互感器范文10篇

时间:2023-03-24 15:27:58

互感器范文篇1

[论文摘要]对数字化变电站中光电互感器的工作原理、结构上的特点和优点进行简单分析,同时阐述光电互感器的应用对电能计量方面的影响。

数字化变电站就是将信息采集、传输、处理、输出过程完全数字化的变电站。全站采用统一的通讯规约构建通信网络,保护、测控、计量、监控、远动、VQC等系统,均用同一网络接收电流、电压和状态信息,各个系统实现信息共享。常规综自站的一次设备采集模拟量,通过电缆将模拟信号传输到测控保护装置,装置进行模数转换后处理数据,然后通过网线上将数字量传到后台监控系统。同时监控系统和测控保护装置对一次设备的控制通过电缆传输模拟信号实现其功能。数字化变电站一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传到后台监控系统,而监控系统和测控保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。

随着电力工业的不断发展,电网电压等级的不断提高,对电压、电流的测量要求也在不断提高,而互感器作为连接高压与低压的一种电器设备也不断地改进和发展,其中对于衡量互感器先进与否的一个重要指标就是互感器的绝缘问题。对于传统的电磁式互感器来说,由于绝缘成本随着绝缘等级的升高成指数增长,因此原有的空气绝缘、油纸绝缘、气体绝缘和串级绝缘已经不能满足超高压设备的绝缘要求,同时传统互感器存在磁饱和的问题,造成继电保护装置的误动或拒动,而且铁磁谐振、易燃易爆及动态范围小等缺点一直是传统互感器难以克服的困难。于是,各种针对高电压、大电流信号的测量方法便应运而生,其中,基于光学和电子学原理的测量方法,经过近三十年的发展,成为相对比较成熟、最有发展前途的一种超高压条件下的测量方法。

光电互感器指输出为小电压模拟信号或数字信号的电流电压互感器。由于模拟输出的光电互感器仍存在传统互感器的一些固有缺点,现在发展的高电压等级用光电互感器一般都用光纤输出数字信号。光电互感器与传统互感器外形相似,但体积小,重量轻,主要由传感头、绝缘支柱和光缆三部分组成。①传感头部件有罗科夫斯基线圈、采集器、A/D转换器和光发生器LED。工作原理是由罗科夫斯基线圈从一次传变信号,采集器采样后,AD转换器转换为数字信号,由LED转换为光信号,通过光缆送回主控室。罗科夫斯基线圈一般有保护、计量和测量、能量线圈,罗科夫斯基线圈形状是空心螺线管,无铁芯,填充非晶体材料,主要起支撑作用。②绝缘支柱采用硅橡胶绝缘子,内部填充固态硅胶,起到支撑、绝缘和固定光缆作用。③光缆分为数据光缆和能量光缆,从传感头通过绝缘支柱内部引下,送回主控室。④能量问题。传感头部件的电源是光电互感器的难点之一。传感头部件(采集器、A/D转换器和光发生器LED)使用微功耗装置,功率30毫瓦。

光电互感器可分为两种型式。一种是用磁光效应和电光效应直接将电流电压转变为光信号,一般称无源式;另一种是用电磁感应或分压原理将电流电压信号转变为小电压信号,再将小电压信号转换为光信号传输给二次设备,一般称有源式。无源式由于存在稳定性和可生产性较差、电子回路复杂等问题,现在主要处在实验室阶段,推广运用还有待时日。有源式的难点是提供高压端需要的工作电源,但随着激光供能和高压取能技术的突破,已得到根本上的解决。光电互感器传感头部件的能量来源有两种途径。一是从一次取能,由能量线圈感应出电流来提供能量;当一次电流太小,不足以提供能量时,使用能量光缆,由户内激光发生器通过光缆上送能量。两种方式可互为备用,自动切换。

