抗坏血酸范文10篇

时间:2023-03-18 23:31:11

抗坏血酸范文篇1

关键字维生素C,直接碘量法,Na2S2O3标准溶液,I2标准溶液

0引言

近年来已报道的测定维生素C(Vc)的含量的方法众多,遗憾的是一般的方法灵敏度低、仪器复杂、操作烦琐。据本小组人员查资料得知现在普遍采用光度法、荧光法、色谱法、电化学分析法等实验方法,实验结果比较准确。但考虑到本分析化学之课程要求,又鉴于本实验条件以及本小组实验人员的技术水平,仍然采用直接碘量法这一经典的测定方法。结合实际,本实验对不同厂家生产的维生素C药片中抗坏血酸的含量进行了测定并进行了比较。

1实验部分

1.1实验原理

维生素C为一酸性己糖衍生物,是烯醇式己糖内酯,有L,D型异构体,易溶于水或酒精,具有很强的还原性,在空气中极易被氧化,尤其在碱性介质中更甚。而在酸性条件下较为稳定。因此在测定时加HAc溶液使溶液呈弱酸性,减少维生素C的副反应。由于维生素C分子中的烯二醇基具有较强的还原性,能被I2定量地氧化成二酮基。

1.2实验仪器与试剂

1.2.1仪器

分析天平;250ml锥形瓶;量筒10ml、100ml;酸式滴定管;烧杯250ml;玻璃棒。

1.2.2试剂

医药维生素C片(厂家:上海医药有限公司信谊制药总厂、南京白敬宇制药厂、湖北华中药业有限公司);HAc溶液(2mol/L);淀粉(0.5%);Na2S2O3标准溶液(0.1038mol/L);I2标准溶液。

1.3实验操作步骤

1.3.1I2标准溶液浓度的标定

I2具有挥发性,因而易引起I2的损失,故直接碘量法要求每次测定维生素C含量之前,首先要标定I2溶液的浓度。具体操作办法如下:

用25ml移液管吸取Na2S2O3标准溶液25.00ml三份,分别置于250ml锥形瓶中,加蒸馏水50.00ml,0.5%淀粉溶液2.0ml,用I2溶液滴定至呈现稳定的蓝色,半分钟不褪色即为终点。计算I2溶液的浓度。

1.3.2样品称取

在分析天平上称取两组维生素C药片,每组取不同厂家的产品各三份,每份0.2—0.3g。

1.3.3滴定维生素C中的抗坏血酸

在250ml锥形瓶中,加入新煮沸过的冷蒸馏水100ml,再加入2mol/LHAc1ml,0.5%淀粉溶液2ml,然后将称好的一份维生素C药片放入溶解,待完全溶解后,立即用I2标准溶液滴定,至呈现稳定的蓝色即为终点。其余各份按此法进行测定,每个厂家测定两次,每次由不同的人平行测定三份。

2实验结果

2.1实验数据的处理结果

2.1.1I2标准溶液浓度的标定结果

C(I2)=0.0902mol/L

3.1.2抗坏血酸含量的测定结果

计算公式:抗坏血酸%=[(CV)I2×(M/1000)vc×100]/m样

式中:C——I2标准溶液浓度(mol/L)

V——滴定时所用I2标准溶液的体积(ml)

M——维生素C的摩尔质量(g/mol)

表一上海医药有限公司信谊制药总厂生产的Vc药片中抗坏血酸的含量

上海医药有限公司

信谊制药总厂

一组

二组

维生素C药片的质量(g)

0.3025

0.3040

0.3022

0.3026

0.3039

0.3039

滴定消耗I2溶液的体积(ml)

12.50

12.60

12.55

12.55

12.68

12.63

抗坏血酸的含量(%)

65.64

65.84

65.97

65.88

66.28

66.99

标准偏差S(%)

0.1662

0.5622

单组抗坏血酸的

平均含量(%)

65.82

66.38

两组中抗坏血酸的

总平均含量(%)

66.10

表二南京白敬宇制药厂生产的Vc药片中抗坏血酸的含量

南京白敬宇制药厂

一组

二组

维生素C药片的质量(g)

0.2450

0.2396

0.2555

0.2439

0.2440

0.2448

滴定消耗I2溶液的体积(ml)

12.90

12.60

13.49

12.85

12.80

12.83

抗坏血酸的含量(%)

83.64

83.54

83.88

83.70

83.34

83.26

标准偏差S(%)

0.1747

0.2344

单组抗坏血酸的平均含量(%)

83.69

83.43

两组中抗坏血酸的总平均含量(%)

83.56

表三湖北华中药业有限公司生产的Vc药片中抗坏血酸的含量

湖北华中药业有限公司

一组

二组

维生素C药片的质量(g)

0.2792

0.2871

0.2875

0.2795

0.2812

0.2801

滴定消耗I2溶液的体积(ml)

12.45

12.79

12.87

12.65

12.60

12.63

抗坏血酸的含量(%)

70.84

70.77

71.14

71.90

71.18

71.63

标准偏差S(%)

0.1966

0.3637

单组抗坏血酸的平均含量(%)

70.92

71.57

两组中抗坏血酸的总平均含量(%)

71.24

2.2显著性检验

T

SX

|X-T|

t

t95,2

是否存在显著性差异

上海医药有限公司信谊制药总厂

66.10

0.20

0.28

1.40

12.71

南京白敬宇制药厂

83.56

0.09

0.13

1.44

湖北华中药业有限公司

71.24

0.18

0.13

1.83

公式:t=|X-T|/SX

式中:X——两组中任一组的平均值

T——对一个厂家六次测定的平均值

SX——平均值的标准偏差。

3实验讨论

从实验结果可以看出,各厂家的维生素C中抗坏血酸的百分含量不一样,但每片药片中抗坏血酸的含量基本为0.1g。从实验中还发现一个有趣的问题,上海医药有限公司信谊制药总厂生产的药片中,每一片中抗坏血酸的含量比较均匀,而南京白敬宇制药厂和湖北华中药业有限公司生产的药片中,每一片所含抗坏血酸的量相差较大。

实验当中,我们还发现,不同厂家的药片,在滴定终点时的颜色并不一样,有的呈蓝色,有的呈蓝紫色。此外,滴定结束后,我们发现溶液中漂浮着一层白色颗粒物,据估计是糊精之类物质。对于以上现象是否会对本实验造成较大影响,由于时间的限制,我们未能做出肯定的答复,有待日后进一步证实。

本实验应用了碘量法测定维生素C中抗坏血酸含量这一较经典的测定方法,在各组平行测定中标准偏差较小。显著性检验中t值较小,说明两组测定不存在显著性差异,如果不存在系统误差,实验结果是值得信赖的。

参考文献1.甘孟瑜,曹渊.大学化学实验(第三版).重庆大学出版社.2003年8月.

抗坏血酸范文篇2

关键字维生素C,直接碘量法,Na2S2O3标准溶液,I2标准溶液

0引言

近年来已报道的测定维生素C(Vc)的含量的方法众多,遗憾的是一般的方法灵敏度低、仪器复杂、操作烦琐。据本小组人员查资料得知现在普遍采用光度法、荧光法、色谱法、电化学分析法等实验方法,实验结果比较准确。但考虑到本分析化学之课程要求,又鉴于本实验条件以及本小组实验人员的技术水平,仍然采用直接碘量法这一经典的测定方法。结合实际,本实验对不同厂家生产的维生素C药片中抗坏血酸的含量进行了测定并进行了比较。

1实验部分

1.1实验原理

维生素C为一酸性己糖衍生物,是烯醇式己糖内酯,有L,D型异构体,易溶于水或酒精,具有很强的还原性,在空气中极易被氧化,尤其在碱性介质中更甚。而在酸性条件下较为稳定。因此在测定时加HAc溶液使溶液呈弱酸性,减少维生素C的副反应。由于维生素C分子中的烯二醇基具有较强的还原性,能被I2定量地氧化成二酮基。

1.2实验仪器与试剂

1.2.1仪器

分析天平;250ml锥形瓶;量筒10ml、100ml;酸式滴定管;烧杯250ml;玻璃棒。

1.2.2试剂

医药维生素C片(厂家:上海医药有限公司信谊制药总厂、南京白敬宇制药厂、湖北华中药业有限公司);HAc溶液(2mol/L);淀粉(0.5%);Na2S2O3标准溶液(0.1038mol/L);I2标准溶液。

1.3实验操作步骤

1.3.1I2标准溶液浓度的标定

I2具有挥发性,因而易引起I2的损失,故直接碘量法要求每次测定维生素C含量之前,首先要标定I2溶液的浓度。具体操作办法如下:

用25ml移液管吸取Na2S2O3标准溶液25.00ml三份,分别置于250ml锥形瓶中,加蒸馏水50.00ml,0.5%淀粉溶液2.0ml,用I2溶液滴定至呈现稳定的蓝色,半分钟不褪色即为终点。计算I2溶液的浓度。

1.3.2样品称取

在分析天平上称取两组维生素C药片,每组取不同厂家的产品各三份,每份0.2—0.3g。

1.3.3滴定维生素C中的抗坏血酸

在250ml锥形瓶中,加入新煮沸过的冷蒸馏水100ml,再加入2mol/LHAc1ml,0.5%淀粉溶液2ml,然后将称好的一份维生素C药片放入溶解,待完全溶解后,立即用I2标准溶液滴定,至呈现稳定的蓝色即为终点。其余各份按此法进行测定,每个厂家测定两次,每次由不同的人平行测定三份。

2实验结果

2.1实验数据的处理结果

2.1.1I2标准溶液浓度的标定结果

C(I2)=0.0902mol/L

3.1.2抗坏血酸含量的测定结果

计算公式:抗坏血酸%=[(CV)I2×(M/1000)vc×100]/m样

式中:C——I2标准溶液浓度(mol/L)

V——滴定时所用I2标准溶液的体积(ml)

M——维生素C的摩尔质量(g/mol)

表一上海医药有限公司信谊制药总厂生产的Vc药片中抗坏血酸的含量

上海医药有限公司

信谊制药总厂

一组

二组

维生素C药片的质量(g)

0.3025

0.3040

0.3022

0.3026

0.3039

0.3039

滴定消耗I2溶液的体积(ml)

12.50

12.60

12.55

12.55

12.68

12.63

抗坏血酸的含量(%)

65.64

65.84

65.97

65.88

66.28

66.99

标准偏差S(%)

0.1662

0.5622

单组抗坏血酸的

平均含量(%)

65.82

66.38

两组中抗坏血酸的

总平均含量(%)

66.10

表二南京白敬宇制药厂生产的Vc药片中抗坏血酸的含量

南京白敬宇制药厂

一组

二组

维生素C药片的质量(g)

0.2450

0.2396

0.2555

0.2439

0.2440

0.2448

滴定消耗I2溶液的体积(ml)

12.90

12.60

13.49

12.85

12.80

12.83

抗坏血酸的含量(%)

83.64

83.54

83.88

83.70

83.34

83.26

标准偏差S(%)

0.1747

0.2344

单组抗坏血酸的平均含量(%)

83.69

83.43

两组中抗坏血酸的总平均含量(%)

83.56

表三湖北华中药业有限公司生产的Vc药片中抗坏血酸的含量

湖北华中药业有限公司

一组

二组

维生素C药片的质量(g)

0.2792

0.2871

0.2875

0.2795

0.2812

0.2801

滴定消耗I2溶液的体积(ml)

12.45

12.79

12.87

12.65

12.60

12.63

抗坏血酸的含量(%)

70.84

70.77

71.14

71.90

71.18

71.63

标准偏差S(%)

0.1966

0.3637

单组抗坏血酸的平均含量(%)

70.92

71.57

两组中抗坏血酸的总平均含量(%)

71.24

2.2显著性检验

T

SX

|X-T|

t

t95,2

是否存在显著性差异

上海医药有限公司信谊制药总厂

66.10

0.20

0.28

1.40

12.71

南京白敬宇制药厂

83.56

0.09

0.13

1.44

湖北华中药业有限公司

71.24

0.18

0.13

1.83

公式:t=|X-T|/SX

式中:X——两组中任一组的平均值

T——对一个厂家六次测定的平均值

SX——平均值的标准偏差。

3实验讨论

从实验结果可以看出,各厂家的维生素C中抗坏血酸的百分含量不一样,但每片药片中抗坏血酸的含量基本为0.1g。从实验中还发现一个有趣的问题,上海医药有限公司信谊制药总厂生产的药片中,每一片中抗坏血酸的含量比较均匀,而南京白敬宇制药厂和湖北华中药业有限公司生产的药片中,每一片所含抗坏血酸的量相差较大。

实验当中,我们还发现,不同厂家的药片,在滴定终点时的颜色并不一样,有的呈蓝色,有的呈蓝紫色。此外,滴定结束后,我们发现溶液中漂浮着一层白色颗粒物,据估计是糊精之类物质。对于以上现象是否会对本实验造成较大影响,由于时间的限制,我们未能做出肯定的答复,有待日后进一步证实。

本实验应用了碘量法测定维生素C中抗坏血酸含量这一较经典的测定方法,在各组平行测定中标准偏差较小。显著性检验中t值较小,说明两组测定不存在显著性差异,如果不存在系统误差,实验结果是值得信赖的。

参考文献1.甘孟瑜,曹渊.大学化学实验(第三版).重庆大学出版社.2003年8月.

