7)讨论曲率,密切圆和包络理论。([8],pp.394~395)

莱布尼茨微积分研究的背景与当时整个西欧的数学家们是一致的,他的工作基础也是建立在对无穷小的分析上。因此,此后很长一段时间,人们一直把微积分叫无穷小分析。由于莱布尼茨从有限差值开始无穷小的运算,因而他最初曾试图将实无穷小代之以与其成比例的有限数量,即不用dx、dy本身,而用它们的比值dy/dx。他以为把dx、dy看成有限量,问题就解决了。但是,比值dy/dx的获得同样需要说清dx、dy两个量本身的实际情况,而不能有半点含糊。于是,莱布尼茨提出用“充分大”和“充分小”去代替无穷大和无穷小。他解释说:“我们可以不用无穷大、无穷小,而用充分大和充分小的量,使得误差小于给定的误差限度,所以我们和阿基米德方式的不同之处仅仅在于表达方面,而我们的表达更为直接,更适合于发明家的艺术。”([8],p.401)为了更好地说明这一点,他不得不诉诸于感性的直观——物理或几何模型,用现实事物中量的不同层次的相对性解释无穷大和无穷小。所以有人说,莱布尼茨其实是半个理性主义,因为他在理性困厄之时,不得不借助经验。([9],p.130)例如,他认为点同直线不能相比,所以点加到直线上从直线上去掉等于不加也不减。于是,“当我们谈到有不同阶的无穷大与无穷小时,就象对恒星的距离而言,把太阳看成一个点;对地球半径而言,把普通的球看做一个点。这样,恒星的距离对于普通球的半径而言是无穷的无穷大,或无穷倍的无穷大。”[10]而“如果你不承认无限长、无限短线段具有形而上学的严密性,也不承认它们是实在的东西,那么你一定可以把它们当作一种能够缩短论证的思想的东西来使用,正如在普通分析中使用虚根一样,……老实说,我不十分相信除了把无限大、无限小看作理想的东西,看作有根据的假设,还有什么必要去考察他们,”甚至“我不相信确有无限大量和无限小量存在,它们只是虚构,但是对于缩短论证和在一般叙述中是有用的虚构。”[(10)]可见,莱布尼茨主要是把微积分当作了求得正确结果的一种方法,只要按这个方法去做,就能得出正确的结果,而不必关心基本概念怎样。事实上,莱布尼茨对于微积分基础的这种看似冒失的大胆相信态度,反倒可能促进了微积分及其应用的迅速发展。([11],p.359)

三、单子论:理性的僭越

莱布尼茨是古往今来唯一的一位驰骋于数学思想的两个宽广的、对偶的领域——分析与组合或连续和离散领域的数学大师,而且在每个领域都表现了人类的最高能力。([2],p.119)这除了他的已为人所周知的天赋和勤勉以外,就数学内部而言,最合理的解释应该是莱布尼茨数学研究的代数出发点和哲学研究方式。他的“通用语言”工作,今天看来实际上是在创立一种普遍适用的逻辑代数(数学)。而在微积分上,尽管他赞同那种认为无穷小需要一个几何学基础的偏见,但是他达到微积分的途径却是代数的和哲学的,而不是几何的。莱布尼茨的发现起因于寻找一个无限聚敛数列或交错级数1/1-1/3+1/5-1/7+……之和(=π/4)的方法(最后莱布尼茨给出了自己满意的最一般的公式:arctgx=x=x[,3]/3+x[,5]/5+x[,7]/c+……)。在莱布尼茨看来:微分学就是确定这种数列极限的一种方法,所以他才习惯于将无穷小等视作有限量;积分学则是发现数列总和的一种方法,因而他的积分总是今天所说的定积分,而不是牛顿的不定积分。([6],p.219)在莱布尼茨时代,几何学由于笛卡尔和费尔马杰出的工作而倍受数学界欢迎,莱布尼茨抱着“通用数学”的信念,企图运用几何方法解决代数问题,结果却将自己代数的观点导入几何学,从而做出了对“天地间通用的微积分”的发现。([12],p.170)因此,为了深入追索莱布尼茨数学创造的思想渊薮,必须诉诸他的数学观及所接受的研究传统。

莱布尼茨最早的思想活动是在哲学领域,这与其父作为一个道德哲学教授的影响有关。少年莱布尼茨读了不少古典哲学著作,入大学后又首先接受了雅可布·托马修斯教授严格的经院哲学训练。他的毕业论文Deprincipioindividui(《论个体原则》)就是维护经院哲学中唯名论派观点的。尽管莱布尼茨后来到巴黎去认真学习和研究数学,并且首先在数学上有了划时代的贡献,但作为其全部科学研究起点的思维观念与思想传统却是在早年打下的,而且一生基本没有什么大的变化。([13],p.164)这在他的著作《新系统》(1695)中有明确表述。

虽然莱布尼茨生前没有留下一部令自己满意的哲学著作,他在哲学方面的所有主要著作都是为了某个人而写,但他却是第一个创立独立哲学体系的德国人。这体系的“拱心石”通常称为“单子论”,他自己则称之为“前定和谐系统”。作为单子论核心范畴的单子是一种没有部分的只是组成复合物的单纯实体。([14],p.483)莱布尼茨认为单子具有六种规定性:(1)单子是最小的精神实体,它是能动的而又不具有广延(可分)性,因而是世界的实(主)体;(2)单子是上帝创造的,因其不能通过组合而生,只能凭创造而生,凭毁灭而亡;(3)单子是彻底孤立的实体,绝对封闭,各自独立;(4)每个单子各具不同的质,因其没有量的规定性,所以实际上存在着无限多样的单子;(5)单子运动变化的原因在自身,每个单子都是一个“力的中心”;(6)单子的基本属性是知觉,知觉反映自身和他物,因此每一个单子都是宇宙的一面永恒的镜子。从单子的规定出发,莱布尼茨提出了他的本体论原则:第一,连续性原则,认为宇宙是一个从低级到高级的发展过程;第二,前定和谐原则,认为各自独立的单子能同时一致行动的原因来自前定和谐;第三,普遍联系原则,认为整个宇宙中的单子和事物均处于普遍的相互联系之中。以上三个原则,连续性是用来调和事物质的对立的,前定和谐是用来调和“不可分点”(间断)与“连续性”的矛盾的,普遍联系则为了调合有限与无限、个别与一般、部分与整体的矛盾。[15]

上述本体论承诺决定了莱布尼茨的认识论必然是一种主张能动性然而却是唯心的先验论体系。它最终注定莱布尼茨的方法论只能是一种以逻辑为主干的多元方法论,既相信直觉,又看重形式。[15]他不仅承继了笛卡尔、斯宾诺莎一贯的唯理论传统,而且将理性主义原则扩展到在前者的哲学中遭拒斥的许多领域。他从哲学出发去理解科学活动及其本质,数学也仅是其哲学探索的一种智力模型。譬如,他的微分就是“原形先蕴”,通过形而上学的解释假定的。莱布尼茨注重运算的过程和探究结果。他在对待作为微积分逻辑基础的无穷小时,既不怯懦回避,也不轻易神秘化,而是从有限差开始,充满自信地大胆使用无穷小量及其阶,就如他自己所说,仅仅诉诸智力,更注重这种方法的运算性质。[16]他相信,假如他清楚地给出了适当的运算法则,并且把它们应用得恰当,就一定会得到某种合理的、正确的结果。他似乎觉得,根据充足理由(前定和谐)律,他就可以在这方面来实现从可能性到现实性的转变。([6],p.222)为此,他特别强调理论内容的形式化问题。他所建立的“通用数学”及无穷小量运算都是符号和术语体系的极好范例,是真正的现代意义形式化的始祖。

于是,我们不难理解,莱布尼茨为什么在离散与连续或组合与分析两个不同数学领域都表现出了同样的研究方式和最高创造力,因为它们在“理性”上是一致的。接续以“离散”为基础,是“离散”的连续,就如同“认识”不过是单子的活动而已。所以,莱布尼茨一直以代数的、有限的方法研究分析的、无限性的问题。这种研究在观念上从属于按照准确本体论原则建构起来的认识目的,它试图“在理智活动的各个领域内的那些早期传统间的看起来不可调和的矛盾冲突中创造出一个新的综合。”([17],p.4)

当然,莱布尼茨这种近于偏执和幻想式的理性主义传统,也使其数学研究遇到了许多困难。首先是在微积分的基本概念上,作为研究基础的无穷小量始终不明确,要么看作要多小有多小,要么看作理想之物,要么看作是纯粹然而有用的虚构,将科学基础概念的界定最终留给了信仰。其次是他的数学研究在逻辑上是不严谨的,尽管他发展了逻辑学,但其推导是不严格的,有主观臆造成分。特别是其微积分表示法的优越性更强烈地掩蔽了这一学科的逻辑基础,使之在严格论述方面走上了歧途。([12],p.234)至于他的理论推导中有时包含逻辑错误,如曾认为d(uv)=dudv、d(u/v)=du/dv(1675),这已属情理之中的事。他的零乱的工作如果不经Bernoulli兄弟整理加工,就很难有后来的局面。此外,英国科学家牛顿关于微积分严谨而扎实的工作更表明,对数学的发明与创造而言,理性主义方法也并不是唯一有效和可靠的途径。