相对于传统的电磁式互感器,光电互感器有明显的优点:(1)在高电压、大电流的测量环境中,光纤或光介质是良好的绝缘体,它可以满足高压工作环境下的绝缘要求;(2)没有传统电流互感器二次开路产生高压的危险,以及传统充油电压、电流互感器漏油、爆炸等危险;(3)不会产生磁饱和及铁磁共振现象,它尤其适用于高电压、大电流环境下的故障诊断;(4)频带宽,可以从直流到几百千赫,适用于继电保护和谐波检测;(5)动态范围大,能在大的动态范围内产生高线性度的响应;(6)适应了现在电力系统的数字化信号处理要求,它还可用于以保护、监控和测量为目的高速遥感、遥测系统;(7)整套测量装置结构紧凑、重量轻、体积小;(8)各个功能模块相对独立,便于安装和维护,适于网络化测量。由于光电互感器的诸多优点,光电互感器取代传统互感器将只是一个时间问题。国际上,光电互感器已逐步成熟,正已越来越快的速度推广运用。其中ABB、西门子等公司生产的光电互感器已有十几年的成功运行业绩。采用光电互感器的数字化变电站在欧洲也已经投入运行。我国光电互感器的研制和运用相对比较落后,仅有为数不多的变电站使用了一些进口的光电互感器。国内有二十余家企业和高校涉足了光电互感器的开发,经过多年的努力,已有若干套设备在现场试运行。

我国在有源式光电互感器的研究已走在无源式的前面,有的产品已在多个变电站试运行近一年的经验,运行情况良好,可满足保护和计量的要求,并通过了部级鉴定,达到国际先进水平。同时国内的二次设备制造商开发了可与光电互感器直接接口的数字接口继电保护装置、数字接口电能表等二次设备,为光电互感器的实际应用提供了基础。

光电互感器目前存在的问题对电能计量方面的影响:

(1)由于处在研究开发中,光电互感器性能仍不稳定。对于电能计量来说,光电互感器的稳定运行是保障计量准确的前提,尤其是一些在变电站计费的电能表,更加不能忽视光电互感器的性能稳定性。

(2)温度对光电互感器的精度有较大的影响。电能计量是对精度要求较高的专业,其对精度的要求往往要高于其他专业。而绝大多数的光电互感器均是装设在户外,南方春秋两季夜晚与白天温差较大,不可避免的对电能计量带来一定影响。

互感器范文篇2

当谐振现象出现以后,由于电压的波形会随之进行相互间的叠加,电能计量系统的电压值受其影响也会不断升高,当达到一定电压程度,电压互感器的内部就会产生巨大的感应电压,这种电压已经超越了电压互感器的绝缘耐压水平,会导致电能计量互感器的出口熔断器发生熔断或者烧毁等无法挽回的故障。电能系统出现单相接地现象从电能计量互感器自身来看,由于其内部的装置之间励磁电抗的作用力比较,所以通过互感器的电容的电流值变得相应较小,从而导致电能计量互感器的零序侧部分积聚了大量的电荷。当电能系统出现单相接地现象并得到解决以后,电能计量互感器的内部就会出现电感放电回路,这种类型的回路能够将故障发生期间聚集的所有电荷通过直流电源的形式给佩有铁芯的电感线圈进行发电,在发电的一瞬间就会导致在电能计量互感器的高压部分产生一个幅值比较强大的低频电流。进而在一瞬间造成了高压熔断器中熔丝熔断等故障。雷击过电压具有10kV的电能计量系统的架空线路一般采用的是不带架空地线方式,由于其线路运行的周边环境大多为高山地区,并且线路使用的三相LGJ类导线几乎全部暴露在空气当中,因此,受雷击过程中产生的雷电电荷的影响,架空的导线上可能会产生大量具有感应作用的雷电电荷,当雷电不小心击中了这些带有电荷的导线,导线上产生的雷电电荷就会随着电击的作用向线路两侧开始游动,从而形成雷电入侵波,这种入侵性的电波能够直接作用在电能计量的互感器中,导致一些电气设备由于受到外界电流的冲击出现了故障。