抗坏血酸范文篇3

西兰花采后保鲜技术

西兰花采后保鲜技术根据其原理主要包括物理保鲜技术和化学保鲜技术两大类。其中物理保鲜技术主要包括物理措施处理和贮藏环境条件调控等为主要手段的贮藏保鲜方法,如冷藏,气调贮藏,紫外线处理和热激处理等方式;化学贮藏保鲜技术主要是通过化学物质处理,抑制和(或)延缓西兰花采后生理代谢速率,如保鲜剂处理(1-MCP,1-甲基环丙烯),乙醇处理,植物生长调节剂(6-BA,6-苄基腺嘌呤)处理,涂膜处理等方式。

1物理保鲜技术

1.1低温贮藏贮藏温度是影响西兰花品质和货架期的重要因素。郭香风等[6]研究发现,与室温下相比较,低温(4℃)冷藏能显著抑制西兰花净菜组织的褪绿、黄化和褐变,延缓营养物质的下降速度,保持细胞膜完整性,从而较好地保持西兰花净菜的品质,延长货架期6d;张怡等[7]对不同温度下西兰花组织抗氧化活性及品质变化进行了研究,结果表明0℃条件下能有效延长西兰花中Vc、类黄酮、叶绿素和类胡萝卜素含量的保持时间,贮藏第28天时品质良好。XuCJ等[8]研究还发现西兰花花球采收时间与冷藏时间间隔对花球质量产生重要的影响,采收后直接在0℃或5℃冷藏有利于保持硫代葡萄糖苷含量和醌还原酶活性,能较好地保持西兰花感官品质,其贮藏期分别达到了34.7d和17.4d。而在20℃存放时间超过24h,再在低温下进行贮藏时,会导致硫代葡萄糖苷含量和醌还原酶活性的显著下降,降低花球的营养价值和感官质量。。此外不同温度结合MA贮藏[9]和CA贮藏[10]也证实了低温可有效地抑制西兰花的呼吸速率和乙烯释放量,低温(2℃)结合气调贮藏能较好地保持西兰花的品质,抑制微生物生长,延缓了感官品质(黄化,变味,茎腐)的劣变。低温贮藏有利于抑制花球生理代谢水平,减少了乙烯释放量,延缓花球衰老进程,从而抑制了花球开花,此外低温还有利于抑制叶绿素的降解,减少了采后贮藏过程中花球的黄化发生。低温条件下,较低的呼吸消耗有利于保持花球中活性成分和营养物质的含量。再加上西兰花花球低温适应性好(0-5℃),不易发生冷害,因此西兰花在贮藏运输过程中,温度越低(0-20℃),品质保持越好,贮藏时间越长,采收后迅速降温是保证冷藏效果的必要条件。因此低温贮运是一种有效的西兰花贮藏运输方式。

1.2紫外线和光照处理研究发现适宜剂量的UV–C预处理(4.5kJm-2)有利于抑制花球呼吸强度,抑制或延缓花球中叶绿素的降解,从而能显著延缓花球的黄化和褪绿进程[11,12]。UV-C结合热空气处理贮藏效果更佳。UV-C主要是通过诱导花球抗氧化活性[12],抑制花球中叶绿素氧化酶和叶绿素酶的活性而发挥作用的。研究发现UV–C处理随剂量(4-14kJm-2)的增加,西兰花花球中总抗氧化活性越高;此外UV-C处理能有效减少花球中微生物的数量,延长货架期4-6d[11]。而复合处理主要是通过保持花球中的蛋白质含量[13],诱导总酚和抗坏血酸含量的增加,提高组织的中活性氧清除相关酶活性[14],进一步的研究发现复合处理主要是通过抑制脱镁叶绿素酶基因的表达,从而抑制了叶绿色的降解[15]。UV–B处理也具有延缓西兰花贮藏中花球的黄化的效果[16-18]。UV–B处理可能是通过抑制叶绿素降解中的过氧化物酶、叶绿素酶和脱镁叶绿素酶活性而抑制其褪绿过程的。还可能是通过抑制叶绿素降解酶基因的表达,进而抑制了叶绿素酶活性,并最终延缓了西兰花花球贮藏过程中的褪绿和黄化进程[16]。紫外线(UV)处理是一种安全有效的物理处理方式,对于减少西兰花贮藏病害,保持品质具有重要的作用。其延长西兰花贮藏期的主要作用机理在于诱导抗氧化系统酶活性,抑制叶绿素降解相关酶活性或基因表达,从而增强组织的抗氧化系统能力,提高组织抗病性,保持叶绿素和活性物质含量,减少组织表面微生物数量,达到延长贮藏期的目的,由于紫外线是一种无化学污染的物流处理方法,适宜剂量和合理的时间组合处理,能较好地诱导其相关酶如等的产生,提高西兰花组织的抗病性,减少采后腐烂,延缓叶绿素降解。[11,12,16-18]照光处理能保持鲜切西兰花感官质量,延长货架期3d以上,则主要依赖于光照对光合作用和组织抗氧化能力的诱导,从而保持叶绿素含量[19]。照光处理同时促进了花球组织的失水和呼吸速率。因此应防止照光处理促进开花衰老的进程,因此在其应用过程中受到了很大的限制[20]。

1.3气调贮藏

1.3.1自发气调(MA)贮藏MA贮藏是利用果蔬自身的呼吸作用降低贮藏环境中O2浓度,同时提高CO2浓度的一种贮藏方式,在西兰花的贮藏中,应用较为广泛。研究发现采用低密度聚乙烯袋(LDPE,内含乙烯吸收剂)结合低温能较好地保持西兰花花球感官质量和风味[21],MA包装结合低温贮藏还能较好地抑制鲜切西兰花花球贮藏过程中微生物数量,抑制呼吸速率和乙烯生物合成量,延缓黄化、软化风味劣变等过程[9]。张娜等[22]研究发现保鲜膜包装结合冰温贮藏中,以0.05mmPE膜效果最好,西兰花贮藏期可达到110d。西兰花MA贮藏中保鲜膜的打孔数会影响贮藏效果,JiaCG等[23]研究了不同打孔数的聚乙烯保鲜袋对西兰花贮藏感官质量的影响,其中以不打孔包装贮藏效果最好,MA包装有利于抑制脂肪类物质和硫代葡萄糖苷含量的下降,能保持感官质量。在不同孔径大小的保鲜膜MA贮藏过程中,也发现以微孔膜和不打孔的膜贮藏效果最好[24-25],在整个MA贮藏过程中西兰花抗氧化能力,抗坏血酸含量和总酚物质含量基本不变,1℃条件下西兰花贮藏期达28d以上,较对照延长23d。打孔数等主要会影响花球的失水速率,从而影响感官质量,开孔太多或太大会加速失水,还不利于低O2和高CO2气体浓度的保持,因此在MA贮藏中以不打孔或微孔膜包装效果最好。

1.3.2人工气调(CA)贮藏CA贮藏相对于MA贮藏,能够根据果蔬需要调节贮藏环境中的气体浓度,迅速达到降低O2浓度,提高CO2浓度,贮藏效果优于MA贮藏。CA贮藏有利于保持西兰花花球感官质量,包括减少失重率,抑制花球黄化,保持花球新鲜度。CA贮藏还有利于保持西兰花中的功能性成分,如类胡萝卜素、总酚类化合物、酚酸、黄酮类化合物和硫代葡萄糖苷等,维持西兰花的抗氧化活性。最佳气调贮藏条件为:1-2%O2,5-10%CO2,温度1-5℃,湿度98%-100%[26]。XuCJ等[7]研究发现,在5℃下,气调贮藏(21%O2+10%CO2),能保持西兰花较好的感官质量,维持较高的硫代葡萄糖苷含量和醌还原酶活性。CA贮藏(10%CO2+5%O2)抑制了西兰花组织中的蛋白酶活性,能较好地保持花球颜色。这可能是由于CA贮藏抑制了组织中一系列衰老相关基因表达的结果[27]。进一步的研究发现,CA贮藏诱导了四个基因的表达(BoCAR1A,BoCAR5,BoCAR6-4和BoCAR25),而且低氧,高二氧化碳处理的效应要好于单独使用低氧或高二氧化碳处理的效果,似乎预示着西兰花采后CA贮藏通过促进这四个基因的表达来响应[28]。

1.4热激处理采后热处理技术能减少果蔬贮运期间的腐烂,为无毒、无农药残留的采后病害控制提供了一种有效的方法。热空气(48℃,3h)处理鲜切西兰花在0℃贮藏21d后,处理较对照显著抑制了花球的黄化,延缓叶绿素降解,降低电导率,提高了组织中总蛋白和可溶性蛋白含量,保持了鲜切西兰花的感官质量[29]。采后热处理能通过抑制乙烯生物合成,延迟花球贮藏中的黄化速率,进而延缓西兰花贮藏中的衰老进程[30]。而FunamotoY等[31]认为热空气处理(50℃,1h)通过抑制叶绿素酶和叶绿素降解过氧化物酶活性,从而延缓了处理后叶绿素的降解。进一步的发现热处理抑制叶绿素降解,主要是依赖于对脱镁叶绿素酶基因(BoPPH)表达的抑制,而与叶绿素酶基因表达关系不大[15]。由于热处理单独使用很难取得令人满意的效果,目前热处理结合UV-C处理能有效延缓西兰花的黄化速率,保持花球感官质量[13]。热处理结合UV-C处理能提高SOD、CAT、APX(抗坏血酸过氧化物酶)等活性氧清除系统相关酶活性,还能通过增加苯丙氨酸解氨酶活性,提高酚含量和抗坏血酸含量,以增加西兰花贮藏期间抗氧化能力[13]。热激处理主要是通过促进西兰花低温贮藏期间的SOD、CAT、POD和APX等酶活性,提高了西兰花组织内的抗氧化能力,进而延缓了西兰花的衰老进程[32]。

1.5其他处理静电雾化是由于外界干扰引起的液体表面不稳定,导致分裂、细化而形成直径在10到几百微米的液滴,静电雾化水处理具有抑制病毒和病菌生长的作用。雾化处理能有效延缓西兰花采后衰老进程。主要是通过显著抑制其贮藏中的呼吸强度和乙烯生成量,延缓花球黄化,雾化处理能在转录水平促进抗坏血酸合成酶基因和再生基因的表达,对于抗坏血酸代谢基因的调控抑制了抗坏血酸含量的减少。因此在雾化处理中抑制了抗坏血酸含量的下降。[33]

2化学保鲜技术

化学保鲜是采用化学保鲜剂,植物生长调节剂和防腐剂等方法对果蔬进行保鲜,延长果蔬的货架期。化学保鲜技术是一种快速而有效的方法,应用较为广泛。

2.11-MCP处理1-甲基环丙烯(1-methylcyclopropene,1-MCP)是近年来推荐的一种新型乙烯受体抑制剂,可与细胞膜上乙烯受体优先发生不可逆的结合,致使乙烯信号传导受阻,达到延缓后熟、延长保鲜期和提高贮藏品质的目的。研究发现2.5μLL-11-MCP处理能有效地延长西兰花贮藏的货架期,保持西兰花品质,减少采后腐烂,延缓叶绿素降解速度和丙二醛含量增加的速度,抑制多酚氧化酶与脂氧合酶活性,促进SOD,POD和CAT等活性氧代谢酶活性,降低总胡萝卜素和硫代葡萄糖苷含量下降的速度。1-MCP处理还可以通过抑制乙烯生物合成,延迟西兰花花球的衰老黄化进程[34-36]。1-MCP处理主要通过调节抗坏血酸代谢相关基因和叶绿素降解相关酶基因的表达来抑制西兰花贮藏过程中抗坏血酸含量和叶绿素含量的下降[36-37]。