四、流数术:数学需要两种传统

1705年《教师学报》上发表了一篇评述牛顿《求积术》的论文。文中说到,在那本书里只不过是把莱布尼茨的微分换成了流数。言下之意,两者实质上不外是同一样东西。这在那个极重个人荣誉的时代,无疑于掷出一枚重磅炸弹,立刻激起轩然大波,引发了究竟牛顿和莱布尼茨谁先发明了微积分的长时间争论。为此,英国皇家学会还于1712年在其《通讯》上公布了评判结果:“微分法和流数法是一回事,只是名称和记法不同而已;牛顿先生称之为瞬或流数的那些量,莱布尼茨先生称为微积分,并用牛顿先生不曾用过的记法,记作字母d。”([6],p.235)显然,上述两种看法是截然对立的。由于这种争论只是涉及发明的优先权问题,所以对微积分的进步没有任何益处。但争论也反映出一个问题,即当时的人们(包括牛顿和莱布尼茨本人)除了发觉两种微积分在概念和记法上不同外,并没有看出二者质的联系与差别。关于微积分的基础工作,是两个人去世后很久的事。

众所周知,就牛顿而言,他首先是个物理学家或主要是力学家。这不仅可以从其科学成就看出,而且在其对待微积分的方式上也表露得十分清楚。他称自己的微积分为流数术,即表明主要是为解决流体力学等问题而探讨和使用的新方法。牛顿关于微积分的主要著述有三部:《运用无穷多项方程的分析学》(1669)、《流数法和无穷级数》(1671)、《曲线求积术》(1690)。此外,他的代表作《自然哲学的数学原理》(1687)中也有不少论述。这些成果大致反映了牛顿对微积分的研究和认识的三个主要阶段。第一个阶段是静态的无穷小量方法阶段,他象费尔马等人一样把变量看作是无穷小元素的集合;第二个阶段是变量流动生成法阶段,认为变量是由点、线或面的连续运动产生的,因此把变量叫作流量,把变量的变化率叫流数;第三个阶段是最初比和最终比方法阶段,这种方法是牛顿对第一个阶段无穷小量方法的排除,转向极限观点。牛顿的微积分(流数术)中有三个重要概念:流量、流数和瞬。其中“瞬”是刚刚产生的一种无穷小量。这几个概念的提出,不仅使一切与变化率有关的问题有了统一认识和表述,而且直接揭示了原函数与导函数之间的可逆关系。由此可见,尽管牛顿后来用几何形式表述了微积分基本定理及其它一系列重要命题,但其把物理学作为出发点的做法却是十分明显的。就如他自己所说:“这里,流数术赖以建立的主要原理,及是取自理论力学中的一个非常简单的原理,这就是:数学量,特别是外延量,就可以看成是由连续轨迹运动产生的;而且所有不管什么量,都可以认为是在同样方式之下产生的,至少经过类比和调整后可以如此。因此在产生这些具有固定的、可确定的关系的量时,其相对速度一定有增减,因而也就可以作为一个问题提出如何去求它们。”([18],p.Ⅺ)所以,“甚至最草率的牛顿研究者也明显看到,牛顿是一位彻底的经验主义者。”([19],p.198)

从物理经验出发,牛顿把速度、距离、加速度等作为中心概念,以变量x和y的无穷小增量作为求流数(导数)的手段(当增量越来越小时,流数实际上就是增量比的极限);牛顿更多关心微积分的实际内容和基本方法,一些法则没有充分推广,对普通的讨论较少;他从变化率出发解决面积和体积问题,微分是其基础,通过微分及其逆来解决微积分问题。因此,作为自然科学家的牛顿处理问题十分严谨小心,讲究实在具体。人们认为他迟迟不发表微积分研究成果的原因,可能是因为没有为其基础找到合理的解释所致。德摩根甚至认为牛顿是由“一种病态的害怕别人反对的心理统治了他的一生。”([20],p.67)这和莱布尼茨那种从几何出发,整体求和的、注重推广和演绎的理性化方式大为不同。由此直接导致了他们所发明的微积分的基本差别:(1)莱布尼茨的微积分是由人工符号语言表述的法则与公式系统,他花了很多时间选择富有提示性的符号;牛顿的微积分主要是用自然语言进行叙述的数学体系,很少涉及符号,他基本认为符号无关紧要。(2)莱布尼茨的研究是从“整体”到“部分”,他首先讨论“和”即积分,用和来得到面积、体积或重心,其出发点是反微分;牛顿的研究是由“部分”到“整体”其基础是微分,他从变化率出发来解决面积和体积问题。(3)莱布尼茨的微分是高阶的,其积分是定积分;牛顿的微分是一阶的,其积分是不定积分。

但是,尽管在出发点、研究方式和表述形式上有巨大的差别,两人仍然创立了同一个微积分,并且彼此互补。经过他们的工作,微积分再不象希腊时期所有数学都是几何学的分支那样,被束缚在几何框架内,而是成为一个崭新的既不同于几何也不同于代数的独立的分析数学。并且,二人都不象他们的先驱那样仅限于解决某些实际问题,而是把微积分建立在一般问题和运算基础上,使之成为具有普遍性的通用方法。他们不再把微分问题和积分问题看作互不相干,而是找到了彼此的互逆关系,建立起微积分基本定理,使面积、体积及以往作为求和来处理的各种问题都归并为反微分,为求积运算开辟了一条新的便捷途径。这样,经过二人不懈的努力,微积分作为“天地间通用”的学科终于获得了资格证书。

在科学史上,几个人同时创造一项科学成就的事例并不少见。但是,牛顿和莱布尼茨各自从不同的研究传统出发发明了微积分,对数学的进步有着特别的意义。原因在于,微积分处于古代数学向近代数学转折的关节点上。经过微积分,近代以来的数学观及其方法论已大为改观,所以许多讨论近代数学的书往往称“微积分以来的数学”。([21],p.51)牛顿的工作无疑再一次表明了数学与经验的不可分割性,而莱布尼茨则以自己的探索证明了理性要素在近代数学发展中的增长。300年后的今天,数学哲学关于数学真理的实在性与非实在性问题的讨论进一步印证了两种数学传统对现代数学的发展都是必不可少的。

同样,莱布尼茨关于通用数学语言的构想,由于过份浪漫和理性化,也只是在200年后才找到自己数学的“经验”基础,从而经过皮亚诺、罗素等人的工作部分地成为现实。其思想为后来的逻辑经验主义者特别是卡尔纳普等人所继承和推广,开启了人工语言学的先河。这种状况与其说是历史造成的,毋宁说是数学和科学自身的特性使然。

数学的发展再一次证明了经验主义传统和理性主义传统同为科学进步的思想源泉,它们之间的一定的张力状态是数学能够顺利发展的思维基础,而牛顿治学的严肃审慎与莱布尼茨运思的浪漫机警同为科学工作者的必备素养。

参考文献

[1]《莱布尼茨自然哲学著作选》,祖庆年译,中国社会科学出版社,1985年4月第1版。

[2]E.T.Bell.MANOFMATHEMATICS,DoverPublicationsNewYork1963.

[3]G.T.Kneebone,MATHMATICALLOGICANDFOUNDATIONSOFMATHEMATICS.

[4]马玉珂主编:《西方逻辑史》,中国人民大学出版社,1985年6月第1版。

[5]莫绍揆:《数理逻辑初步》,上海人民出版社,1980年8月第1版。

[6]卡尔·B.波耶:《微积分概念史》,上海人民出版社,1977年9月第1版。

[7]周述歧:《微积分思想简史》,中国人民大学出版社,1987年8月第1版。

[8]朱学志等:《数学的历史、思想和方法》,哈尔滨出版社,1990年12月第1版。

[9]陈宣良:《理性主义》,四川人民出版社,1988年5月第1版。

[10]J.M.Child,TheEarlyMathematicalManuscriptsofLeibniz,OpenCourt,1920.

[11]C.H.爱德华:《微积分发展史》,北京出版社,1987年12月第1版。

[12]E.克拉默:《大学数学》(原名“TheNatureandProgressofModernMathematics”—现代数学的本质与成长》,复旦大学出版社,1987年6月第1版。

[13]黑格尔:《哲学史讲演录》第四卷,商务印书馆,1978年12月第1版。

[14]《十六——十八世纪西欧各国哲学》,商务印书馆,1975年版。

[15]刘啸霆:“莱布尼茨哲学体系论”,河南师范大学学报,1995年第2期。

[16]刘啸霆:“莱布尼兹:微积分学中的理性倾向”,自然辩证法研究,1991年第12期。

[17]G.MacDonaldRoss,LEIBNIZ,UxfordOniversityPress1984.