我们知道,互感器作为电能计量设施中的重要组成部分,其是否能够安全有效的运行直接关系到电能计量系统的可靠以及电能计量设备的精度。通过对电能计量互感器产生故障进行科学专业地分析,我们可以利用有关专业知识进行科学预防和改进。定期检修电能计量设备设备的管理人员应该定期的加强电力设备有关的检修以及维护工作,确保电能计量设备在运行期间的外界环境卫生情况。通过及时的检修,可以在第一时间发现电力设备是否具有的安全隐患,从而采取相应的解决措施。对电力设备的参数进行合理设计在电能计量互感器使用之前,要对其装备进行合理的参数设计,确保电能计量互感器的设备不仅安全有效,而且还能够与之更好的交融,例如互感器的二次保险、避雷器的使用以及具有消谐振作用的装置等。为配电系统寻找合理的供电方式技术管理人员可以通过合理的供电方式,为配电系统的电力负荷在扩容过程中预留出相应的容量与接口。我们还可以通过控制配电系统中互感器数量的多少来减少配电系统的铁磁谐振在一定时期内的发生率。从经济效率方面考虑,在确保配电系统能够安全稳定运行的同时,我们还可以通过适当地减少配电系统有关维护点的数量,降低工作成本,减少了工作人员的工作量。

通过以上的分析和研究我们可以发现,电能计量互感器产生故障的原因多种多样,其中绝大多数是由于电能计量互感器柜中电压互感器的故障引起的,由于电能计量设备对于电力工程的运行以及经营和电能的使用者来说都是非常重要的存在,因此,保证其正常无故障的工作需要电力管理者进行特别的重视。

本文作者:汪晶工作单位:南京供电公司客户服务中心计量部

互感器范文篇3

关键词:性点电流互感器故障动稳定MALAB

1引言

最近我单位发生了两起110kV变电站的10kV电容器组中性点电流互感开裂的故障,其中一起故障的经过如下:

2002年5月24日,110kV新升变电站161#1电容器组中的#16电容器熔丝熔断,更换熔丝后送电,立即发生中性点电流互感器击穿开裂的现象(图1),同时161开关跳闸。故障前该电容器组的结构示意图如图2。



从图2中可以看出,当某一个电容器贯穿性击穿损坏以后,该相的其它电容即被短路,电容值变为零(图3),该支路的阻抗减小,双星形的两个中性点电位不一致,出现不平衡电流,且电流是突然增大的,暂态过程中的电流很大,导致中性点电流互感器损坏。

要定量地分析损坏的原因,需计算161断路器合闸后的暂态过程。借助MALAB的电力系统模拟工具箱(PSB),可非常方便分析出暂态过程中的电流变化情况。

2合闸于故障电容器情况的模拟

根据一次模拟图,用PSB建立如图4的系统模型图.该系统模型图的说明如下:

10kV的电源来自110kV主变,其内阻忽略不计,故采用三个理想的正弦波电源,相角相差120°.断路器的初始状态为分.在一个周波即20ms后合上,断路器接触电阻取100μΩ,没有并联电阻和并联电容。串联电抗器的电抗值为0.2,阻尼电阻的电阻值为1.6Ω。C1~C6为电容器,用串联阻抗元件模拟,其中的电阻为熔丝接触电阻,取0.01Ω。由于断路器为非线形元件,因模拟计算的关系,C1不能为零,取1e-16F,C2~C6为正常的电容值,8μF。RL为方便模拟计算用的负载,此处设为电容器组母排对地电容,取1pF。中性点电流互感器采用PSB中的元件,参数按照实际情况取,变比取15/5,容量取25VA,一次二次的阻抗分别取0.001和0.04的标么值。电压互感器的容量为80VA,电压比10kV//100V,一次二次的阻抗也分别取0.001和0.04的标么值。B1~B4是母线,这里用作节点以方便连线,用连线模拟成实际的网络拓扑结构以后即可进行模拟计算。