2.2乙醇处理乙醇处理(6mlkg-1,5h)显著降低了西兰花冷藏中的失重率,延缓了叶绿素含量的下降,提高了抗氧化酶SOD和CAT的活性。超微结构显示乙醇对叶绿体外膜及内部基粒片层结构均起到了保护作用,减小了贮藏期间叶绿体的破坏程度,显著延缓了叶绿体结构的解体[38]。乙醇处理(乙醇垫,可缓慢释放出乙醇气体,浓度约40pmolml-1)通过调节乙烯合成中ACS(ACC合成酶)和ACO(ACC氧化酶)的基因表达,抑制了ACS和ACO活性,进而减少了乙烯的生物合成量,在20℃延长了西兰花货架期2d以上[39]。乙醇处理还可能是通过抑制西兰花花球中还原物质的降解速度,保持抗坏血酸-谷胱甘肽循环中消除过氧化氢的酶活性,从而利于抑制西兰花的衰老进程。此外乙醇处理还可能是通过调控叶绿素降解相关基因和酶的活性抑制了叶绿素的降解[40-41]。

2.36-BA处理叶陈亮等[42]研究发现,采用20mgL-16-BA处理能延缓西兰花花蕾中叶绿素和蛋白质的降解速度,提高了SOD和CAT活性,降低H2O2和羟自由基含量,抑制膜脂过氧化作用,延缓花蕾衰老。6-BA结合0.2%苯甲酸钠处理,具有良好的增效作用,进一步推迟花蕾衰老。6-BA处理能够抑制叶绿素酶、脱镁螯合酶和叶绿素降解相关过氧化物酶活性,从而抑制了叶绿素的降解。进一步的研究发现6-BA处理主要抑制了脱镁叶绿素酶基因的表达,从而抑制了叶绿素的降解[43-44]。

2.4涂膜保鲜采用壳聚糖或羧甲基纤维素涂膜处理能有效地抑制西兰花花球贮藏过程中的失水率,延缓花球黄化和叶绿素降解。壳聚糖涂膜(2gmL-1)相对于对照处理,能显著降低西兰花整个贮藏过程中大肠杆菌的数量,抑制花球黄化和花蕾开放[45-47]。

2.5其他处理KimYJ等[48]研究发现西兰花采后用二氧化氯(50mgL-1)结合富马酸(0.5%)处理,可以有效减少细菌,酵母菌和霉菌的菌群数量,从而有效延长西兰花采后贮藏时间。而采用CPPU(对氯苯磺酸酯,10mgL-1)结合GA3(赤霉素,50mgL-1)处理能有效的延缓西兰花采后颜色的变化,降低呼吸速率,显著抑制了花球的褐变,延缓了可溶性固形物含量升高的速率,还能较好抑制花球失水率[49]。

西兰花贮藏保鲜原理示意图

综上所述,西兰花贮藏过程中主要问题是由于衰老引起的花球开放、黄化,伴随着衰老进程的到来,引起花球营养物质损失,体内积累自由基和次生代谢产物,最终影响到产品的香气、风味、质地、感官及营养品质。其次失水和病害也是影响西兰花贮藏的重要方面。因此在贮藏保鲜原理主要是延缓花球衰老进程。

结论与前景

抗坏血酸范文篇4

1.分析方法简述

1.1主要仪器、试剂、材料

(1)紫外可见光分光光度计:UV1700,日本岛津;

(2)电子天平:AE240,最小分度0.1mg,梅特勒-托利多仪器(上海)有限公司;

(3)单标线吸量管:10.00mL;

(4)单标线容量瓶:250mL;

(5)磷酸二氢钾。

1.2测定原理

在酸性溶液中,用过硫酸钾作分解剂,将聚磷酸盐和有机膦转化为正磷酸盐,正磷酸盐与钼酸铵反应生成黄色的磷钼杂多酸,再用抗坏血酸还原成磷钼蓝,于710nm最大吸收波长处分光光度法测定。

1.3实验步骤

1.3.1磷标准储备溶液的制备

准确称量0.1791克预先在100~105℃干燥已恒重的磷酸二氢钾,溶于水中,定量转移至250mL容量瓶中,用水稀释至刻度,摇匀,浓度为1mL含有0.5mg。

1.3.2磷标准工作溶液的制备

吸取10.00mL磷标准储备溶液于250mL容量瓶中,用水稀释至刻度,摇匀,浓度为1mL含有0.02mg。

1.3.3标准曲线绘制

用10.00mL分度吸量管分别移取0.00,1.00,2.00,3.00,5.00,7.00,9.00mL于50mL容量瓶中,依次向各瓶中加入约25mL水,2.0mL钼酸铵溶液(26g/L),3.0mL抗坏血酸溶液(20g/L),用水稀释到刻度,摇匀,室温下放置10min,在分光光度计710nm处,用1cm吸收池,以空白作参比,测量吸光度,绘制标准曲线。

1.3.4样品测定

吸取水样10.00mL,于100mL锥形瓶中,加入硫酸溶液(1+35)1.0mL,5.0mL过硫酸钾溶液(40g/L),调整水样体积约25mL,缓缓煮沸15min至快蒸干为止,取下冷却至室温,定量转移至50mL容量瓶中,依次加入2.0mL钼酸铵溶液(26g/L),3.0mL抗坏血酸溶液(20g/L),用水稀释到刻度,摇匀,室温下放置10min,在分光光度计710nm处,用1cm吸收池,以空白作参比,测量吸光度,根据标准曲线得到样品的含量,同样方法做空白试验[2]。

2影响测定结果的原因

在测定过程中发现,工作标准曲线相关性、样品的消解过程、水样浊度过高对分析结果影响较大。目前的钼酸铵分析方法对这些实验条件叙述的不够详细,使得在实际检测时测定结果不稳定,重复性测定效果差。笔者通过实际工作,分析影响检测结果准确性因素,进行有效控制,降低了测定中的干扰因素,减少了重复性工作,提高了分析结果的准确和可靠性。

2.1工作标准曲线相关性的影响

磷酸盐与酸性钼酸铵作用,经还原生成蓝色化合物,采用分光光度法,在波长710nm处测定其吸光值,确定其吸光值与浓度成正比的线形范围,并选取适宜的线形范围绘制标准曲线。经实验发现在分别取0.00、1.00、2.00、3.00、5.00、6.00、7.00、8.00、9.00mL磷酸根标准溶液于50mL容量瓶中,用水稀至约25mL,摇匀,加2.0mL钼酸铵溶液(26g/L),3.0mL抗坏血酸溶液(20g/L),在此标准系列下做工作曲线,如表1所示,从加6.00mL磷酸根标准溶液开始,曲线相关性差,影响测定结果的准确度。表1只列举平时实验的两组数据,从多组实验数据中可以看出,浓度越高,相关性越不好,反应后的溶液浑浊不清亮,高浓度的点飘移不稳。标准曲线制作的好坏,将会影响测定结果的准确度。

2.2水样中浊度的影响

(1)现场取一化循环水样,如表2所示,先测定浊度为5.86NTU,样品过滤和不过滤进行检测。(2)现场取炼油三循-2循环水样,如表3所示,先测定浊度为15.8NTU,样品过滤和不过滤进行检测。从表2、表3中可以看出,水样浊度的高低,对总磷结果的的测定有影响。水样浊度低于10NTU时,对总磷的检测影响不十分明显。水样浊度大于10NTU时,对总磷的检测影响十分明显。

2.3样品的消解过程

(1)配置磷酸根标准溶液浓度为10mg/L,加热消解,至刚冒烟为止,没有沉淀产生,稍冷,加水转移至容量瓶中,然后进行检测。(2)配置磷酸根标准溶液浓度为10mg/L,加热消解,至干,有沉淀产生,稍冷加入少量水溶解,然后进行检测。从图1可以看出,样品的消解方法不同,检测结果相差特别大。第一种消解方法,检测结果的准确度和精密度都比较好,标样的转化率在99.5%~100%之间,能满足方法的要求。第二种消解方法检测结果准确度和精密度偏低,检测数据离散,标样的转化率在82%~89%之间偏低,分析结果的准确度不理想。

3总磷检测过程中影响因素控制

在检测过程中,除了要严格按照检定规程进行操作外,还要对检测过程中影响检测结果准确度的因素进行适当的控制。采取以下措施,使影响因素控制在一定的误差范围内,能更好地提高检测结果的准确度。

3.1提高工作曲线的相关性

在实际工作中,经过多次反复实验,总磷曲线从6.00mL开始因浓度高、样品易浑浊,与做曲线时间、温度、溶解有关。分别取0.00、1.00、2.00、3.00、、5.00、6.00、7.00、8.0、9.00mL磷酸根标准溶液于50mL容量瓶中,加水约25mL,先从高浓度加起,边加边用力摇匀,加钼酸铵溶液和抗坏血酸溶液也是先从高浓度加起,边加边用力摇匀,一定要溶解完全。再就是做曲线时要避免阳光直晒,显色时间不要超过10分钟,反应的溶液清亮不浑浊,如表4所示,高浓度的点不飘移,相关系数γ最少能达到0.9995以上。选取两组工作曲线数据进行比较。

3.2水样的检测

(1)水样先检测浊度,根据浊度大小,再决定水样过滤与否。(2)选电厂循环水-1,如图2所示,先测定浊度为5.65NTU,不过滤,进行检测。(3)选炼油三循-1,如图3所示,先测定水样浊度为11.8NTU,将水样过滤后,进行检测。

3.3选择正确的样品消解方式

循环水采样后,分析检测时,样品的消解过程,至刚冒烟为止,没有沉淀产生,然后进行检测。选一化循环水,如图4所示,样品的消解过程,至刚冒烟为止,没有沉淀产生,然后进行检测。

抗坏血酸范文篇5

论文摘要:研究了石榴酒发酵过程中二氧化硫添加量、果胶酶用量、pH值和抗氧化剂(护色剂)对石榴酒色泽的影响;以吸光度为指标,通过单因素和正交试验对比,结果表明石榴酒护色的最佳工艺条件为二氧化硫浓度60mg/L、果胶酶用量0.08%、pH值3.2、抗坏血酸浓度0.03%。

石榴酒色泽明亮、醇香诱人,含多种微量元素、氨基酸及多种维生素,特别是钙含量极高,是一般葡萄酒含钙量的数十倍,是一种对人体有益的天然钙源。石榴酒中的葡萄糖、果糖和多种氨基酸能够直接被人体吸收。据宋朝至今的93种本草、民间验方书籍及现代研究证实,石榴酒对降低血脂、软化血管,增强心脏活力以及预防癌症有辅助作用,同时对乙型肝炎抗原(HBAG)有较强的抑制作用[1,2]。

1材料与方法

1.1材料与设备

1.1.1试验材料

新疆石榴,市售;果酒酵母:湖北安琪生物集团有限公司;果胶酶:天津利华生物有限公司;白砂糖:市售。

1.1.2主要仪器及设备

TU-1810紫外可见分光光度计:北京普析通用仪器有限责任公司;TGL-1C高速台式离心机:上海安亭科学仪器厂;HWS26型电热恒温水浴锅:上海一恒科学仪器有限公司;DHG-9140A型电热恒温鼓风干燥箱:上海一恒科学仪器有限公司;LDZX-50KB立式电热压力蒸汽灭菌器:上海申安医疗器械厂;LHS-150SC恒温恒湿箱:上海一恒科学仪器有限公司;RE-85C旋转蒸发器:上海青浦沪西仪器厂;SHB-III循环水式多用真空泵:郑州长城科工贸有限公司。

1.2主要试剂

偏重亚硫酸钾,柠檬酸,碳酸钙,抗坏血酸(VC),葡萄糖,硫酸铜,次甲基蓝,酒石酸钾钠等,均为分析纯。

1.3工艺流程

1.4操作要点

1.4.1石榴原料处理

选择新鲜、无病斑、个大、色艳、皮薄、味甜、籽粒饱满的石榴果实为原料。因石榴大小不一,形状各异,皮质坚硬含有较高的鞣质,不易采用机械去皮,故以人工去皮。

1.4.2澄清杀菌

石榴汁在发酵前应做澄清和杀菌处理,澄清剂用果胶酶,同时加入二氧化硫,其除具有一定的杀菌作用外,也能起到澄清的作用,在加入时应一次加到量,不可分批加入。

1.4.3成分的调整

石榴汁用果胶酶澄清处理后,根据需要调整其糖度及酸度。本试验将石榴汁糖度调至18%。添加蔗糖的时间在发酵刚刚开始的时候,且一次加完。酸度用柠檬酸或碳酸钙调至最适pH值,一般果酒酵母生长繁殖的最适pH值为3.1~3.8。