[18]IsaacNenton,THEMETHODOFFLUXIONSANDINFINITESERIESWITHITSAPPLICATIONTOTHEGEOMETRYOFCURVELINES,TranslatedbyF.Colson.1736.Pref.

[19]E.A.伯特:《近代物理科学的形而上学基础》,四川教育出版社,1994年8月第1版。

莱布尼茨范文篇6

关键词:莱布尼茨;真空;时空观

莱布尼茨生活于被科学史家誉为“天才的世纪”的17世纪,与开普勒、伽利略、笛卡尔、帕斯卡、波义耳、牛顿等科学巨匠处于科学史上的同一个时代。莱布尼茨不仅是一位伟大的数学家和哲学家,而且是近代一位(也许是唯一一位)可比肩亚里士多德的百科全书式学者。他在自然科学以外的其它人类理智领域,比他同时代的其他科学巨匠取得了更多的成就。他被誉为德国的科学、哲学之父,还在神学、技术发明、法学、历史学、语言学、政治学等诸多领域都有着堪称同时代一流的建树。西方的一位学者曾这样评价:“莱布尼茨可能是近代世界最全面的天才,……触及了现代知识的几乎每一个分支。他是最后一位希望掌握现代知识的所有领域,并且是百科全书式人物的人。”也许正因为莱布尼茨所涉及的研究领域过于宽泛、庞杂,他的许多研究成果的重要价值在相当长时间内未得到重视,譬如他对真空问题的研究。尽管由于当时的客观条件所限,莱布尼茨在真空研究中更多的依靠科学的猜测和哲学的思辨,但其结论竟与200多年后的科学大师爱因斯坦、狄拉克等人对真空研究的成果暗合,确是令人不得不感叹其思想之天才。

1“真空问题”的历史脉络

对真空问题的研究及争论可追溯到古希腊。德谟克利特等原子论者认为,世界是由原子和虚空构成的,提出了真空这一命题;而亚里士多德则认为,宇宙中充满了“以太”,因而真正的虚空是不存在的,他的名言是“大自然厌恶真空”。这可以说是人类对真空问题探讨和争论的源头,并一直延续至今。

不过,在这里有一点必须指出,真空的概念是有歧义的,有所谓“物理真空”和“哲学真空(或称形而上学真空)”之分,而“物理真空”又有“经典真空”与“量子真空”之别。历史上对真空概念不同时期也各有侧重,古希腊的真空概念更多是哲学意义上的,偏向于“虚空”、“虚无”的含义;17世纪的真空概念是“物理真空”和“哲学真空”两者兼而有之;而现代的真空概念更多地是指“物理真空”。当然,“物理真空”和“哲学真空”的概念区分并不是完全清晰的,也无法成为在该领域严格区分科学问题和形而上学问题的依据,真空问题依然是(也许会永远是)科学、形而上学纠缠在一起的一个前沿领域。

17世纪的真空研究与笛卡尔有很大的关系。实际上,人们对自然的看法总是首先基于自身的日常经验。对于物质与空间的关系也不例外。按照常规思维,人们很自然地把空间想像为一个巨大、不动的空房子,物质就是被一件件搬到这座房子里的东西,因而空间必然是先于物质存在的。这样,空无一物的真空就是可能的。这就是所谓的绝对空间的观念。于是有人就想像地球到太阳间的地带是真空。但笛卡尔不这么认为。在他看来,空间与物质不可分,空间只存在于已有某些物质的地方,是物质的存在才使空间得以存在;空无一物的真空是不存在的。他说:“实际上,我们无法想像一个空无一物的容器,一如无法想像一个没有谷的山:这将意味着无需广延就能设想容器的内容,或者无需实体就能设想广延:确实,没有什么东西能够不具有广延。”至于星际间的地带,笛卡尔认为不是真空,而是充满了物质的,这种物质就是以太。笛卡尔从以太演绎出了他的宇宙学说。

笛卡尔否认真空存在的学说受到了托里拆利、帕斯卡等人的强有力挑战。他们两人分别做的“托里拆利实验”、“真空实验”使人们“眼见为实”地相信实验中水银柱上方的玻璃管中存在着一段真空。近代原子论者及牛顿学派也都相信真空的存在。从那时起,赞成真空存在一派似乎占了上风。

2莱布尼茨“相对时空”与牛顿“绝对时空”的对立

莱布尼茨是笛卡尔之后否认真空存在的代表人物,为此他与坚持真空存在的牛顿学派发生了激烈的争论。他认为,真空即是虚无。牛顿学派的克拉克就曾指责笛卡尔和莱布尼茨把真空与虚无等同了起来。克拉克认为,没有物质的空间无疑是一无所有的空间,但并不表示空间本身也被消除了。在克拉克看来,“如果广延是物质的本质,那么物质就等同于空间本身;由此可以推出,物质必然是无处不在的、无限的和永恒的,并且它们是既不能被创造,也不能回归虚无,这是荒谬的。”也就是说,依牛顿学派,笛卡尔和莱布尼茨的错误之症结就在于把空间与物质等同了起来。

我们知道,经典力学大厦赖以建立的基石是牛顿的绝对时空观,其精要可概括为“时空独立于物质而存在”。莱布尼茨明确反对牛顿的绝对时空观。他曾写道:“我把空间看作某种纯粹相对的东西,就像时间一样;看作一种并存的秩序,正如时间是一种接续的秩序一样。因为以可能性来说,空间标志着同时存在事物的一种秩序,只要这些事物一起存在,而不必涉及它们特殊的存在方式;当我们看到几件事物在一起时,我们就察觉到事物彼此之间的这种秩序。”在这里,莱布尼茨把空间看作是一种“并存的秩序”;把时间看作是“接续的秩序”。所谓“并存的秩序”、“接续的秩序”,更通俗的理解即为一种关系,即相对时空观。

莱布尼茨认为,空间、时间本身不是如牛顿理论所言是绝对的、实在的存在。时空与物质及其运动密不可分,离开了物质就无所谓空间,同样离开了物质的运动也就无所谓时间。空间并不是逻辑上先于和独立于物质存在的容器。他认为,物质在逻辑上先于空间的存在,并以空间的形式排列,空间只不过是一种关系,除此之外没有什么空间存在。因而莱布尼茨认为,牛顿理论中的绝对空间是不存在的,一个物体仅能改变其与另一物体的相对位置,它不能改变其在绝对空间中的位置,因为空间是非实在的,除了物体间的位置关系,不存在绝对意义上的参照系,也即不存在所谓的绝对空间本身。时间也是如此,除了是事件之间的关系外,它什么都不是,也就不存在绝对时间。由于反对绝对空间和绝对时间,莱布尼茨自然也反对牛顿理论中的绝对运动概念。与他的相对空间观念对应,他认为,运动也不过只是一个物体相对于另一个物体的位置变化,因此,运动根本不是什么绝对的东西,它只存在于关系之中。也即,那种依托于不动的绝对空间背景之上的绝对运动根本是不存在的,任何物体的运动必然与其它物体的运动相关。与以上的这些观点相关联,莱布尼茨自然否认虚空的存在,因为他是反对原子论的,同时他认为空间既可以被充满也可以是空的这种观念是无法接受的。

3莱布尼茨对真空研究的现代价值

针对真空存在派的托里拆利、帕斯卡等人的一系列科学实验,莱布尼茨也试图从更多科学的角度及“物理真空”的方面去否定真空。他指出,托里拆利实验中水银柱上方玻璃管中的那段根本就不是真空,那里不过是排除了粗大的物质,但仍充满了精细的物质,如光线仍可透过进入其内。因而,他认定其中并不是真空,因为光也是物质。莱布尼茨还为此作了一个形象的比喻。他说容器就好比是一个满是细孔的箱子,将它放到水里,箱子里有鱼和其他粗大的东西,把这些粗大的东西拿掉,这箱子里仍然还是充满水的。莱布尼茨实际上在这里是通俗讲解了笛卡尔的充满以太的宇宙模型。因而,莱布尼茨认为空的空间不过是一种想象。公务员之家

20世纪初物理学革命后,人们开始重新审视真空问题,爱因斯坦和狄拉克分别基于相对论和量子力学对真空进行了研究,爱因斯坦认为真空是“广义相对论的以太”;而狄拉克把真空看作是“量子场的基态”。这样,这两位20世纪的物理学大师就为现代真空研究奠定了“真空不空”这一基本结论框架。实际上,不管是在爱因斯坦还是在狄拉克那里,真空都被当成是宇宙背景。应该说,莱布尼茨的上述关于真空的看法今天看来在某种程度上是正确的,它正与现代的爱因斯坦和狄拉克的把真空看作是宇宙背景的理论暗合,的确是天才性的猜测。但由于莱布尼茨实证研究力度不够,牛顿学派对莱布尼茨的上述论证深不以为然,因而也不可能改变牛顿学派关于真空的观点。不过,莱布尼茨的相对时空的理念及对真空的研究成果给20世纪物理学革命中摈弃牛顿的绝对时空提供了思想资源。此外,他在与牛顿学派有关真空问题的争论中,还广泛涉及了近代科学中一些非常重要的概念,如原子、以太、引力、物质等,实际上为后世留下了极其宝贵的思想遗产,写下了科学思想史上璀璨的一页。