用不同的网络拓扑结构进行多次模拟,可发现电压互感器的参数及其负载的参数对中性点电流的影响微弱,可忽略不计,原因也是显而易见的,因为它们是并联在电容器组上的。

用图4的系统模型图,不同的初相角进行多次模拟,模拟的结果由各个示波器观察,示波器3反映的即为流过中性点电流互感器的电流波形,图5选取了4幅比较典型的波形图,分别反映相角为10°、60°、90°和270°时的波形。

从一系列波形图可以发现,A相的角度为0°和180°时流过中性点电流互感器的暂态电流最小,A相的角度为90°和270°时暂态电流最大,且90°和270°时的相位暂态电流也相差180°.在角度为90°出现的最大暂态电流峰值为1750A,是一高频电流,频率约为10.4z。暂态电流在约0.002秒后衰减到稳态,稳态电流峰值为12.5A,衰减后的波形片断见图6。

3中性点电流互感器击穿的原因分析

该电流互感器的型号为LZJC-10型,1999年2月出厂,电流比15/5,其技术数据为1s热稳定倍数75,动稳定倍数150,按照一次侧15A的额定电流计算,动稳定极限是3182A(峰值)。同时在模拟时也发现,最大电流值对中性点电流互感器的参数敏感,若取的参数再小一点,最大电流值可超过2000A,在不计中性点电流互感器的阻抗时,最大电流为2500A。从模拟出的暂态电流值,我们可以推断出该电流互感器击穿的原因是动稳定失稳。从破碎的情况也可以看出,线圈间的间隙变大,说明线圈在受到电动力后的变形,而变形超过了环氧树脂的承受能力,导致环氧树脂崩裂,而铁轭上几个细小的放电点是绝缘破坏后线圈放电引起的。

另外,今年我公司110kV竹辉变10kV电容器组也发生了一起中性点电流互感器击穿的故障,故障后开关跳闸,现场检查的现象是某一电容器熔丝熔断,同时中性点电流互感器开裂。该成套电容器组与新升变161电容器的设备是相同的设备。从故障后的情况分析,可以推断出是某一电容器首先故障,导致流过中性点电流互感器的电流突然增大,因保护动作使该电容器组断路器跳闸的时间需0.1s左右,而暂态过程比较短,仅1/10个工频周波左右,因此在跳开开关之前,暂态电流已经使电流互感器损坏。

4结论与对策

新升变电容器组中性点电流互感器在送电时开裂,竹辉变电容器组中性点电流互感器在运行中发生开裂,说明该电流互感器未达到设计的性能指标,是造成损坏的主要原因。而同型号的电容器组以前也发生过熔丝熔断、开关跳闸的情况,为什么没有出现开裂的情况呢?从上述模拟过程可以看出,暂态电流的大小与相角有关,0°和180°附近电流很小,不会造成动稳定失稳。再者,从电容器组成套产品设计角度上讲,即使在最恶劣的90°和270°情况下,暂态电流也不会超过动稳定极限值,但是已经接近了产品的性能极限,因此很难避免电流互感器开裂的发生。

新升变161电容器组故障,开关跳闸后,检修人员到现场,更换了熔丝,在没有让电试班检查电容器状况的情况下,就恢复送电,是导致中性点电流互感器击穿的次要原因。因此,今后凡遇到电容器熔丝熔断情况,一定要检查电容器本身是否损坏,切不可急于送电。

为了加大动稳定的裕度,建议是否可考虑采用一次额定电流为40A或以上的中性点电流互感器,这样从理论上讲,动稳定电流的极限值加大了一倍,裕度可加大,另外可以通过保护的调整来弥补中性点不平衡电流保护灵敏度的降低,以避免发生类似的故障。