1.4.4接种发酵

在澄清调配好的石榴汁中加入0.04%的活性果酒干酵母。活性干酵母在加入前用35℃5%的蔗糖溶液活化,主发酵温度26~28℃,(4~5)d,发酵过程进行3次倒罐。当糖分下降,相对密度达到1.020左右时转入后发酵。后发酵温度18~22℃,(10~15)d,使残糖在4g/L以下。发酵结束后及时分离酒脚,再低温储存3~6个月后即可达到成熟[3]。

2结果分析

2.1不同品种原料对色泽的影响

新疆石榴的主要品种有大籽甜石榴、甜石榴、酸甜石榴、酸石榴等[4-5].。不同品种原料所酿造的石榴酒的品质差别较大,酸石榴所酿制的酒,度数较低,可通过添加蔗糖改善,且成本低廉。用甜石榴酿酒,其色泽达不到商品酒要求,且果酒中不能添加人工色素,若使用天然色素,将会大大提高生产成本。

2.2原料处理对品质的影响

石榴皮中含有大量单宁,如不将其除去,当发酵醪中单宁浓度达到一定界限值会阻滞酵母活力,甚至使发酵停止。这是因为过多单宁吸附在酵母细胞膜表面,妨碍了原生质的正常生活,阻碍了透析,使酒精酶的作用停止。同时如发酵液中单宁含量高,也会使所得原酒入口粗糙,尾味较苦涩;果粒籽中含多种有害石榴酒风味的物质,如脂肪、树脂、挥发酸等,这些物质在发酵液中发酵时,会使成品酒酒液浑浊,并影响产品的风味质量,因此,压榨时应尽量避免将石榴籽的内核压碎。

2.3二氧化硫对色泽稳定性的影响

二氧化硫在果酒中的作用表现为杀菌、澄清、抗氧化、增酸和改善口味等,对石榴色素的还原作用十分明显(因此在整个生产过程中应尽可能地减少二氧化硫的使用量,并注意隔氧贮存)[6],其与石榴汁中色素物质的结合可使色素暂时失去颜色,但当二氧化硫慢慢消失,色素重又游离,石榴汁的吸光度会逐渐增大。将刚压榨好的石榴汁经不同浓度二氧化硫处理,24h后在最大吸收波长580nm处测定吸光度及透光率,结果见表1。

由表1看出,石榴汁的吸光度随二氧化硫添加量的增大而逐渐减小,即色泽稳定性变差,在其最大浓度120mg/L时为褐红色,不能达到作为商品的要求;而澄清度随二氧化硫添加量的增大提高,但在二氧化硫最小的添加量40mg/L时,石榴汁的澄清度则太差。选择(60~100)mg/L浓度时能达到较满意的处理效果。

2.4果胶酶对色泽稳定性的影响

利用果胶酶分解石榴汁中的果胶物质,破坏胶体保护作用,从而加速石榴汁的澄清[7]。将鲜榨石榴汁经0.02%、0.05%、0.08%果胶酶处理,在580nm处的吸光度如图1。

由图1看出,果胶酶不仅对石榴汁的澄清度有明显影响,而且在一定程度上影响其色泽的变化,原因可能是部分色素物质被沉淀颗粒吸附,并随沉淀物除去。

2.5抗氧化剂对色泽稳定性的影响

抗氧化剂的作用主要是保护色素以及风味物质和一些营养物质,避免其与氧气作用发生变化。果酒中常用的抗氧化剂为VC和柠檬酸等。鲜石榴汁经不同浓度的抗坏血酸处理后,580nm波长吸光度见图2。

由图2看出,石榴汁在VC保护下,其颜色变化幅度相对较小,具有明显的护色作用。

2.6不同酸度对色泽稳定性的影响

若石榴汁的酸度不足,各种有害细菌就会生长繁殖,对酵母发生危害,尤其是在发酵完毕时,制成的酒口味淡薄、瘦弱、颜色不清。酸在一定程度上能够保护色素物质,并能对抗氧化剂起到协同作用。将鲜榨石榴汁用柠檬酸或碳酸钙调整酸度分别为3.2、3.5、3.8,每隔20min在吸光度为580nm处测定一次吸光度。

由图3可看出,吸光度随pH值的降低而增大,并变化趋势随之缓慢,说明在一定程度上酸度越大,对石榴酒的护色作用越明显,而且调整酸度所用的柠檬酸也有护色作用,柠檬酸与抗坏血酸如果复配使用能起到增效的作用[8]。

2.7各添加剂对石榴酒色泽稳定性正交试验

二氧化硫和柠檬酸的加入都能够改变石榴汁的pH值,且果胶酶在不同pH值下,其作用的发挥也不相同,因此,进行L9(34)正交试验,见表2。

由表2可知,各因素对试验指标的影响程度为二氧化硫浓度>VC添加量>果胶酶添加量>pH。各因素的最佳水平组合为A3B1C3D3,即石榴酒护色的最佳条件为二氧化硫浓度60mg/L、抗坏血酸0.03%、pH值3.2、果胶酶添加量0.08%。

3结论

石榴酒色泽的不稳定性是长期困扰石榴酒加工企业的一个难题。由于加工过程中破坏了果肉细胞的组织,致使其中的酶、色素和一些营养物质与空气中的氧气和一些催化因子(如金属离子)相接触,造成石榴酒在酿造的过程中极易发生变色。本试验得出保持石榴酒色泽稳定性的最佳基本工艺条件为:选择含酸量高、颜色深艳的品种作为原料,人工去皮,破碎时添加SO2的量为60mg/L,以抗坏血酸为护色剂,其浓度为0.03%,澄清用果胶酶用量0.08%,发酵液pH控制在3.2。

参考文献:

[1]翟文俊,杨春霞,等.全发酵石榴酒的营养价值和保健作用[J].食品科技,2007,(8):278-281.

[2]薛晓珍.新疆石榴的营养成分及用途[J].仪器仪表与分析检测,2002,(3):44-45.

[3]唐虎利,谢亚玲.浸渍发酵法酿制干红石榴酒[J].酿酒科技,2004,(6):74-76.

[4]王爱伟,刘春鸽.我国石榴产业发展现状及对策[J].北方果树,2006,(6):35-37.

[5]古丽米热.新疆石榴产业现状与未来发展[J].西北园艺,2003,(6):7-8.

[6]吴连军,于玲.SO2对石榴酒发酵的影响研究[J].酿酒,2007,(2):72-74.

抗坏血酸范文篇6

关键词:植物组织培养,褐变,对策

目前,在许多植物组织培养过程中,常遇到褐变问题。褐变主要发生在外植体,在植物愈伤组织的继代、悬浮细胞培养以及原生质体的分离与培养中也经常发生。褐变产物不仅使外植体、细胞、培养基等变褐,而且对许多酶有抑制作用,从而影响培养材料的生长与分化,严重时甚至导致死亡。本文探讨植物组织培养中褐变现象的影响因素、机理及防范措施,对我们进行科学研究或工厂生产,包括植物组织的培养,原生质体、悬浮细胞和植物器官的培养都有着十分重要的现实意义。

1褐变产生的影响因素

影响植物组织培养褐变的因子是复杂的,因植物的种类、基因型、外植体部位及生理状态等不同,褐变的程度也有所不同。

1.1植物种类及基因型不同的植物和不同的基因型决定了不同的褐化程度。在组织培养中,品种褐化难易可能是与该品种中多酚类物质含量的多少及多酚氧化酶(PPO)活性的差异有关。

1.2外植体部位及生理状态外植体的部位及生理状态不同其褐化程度不同,同时,不同时期和不同年龄的外植体在培养中褐变的程度也不同。

1.3培养基成分培养基成分中的无机盐、蔗糖浓度、激素水平等对褐变的程度的影响尤为重要。另外,其pH值也与褐变程度有较大关系。

1.4培养条件温度过高或光照过强,均可加速被培养组织的褐变。不利环境条件都能造成细胞的程序化死亡,温度是诱导程序化死亡的主要因素[1]。

2褐变产生的机理

2.1非酶促褐变

非酶促褐变是由于细胞受胁迫或其他不利条件影响所造成的细胞程序化死亡或自然发生的细胞死亡,即坏死形成的褐变现象,并不涉及酚类物质的产生。徐振彪等[1]将生长正常的愈伤组织转移到含NaCl的培养基中,组织周围尤其是接触培养基部分发生褐变,但培养基中没有看到扩散的褐化物质。当温度升高时继代保存时间过长,也会发生此类现象。但这种褐变若采取适当措施或者愈伤组织适应了胁迫环境就不再发生了[3]。

2.2酶促褐变

目前认为植物组织培养中的褐变主要是由酶促褐变引起的,培养材料变褐主要是由伤口处分泌的酚类化合物引起的[4]。酶促褐变如同一般的酶促反应,其发生必须具备三个条件,即酶、底物和氧。引起褐变的酶有多酚氧化酶(PPO)、过氧化物酶(POD)、苯丙氨酸解氨酶等。从初次培养和继代培养过程中试管苗的褐变程度和PPO的活性来看,表明PPO活性的高低是引起培养材料褐变的关键。引起褐变的酶的底物主要是酚类化合物,按其组成可分成3类:苯基羧酸(包括邻羟基苯酚、儿茶酚、没食子酸、莽草酸等),苯丙烷衍生物(包括绿原酸、肉桂酸、香豆酸、咖啡酸、单宁、木质素等),第三类是黄烷衍生物(包括花青素、黄酮、芸香苷等),但并非所有的酚类物质都是PPO的底物。

在正常发育的植物组织中,底物、氧气、PPO同时存在并不发生褐变,是因为在正常的组织细胞内由于多酚类物质分布在细胞的液泡内,而PPO则分布在各种质体或细胞质中,这种区域性分布使底物与PPO不能接触。而当细胞膜的结构发生变化和破坏时,则为酶创造了与PPO接触的条件,在氧存在的情况下使酚类物质氧化成醌,进行一系列的脱水、聚合反应,最后形成黑褐色物质,从而引起褐变。

3防止外植体产生褐变的对策

从理论上讲,酶促褐变可以通过以下三种方法加以抑制:一是除去引起氧化的物质——氧;二是捕捉或减少聚合反应的中间产物;三是抑制有关的酶。实际操作上,下列措施是被认为行之有效的。

[NextPage]3.1适当外植体的选择

取材时应注意选择褐变程度较小的品种和部位作外植体。成年植株比幼苗褐变程度厉害,夏季材料比冬季及早春和秋季材料的褐变要严重。冬季的芽不易生长,宜选用早春和秋季的材料作为外植体。王异星[5]用荔枝无菌苗不同组织的诱导试验表明,茎最容易诱导出愈伤组织,培养2周后长出浅黄色的愈伤组织;叶大部分不能产生愈伤组织或诱导出的愈伤组织中度褐变;而根极大部分不产生愈伤组织,诱导出的愈伤组织全部褐变。

3.2对外植体的处理

通过对较易褐变的外植体材料的预处理能减轻醌类物质的毒害作用。处理方法如下:外植体经流水冲洗后,在2-5℃的低温下处理12-24小时,再用升汞或70%酒精消毒,然后接种于只含有蔗糖的琼脂培养基中培养5-7天,使组织中的酚类物质部分渗入培养基中。取出外植体用0.1%漂白粉溶液浸泡10分钟,再接种到合适的培养基中。若仍有酚类物质渗出,3-5天后再转移培养基2-3次,当外植体的切口愈合后,酚类物质减少,这样可使外植体褐变减轻或完全被抑制。何琼英等[6]用抗坏血酸预处理香蕉吸芽外植体,能减轻外植体褐变,从而提高芽丛诱导率。

3.3适宜的培养基

培养基的成分与褐变程度有关,要考虑所选培养基的状态和类型。

3.3.1适当的无机盐浓度张妙霞等[7]在柿树组织培养防止褐变所进行的试验中,4种培养基的无机盐以改良MS(大量元素减半)和1/2MS的效果最好,MS的效果较差,结果证明低浓度的无机盐可促进外植体的生长与分化,减轻外植体褐变的程度。徐振彪[1]在对玉米幼胚耐NaCl愈伤组织的筛选表明,随NaCl浓度升高,褐变现象加重。

3.3.2适当和适量的激素王异星[5]在荔枝的组织培养过程中,培养基中添加1mg/LBA+0.5mg/L2,4-D时,愈伤组织较坚硬,增殖缓慢,易产生褐变。培养基中添加1mg/LBA+1mg/L2,4-D时,愈伤组织浅黄疏松,增殖也快。