当然,爱因斯坦和狄拉克的上述真空概念也是属于“物理真空”层面,只是再归细类的话,爱因斯坦的属于“经典真空”,狄拉克的属于“量子真空”。因而,像任何其他“物理真空”的概念一样,它们也逃脱不掉似胡搅蛮缠的“哲学真空”的追问:既然真空是空无一物,也就是无,那又何来真空的概念?即是宇宙背景那还是真空吗?真空的宇宙背景到底是什么?当然,对立者也可反问:真空什么也不是,但什么也不是的东西经过确定就真的不存在吗?实际上有关真空的此类问题在古希腊爱利亚学派的巴门尼德提出他的关于“存在”与“非存在”的学说时就存在着,后世的不同仅仅在表述方式上。而有关真空问题的研究将会继续(甚至可能永远是)如莱布尼茨与牛顿学派论争的那样是一个科学问题与形而上学问题纠缠在一起的独特领域。因为,如果认为真空被爱因斯坦和狄拉克认定为宇宙背景而似已得到解决不再是问题的话,那么,人类的理性必然会再去追问似“无中生有”的宇宙诞生机制以及那个宇宙“奇点”到底是什么。这实际上就是真空问题的另一个版本。

参考文献

1汉姆普西耳.理性的时代——17世纪哲学家(陈嘉明译).北京:光明日报出版社,1989:142~143

2柯瓦雷.牛顿研究(张卜天译).北京:北京大学出版社,2003:164

莱布尼茨范文篇7

关键词:莱布尼茨;真空;时空观

莱布尼茨生活于被科学史家誉为“天才的世纪”的17世纪,与开普勒、伽利略、笛卡尔、帕斯卡、波义耳、牛顿等科学巨匠处于科学史上的同一个时代。莱布尼茨不仅是一位伟大的数学家和哲学家,而且是近代一位(也许是唯一一位)可比肩亚里士多德的百科全书式学者。他在自然科学以外的其它人类理智领域,比他同时代的其他科学巨匠取得了更多的成就。他被誉为德国的科学、哲学之父,还在神学、技术发明、法学、历史学、语言学、政治学等诸多领域都有着堪称同时代一流的建树。西方的一位学者曾这样评价:“莱布尼茨可能是近代世界最全面的天才,……触及了现代知识的几乎每一个分支。他是最后一位希望掌握现代知识的所有领域,并且是百科全书式人物的人。”也许正因为莱布尼茨所涉及的研究领域过于宽泛、庞杂,他的许多研究成果的重要价值在相当长时间内未得到重视,譬如他对真空问题的研究。尽管由于当时的客观条件所限,莱布尼茨在真空研究中更多的依靠科学的猜测和哲学的思辨,但其结论竟与200多年后的科学大师爱因斯坦、狄拉克等人对真空研究的成果暗合,确是令人不得不感叹其思想之天才。

1“真空问题”的历史脉络

对真空问题的研究及争论可追溯到古希腊。德谟克利特等原子论者认为,世界是由原子和虚空构成的,提出了真空这一命题;而亚里士多德则认为,宇宙中充满了“以太”,因而真正的虚空是不存在的,他的名言是“大自然厌恶真空”。这可以说是人类对真空问题探讨和争论的源头,并一直延续至今。

不过,在这里有一点必须指出,真空的概念是有歧义的,有所谓“物理真空”和“哲学真空(或称形而上学真空)”之分,而“物理真空”又有“经典真空”与“量子真空”之别。历史上对真空概念不同时期也各有侧重,古希腊的真空概念更多是哲学意义上的,偏向于“虚空”、“虚无”的含义;17世纪的真空概念是“物理真空”和“哲学真空”两者兼而有之;而现代的真空概念更多地是指“物理真空”。当然,“物理真空”和“哲学真空”的概念区分并不是完全清晰的,也无法成为在该领域严格区分科学问题和形而上学问题的依据,真空问题依然是(也许会永远是)科学、形而上学纠缠在一起的一个前沿领域。

17世纪的真空研究与笛卡尔有很大的关系。实际上,人们对自然的看法总是首先基于自身的日常经验。对于物质与空间的关系也不例外。按照常规思维,人们很自然地把空间想像为一个巨大、不动的空房子,物质就是被一件件搬到这座房子里的东西,因而空间必然是先于物质存在的。这样,空无一物的真空就是可能的。这就是所谓的绝对空间的观念。于是有人就想像地球到太阳间的地带是真空。但笛卡尔不这么认为。在他看来,空间与物质不可分,空间只存在于已有某些物质的地方,是物质的存在才使空间得以存在;空无一物的真空是不存在的。他说:“实际上,我们无法想像一个空无一物的容器,一如无法想像一个没有谷的山:这将意味着无需广延就能设想容器的内容,或者无需实体就能设想广延:确实,没有什么东西能够不具有广延。”至于星际间的地带,笛卡尔认为不是真空,而是充满了物质的,这种物质就是以太。笛卡尔从以太演绎出了他的宇宙学说。

笛卡尔否认真空存在的学说受到了托里拆利、帕斯卡等人的强有力挑战。他们两人分别做的“托里拆利实验”、“真空实验”使人们“眼见为实”地相信实验中水银柱上方的玻璃管中存在着一段真空。近代原子论者及牛顿学派也都相信真空的存在。从那时起,赞成真空存在一派似乎占了上风。

2莱布尼茨“相对时空”与牛顿“绝对时空”的对立

莱布尼茨是笛卡尔之后否认真空存在的代表人物,为此他与坚持真空存在的牛顿学派发生了激烈的争论。他认为,真空即是虚无。牛顿学派的克拉克就曾指责笛卡尔和莱布尼茨把真空与虚无等同了起来。克拉克认为,没有物质的空间无疑是一无所有的空间,但并不表示空间本身也被消除了。在克拉克看来,“如果广延是物质的本质,那么物质就等同于空间本身;由此可以推出,物质必然是无处不在的、无限的和永恒的,并且它们是既不能被创造,也不能回归虚无,这是荒谬的。”也就是说,依牛顿学派,笛卡尔和莱布尼茨的错误之症结就在于把空间与物质等同了起来。

我们知道,经典力学大厦赖以建立的基石是牛顿的绝对时空观,其精要可概括为“时空独立于物质而存在”。莱布尼茨明确反对牛顿的绝对时空观。他曾写道:“我把空间看作某种纯粹相对的东西,就像时间一样;看作一种并存的秩序,正如时间是一种接续的秩序一样。因为以可能性来说,空间标志着同时存在事物的一种秩序,只要这些事物一起存在,而不必涉及它们特殊的存在方式;当我们看到几件事物在一起时,我们就察觉到事物彼此之间的这种秩序。”在这里,莱布尼茨把空间看作是一种“并存的秩序”;把时间看作是“接续的秩序”。所谓“并存的秩序”、“接续的秩序”,更通俗的理解即为一种关系,即相对时空观。

莱布尼茨认为,空间、时间本身不是如牛顿理论所言是绝对的、实在的存在。时空与物质及其运动密不可分,离开了物质就无所谓空间,同样离开了物质的运动也就无所谓时间。空间并不是逻辑上先于和独立于物质存在的容器。他认为,物质在逻辑上先于空间的存在,并以空间的形式排列,空间只不过是一种关系,除此之外没有什么空间存在。因而莱布尼茨认为,牛顿理论中的绝对空间是不存在的,一个物体仅能改变其与另一物体的相对位置,它不能改变其在绝对空间中的位置,因为空间是非实在的,除了物体间的位置关系,不存在绝对意义上的参照系,也即不存在所谓的绝对空间本身。时间也是如此,除了是事件之间的关系外,它什么都不是,也就不存在绝对时间。由于反对绝对空间和绝对时间,莱布尼茨自然也反对牛顿理论中的绝对运动概念。与他的相对空间观念对应,他认为,运动也不过只是一个物体相对于另一个物体的位置变化,因此,运动根本不是什么绝对的东西,它只存在于关系之中。也即,那种依托于不动的绝对空间背景之上的绝对运动根本是不存在的,任何物体的运动必然与其它物体的运动相关。与以上的这些观点相关联,莱布尼茨自然否认虚空的存在,因为他是反对原子论的,同时他认为空间既可以被充满也可以是空的这种观念是无法接受的。