参考文献

互感器范文篇4

关键词:电容式电压互感器故障分析处理

2001年3月中旬,我局继电保护人员在对110kV金原变电站新安装设备电源自动投入(以下简称BZT)装置进行投运前检查时,发现备用电源侧无电压。因为这个电压是通过安装在备用电源线路侧的电容式电压互感器(以下简称CVT)而引入的,于是继电保护和高压试验人员对CVT及其二次回路进行了一系列的检查试验,结果发现该CVT电磁单元烧损的严重故障,检修人员及时对其进行了更换,避免了一起设备事故的发生。

1设备故障发现经过

我局金原变电站有两条110kV电源线路,正常运行时,一条主供一条CVT备用。为了在主供线路发生永久性故障时能快速合上备用线路开关,110kV系统装设了BZT装置。如图1所示,BZT装置接入金原110kV南北两段母线电压和两条线路侧电压,通过装置的切换把手,可以分别将每条线路转换为主供线路或备用线路,并把相应母线电压、线路电压和二次回路做相应的切换。正常运行方式下,紫金线为主供电源,T金线备用,这时将金原110kV北母线电压和T金2线路侧电压切入BZT装置,北母线电压反映主供电源工作状态,T金2线路侧电压反映备用电源是否正常,能否起到备用作用。

这套BZT装置是2000年12月份安装的。今年3月中旬,继电保护人员对装置进行投运前检查。工作人员在装置屏后端子排上测量了两段母线电压和紫金线路侧电压,正常:当测量备用电源T金2线路侧CVT的二次电压时,没有电压。当时工作人员认为线路没带电,就将此事搁下,而只对装置本身进行了检验。因那时全站设备要进行定期高压试验,只有将备用线路投入运行,主供线路设备才能停下作试验。运行人员同调度联系后将T金线投运带全站负荷,紫金线停运。这时继电保护人员确知T金线有电,便再次在BZT装置屏上测其线路侧电压,仍旧没有。CVT二次保险,没有爆;拆了回路核对线芯,没有问题;拔下二次保险,直接在二次出线端子上测量,还是没有电压。继电保护人员这才意识到可能是CVT内部出了故障。所以在很快对紫金线设备做完高压试验后,将紫金线投入运行,安排T金线停电,拆除其线路侧CVT的一次引线进行试验。

这台电容式电压互感器的型号是是2000年12月份才投入运行时,CVT的电气原理如图2所示。高压试验人员先测试了CVT的高压电容C1、中压电容C2以及总电容量,再试验了介质损耗,与设备出厂时和投运前的试验数据相比变化不大,说明电容分压器单元没有问题。

为查清CVT的电磁单元有什么问题,试验人员先用万用表的电阻档测中压互感器的一次线圈电阻,其阻值为500多欧姆;然后在中压互感器的一次线圈上加交流电压,测二次电压的值,当一次电压升高时二次电压不仅不升反而下降;最后在中压互感器二次侧的da、dn线圈上加交流电压,用静电电压表测一次电压的值,电压均为零。根据这些试验情况和数据,试验人员初步判断电磁单元内部可能有短路。因没有更为详细的关于这些型号CVT的技术和试验数据,所以当时无法判定具体的故障。鉴于设备要尽快投运(该站载波通讯的结合滤波器接在这台CVT下),检修人员就将这台CVT拆下,我局物资公司通知设备厂家在郑州的办事处,第二天就送来一台新的电容式电压互感器。

新CVT与原来的型号一样,只是电磁单元的结构稍有不同。有这台新CVT作参考,工作人员又对拆下的CVT电磁单元的线圈直流电阻和在二次侧加压重做了试验,对比试验数据如表1所示。这些数据表明,T金线路侧电容式电压互感器电磁单元的中压互感器一次绕组发生了短路。于是,工作人员很快对新CVT进行了试验和安装,及时投入了运行,并将旧CVT运回局里准备解剖检查。