3.3.3培养基的硬度在一定范围内,琼脂用量大,培养基硬度大,褐变率低[8],这可能是培养基的硬度影响了酚类物质的扩散速度的缘故。

3.3.4培养基中水的硬度的影响硬度低的蒸馏水褐变率低,而使用硬度较高的自来水,褐变严重,甚至会出现褐变死亡[8]。这可能是配制培养基的水改变了培养基中无机盐的浓度,间接地影响了植物外植体的褐变。

3.3.5培养基的pH值在水稻体细胞培养中,pH值为4.5-5.0时MS液体培养基可保持愈伤组织处于良好的生长状态,其表面呈黄白色,而pH值为5.5-6.0时,愈伤组织严重褐变[9]。一般来说,酸性环境(pH值为4.5-5.0)不利于褐变过程的发生[10]。

3.3.6培养条件如温度过高或光照过强,光照会提高PPO的活性,促进多酚类物质的氧化,从而加速被培养的组织褐变。高浓度CO2也会促进褐变,其原因是环境中的CO2向细胞内扩散,细胞内CO32-增多,CO32-与细胞膜上的CO32-结合,使有效CO32-减少,导致内膜系统瓦解,酚类物质与PPO相互接触,产生褐变[11]。因此,初期培养要在黑暗或弱光下进行。

3.4添加褐变抑制剂和吸附剂

褐变抑制剂主要包括抗氧化剂和PPO抑制剂。在培养基中加入偏二亚硫酸钠、L-半胱氨酸、抗坏血酸、柠檬酸、二硫苏糖醇等抗氧化剂都可以与氧化产物醌发生作用,使其重新还原为酚[12]。由于其作用过程均为消耗性的,在实际应用中应注意添加量,其中L-半胱氨酸和抗坏血酸均对外植体无毒副作用,在生产应用中可不受限制。在水稻细胞的培养基中,添加植酸(PA),可防止褐变,PA分子中众多的羟基产生抗氧化作用,使生色物质的含量下降或PA与PPO分子中的Cu2+结合,从而降低了其活力。陈学森等[13]在对植酸在银杏组织培养中应用的研究中也证实了植酸具有抑制多酚氧化酶活性的作用。

常用的吸附剂有活性炭和聚乙烯吡咯烷酮(PVP)。活性炭是一种吸附性较强的无机吸附剂,能吸附培养基中的有害物质,包括琼脂中的杂质、培养物在培养过程中分泌的酚、醌类物质以及蔗糖在高压消毒时产生的5-羟甲基糠醛等,从而有利于培养物的生长。粉末状的活性炭与颗粒状的活性炭相比吸附性更强,一般在培养基中加入1-4g/L的活性炭。在使用过程中应注意,尽量用最低浓度的活性炭来对抗褐变的产生,因为活性炭的吸附作用是没有选择性的,在吸附物质的同时,也会吸附培养基中的其他成分,对外植体的诱导分化会产生一定的负面影响[14]。而聚乙烯吡咯烷酮(PVP)是酚类物质的专一性吸附剂,在生化制备中常用作酚类物质和细胞器的保护剂,可用于防止褐变[15]。

3.5进行细胞筛选和多次转移

在组织培养过程中,经常进行细胞筛选,可以剔除易褐变的细胞。在外植体接种1-2天后应立即转移到新鲜培养基中,能减轻酚类物质对培养物的毒害作用,降低抑制作用,使外植体尽快分生,连续转移5-6次,可基本解决外植体的褐变问题。

参考文献:

[1]徐振彪等.植物组织培养过程中的褐化现象.国外农学——杂粮作物,1997(1):55~56.

[2]符近.三种不同类型种子休眠萌发及马占相思种子老化过程的研究.北京农业大学硕士研究生论文,1996.

[3]傅作申,玉米耐NaCl幼胚愈伤组织的筛选及特性分析,长春农牧大学硕士论文,1996.

[4]颜昌敏编著,植物组织培养手册,上海科学技术出版社,1990.

[5]王异星.荔枝细胞培养的初步研究.暨南大学学报,1997,18(5):84~85.

[6]何琼英等.抗坏血酸预处理阻止香蕉吸芽外植体褐变的研究初报.华南农业大学学报,1995,16(3):79~82.

[7]张妙霞.柿树组织培养防止外植体褐变的研究.河南农业大学学报,1999,33(1):87~91.

[8]金坚敏.水稻幼穗和成熟种子诱导胚状体时的有关因子探讨.植物学通报,1992,9(2):53~54.

[9]金坚敏.水稻幼稿和成熟种子诱导胚状体时的有关因子探讨.植物学通报,1992.

[10]王东霞等,如何对抗植物组织中的组织褐变,中国花卉盆景,2002,12:29~30.

[11]姚洪军,罗晓芳,田砚亭.植物组织培养外植体褐变的研究进展.北京林业大学学报,1999,21(3):78~83.

[12]蔡金星等.不同品种梨多酚氧化酶特性及其抑制剂的研究.河北农业技术师范学院学报,1999,13(1):55~57.

[13]陈学森,张艳敏等,植酸在银杏组织培养中应用的研究.天然产物研究与开发,1997,9(2):24~27.

抗坏血酸范文篇7

论文摘要:植物组织培养过程中,褐变问题普遍存在,与菌类污染和玻璃话现象并称为植物组织培养的三大难题。针对褐变难题,本文结合相关资料,对影响褐变的因素作了全面分析,褐变的影响因素是复杂的,随植物种类外植体的部位几生理状况培养基及培养条件的不同而危害的程度有所不同,对这些因素是内因外界影响作用作了分析并针对这些因素提出了相应的解决措施。

在许多植物组织培养过程中,常遇到褐变问题。褐变主要发生在外植体,在植物愈伤组织的继代、悬浮细胞培养以及原生质体的分离与培养中也经常发生。褐变产物不仅使外植体、细胞、培养基等变褐,而且对许多酶有抑制作用,从而影响培养材料的生长与分化,严重时甚至导致死亡。本文探讨植物组织培养中褐变现象的影响因素、机理及防范措施,对我们进行科学研究或工厂生产,包括植物组织的培养,原生质体、悬浮细胞和植物器官的培养都有着十分重要的现实意义。

1褐变原因及危害

褐变是指外植体在培养过程中,自身组织从表面培养基释放褐色物质,以致培养基逐渐变成褐色,外植体也随之进一步变褐而死亡的现象。褐变的发生与外植体组织中所含的酚类化合物数量多少及多酚氧化酶活性有直接关系。很多植物,尤其是木本植物都含有较高的酚类化合物,这些酚类化合物在完整的组织和细胞中与多酚氧化酶分隔存在,因而比较稳定。在切割外植体时,切口附近的细胞受到伤害,其分割状态被打破,酚类化合物外溢。对于外植体本身来讲,酚类物质从外植体切口向外溢出是一种自我保护性反应,可诱导植保素或无物理屏障的形成,以防止微生物侵染组织。但酚类很不稳定,在溢出过程中与多酚氧化酶接触,在多酚氧化酶的催化下,迅速氧化成褐色的醌类物质和水,醌类物质又会在酪氨酸酶等的作用下,与外植体组织中的蛋白质发生聚合,进一步引起其他酶系统失活。从而导致组织代谢活动紊乱,生长停滞,最终衰老死亡。此外,由于组织的老化病变也会使多酚氧化酶激活而引起褐变。

2褐变产生的机理

2.1非酶促褐变

非酶促褐变是由于细胞受胁迫或其他不利条件影响所造成的细胞程序化死亡或自然发生的细胞死亡,即坏死形成的褐变现象,并不涉及酚类物质的产生。徐振彪等[1]将生长正常的愈伤组织转移到含NaCl的培养基中,组织周围尤其是接触培养基部分发生褐变,但培养基中没有看到扩散的褐化物质。当温度升高时继代保存时间过长,也会发生此类现象。但这种褐变若采取适当措施或者愈伤组织适应了胁迫环境就不再发生了[3]。

2.2酶促褐变

目前认为植物组织培养中的褐变主要是由酶促褐变引起的,培养材料变褐主要是由伤口处分泌的酚类化合物引起的[4]。酶促褐变如同一般的酶促反应,其发生必须具备三个条件,即酶、底物和氧。引起褐变的酶有多酚氧化酶(PPO)、过氧化物酶(POD)、苯丙氨酸解氨酶等。从初次培养和继代培养过程中试管苗的褐变程度和PPO的活性来看,表明PPO活性的高低是引起培养材料褐变的关键。引起褐变的酶的底物主要是酚类化合物,按其组成可分成3类:苯基羧酸(包括邻羟基苯酚、儿茶酚、没食子酸、莽草酸等),苯丙烷衍生物(包括绿原酸、肉桂酸、香豆酸、咖啡酸、单宁、木质素等),第三类是黄烷衍生物(包括花青素、黄酮、芸香苷等),但并非所有的酚类物质都是PPO的底物。

在正常发育的植物组织中,底物、氧气、PPO同时存在并不发生褐变,是因为在正常的组织细胞内由于多酚类物质分布在细胞的液泡内,而PPO则分布在各种质体或细胞质中,这种区域性分布使底物与PPO不能接触。而当细胞膜的结构发生变化和破坏时,则为酶创造了与PPO接触的条件,在氧存在的情况下使酚类物质氧化成醌,进行一系列的脱水、聚合反应,最后形成黑褐色物质,从而引起褐变。

3褐变产生的影响因素

影响植物组织培养褐变的因子是复杂的,因植物的种类、基因型、外植体部位及生理状态等不同,褐变的程度也有所不同。

3.1植物种类及基因型不同的植物和不同的基因型决定了不同的褐化程度。在组织培养中,品种褐化难易可能是与该品种中多酚类物质含量的多少及多酚氧化酶(PPO)活性的差异有关。

3.2外植体部位及生理状态外植体的部位及生理状态不同其褐化程度不同,同时,不同时期和不同年龄的外植体在培养中褐变的程度也不同。

3.3培养基成分培养基成分中的无机盐、蔗糖浓度、激素水平等对褐变的程度的影响尤为重要。另外,其pH值也与褐变程度有较大关系。

3.4培养条件温度过高或光照过强,均可加速被培养组织的褐变。不利环境条件都能造成细胞的程序化死亡,温度是诱导程序化死亡的主要因素[1]。

4防止外植体产生褐变的对策

从理论上讲,酶促褐变可以通过以下三种方法加以抑制:一是除去引起氧化的物质——氧;二是捕捉或减少聚合反应的中间产物;三是抑制有关的酶。实际操作上,下列措施是被认为行之有效的。

4.1适当外植体的选择

取材时应注意选择褐变程度较小的品种和部位作外植体。成年植株比幼苗褐变程度厉害,夏季材料比冬季及早春和秋季材料的褐变要严重。冬季的芽不易生长,宜选用早春和秋季的材料作为外植体。王异星[5]用荔枝无菌苗不同组织的诱导试验表明,茎最容易诱导出愈伤组织,培养2周后长出浅黄色的愈伤组织;叶大部分不能产生愈伤组织或诱导出的愈伤组织中度褐变;而根极大部分不产生愈伤组织,诱导出的愈伤组织全部褐变。

4.2对外植体的处理

通过对较易褐变的外植体材料的预处理能减轻醌类物质的毒害作用。处理方法如下:外植体经流水冲洗后,在2-5℃的低温下处理12-24小时,再用升汞或70%酒精消毒,然后接种于只含有蔗糖的琼脂培养基中培养5-7天,使组织中的酚类物质部分渗入培养基中。取出外植体用0.1%漂白粉溶液浸泡10分钟,再接种到合适的培养基中。若仍有酚类物质渗出,3-5天后再转移培养基2-3次,当外植体的切口愈合后,酚类物质减少,这样可使外植体褐变减轻或完全被抑制。何琼英等[6]用抗坏血酸预处理香蕉吸芽外植体,能减轻外植体褐变,从而提高芽丛诱导率。

4.3适宜的培养基

培养基的成分与褐变程度有关,要考虑所选培养基的状态和类型。

4.3.1适当的无机盐浓度张妙霞等[7]在柿树组织培养防止褐变所进行的试验中,4种培养基的无机盐以改良MS(大量元素减半)和1/2MS的效果最好,MS的效果较差,结果证明低浓度的无机盐可促进外植体的生长与分化,减轻外植体褐变的程度。徐振彪[1]在对玉米幼胚耐NaCl愈伤组织的筛选表明,随NaCl浓度升高,褐变现象加重。

4.3.2适当和适量的激素王异星[5]在荔枝的组织培养过程中,培养基中添加1mg/LBA+0.5mg/L2,4-D时,愈伤组织较坚硬,增殖缓慢,易产生褐变。培养基中添加1mg/LBA+1mg/L2,4-D时,愈伤组织浅黄疏松,增殖也快。