3莱布尼茨对真空研究的现代价值

针对真空存在派的托里拆利、帕斯卡等人的一系列科学实验,莱布尼茨也试图从更多科学的角度及“物理真空”的方面去否定真空。他指出,托里拆利实验中水银柱上方玻璃管中的那段根本就不是真空,那里不过是排除了粗大的物质,但仍充满了精细的物质,如光线仍可透过进入其内。因而,他认定其中并不是真空,因为光也是物质。莱布尼茨还为此作了一个形象的比喻。他说容器就好比是一个满是细孔的箱子,将它放到水里,箱子里有鱼和其他粗大的东西,把这些粗大的东西拿掉,这箱子里仍然还是充满水的。莱布尼茨实际上在这里是通俗讲解了笛卡尔的充满以太的宇宙模型。因而,莱布尼茨认为空的空间不过是一种想象。

20世纪初物理学革命后,人们开始重新审视真空问题,爱因斯坦和狄拉克分别基于相对论和量子力学对真空进行了研究,爱因斯坦认为真空是“广义相对论的以太”;而狄拉克把真空看作是“量子场的基态”。这样,这两位20世纪的物理学大师就为现代真空研究奠定了“真空不空”这一基本结论框架。实际上,不管是在爱因斯坦还是在狄拉克那里,真空都被当成是宇宙背景。应该说,莱布尼茨的上述关于真空的看法今天看来在某种程度上是正确的,它正与现代的爱因斯坦和狄拉克的把真空看作是宇宙背景的理论暗合,的确是天才性的猜测。但由于莱布尼茨实证研究力度不够,牛顿学派对莱布尼茨的上述论证深不以为然,因而也不可能改变牛顿学派关于真空的观点。不过,莱布尼茨的相对时空的理念及对真空的研究成果给20世纪物理学革命中摈弃牛顿的绝对时空提供了思想资源。此外,他在与牛顿学派有关真空问题的争论中,还广泛涉及了近代科学中一些非常重要的概念,如原子、以太、引力、物质等,实际上为后世留下了极其宝贵的思想遗产,写下了科学思想史上璀璨的一页。

当然,爱因斯坦和狄拉克的上述真空概念也是属于“物理真空”层面,只是再归细类的话,爱因斯坦的属于“经典真空”,狄拉克的属于“量子真空”。因而,像任何其他“物理真空”的概念一样,它们也逃脱不掉似胡搅蛮缠的“哲学真空”的追问:既然真空是空无一物,也就是无,那又何来真空的概念?即是宇宙背景那还是真空吗?真空的宇宙背景到底是什么?当然,对立者也可反问:真空什么也不是,但什么也不是的东西经过确定就真的不存在吗?实际上有关真空的此类问题在古希腊爱利亚学派的巴门尼德提出他的关于“存在”与“非存在”的学说时就存在着,后世的不同仅仅在表述方式上。而有关真空问题的研究将会继续(甚至可能永远是)如莱布尼茨与牛顿学派论争的那样是一个科学问题与形而上学问题纠缠在一起的独特领域。因为,如果认为真空被爱因斯坦和狄拉克认定为宇宙背景而似已得到解决不再是问题的话,那么,人类的理性必然会再去追问似“无中生有”的宇宙诞生机制以及那个宇宙“奇点”到底是什么。这实际上就是真空问题的另一个版本。

参考文献

1汉姆普西耳.理性的时代——17世纪哲学家(陈嘉明译).北京:光明日报出版社,1989:142~143

2柯瓦雷.牛顿研究(张卜天译).北京:北京大学出版社,2003:164

莱布尼茨范文篇8

动能的概念,以及由此而引出的动能定理和机械能守恒定律,使人们对自然界的认识更加深入;动量的概念,特别是由此导出的动量定理和动量守恒定律,不但适用于恒力作用情况,而且也适用于变力作用的情况,比牛顿定律具有更广泛的适用性。在物理学知识系统中,动量守恒定律有广泛的适用范围,除力学外还涵盖物理学中的声、光、热、电、原子物理学等,是物体相互作用所遵守的法则,也是自然界重要的规律。也就是说,动能和动量的概念,以及由此而引出的动能定理和机械能守恒定律、动量定理和动量守恒定律,一方面使牛顿力学的范畴得到了进一步的扩展,另一方面为人们解决力学问题,开辟了与牛顿定律相并行的三大途径。因此,动量和动能的概念是力学的重点,也是高中物理教与学的重点。

但是,为什么既要引入动量,又要引入动能呢?动量和动能,究竟有什么区别,这是高中物理教学中,经常被人们忽视的一个教学难点。在动量和动能这两个概念的教学中,若只讲动量和动能在公式表述形式上的区别,而不讲它们在研究对象和物理本质上的异同,其结果是学生虽然会解题了,但他们却不知道为什么要这样解题。因而,我们的物理教学,不能只孤立地给学生讲一些支离破碎的物理知识,而应该给他们构建一个完美的、自洽的物理体系,让他们在学习物理概念和规律时,不仅要知其然,而且要能知其所以然。为此,笔者把动量和动能这两个概念的教学,分为三个步骤,使教学不断深入。

一、按现行教材的编排顺序,分别系统地讲解学习动量和动能的概念

其实,用速度描述物体“运动的多少”,是最容易被人们接受的思想。但是,大量的事实也使人们认识到,对物体的作用效果不但要考虑物体的速度,还要考虑它的质量。假设与子弹同等速度射出的一粒芝麻,衣裳即可将其挡住,但如果是子弹则不行。通过列举此类现象及学生实验,启发他们思考,在物体的质量一定的条件下,物体的速度越大,其运动量越大;在运动速度一定的条件下,物体的质量越大,其运动量也越大。这就是说,用质量(m)和速度(v)这两个物理量的乘积,来反应物体的运动量,是一种更科学的度量方法,从而引出动量的概念。

对于动量概念的引入,也可以在牛顿第二定律、运动学速度公式的基础上,推导出力对时间的累积规律

从数量关系上分析上式:要使质量一定、原来运动速度较小的物体获得一个较大的速度,既可以用较大的力作用较短的时间,也可以用较小的力作用较长的时间。只要力和力作用时间的乘积Ft相同,这个物体都会增加相同的速度。而当物体质量也在变化时,Ft的大小则可以反映mv(质量与速度乘积)的改变量。由此可见,上式中力和力作用时间的乘积、物体质量和运动速度的乘积以及上式本身,都具有一定的物理意义。为此,我们引入了两个新的物理量──冲量和动量,发现了一个规律──动量定理。

相对而言,动能的概念,利用初中的基础是比较易于引入的。当然,我们也可以通过演绎推理和数学转换,在牛顿第二定律、运动学速度公式的基础上,导出力对位移的累积规律

然后从数量关系上分析上式中各量所表达的物理含义,从而引出动能的概念。

二、利用课后讲座,介绍关于运动度量方法的历史辩争

在动量和动能的概念都已被揭示出之后,我们及时组织课后讲座,综合有关物理史料,系统地介绍关于运动度量方法的历史辩争。

1.辫争的原由

在17~18世纪,由于“力”的概念还不能完全确定,对力的各种效应以及与之相应的各个物理量的意义和使用范围也是不清楚的,因而引发了物理学史上著名的笛卡儿学派和莱布尼茨学派关于力的正确表示方法的一场旷日持久的争论。当时,人们常把力同现在所说的力矩、动量、功、动能等物理量相混淆,习惯于把外加的力称为“运动的力”,把“物体的惯性”称为“物质固有的力”、“阻抗的力”,甚至把“加速度”称为“加速力”,并出现过把“运动的力”与碰撞、向心力相提并论。这种概念上的混乱状况,普遍存在于伽利略、牛顿时期的力学著作中。

2.笛卡儿学派的“动量”

所谓“运动的力”,就是指一个正在运动的物体所具有的使另一物体运动的能力,如推开物体或迫使它向前运动,或者运动物体克服障碍和阻力的能力。那么,这个力决定于哪些量呢?最初,伽利略就认识到“推动者或阻挡者的力(动量)并不是一个简单的概念,它是由两个共同决定运动量度的观念所决定。其一是重量(质量),其二是速度”。笛卡儿在研究碰撞的过程中,认为碰撞是最基本的运动,并从运动量守恒的基本思想出发,沿袭了伽利略的观点,提出应该把物体的质量和速度的乘积作为“力”或物体“运动多少”的量度。1687年,牛顿在他的《自然哲学的数学原理》中明确提出了动量的定义,并且通过他所总结的运动定律,提出在物体的相互作用中,动量这个物理量反映着物体运动变化的客观效果。这样,把动量作为运动的量度,一度得到了科学界的普遍承认。

3.莱布尼茨的“动能”

1686年,莱布尼茨在他的论文中,对笛卡儿学派的这个量度方法提出了批评。他认为:“力必须由它所产生的效果来衡量,例如用它能将一个重物举起的高度来衡量,…而不是用它传给另一物体的速度来衡量”。他由此得出,应该用量值mv2而不是用mw来量度物体“运动的力”。