2CVT解体检查和故障原因分析

2001年4月,我局专业技术人员和CVT厂家人员一起,对拆下的CVT进行了解体检查。当工作人员用扳手拧松电磁单元油箱法兰的几颗螺栓后,刺鼻和刺眼的油气从法兰缝隙朝外喷出,明显感到内部聚有很大压力。拆完一圈螺栓,用天车将电容器单元稍微吊离下节油箱,在取下中间电压端子A′和中压电容C2下端接线端子δ与电磁单元之间的引线时,发现固定中压电容C2下端接线端子δ的4只螺栓少了一只,因油箱中的油较满,也看不到这只螺栓掉到了哪里。工作人员用器具把油箱中的油慢慢抽出,当油面低于中压互感器的接线板时,人们终于看清了,掉下的螺栓落在了中压互感器一次绕组抽头的几个接线柱中间。在螺栓与接线柱接触的地方,发现有轻微的短路熔焊痕迹。油箱中的油已经失去了其应有的淡黄色,而变成了象酱油一样的黑褐色。在往外抽油的过程中,油中不断有气体逸出,油中泛起黑褐色的泡沫。当油被全部抽完后,人们看到了中压互感器的铁芯已经烧得没有了硅钢片特有的光泽,最外层的硅钢片已被烧变了形,中间鼓起来了。中压互感器绕组外面包的白布带已被烧成黑炭质,用手一扣就有渣子掉下来。油箱内壁沾满了含有炭质的油渍,用手一摸全是黑。为了拆掉补偿电抗器的引线,工作人员将出线端子盒上方的盖板拆开,发现这个盖板因内部压力太大已经鼓肚。至此,CVT的故障已经十分清楚,那就是中压互感器一次线圈烧损。既是这样,我们还是让油务人员取了油样,进行了油色谱分析。分析结果:除乙炔为零值外,总烃和氢气均大大超过注意值;经计算三比值为020,故障类型是低温过热(150~300℃),这进一步印证了故障的情况。根据对CVT解体检查所发现的情况,我局技术人员和设备厂家人员一致认为,造成中间单元烧损的原因是,固定中压电容C2下端的一只螺栓掉入中压互感器一次绕组的接线柱丛中,使一次绕组部分线匝被短接,其交流阻抗减小,一次电流超过额定值,造成一次绕组烧毁。但螺栓造成的短路不是太严重,或者说被螺栓短接的匝数并不多,因为如果短路严重,短路电流所产生的热将在短时间内使变压器油分解出大量气体,这有可能造成下节油箱爆炸,或使高压电容C1两端所加电压太高而使其爆炸。至于这只螺栓为什么会在运行中脱落,我们认为,这是该设备在安装时未紧固好,工序间检查时也未发现。设备运行后,它位于中压互感器的交变电磁场中,在交变电磁场的作用下不断振动、转动和向下移位,以至于最后脱落,造成中间互感器一次绕组短路。所幸的是,在这次对继电保护自动装置检验中,发现了这个问题,并及时进行了更换,防止了更为严重的设备事故发生。

3经验教训

电容式电压互感器在电力系统中的应用非常广泛,但象这次因螺栓脱落而造成故障的情况却是十分罕见的。对电力设备制造厂家来说,在出厂产品中若万分之一有问题,对设备用户来说就是百分之百的故障隐患。T金线路侧的这只CVT,幸亏发现及时,才未酿成更大的设备事故。因此,作为电力设备的生产厂家,安装人员一定要加强责任心,质检人员一定要把好验收关,以确保每台产品的质量。

互感器范文篇5

【关键词】互感器技术;继电保护;光电式互感器

1引言

随着科技的发展,人们对电力的需求和质量要求都在不断提升,导致电网输配变容量不断增加,电网的安全保护工作压力也越来越大。作为电力系统检测、继电保护的基础,互感器技术成为电网运行中不可或缺的重要组成部分。