4.3.3培养基的硬度在一定范围内,琼脂用量大,培养基硬度大,褐变率低[8],这可能是培养基的硬度影响了酚类物质的扩散速度的缘故。

4.3.4培养基中水的硬度的影响硬度低的蒸馏水褐变率低,而使用硬度较高的自来水,褐变严重,甚至会出现褐变死亡[8]。这可能是配制培养基的水改变了培养基中无机盐的浓度,间接地影响了植物外植体的褐变。

4.3.5培养基的pH值在水稻体细胞培养中,pH值为4.5-5.0时MS液体培养基可保持愈伤组织处于良好的生长状态,其表面呈黄白色,而pH值为5.5-6.0时,愈伤组织严重褐变[9]。一般来说,酸性环境(pH值为4.5-5.0)不利于褐变过程的发生[10]。

4.3.6培养条件如温度过高或光照过强,光照会提高PPO的活性,促进多酚类物质的氧化,从而加速被培养的组织褐变。高浓度CO2也会促进褐变,其原因是环境中的CO2向细胞内扩散,细胞内CO32-增多,CO32-与细胞膜上的CO32-结合,使有效CO32-减少,导致内膜系统瓦解,酚类物质与PPO相互接触,产生褐变[11]。因此,初期培养要在黑暗或弱光下进行。

4.4添加褐变抑制剂和吸附剂

褐变抑制剂主要包括抗氧化剂和PPO抑制剂。在培养基中加入偏二亚硫酸钠、L-半胱氨酸、抗坏血酸、柠檬酸、二硫苏糖醇等抗氧化剂都可以与氧化产物醌发生作用,使其重新还原为酚[12]。由于其作用过程均为消耗性的,在实际应用中应注意添加量,其中L-半胱氨酸和抗坏血酸均对外植体无毒副作用,在生产应用中可不受限制。在水稻细胞的培养基中,添加植酸(PA),可防止褐变,PA分子中众多的羟基产生抗氧化作用,使生色物质的含量下降或PA与PPO分子中的Cu2+结合,从而降低了其活力。陈学森等[13]在对植酸在银杏组织培养中应用的研究中也证实了植酸具有抑制多酚氧化酶活性的作用。

常用的吸附剂有活性炭和聚乙烯吡咯烷酮(PVP)。活性炭是一种吸附性较强的无机吸附剂,能吸附培养基中的有害物质,包括琼脂中的杂质、培养物在培养过程中分泌的酚、醌类物质以及蔗糖在高压消毒时产生的5-羟甲基糠醛等,从而有利于培养物的生长。粉末状的活性炭与颗粒状的活性炭相比吸附性更强,一般在培养基中加入1-4g/L的活性炭。在使用过程中应注意,尽量用最低浓度的活性炭来对抗褐变的产生,因为活性炭的吸附作用是没有选择性的,在吸附物质的同时,也会吸附培养基中的其他成分,对外植体的诱导分化会产生一定的负面影响[14]。而聚乙烯吡咯烷酮(PVP)是酚类物质的专一性吸附剂,在生化制备中常用作酚类物质和细胞器的保护剂,可用于防止褐变[15]。

4.5进行细胞筛选和多次转移

在组织培养过程中,经常进行细胞筛选,可以剔除易褐变的细胞。在外植体接种1-2天后应立即转移到新鲜培养基中,能减轻酚类物质对培养物的毒害作用,降低抑制作用,使外植体尽快分生,连续转移5-6次,可基本解决外植体的褐变问题。

参考文献:

[1]徐振彪等.植物组织培养过程中的褐化现象.国外农学——杂粮作物,1997(1):55~56.

[2]符近.三种不同类型种子休眠萌发及马占相思种子老化过程的研究.北京农业大学硕士研究生论文,1996.

[3]傅作申,玉米耐NaCl幼胚愈伤组织的筛选及特性分析,长春农牧大学硕士论文,1996.

[4]颜昌敏编著,植物组织培养手册,上海科学技术出版社,1990.

[5]王异星.荔枝细胞培养的初步研究.暨南大学学报,1997,18(5):84~85.

[6]何琼英等.抗坏血酸预处理阻止香蕉吸芽外植体褐变的研究初报.华南农业大学学报,1995,16(3):79~82.

[7]张妙霞.柿树组织培养防止外植体褐变的研究.河南农业大学学报,1999,33(1):87~91.

[8]金坚敏.水稻幼穗和成熟种子诱导胚状体时的有关因子探讨.植物学通报,1992,9(2):53~54.

[9]金坚敏.水稻幼稿和成熟种子诱导胚状体时的有关因子探讨.植物学通报,1992.

[10]王东霞等,如何对抗植物组织中的组织褐变,中国花卉盆景,2002,12:29~30.

[11]姚洪军,罗晓芳,田砚亭.植物组织培养外植体褐变的研究进展.北京林业大学学报,1999,21(3):78~83.

[12]蔡金星等.不同品种梨多酚氧化酶特性及其抑制剂的研究.河北农业技术师范学院学报,1999,13(1):55~57.

[13]陈学森,张艳敏等,植酸在银杏组织培养中应用的研究.天然产物研究与开发,1997,9(2):24~27.

抗坏血酸范文篇8

论文摘要:植物组织培养过程中,褐变问题普遍存在,与菌类污染和玻璃话现象并称为植物组织培养的三大难题。针对褐变难题,本文结合相关资料,对影响褐变的因素作了全面分析,褐变的影响因素是复杂的,随植物种类外植体的部位几生理状况培养基及培养条件的不同而危害的程度有所不同,对这些因素是内因外界影响作用作了分析并针对这些因素提出了相应的解决措施。

在许多植物组织培养过程中,常遇到褐变问题。褐变主要发生在外植体,在植物愈伤组织的继代、悬浮细胞培养以及原生质体的分离与培养中也经常发生。褐变产物不仅使外植体、细胞、培养基等变褐,而且对许多酶有抑制作用,从而影响培养材料的生长与分化,严重时甚至导致死亡。本文探讨植物组织培养中褐变现象的影响因素、机理及防范措施,对我们进行科学研究或工厂生产,包括植物组织的培养,原生质体、悬浮细胞和植物器官的培养都有着十分重要的现实意义。

1褐变原因及危害

褐变是指外植体在培养过程中,自身组织从表面培养基释放褐色物质,以致培养基逐渐变成褐色,外植体也随之进一步变褐而死亡的现象。褐变的发生与外植体组织中所含的酚类化合物数量多少及多酚氧化酶活性有直接关系。很多植物,尤其是木本植物都含有较高的酚类化合物,这些酚类化合物在完整的组织和细胞中与多酚氧化酶分隔存在,因而比较稳定。在切割外植体时,切口附近的细胞受到伤害,其分割状态被打破,酚类化合物外溢。对于外植体本身来讲,酚类物质从外植体切口向外溢出是一种自我保护性反应,可诱导植保素或无物理屏障的形成,以防止微生物侵染组织。但酚类很不稳定,在溢出过程中与多酚氧化酶接触,在多酚氧化酶的催化下,迅速氧化成褐色的醌类物质和水,醌类物质又会在酪氨酸酶等的作用下,与外植体组织中的蛋白质发生聚合,进一步引起其他酶系统失活。从而导致组织代谢活动紊乱,生长停滞,最终衰老死亡。此外,由于组织的老化病变也会使多酚氧化酶激活而引起褐变。

2褐变产生的机理

2.1非酶促褐变

非酶促褐变是由于细胞受胁迫或其他不利条件影响所造成的细胞程序化死亡或自然发生的细胞死亡,即坏死形成的褐变现象,并不涉及酚类物质的产生。徐振彪等[1]将生长正常的愈伤组织转移到含NaCl的培养基中,组织周围尤其是接触培养基部分发生褐变,但培养基中没有看到扩散的褐化物质。当温度升高时继代保存时间过长,也会发生此类现象。但这种褐变若采取适当措施或者愈伤组织适应了胁迫环境就不再发生了[3]。

2.2酶促褐变

目前认为植物组织培养中的褐变主要是由酶促褐变引起的,培养材料变褐主要是由伤口处分泌的酚类化合物引起的[4]。酶促褐变如同一般的酶促反应,其发生必须具备三个条件,即酶、底物和氧。引起褐变的酶有多酚氧化酶(PPO)、过氧化物酶(POD)、苯丙氨酸解氨酶等。从初次培养和继代培养过程中试管苗的褐变程度和PPO的活性来看,表明PPO活性的高低是引起培养材料褐变的关键。引起褐变的酶的底物主要是酚类化合物,按其组成可分成3类:苯基羧酸(包括邻羟基苯酚、儿茶酚、没食子酸、莽草酸等),苯丙烷衍生物(包括绿原酸、肉桂酸、香豆酸、咖啡酸、单宁、木质素等),第三类是黄烷衍生物(包括花青素、黄酮、芸香苷等),但并非所有的酚类物质都是PPO的底物。

在正常发育的植物组织中,底物、氧气、PPO同时存在并不发生褐变,是因为在正常的组织细胞内由于多酚类物质分布在细胞的液泡内,而PPO则分布在各种质体或细胞质中,这种区域性分布使底物与PPO不能接触。而当细胞膜的结构发生变化和破坏时,则为酶创造了与PPO接触的条件,在氧存在的情况下使酚类物质氧化成醌,进行一系列的脱水、聚合反应,最后形成黑褐色物质,从而引起褐变。

3褐变产生的影响因素

影响植物组织培养褐变的因子是复杂的,因植物的种类、基因型、外植体部位及生理状态等不同,褐变的程度也有所不同。

3.1植物种类及基因型不同的植物和不同的基因型决定了不同的褐化程度。在组织培养中,品种褐化难易可能是与该品种中多酚类物质含量的多少及多酚氧化酶(PPO)活性的差异有关。

3.2外植体部位及生理状态外植体的部位及生理状态不同其褐化程度不同,同时,不同时期和不同年龄的外植体在培养中褐变的程度也不同。

3.3培养基成分培养基成分中的无机盐、蔗糖浓度、激素水平等对褐变的程度的影响尤为重要。另外,其pH值也与褐变程度有较大关系。

3.4培养条件温度过高或光照过强,均可加速被培养组织的褐变。不利环境条件都能造成细胞的程序化死亡,温度是诱导程序化死亡的主要因素[1]。

4防止外植体产生褐变的对策

从理论上讲,酶促褐变可以通过以下三种方法加以抑制:一是除去引起氧化的物质——氧;二是捕捉或减少聚合反应的中间产物;三是抑制有关的酶。实际操作上,下列措施是被认为行之有效的。

4.1适当外植体的选择

取材时应注意选择褐变程度较小的品种和部位作外植体。成年植株比幼苗褐变程度厉害,夏季材料比冬季及早春和秋季材料的褐变要严重。冬季的芽不易生长,宜选用早春和秋季的材料作为外植体。王异星[5]用荔枝无菌苗不同组织的诱导试验表明,茎最容易诱导出愈伤组织,培养2周后长出浅黄色的愈伤组织;叶大部分不能产生愈伤组织或诱导出的愈伤组织中度褐变;而根极大部分不产生愈伤组织,诱导出的愈伤组织全部褐变。

4.2对外植体的处理

通过对较易褐变的外植体材料的预处理能减轻醌类物质的毒害作用。处理方法如下:外植体经流水冲洗后,在2-5℃的低温下处理12-24小时,再用升汞或70%酒精消毒,然后接种于只含有蔗糖的琼脂培养基中培养5-7天,使组织中的酚类物质部分渗入培养基中。取出外植体用0.1%漂白粉溶液浸泡10分钟,再接种到合适的培养基中。若仍有酚类物质渗出,3-5天后再转移培养基2-3次,当外植体的切口愈合后,酚类物质减少,这样可使外植体褐变减轻或完全被抑制。何琼英等[6]用抗坏血酸预处理香蕉吸芽外植体,能减轻外植体褐变,从而提高芽丛诱导率。

4.3适宜的培养基

培养基的成分与褐变程度有关,要考虑所选培养基的状态和类型。

4.3.1适当的无机盐浓度张妙霞等[7]在柿树组织培养防止褐变所进行的试验中,4种培养基的无机盐以改良MS(大量元素减半)和1/2MS的效果最好,MS的效果较差,结果证明低浓度的无机盐可促进外植体的生长与分化,减轻外植体褐变的程度。徐振彪[1]在对玉米幼胚耐NaCl愈伤组织的筛选表明,随NaCl浓度升高,褐变现象加重。