莱布尼茨论证的要点是:当质量为m的物体从高h处降落下来时,他就获得了“运动的力”,如果使它的运动方向反过来,它就能重新上升到高h处;这个同样的力将能把质量

的物体送到高nh处。这两个物体降落下来时,获得的“运动的力”必然相等。但是,根据伽利略的落体定律,如果第一个物体下落到地面时的速度为v,则第二个物体的速度为

,即两物体落下时获得的运动量不相等。而按照莱布尼茨的量度,上述两物体落下时则有相等的运动量。莱布尼茨由此得出结论:笛卡儿提出的运动的量度是同落体定律相矛盾的,所以mv不适宜充作运动的量度,mv2才是运动的真正量度。

后来根据科里奥利的建议以

代替mv2,这就是后来所说的运动物体的动能。莱布尼茨也看到了笛卡儿提出的运动的量度在某些情况下是适用的,因此在1696年莱布尼茨指出,“力”有两种,一种是“死力”,它存在于相对静止的物体间,如吊绳的拉力、桌面的支撑力等。“死力”可用物体的质量和该物体由静止状态转入运动状态时所获得的速度的乘积来量度,所以,动量是“死力”的量度;另一种是“活力”,

就是物体的“活力”,正是由于自身具有这种“活力”,物体才能运动而永不静止。在自然界中真正守恒的东西正是总的“活力”。

莱布尼茨也看到,在有些情况下,如非完全弹性碰撞中“活力”会减少,但他认为,实际上“活力”并没有损失,而只是被物体内部的微小粒子吸收了,微粒的活力增加了。这个思想是深刻的,可惜他没有进一步地说明。莱布尼茨的发现是有重大意义的。第一,他提出的两种运动量度的矛盾,打破了把mv看做是运动的惟一量度的传统观念,促进了关于运动的量度问题的研究;第二,他所推崇的新的物理量

,其实已超出了对机械运动进行研究的范围。

4.达朗贝尔的“判决”

两种量度的争论,持续了半个世纪之久,不少著名的数学家、物理学家都参加到了争论中去。

1743年,法国力学家达朗贝尔在他的著作《动力学论》的序言里,指出了两种量度的等价性,宣布对争论作出“最后的判决”。他指出,“运动物体的力”只能用物体克服障碍的能力来表示。他把“障碍”分为三类,第一类是“不能克服的障碍”,它“完全消灭一切运动”,所以无论物体的动量或活力如何变化,都不能在这种障碍上表现出来,“它们不能以任何尺度来给力下定义”;第二种是“其阻抗足以使运动停止(而且是在一瞬间做到这一点)的障碍”,即平衡的情况。这时物体克服障碍的能力和物体的动量成正比,所以动量可用来作为“运动物体的力”的量度;第三种障碍是逐渐使运动停止的减速运动情况,“作用是由直到运动完全消失时为止所通过的那段距离表现出来的,而这种作用与速度平方成正比”,因而,活力可作为“运动物体的力”的量度。由此达朗贝尔作出结论:“如果力的量度在平衡状态中和在减速运动中有所不同,这又有什么不方便呢?”这个“判决”,指出了两种量度都有效。达朗贝尔实际上已经发现,正是由于“力”还没有形成一种清晰的概念,所以才产生了这场争论。但他在《动力学论》里轻率地将这一场争论说成是“毫无意义的咬文嚼字的争吵”。因此,他并没有真正地解决问题。表面看来,达朗贝尔的观点是一种模棱两可的态度,但仔细分析,还是具有一定的理论价值的。在这里,达朗贝尔模糊地谈到了动量定理──动量的变化和力的作用时间有关;动能定理──活力的变化与物体运动的距离有关。

5.恩格斯的科学“量度”

19世纪中叶以后,自然科学家们仍然没有从运动量度的这场争论的混乱中完全摆脱出来。恩格斯根据自然科学的最新成就,尤其是能量守恒与转化定律的发现,提示了两种量度的本质区别。

恩格斯指出,在不发生机械运动“消失”而产生其他形式的运动的情况下(如简单机械在平衡条件下的运动传递,完全弹性碰撞的运动传递等),运动的传递和变化都可以用动量mv去量度。就是说,“mv表现为简单移动的,从而是持续的机械运动的量度”;但当发生了机械运动“消失”而其他形式的运动产生,即机械能和其他形式的能(包括势能、内能、电磁能、化学能)相互转化的过程中、运动的传递和变化都应以

去量度。在这里,

表现为已经消失了的机械运动的量度。这样,恩格斯便得出结论:机械运动确实有两种量度,每一种量度适用于某个界限十分明确的范围之内的一系列现象。一句话,动量(mv)是以机械运动来量度的机械运动。动能(

)是以机械运动转化为定量的其他形式的运动的能力来量度的机械运动。

三、通过习题课的教学,具体认识动量和动能的异同

当结束了动量和动能概念的学习,认识到动量定理和动量守恒定律、动能定理和机械能守恒定律,并了解到关于运动度量方法的历史辩争后,学生对动量和动能的区别,已经有了一定的认识。实际上,动量和动能这两种量度,性质不同,运用范围也不同,所以相互之间并不矛盾。当一个系统不受外力,或所受外力为零时,这个系统的动量是守恒的。但是,当一个系统的动量守恒时,它的动能不一定守恒;当动能和其他能量之间有相互转化时,则服从能量守恒定律,它的动量也不一定守恒。在这种情形下,我们及时通过具体问题的分析和讨论,加深和巩固学生对动量和动能不同性质的认识。

例1对一定质量的物体而言,下列关于动量和动能概念的说法中,正确的是哪些

A.物体的动能不变,则其动量也一定不变

B.物体的动量不变,则其动能也不变

C.物体的动能不变,则说明物体的运动状态没有改变

D.物体的动能不变,说明物体所受的合外力一定不变

分析与解动能和动量都是和物体运动状态有关的状态量。动量是物体质量和速度的乘积,它是矢量,因此在计算物体的动量及其改变量时,要特别注意它的矢量性。当物体做直线运动并且建立了坐标系以后,可以用“+”或“-”表示方向;动能也表示物体运动的量,但它是标量,而且只能取零或正值。对一个质量为m、速度为v的运动物体,若设其动量为P、动能为Ek,则有

因此可得

根据上述结论不难看出,当物体的动能一定时,动量的大小由物体的质量决定。质量大的动量也大;但是,由于动量是矢量,动能是标量,当物体的动能一定时,即便物体的质量不变,其动量也并不一定不变,如做匀速圆周运动的物体,设动能和质量都不变,但由于其运动的方向始终在改变,因此,做匀速圆周运动的物体的动量一定在变化,其运动状态时刻在改变,并且导致这种运动状态改变的原因──向心力,因为方向的改变,也时刻在改变着。

反过来,当物体的动量一定时,动能的大小也与物体的质量有关,质量大的物体动能反而小。因此,对一定质量的物体,动量不变时,其动能也一定不变。所以,选项B是正确的。

这一例题,说明动量和动能这两个物理量,性质不同,适用范围也不同。下面的例题,可以更好地帮助我们理解动量和动能的不同。

例2向空中发射一炮弹,不计空气阻力,当炮弹的速度方向恰好沿水平方向时,炮弹炸裂成质量分别为m1、m2的a、b两块,若质量较大的a块的速度为v1,且方向仍沿原方向,则a、b两块弹体的动量和动能分别是多少?

分析与解设炮弹发射到最高点时的水平方向为正方向,则a块的动量

,因为炮弹在水平方向不受外力,因此,炮弹炸裂成质量分别为m1,m2的a,b两块前后,系统的动量守恒。根据动量守恒定律,有

因此

负号表示p1(v1)与p2(v2)的方向相反。

也就是说,虽然炮弹炸裂后a,b两块的都产生了动量,但是,系统的动量总和并没有增加,仍保持为零。对于动能,情形就大不一样了。因为动能是标量,与方向没关系,故

若设炸裂前、后炮弹的动能为分别Ek、Ek′,则

炮弹炸裂后与炸裂前的动能差为

为什么炸裂前、后炮弹的动量守恒,而动能却增加了呢?其中最根本的原因,就是因为炮弹炸裂过程中,炸药的内能释放出来而转化成弹片的动能了。

莱布尼茨范文篇9

从普遍怀疑出发,笛卡尔得到一个不可怀疑的结论,即我不能怀疑我在怀疑这件事情,而怀疑必然有一个主体,由此得出“我思故我在”这一原理。笛卡尔哲学涉及实体论的问题。在《哲学原理》、《上帝存在的证明》等著作中,笛卡尔论述了他自己的实体论。笛卡尔认为“凡是被别的东西作为其主体而直接寓于其中的东西,或者我们所领会的……某种东西由之而存在的东西,就叫做实体(Substance)。”[1]笛卡尔的实体学说从本体论的角度上来看,实体的实质是各种性质或者属性所赖以存在的基础,这些性质和属性就包括了广延、运动与静止等性质,理智、意志、欲望等属性。而就物质实体来说,主要指的是一些物质性质蕴含于主体之中,如广延、形状等,即物体本身。在笛卡尔看来,物质或者说物质实体的根本属性就是广延,在笛卡尔的许多著作之中,广延和物体常常表达的是同一个意思。笛卡尔的实体可以分为两类,即物质实体以及精神实体。在笛卡尔哲学中,物质世界和精神世界能够得以确立的基点是上帝的存在。而在笛卡尔看来,所谓精神实体,寓于主题中的思想的性质或者活动。这里的思想包含的含义较广,“不仅理智、意志、想象,而且情感在这里也是与思想相同的东西”[2]。从认识论的角度来说,实体是可知的,我们可以获得它的真实的观念,但是却不能够直接认识,而是要通过间接的手段才能认识。笛卡尔把思想的实体称为心灵或者灵魂。就笛卡尔哲学而言,无论是物质的还是精神的实体都是在一个实体的基础上创建的,即绝对的实体,亦即上帝。