2互感器技术原理

互感器在原理上类似于变压器,是利用电磁感应原理将一次电压、电流转换成二次侧小电压、电流的测量设备。继电保护及测量仪表都是通过互感器二次侧电压、电流来判断二次侧运行状况,继而实现对被测电路的测量和保护工作。互感器按类型分为电压互感器和电流互感器两种。电压互感器是将一次侧高电压转变成二次侧低电压,用来测量被测电路电压的设备。电压互感器的一次线圈并联在被测回路上,并且二次回路电压较高,阻抗很大,工作电流小,如果电压互感器二次回路短路,将产生很大的短路电流,损坏电压互感器甚至危害工作人员安全[1]。因此电压互感器的二次回路不允许短路,可装设熔断保护。电流互感器是将一次侧高电流转变成二次侧低电流,用来测量被测电路输送的电流、电能等数据。电流互感器一次线圈串联在被测回路上,并且起二次回路电压很低,阻抗很小。起二次回路电流取决于一次线圈的电流大小,与其所带负荷无关。电流互感器二次回路开路,会使一次电流全部转化为励磁电流,导致互感器磁心饱和发热损坏,二次侧产生高压危害人身安全。因此电流互感器二次回路不允许开路,且不能装设熔断保护[2]。

3互感器技术继电保护的应用

3.1电压保护

电压保护是指电压互感器并联在被测电流中,测量被测电路电压峰值、有效值、零序电压、相位、频率等因数,间接控制对电压峰值过高、过电压、低电压、相位异常和频率偏高等电压异常情况进行保护切断[3]。目前通常电压保护有过电压保护、低电压保护等。过电压是指任何峰值大于正常运行下稳态电压的相应最大峰值的电压。过电压保护分为瞬态过电压和暂态过电压,瞬态过电压是指持续时间极短,如雷击、开关操作、静电放电等。瞬态过电压主要通过防雷装置保护。而暂态过电压持续时间比较长,在0.1~1000ms之间,主要有谐振过电压、甩负荷过电压、中性点漂移导致的过电压和转移过电压等。这些过电压故障严重时可能导致电器设备损坏,电器绝缘被击穿等,危害极大,严重威胁电网及用电用户安全。因此,过电压保护是继电保护中的重要项目之一。电压保护使用电压互感器并联在被测回路中,用较低的变压互感器的二次回路电压替代被测电压,以达到安全、有效的继电保护工作。

3.2过电流保护

过电流保护是指当电流超过预定最大值时,保护装置动作切断隔离过电流回路的保护。过电流保护分为短路速断保护和过负荷保护,短路速断保护是指发生相间短路或接地短路时,短路回路产生极大故障电流,保护装置动作切断被测回路的过程,过负荷短路是指线路所挂负荷容量超过了线路允许最大值,导致线路电流过高,从而使保护装置动作的过程。过电流保护通常是使用电流互感器串联在被测回路中,监测被测回路电流峰值和有效值,当被测回路出现电流大小超过设定的允许值时,互感器二次回路电流使保护装置动作,达到切断和隔离故障回路的效果。

3.3零序保护

零序保护是指在大短路电流接地系统中发生接地故障,导致线路产生零序电流、零序电压,利用这些电气量构成保护原理的接地短路保护装置。零序电流保护的原理,是在三相线路或N线上安装电流互感器(CT),利用这些CT来检测三相的电流,由此计算零序电流大小。当线路上所接的三相负荷完全平衡时,线路无接地,可正常运行;当线路上所接的三相负荷不平衡,电路产生不平衡电流,不平衡电流达到了预设的动作值时使控制继电保护装置动作,从而达到零序保护的目的。同时,当三相发生接地故障时,接地相产生一个很大的接地短路电流,此时的零序电流是三相不平衡电流与接地短路电流的矢量和,因此零序电流大小剧增,使零序保护动作,达到接地短路保护目的。