4.3.2适当和适量的激素王异星[5]在荔枝的组织培养过程中,培养基中添加1mg/LBA+0.5mg/L2,4-D时,愈伤组织较坚硬,增殖缓慢,易产生褐变。培养基中添加1mg/LBA+1mg/L2,4-D时,愈伤组织浅黄疏松,增殖也快。

4.3.3培养基的硬度在一定范围内,琼脂用量大,培养基硬度大,褐变率低[8],这可能是培养基的硬度影响了酚类物质的扩散速度的缘故。

4.3.4培养基中水的硬度的影响硬度低的蒸馏水褐变率低,而使用硬度较高的自来水,褐变严重,甚至会出现褐变死亡[8]。这可能是配制培养基的水改变了培养基中无机盐的浓度,间接地影响了植物外植体的褐变。

4.3.5培养基的pH值在水稻体细胞培养中,pH值为4.5-5.0时MS液体培养基可保持愈伤组织处于良好的生长状态,其表面呈黄白色,而pH值为5.5-6.0时,愈伤组织严重褐变[9]。一般来说,酸性环境(pH值为4.5-5.0)不利于褐变过程的发生[10]。

4.3.6培养条件如温度过高或光照过强,光照会提高PPO的活性,促进多酚类物质的氧化,从而加速被培养的组织褐变。高浓度CO2也会促进褐变,其原因是环境中的CO2向细胞内扩散,细胞内CO32-增多,CO32-与细胞膜上的CO32-结合,使有效CO32-减少,导致内膜系统瓦解,酚类物质与PPO相互接触,产生褐变[11]。因此,初期培养要在黑暗或弱光下进行。

4.4添加褐变抑制剂和吸附剂

褐变抑制剂主要包括抗氧化剂和PPO抑制剂。在培养基中加入偏二亚硫酸钠、L-半胱氨酸、抗坏血酸、柠檬酸、二硫苏糖醇等抗氧化剂都可以与氧化产物醌发生作用,使其重新还原为酚[12]。由于其作用过程均为消耗性的,在实际应用中应注意添加量,其中L-半胱氨酸和抗坏血酸均对外植体无毒副作用,在生产应用中可不受限制。在水稻细胞的培养基中,添加植酸(PA),可防止褐变,PA分子中众多的羟基产生抗氧化作用,使生色物质的含量下降或PA与PPO分子中的Cu2+结合,从而降低了其活力。陈学森等[13]在对植酸在银杏组织培养中应用的研究中也证实了植酸具有抑制多酚氧化酶活性的作用。

常用的吸附剂有活性炭和聚乙烯吡咯烷酮(PVP)。活性炭是一种吸附性较强的无机吸附剂,能吸附培养基中的有害物质,包括琼脂中的杂质、培养物在培养过程中分泌的酚、醌类物质以及蔗糖在高压消毒时产生的5-羟甲基糠醛等,从而有利于培养物的生长。粉末状的活性炭与颗粒状的活性炭相比吸附性更强,一般在培养基中加入1-4g/L的活性炭。在使用过程中应注意,尽量用最低浓度的活性炭来对抗褐变的产生,因为活性炭的吸附作用是没有选择性的,在吸附物质的同时,也会吸附培养基中的其他成分,对外植体的诱导分化会产生一定的负面影响[14]。而聚乙烯吡咯烷酮(PVP)是酚类物质的专一性吸附剂,在生化制备中常用作酚类物质和细胞器的保护剂,可用于防止褐变[15]。

4.5进行细胞筛选和多次转移

在组织培养过程中,经常进行细胞筛选,可以剔除易褐变的细胞。在外植体接种1-2天后应立即转移到新鲜培养基中,能减轻酚类物质对培养物的毒害作用,降低抑制作用,使外植体尽快分生,连续转移5-6次,可基本解决外植体的褐变问题。

参考文献:

[1]徐振彪等.植物组织培养过程中的褐化现象.国外农学——杂粮作物,1997(1):55~56.

[2]符近.三种不同类型种子休眠萌发及马占相思种子老化过程的研究.北京农业大学硕士研究生论文,1996.

[3]傅作申,玉米耐NaCl幼胚愈伤组织的筛选及特性分析,长春农牧大学硕士论文,1996.

[4]颜昌敏编著,植物组织培养手册,上海科学技术出版社,1990.

[5]王异星.荔枝细胞培养的初步研究.暨南大学学报,1997,18(5):84~85.

[6]何琼英等.抗坏血酸预处理阻止香蕉吸芽外植体褐变的研究初报.华南农业大学学报,1995,16(3):79~82.

[7]张妙霞.柿树组织培养防止外植体褐变的研究.河南农业大学学报,1999,33(1):87~91.

[8]金坚敏.水稻幼穗和成熟种子诱导胚状体时的有关因子探讨.植物学通报,1992,9(2):53~54.

[9]金坚敏.水稻幼稿和成熟种子诱导胚状体时的有关因子探讨.植物学通报,1992.

[10]王东霞等,如何对抗植物组织中的组织褐变,中国花卉盆景,2002,12:29~30.

[11]姚洪军,罗晓芳,田砚亭.植物组织培养外植体褐变的研究进展.北京林业大学学报,1999,21(3):78~83.

[12]蔡金星等.不同品种梨多酚氧化酶特性及其抑制剂的研究.河北农业技术师范学院学报,1999,13(1):55~57.

[13]陈学森,张艳敏等,植酸在银杏组织培养中应用的研究.天然产物研究与开发,1997,9(2):24~27.

抗坏血酸范文篇9

(1)全浆型。该工艺以生鲜山药为原料,通过蒸煮熟化、打浆调配而成,具体工艺路线为:山药→清洗→去皮→(切片)→护色→蒸(煮)→打浆→过滤→调配→精滤→均质→灭菌→脱气→灌装→(灭菌→冷却)→成品。该工艺能保留山药的营养和香味,稳定性差、易高温褐变。张驰等以湖北省利川市团堡镇红皮山药为原料,对生产工艺条件等进行探讨。饮料的悬浮状况影响产品的外观、口感等。观察结果,淀粉本身即为稳定剂,在其中能起一定的稳定作用。符德学用河北小白嘴山药为原料研制成全浆型白山药饮料。

(2)酶解型。山药中含有大量的淀粉,全浆型饮料存在淀粉返生问题、容易造成饮料成品分层、结块沉淀,影响饮料感官。对山药淀粉进行酶解,使其转化为低分子糖类,从而避免了山药淀粉返生沉淀的问题,从而提高了饮料的稳定性,但也存在山药风味丢失的缺点。汪伦记等研究了酶解法制山药饮料的工艺条件。具体工艺是山药→去皮→护色→蒸煮熟化→打浆→酶解→过滤→调配→精滤→均质→(灭菌)→脱气→灌装→灭菌→冷却→成品。结果表明,经过淀粉酶酶解和不经过酶解处理相比,制成的山药饮料沉淀明显减少,但山药特有的香气明显减弱,且外观色泽发暗。孔瑾等以怀山药为原料,将怀山药浆料加热至80℃保温10min左右进行糊化,升温至90~95℃,加入α-淀粉酶进行酶解,完成后煮沸灭酶,通过配料灌装灭菌制成酶解型怀山药饮料,具有很好的稳定性。兰社益等通过使用耐高温α-淀粉酶水解山药淀粉和食品增稠剂来解决山药饮料易发生分层和沉淀的问题,从而提高山药饮料的稳定性和感官品质。酶解条件为:温度90℃,酶用量0.005%,酶解时间40分钟,配以增稠剂,制得稳定性很好的山药饮料。赵静等以鲜山药为主要原料,用耐高温淀粉酶酶解山药浆中的淀粉,酶添加量为原料的0.005%、酶解时间40分钟、酶解温度为70℃;酶解后离心分离,离心液加入增稠剂,能得到感官较好且几乎没有沉淀的饮料。

(3)提取型。焦作大学符德学等利用提取技术研制清汁型怀山药饮料,该工艺是去除山药的纤维、淀粉,仅保留粘蛋白、粘多糖和山药中的可溶性成分。具体做法是:山药挑选,清洗去皮,切段(粒),护色,粉碎、提取、过滤去渣,离心去淀粉。去除粗纤维和淀粉,可提高饮料的稳定性,利口不黏口。但为保护材料的风味,山药的用量必然增大,粘蛋白的含量必然升高,蛋白质热变性问题又凸显出来,必须配以合适的稳定剂和灭菌温度、时间,以防蛋白质变性。该技术能保留和浓缩山药营养精华部分和香味,稳定性好,不需或少加稳定剂,可获得稳定性好、口感清爽的怀山药饮料,但存在操作复杂、制作成本高的缺点,适应大规模生产。

(4)复合型山药饮料。为丰富山药饮料的风味和营养,也可将山药与其他原料复配成饮料,一般先把山药煮熟打浆、其他原料蒸煮取汁,二者混合后再加入稳定剂均质而成,如山药红枣复合饮料、山药枸杞复合饮料、山药胡萝卜复合饮料、山药菠萝复合饮料、山药银耳复合饮料、山药杏仁复合饮料、山药、葡萄、梨复合运动饮料等。具体做法是:将新鲜山药先制成熟山药浆汁,将其他原料洗净后分别与水混合熬两次,滤液与山药浆汁混合配以稳定剂,通过均质、灌装、灭菌而成。

(5)发酵软饮料。将山药和其他原料熟化后制浆,加入菌种,在一定条件下发酵,再加入稳定剂均质而成,如山药黑豆发酵饮料。将山药浆和黑豆浆混合加入嗜热链球菌、嗜酸乳杆菌、保加利亚乳酸杆菌、双歧杆菌,在42℃下发酵5个小时,然后再加辅料进行调配、均质、灌装、杀菌而成,该饮料具有黑豆及山药复合香气,无分层、沉淀,无肉眼可见杂质。山药与南瓜发酵型饮料是将山药和南瓜分别去皮护色后煮沸5~8分钟,用胶体磨制取混合浆液,经糊化后添加0.5%糖化酶在pH4.5时加热至60℃糖化30分钟,再加入6%蔗糖和稳定剂混合均质,经灭菌冷却后再接种双歧杆菌发酵而成。该饮料色泽乳黄鲜亮,质地均匀稳定,具有特殊宜人的风味。

(6)山药固体饮料。山药也可以制成固体饮料,如速溶山药粉、复合山药粉等。速溶山药粉有两种制作工艺,一种是打浆后喷雾干燥法,其工艺流程为:山药去皮护色→(熟化)→打浆→调配→均质→喷雾干燥→包装→灭菌。另一种是干燥粉碎法,其工艺流程为:山药去皮护色→干燥→粉碎→调配→包装灭菌,也可制成山药泡腾片固体饮料。速溶山药粉除主要原料为山药外,还需另加植脂末、白砂糖等辅料。复合山药固体饮料是以山药为主要原料,加入其他天然产物如茯苓、枸杞、葡萄、芡实等,通过制浆、喷雾干燥而成。成品外观呈粉末状,方便保存和携带,冲调方便,开水冲调易分散,呈糊状,不易分层,具有愉快的香甜味和山药味,口感润滑舒爽。

2.生产工艺中需要解决的问题

2.1山药饮料褐变问题

山药中含有多酚氧化酶和过氧化酶,山药去皮与空气接触后很易发生酶促褐变,从而造成饮料变色,影响外观。赵喜亭等研究了铁棍山药中多酚氧化酶(PPO)、过氧化物酶(POD)和苯丙氨酸解氨酶(PAL)的活性与褐变度的关系,以及pH和温度对其非酶褐变的影响。研究表明,酚类物质的分布与褐变发生部位相关,PPO、POD和PAL的活性与褐变度呈正相关,相关性为PPO>POD>PAL,研究还发现,酸性条件下有利于抑制非酶褐变,低于或高于40℃,非酶褐变均有降低的趋势。苏宇杰等对以怀山药和银耳为主要原料的饮料的护色工艺进行了研究。对怀山药漂烫6分钟后用0.2%柠檬酸、0.25%抗坏血酸和0.5%NaCl组成的护色液浸泡45分钟可以达到理想的护色效果;用0.001%的葡萄糖氧化酶在30℃下对怀山药浆酶解2小时能够显著抑制饮料高温杀菌中的非酶褐变。金苏英等比较了不同护色剂的护色效果,并确定了最佳护色工艺。最佳护色条件为在20℃把山药切片后放进含0.01%氯化钠、0.5%柠檬酸和0.5%抗坏血酸的水溶液中浸泡15分钟,可防止其切片后褐变。原德树[24]通过感官评定和正交试验,对怀山药饮料的护色工艺条件进行优化,得出最佳工艺条件和配方为0.1%EDTA-2Na、0.06%D-异抗坏血酸钠、0.06%植酸和0.07%柠檬酸,护色效果最好。张驰等以湖北省利川市红皮山药为原料,对饮料中的护色工艺条件进行研究,认为用0.1%Vc、0.4%CaCl2和0.5%NaCl混合浸泡45分钟后,褐变指数最小,并发现煮后榨汁比榨汁后煮易发生褐变。张敏等对麻山药为原料饮料加工过程中的防褐变问题进行了研究,表明麻山药去皮切块后及时浸入0.08%亚硫酸氢钠、0.6%柠檬酸和0.6%VC的水溶液中,可防止去皮后麻山药块的褐变。