二、“我思故我在”的主体性原则

从“我思故我在”出发,笛卡尔首先是意识到自我的存在之后,通过我的存在进一步意识到上帝和外部世界的存在。故此,发现自我是最为关键的一部,要想认识外部世界、认识自我存在,首先必须要有自我意识。主体是有自我意识的一个东西、主体是一个能动的东西、主体认识客体的能力与主体自身是不可分割的。笛卡尔的怀疑是在理性之下的怀疑,是以发现真理,得到确切知识为目的的,怀疑之后就是要使人作为理性的人而存在,根据自身理性的判断,遵循正确的方法,去认识事物和构建知识大厦。在笛卡尔的哲学中,他的真理论是从普遍怀疑开始的,他认为只有基于普遍怀疑之上,才能拭去“浮尘和沙子”,找到“坚硬的磐石”,即可以称之为真理的东西。笛卡尔用“清楚明白”原则说明上帝的存在,反过来又用上帝存在证明“清楚明白”原则。笛卡尔以数学方法为基础重建逻辑学的大厦,由此他的研究方法就带有理性的、清楚自明的蕴含意义。笛卡尔开创了这种以天赋观念作为公理,从而推演出普遍必然性的知识的理性演绎法。

三、“我思故我在”的哲学影响

唯理论是以笛卡尔开端,莱布尼茨是这个流派的发展者。他反对笛卡尔的二元论,但继承了笛卡尔的理性主义原则以及天赋观念,并且对其加以扩展和修改,使得这成为莱布尼茨独具一格的方面,莱布尼茨认为“观念和真理是作为倾向、禀赋、习性和自然潜能而天赋在我们心中,并不是作为现实的作用而天赋在我们心中的,虽然这种潜在能力永远伴随着与它相适应的、常常感不到的现实作用”。康德的先验哲学深受笛卡尔哲学影响。康德将笛卡尔的“我思”发展成为了先验的自我意识。由此,康德提出他的一个著名的思想,即“人为自然立法”,让哲学从以前的关注外在客体、对象转变为了专注人的一门学科,实现了“哥白尼式革命”。费希特的“自我哲学”也继承了笛卡尔哲学的主体性原则。

从笛卡尔的三个著名命题:“我思故我在”“上帝存在”“物质世界存在”,以及从费希特的自我哲学的三个著名命题:“自我设定自我”“自我设定非我”“自我设定自身和非我”中,我们可以了解到,从笛卡尔哲学的三个著名命题到费希特哲学的三个著名命题,他们都是从理性主体、自我意识起步,经过艰难地前行,尽管费希特这这条路上比笛卡尔走得更远,他超越了笛卡尔经验的自我,走向先验的自我、绝对的自我。

“我思故我在”是笛卡尔哲学的第一原则,而“思”则是整个第一原则的核心内容,从笛卡尔哲学体系构建以来,主体哲学开始出现并逐渐发展,主体性原则开始确立,“主体”以及“自我”成为了一切事物的意义或者说是价值的来源。并且,在笛卡尔提出“我思故我在”这一命题之后,莱布尼茨、康德、费希特以及胡塞尔等哲学家的发展,对主体性原则的发扬以及反思都给当代的人们以启示。笛卡尔的哲学学说对当时以及后来哲学等学科的发展都产生了深刻的影响。

参考文献:

[1]笛卡尔著,庞景仁译.第一哲学沉思集[M].北京:商务印书馆,1986.

莱布尼茨范文篇10

一.

李约瑟曾经说过:“现代中国的知识分子所以会共同接受共产主义的思想,其中一个很重要的因素是因为新儒学家和辩证唯物主义在思想上是密切连系的。换句话说,新儒学家这一思想体系代表着中国哲学思想发展的最高峰,它本身是唯物主义的,但不是机械的唯物主义。实际上,它是对自然的一种有机的认识,一种综合层次的理论,一种有机的自然主义。”[]说朱熹理学是唯物主义,必须首先对朱熹理学中的“理”以及理气关系作出唯物主义的说明。朱熹的“理”有“所以然之故”与“所当然之则”两层含义。李约瑟讨论朱熹的理较多地是就其在自然界中的意义而言,为此,他把“理”解释为“宇宙的组织原理”[]。他反对把朱熹的“理”说成是主观精神性的东西,也反对把朱熹的“理”等同于亚里士多德的“形式”。他说:“躯体的形式是灵魂,但中国哲学的伟大传统并没有给灵魂留下席位。……理的特殊重要性恰恰在于,它本质上就不象灵魂,也没有生气。再者,亚里士多德的形式确实赋予事实以实体性,……但气却不是由理产生的,理不过是在逻辑上有着优先性而已。气不以任何方式依赖于理。形式是事物的‘本质’和‘原质’,但理本身却既不是实质的,也不是‘气’或‘质’的任何形式。……理在任何严格的意义上都不是形而上的(即不像柏拉图的‘理念’和亚里士多德的‘形式’那样),而不如说是在自然界之内以各种层次标志着的看不见的组织场或组织力。纯粹的形式和纯粹的现实乃是上帝,但在理和气的世界中,根本就没有任何主宰。”[]这样,李约瑟实际上把朱熹的“理”看作是客观世界的秩序、模式和规律,而否认其中包含任何精神性的东西。

就朱熹的理气关系而言,李约瑟在把理界定为“宇宙的组织原理”的同时,把气解释为“物质——能量”。在理气先后问题上,朱熹曾说过:理气“本无先后之可言。然必欲推其所从来,则须说先有是理。然理又非别为一物,即存乎是气之中;无是气,则是理亦无挂搭处。”[]又说:“理未尝离乎气。然理形而上者,气形而下者,自形而上下言,岂无先后?”[]“以本体言之,则有是理然后有是气。”[]这里既有理气不可分离、不分先后的观点,也有理先气后的说法。对此,李约瑟说,这是“把宇宙生成论的问题和形而上问题轻易地混淆在一起;‘先’和‘后’也可以解释为‘实在’与‘现象’”[]。按照李约瑟的解释,朱熹讲理气本无先后,是从宇宙生成论而言的;而讲理先气后,是从形上学而言的。就朱熹讲理气本无先后而言,说朱熹理学包含唯物主义因素,这应当不成问题。但是,朱熹又讲理先气后,李约瑟以为,这里的理“不过是在逻辑上有着优先性而已”。这是吸取了冯友兰先生的逻辑在先论。这样,朱熹理学中既讲理气本无先后又讲理先气后而出现的自相矛盾,被李约瑟看作是“把宇宙生成论”的问题和形而上问题“轻易地混淆在一起”所致。但李约瑟还是认为,在朱熹理学中,理气本无先后比起理先气后更为重要。

为此,李约瑟认为,朱熹在理气先后问题上实际上是“认为物质——能量和组织在宇宙中是同时的和同等重要的,二者‘本无先后’,虽然后者略为‘优先’这种信念的残余极难舍弃”[]。李约瑟还认为,朱熹之所以难以舍弃理略为“优先”的信念,“理由乃是无意识地具有社会性的,因为在理学家所能设想的一切社会形式中,进行计划、组织、安排、调整的管理人,其社会地位要优先于从事‘气’——因而是‘气’的代表——的农民和工匠”[]。

由此可见,李约瑟把朱熹理先气后的观点归于形而上问题,而把其理气不可分离、不分先后的观点当作宇宙生成论问题而突出出来,作为朱熹科学思想的基础。正是基于这一点,李约瑟明确认定朱熹的科学思想属唯物主义。

关于朱熹理学的有机自然主义,李约瑟认为,朱熹所谓理气不可分离,即“天下未有无理之气,亦未有无气之理”[],不仅表明朱熹的理与气不能等同于亚里士多德的形式与质料,而且反映出现代有机主义的基本观点,即物质——能量与组织的相互结合、不可分离。他说:“朱熹以其中世纪的方式肯定理和气的普遍的互相渗透,反映了近代科学的立足点。”[]对于朱熹所说:“无极而太极,非太极之外复有无极”[],以及太极派生万物又寓于万物之中的“理一分殊”,李约瑟说:“当我们进一步考察这一精心表达的自然体系时,我们不能不承认宋代哲学家所研究的概念和近代科学上所用的某些概念并无不同。”[]此外,李约瑟还从现代有机主义的观点出发,对朱熹关于宇宙结构及演化、生命起源及人类产生等思想进行了分析,并给予高度评价,进而把朱熹理学解释为“对有机主义哲学的一种尝试,而且决不是不成功的一次尝试”[]。

李约瑟称朱熹是“中国历史上最高的综合思想家”[]。朱熹不仅把整个自然界综合成一个有机体,而且在更高层次上,把社会伦理道德与自然界融为一体。李约瑟说:朱熹“通过哲学的洞察和想象的惊人努力,而把人的最高伦理价值放在以非人类的自然界为背景。或者(不如说)放在自然界整体的宏大结构(或象朱熹本人所称的万物之理)之内的恰当位置上。根据这一观点,宇宙的本性从某种意义上说,乃是道德的,并不是因为在空间与时间之外的某处还存在着一个指导一切的道德人格神,而是因为宇宙就具有导致产生道德价值和道德行为的特性,当达到了那种组织层次时,精神价值和精神行为有可能自行显示出来。”[]李约瑟认为,朱熹把社会伦理道德与自然界综合为更高层次的有机体,这一思想非常接近于辩证唯物主义和怀特海的有机主义哲学的世界观。

二.

李约瑟崇尚以现代哲学家怀特海为代表的有机主义哲学。他在分析有机主义思想的发展历史时,从现代有机主义者追溯到马克思、恩格斯的辩证唯物主义,黑格尔、莱布尼茨,并且进一步追溯到中国古代的庄子、周敦颐和朱熹。这样,李约瑟就把朱熹的有机自然主义与辩证唯物主义直至现代有机主义哲学联系在一起。他说:“虽然理学家对黑格尔的辩证法一无所知,却十分密切地接近于辩证唯物主义或进化唯物主义的世界观,以及与之性质十分相同的怀特海的有机主义哲学的世界观。”[]并明确地称朱熹理学为“现代有机自然主义的先导”[]。

在李约瑟看来,中国的有机自然主义在战国时期的道家中已见端倪。他先是研究过庄子、《管子》的有机自然主义。后来,他又进一步把逐渐形成的相互联系的思维方式看作是朱熹理学有机自然主义的思想背景,并明确认为,朱熹理学是中国古代有机自然主义的系统化。他说:“中国的这种有机自然主义最初以‘通体相关的思维’体系为基础,公元前3世纪已经由道家作出了光辉的论述,又在12世纪的理学思想家那里得以系统化。”[]

李约瑟在追溯现代有机主义发展的历史时,给予朱熹理学的有机自然主义以很高的评价。他认为,朱熹是在缺乏科学实验和观察的背景下,不曾经历过相当于伽利略和牛顿的阶段,主要是靠洞见而达到一种类似于怀特海有机主义的哲学;而且他认为,标志有机主义在西方第一次出现的莱布尼茨单子论与中国理学家们的有机自然主义有着密切的关系。

李约瑟的《科学思想史》中有“朱熹、莱布尼茨与有机主义哲学”一节;他用历史资料论证莱布尼茨的思想与中国理学的有机自然主义的密切联系。其中转引莱布尼茨的两段言论:“理被称为天的自然规律,因为正是由于理的运作,万物才按照它们各自的地位受着重量和度量的支配。这个天的规律就叫做天道。”“当近代中国的诠释家们把上天的统治归之于自然的原因时,当他们不同意那些总是在寻求超自然(或者不如说超形体)的奇迹和意外救星般的神灵的无知群氓时,我们应该称赞他们。”[]李约瑟认为,“这段话里暗示着近代科学的发现和理学的有机自然主义相吻合更有甚于与欧洲唯灵主义相吻合”[]。李约瑟通过对具体史实材料的分析,说:“从这些材料里面,我们可以看出,即使他(指莱布尼茨———笔者注)本人的哲学体系并非来源于新儒学家,至少他从新儒学家的有机主义中得到不少宝贵的资料和论证。”[]

在李约瑟看来,朱熹理学作为一种有机主义的哲学,它很可能通过莱布尼茨传入西方,而成为西方有机主义形成的重要材料;这也表明马克思、恩格斯的辩证唯物主义和怀特海的有机主义与朱熹理学有着密切的关系。为此,李约瑟说:“现代中国人如此热情地接受辩证唯物主义,有很多西方人觉得是不可思议的。他们想不明白,为什么这样一个古老的东方民族竟会如此毫不犹豫、满怀信心地接受一种初看起来完全是欧洲的思想体系。但是,在我想象中,中国的学者们自己却可能会这样说的,‘真是妙极了!这不就象我们自己的永恒哲学和现代科学的结合吗?它终于回到我们身边来了。’……中国的知识分子之所以更愿意接受辩证唯物主义,是因为,从某种意义上说,这种哲学思想正是他们自己所产生的。”[]

三.

李约瑟把朱熹理学说成是有机的自然主义,是现代有机自然主义的先导,并非仅仅是为了作一种哲学派别的界定,而且还是为了表明朱熹理学与自然科学的一致性,表明朱熹理学对于现代科学的意义。

朱熹深入研究过自然科学,且很有成就。胡道静先生称“朱熹是历史上一位有相当成就的自然科学家”[]。李约瑟对朱熹在自然科学方面的工作和成就也是肯定的。他说:“朱熹是一位深入观察各种自然现象的人。”[]并对朱熹在解释雪花何以呈六角形时将雪花与太阴玄精石的比较予以高度评价,称之“预示了后来播云技术的发展”[]。李约瑟还认为,“朱熹是第一个辨认出化石的人”[],比西方早出400多年。

至于朱熹理学与自然科学的关系,如前所述,李约瑟称朱熹理学“反映了近代科学的立足点”,“和近代科学上所用的某些概念并无不同”,并且还明确地指出:“理学的世界观和自然科学的观点极其一致,这一点是不可能有疑问的。……宋学本质上是科学性的。”[]

不仅如此,由于朱熹理学将自然界与社会伦理道德综合成更高层次的宇宙有机体,探讨自然之理的科学活动与体认道德之理的道德活动已成为一致,作为为学成人起点的格物致知也包括格自然之物在内,包括科学研究在内,因此,朱熹理学实际上已经把科学融入了自身于一体。

李约瑟将朱熹理学界定为有机自然主义,强调其与自然科学的一致性,更多的还是为了说明朱熹理学以及由此发展而来的现代有机主义对于现代科学发展的意义。李约瑟说:“早期‘近代’自然科学根据一个机械的宇宙的假设取得胜利是可能的———也许这对他们还是不可缺少的;但是知识的增长要求采纳一种其自然主义性质并不亚于原子唯物主义而却更为有机的哲学的时代即将来临。这就是达尔文、弗雷泽、巴斯德、弗洛伊德、施佩曼、普朗克和爱因斯坦的时代。当它到来时,人们发现一长串的哲学思想家已经为之准备好了道路———从怀特海上溯到恩格斯和黑格尔,又从黑格尔到莱布尼茨———那时候的灵感也许就完全不是欧洲的了。也许,最现代化的‘欧洲的’自然科学理论基础应该归功于庄周、周敦颐和朱熹等人的,要比世人至今所认识到的更多。”[]

诚然,现代科学进入了新的综合时代。当中国人热衷于西方科学传统时,西方人却从中国科学传统中发掘出能够适应现代科学发展需要的思想。当代著名科学家普里高津说:“我们已经走向一个新的综合,一个新的归纳,它将强调实验及定量表述的西方传统和以‘自发的自组织世界’这一观点为中心的中国传统结合起来。”[]李约瑟对朱熹科学思想的评析,揭示出其中所包含的,对于今天科学发展仍具有重要意义的有机自然主义,这为我们重新审视朱熹理学及其与自然科学的关系打开了一个新的视角。

注释:

[]李约瑟:《四海之内》,三联书店1987年版,第61页。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,北京:科学出版社、上海:上海古籍出版社1990年版,第511页。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第506~507页。

[](宋)黎靖德:《朱子语类》卷一,北京:中华书局1986年版。

[]《朱子语类》卷一。

[](宋)朱熹:《孟子或问》卷三。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第513页。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第514页。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第514页。

[]《朱子语类》卷一。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第510页。

[](宋)朱熹:《太极图说解》。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第498页。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第525页。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第489页。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第485页。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第485~486页。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第2页。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第538页。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第535页。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第535页。

[]李约瑟:《四海之内》,第67页。

[]李约瑟:《四海之内》,第63~67页。

[]胡道静:《朱子对沈括科学学说的钻研与发展》,载《朱熹与中国文化》,上海:学林出版社1989年版。

[]李约瑟:《雪花晶体的最早观察》,载《李约瑟文集》,辽宁科学技术出版社1986年版。

[]李约瑟:《雪花晶体的最早观察》,载《李约瑟文集》。

[]李约瑟:《中国对科学和技术的贡献》,载《李约瑟文集》。

[]李约瑟:《中国科学技术史》第二卷《科学思想史》,第526~527页。