2.2稳定性

山药含有大量的淀粉、蛋白,其淀粉颗粒大而不易溶胀,做成饮料后淀粉易返生而引起沉淀和分层问题。淀粉返生凝沉的解决:一是采用高压均质的方法来减少颗粒直径,从而提高成品稳定性;二是人工加入增稠剂,来减少颗粒沉降速度,有效防止淀粉颗粒沉淀;三是可通过酶处理使淀粉分子酶解成可溶性小分子来解决其稳定性问题;四是合适的灭菌温度和时间,由于山药含有蛋白,灭菌温度过高、时间过长也易引起饮料分层;五是适宜的酸度调节,酸度太高也是引起沉淀产生的因素之一,因为蛋白质在酸性环境中易发生变性而产生沉淀。张敏等以麻山药为原料,0.1%海藻酸钠、0.05%CMC的复配稳定剂对麻山药果肉饮料的稳定效果明显,所得麻山药饮料的浆液形态均匀,长时间放置不分层。陈颖等以怀山药为主要原料,研究不同粒度、不同浓度和均质条件等工艺参数以及稳定剂对山药饮料稳定性的影响。研究表明:山药含量16.7%时、二次均质、粒度15μm,加入0.04%的琼脂、0.04%的黄原胶、0.05%的海藻酸钠和0.06%的羧甲基纤维素钠,可得到稳定性较好的山药饮料。原德树对怀山药饮料稳定剂的研究:先对怀山药浆进行酶解,调配时pH6.0,以0.06%蔗糖酯、0.1%单甘脂、0.08%卡拉胶、0.02%结冷胶、0.06%CMC-Na和全脂乳粉2.0%,稳定期可达一年。李会芬以麻山药为原料,以0.04%果胶、0.05%琼脂和0.02%卡拉胶为稳定剂,能有效地保证产品均匀一致、不分层、不沉淀,稳定效果较好。兰社益等研究耐高温A-淀粉酶水解山药淀粉和用增稠剂来解决山药饮料容易分层和沉淀的问题,研究表明,高温灭菌后增稠剂性质改变是造成山药饮料沉淀的一个重要因素。金苏英等用0.2%CMC、0.15%卡拉胶和0.15%瓜尔豆胶复配成稳定剂对山药果肉饮料的稳定效果最为明显,所得山药饮料的浆液组织形态均匀,长时间放置不分层。兰社益等认为增稠剂自身受溶液酸碱性、温度等因素的变化可能引起增稠剂理化性质发生改变,造成其稳定性的降低。对于高淀粉山药饮料,高温灭菌是影响增稠剂特性的重要因素,羧甲基纤维素钠在高于80℃长时间加热的情况下,会降低黏度并形成水不溶物。兰社益等针对高温灭菌后复合增稠剂水溶液的沉淀率及相对沉淀率(增稠剂沉淀量占成品饮料沉淀量的比例)进行了研究,表明高温灭菌后增稠剂沉淀占成品饮料沉淀中很大一部分,最大可达94%,说明复合增稠剂在高温灭菌后产生沉淀是造成饮料沉淀的重要因素。在选用增稠剂时,应先对增稠剂在不同的酸碱度、温度、剪切力大小环境下测定其稳定性,保证其在饮料加工要求条件下,本身性质不发生改变,也不会产生沉淀,增稠剂之间也不会产生负面的相互作用而影响饮料的稳定性和增稠效果。

3.山药饮料的发展方向

抗坏血酸范文篇10

一影响尿液检验的药物

(一)影响尿液颜色的药物

1.使尿液变为黄色至红色或红棕色的药物:大黄、氯喹、呋喃妥因、吩噻嗪类、苯妥英钠、华法林、维生素B2、非那西丁、对氨基水杨酸、抗凝剂、肯同氯奎、呋喃唑酮、山梨醇铁、辛可芬、苯氮吡啶、苯茚二酮、酚酞、苯磺胺、伯氨奎、阿的平、核黄素、水杨酸、磺胺药等。

2.使尿液变为蓝绿色的药物:阿米替林、吲哚美辛、利福平、亚甲蓝、妥龙、氨苯蝶啶等。

3.使尿液变为黑褐色的药物:甲硝唑(灭滴灵)、左旋多巴、甲基多巴、奎宁及其衍生物等。

感冒通片可以使儿童尿液呈红色(洗肉水颜色),这是由于其中的双氯芬酸钠对肾脏的毒性反应所致。另外,头抱拉定、头抱哇林、克林霉素等也可以导致肉眼血尿。

(二)影响尿比重的药物

左旋糖酐、放射造影对比剂及蔗糖等可使尿比重增加。

(三)影响尿蛋白试验的药物

1.若碱性药物引起尿液pH>8时易出现假阳性,若酸性药物引起尿液pH<3时易出现假阴性。另外,青霉素、阿斯匹林、WitD可使尿蛋白质检验出现假阳性。

2.含碘造影剂、头抱菌素类可使磺基水杨酸法测定尿蛋白试验呈假阳性反应。右旋糖昔、奋乃静也可致假阳性。卡那霉素、多豁菌素、三甲双酮、磺胺类等可致肾损害引起蛋白尿。

3.引起假阳性尿蛋白的药物,具有肾毒性药物如金、砷、锑化物等;影响磺胺基水杨酸试验的药物如头孢吩钠、头孢噻啶、磺胺甲唑、甲苯磺丁脲等。

(四)影响尿糖试验的药物

尿液标本存放的容器中残留有氧化性的消毒剂等可出现假阳性,当尿中VitC浓度达500~1000mg/L,而尿糖含量低于14mmol/L时,试纸条易发生抑制反应,出现假阴性,因此,患者尿常规测定前至少应停服WitC24h以上。当患者服用肾上腺皮质激素、消炎痛、阿斯匹林、苯妥英钠等药物时葡葡糖测定出现假阳性。

1.引起尿糖假阳性的药物:

(1)引起血糖升高从而继发糖尿的药物:皮质类固醇制剂、吲哚美辛、异烟肼。

(2)引起肾损害的药物:过期四环素。

(3)由于还原作用,与班氏溶液或Cliniest试剂可出现尿葡萄糖假阳性反应,但与Clinistix或Testape试剂无此反应的药物:阿司匹林、对氨基水杨酸、头孢噻吩钠(先锋霉素Ⅰ)、头孢噻啶(先锋霉素Ⅱ)、水合氯醛、辛可芬等。

氨节西林、阿莫西林、头抱他陡、阿司匹林、利尿酸、葡萄糖醛酸、磺胺类、水合氯醛、链霉素、对氨基水杨酸、维生素C等可使尿糖呈假阳性反应。

2.引起尿糖假阴性的药物(对酶法、试纸法):抗坏血酸、左旋多巴、非那宗吡啶、梭节西林、青霉素钠、头抱呱酮、四环素、卡那霉素等。

(五)影响尿隐血试验的药物(联苯胺法)

WitC能竞争性夺取试带中过氧化物的氧,有抑制作用,引起假阴性。很多药物在代谢过程中,能产生过氧化酶,如:嗅剂、铜、碘化物、过猛酸化物等,因此假阳性率极高。

(六)影响尿胆红素试验的药物

凡能引起肝功能损害、溶血和胆汁淤积的药物:氯丙嗪、甲芬那酸、非那宗吡啶、氯噻嗪类。

当尿液中WitC浓度大于500mg/L时,也可出现假阴性。在低pH情况下,一些药物代谢产物如吲哚硫酸、维生素B2等易产生假阳性。吩唾嗦类、氨茶碱、地西浮、安乃近、蛋白同化激素等可致假阳性。

(七)尿液尿胆原测定

咖啡因、普鲁卡因、安替比林、乌洛托品、肾上腺素、WitK、磺胺药、毗咤类药物等可与欧氏试剂产生反应呈现黄绿色引起假阳性。

服用大剂量抗生素可抑制肠内细菌繁殖,使尿胆素不能转为尿胆原、从而使尿胆原减少呈阴性反应。维生素C、他巴唑、尿素等可致假阴性反应。

(八)影响尿酮体试验的药物

对氨基水杨酸、苯乙双胍(降糖灵)、水杨酸盐、肌醇酯、氨茶碱、酚红、肌醇、甲基多巴、生长激素等可引起尿酮体假阳性。双嚓达莫可致假阴性。左旋多巴可干扰结果判断。

(九)影响尿PH值试验的药物

药物的代谢产物呈酸性可使PH值降低,药物的代谢产物呈碱性可使PH值增高。如:碳酸氢钠(重碳酸钠)、乙酰唑胺(醋氮酰胺)等。

(十)影响尿白细胞试验的药物

尿液中大剂量先锋霉素、庆大霉素、链霉素的存在,可使尿液中白细胞检查的敏感性降低,而呋喃坦啶的使用则可使白细胞的检测呈现假阳性反应。

(十一)影响尿17-酮类固醇测定的药物

1.使尿17-酮类固醇增高的药物:氯霉素、氯丙嗪、地塞米松、红霉素、甲丙氨酯、青霉素、非那宗吡啶、酚噻嗪类、奎尼丁、司可巴比妥(速可眠)、螺内酯(安体舒通)、夹竹桃霉素、氨苯甲基丁烷二醇、乙酰唑胺、水合氯醛、氯氮、甲丙氨酯、奎宁、螺内酯、利普马嗪、秋水仙碱、副醛等。

2.使尿17-酮类固醇下降的药物:氯氮、雌激素、口服避孕药、酚噻嗪类、利血平、甲丙氨酯、丙磺舒、普马嗪等。

(十二)影响尿儿茶酚胺试验的药物

奎宁、奎尼丁、阿司匹林、氯丙嗓、红霉素、甲基多巴可、氨苄西林(氨苄青霉素)、水合氯醛、肾上腺素、甲基多巴、奎尼、四环素族、维生素C族、红霉素、肼屈嗪(肼苯达嗪)、乌洛托品、烟酸等。

(十三)影响香草基杏仁酸(VMA)测定的药物

1.使VMA增高的药物:阿司匹林、PAS、土霉素、青霉素、非那宗吡啶、磺胺类、愈创木酚甘油醚、唛酚生、PSP等。

2.使VMA下降的药物:普马嗪类、甲基多巴、丙米嗪、氯贝酯(冠心平)、胍乙啶同类药、单胺氧化酶抑制剂等。

(十四)影响尿5-羟吲哚醋酸(5-HAA)测定的药物

1.可使5-HAA增高的药物:乙酰苯胺、非那西丁、唛酚生、利血平、愈创木酚甘油醚等;

2.可使5-HAA降低增高的药物:普马嗪类、丙米嗪、异烟肼、甲基多巴、异丙嗪、乌洛托品等。

(十五)影响妊娠试验的药物

假阳性:氯普马嗪、酚噻嗪等。假阴性:异丙嗪等。

(十六)引起尿肌酐改变的药物增加:维生素C(抗坏血酸)、皮质类固醇、左旋多巴、甲基多巴、硝基呋喃类等;

减少:雄激素与合成性固醇、噻嗪类等。

(十七)引起尿钙改变的药物

1.使尿钙增多的药物:雄激素与合成性固醇、考来烯胺(消胆胺)、皮质类固醇、二氢类固醇、维生素D、甲状旁腺素注射剂、紫霉素等。

2.使尿钙减少的药物:植酸钠、噻嗪类等。

(十八)引起尿PSP试验假阳性的药物

白陶土、镁、亚甲蓝、烟酸、阿的平、奎尼丁、奎宁等。二药物对尿液检验结果干扰的处理

1.停用可疑药物:当考虑检验结果受药物干扰时,在病情允许的情况下,停用可疑药物,再行检验,即可肯定或否定其检验结果是否为药物干扰。

2.对可疑的检验结果进行对照观察。当怀疑检验结果受药物干扰时,可对未用该药物的患者或健康人进行检验作为对照观察,若二者结果一致则可排除药物对检验结果的影响,否则可考虑药物干扰所致。