3.4差动保护

差动保护是输入设备或线轮两端电流矢量差,当电流矢量差达到设定的动作值时驱动保护装置动作,被测线路两端之间的设备。差动保护是反映被保护设备或区域两侧电流差而动作的保护装置。依照基尔霍夫定理,电路中流入同一个节点的所有电流的矢量和等于零。把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当变压器、电动机发电机等设备出现故障时,流进被故障设备的电流和流出的电流不相等,即存在差动电流。使用电流互感器(CT)检测故障设备两端电流,则流入CT电流互感器的两端电流存在一个矢量差即差动电流,当差动电流达到了设定的动作值时,使差动保护装置动作,继而达到切断故障设备和回路的效果[4]。差动保护通常作为变压器主保护,是继电保护中最重要的保护之一。

4现有互感器技术的不足

当前主流互感器技术,即电磁式互感器技术仍有很多缺陷和不足之处,使得互感器在保护工作上事故频发。(1)互感器误差。互感器容易受特定因素影响,如线圈匝数、磁芯横截面积、电流频率等因素影响,导致互感器二次回路误差较大。二次回路的小误差,则算到一次回路就是一个较大的误差,容易导致继电保护装置误动作和拒动,对电网的安全运行危害极大。电力系统中存在大量的感性负荷和容性负荷,这些感性负荷和容性负荷在一定条件下会产生谐振现象,引起谐振过电压;在系统发生单相接地故障时,导致非故障相电压升高、引起发生位移;单相接地电弧熄灭后,容易导致电压互感器的铁芯饱和。谐振现象、单相接地故障、积极单相接地短路电流电弧熄灭等,均可能引起电压互感器严重误差。在中性点不接地系统中,发生单相接地时非故障相对地电压上升到根号三倍,因单相短路接地时可带故障运行两小时,电压互感器不但误差很大而且导致过热损坏。(2)电流互感器误差。正常运行中的电流互感器产生剩磁是一种普遍存在的现象。正常工况下,剩磁不会自动消失,滞留在磁心中产生磁滞。对于长期运行的电流互感器,磁滞对测量和保护电流互感器的性能都会产生影响,使电流互感器的误差,严重时,将导致电能计量错误、继电保护误动和拒动等事故。(3)铁磁谐振。铁磁谐振是由于铁磁心的非线性特性等原因,电压互感器磁芯饱和之后发生持续性的谐振过电压现象。如果线路所带负荷呈较大感性负荷,同时带有大容量的深井泵。当系统电压出现波动或持续性谐波,电路中电流或电压发生突变,可能导致电压互感器铁心迅速饱和、感抗减小,当感抗小于容抗时,就有可能产生铁磁谐振。铁磁谐振会导致电压互感器产生很大的激磁电流和电压突变。严重时,将导致磁心的温度迅速升高,导致电压互感器烧坏。

5互感器技术的发展趋势

近年来,一种新型的光电式互感器(OCT)技术引起关注,国内外的高等院校,科研单位、制造商投入大量的资金和科研人员在不断地开发和研制各种电压等级的光电式电流互感器。光电式互感器是利用法拉第磁光效应,即当线偏振光通过置于磁场中的磁光材料时,其偏振面会发生旋转,旋转角与平行于光线方向的磁场有线性关系,利用这一原理来测量被测短路电流等信息[5]。光电互感器具有以下优点:体积小,绝缘结构简单;无铁芯、无磁饱和及铁磁谐振引发的问题;具有良好的抗电磁干扰性,不会有低压侧开路出现高电压的危险;频率响应范围宽,动态范围大,测量准确度高;不充油,无燃烧、爆炸等危险;光电式互感器是能顺应电力计量与保护的数字化、微机化和自动化的新型互感器技术。但是光电式互感器技术仍有很多不足之处。其一,测量小电流时,法拉第旋转角非常小,而传感器的灵敏度有限,测信号被噪声所淹没,导致光电式互感器输出读数波动较大,线性度较差,准确度也略超出计量要求;其二,温度应力等外界因素引起的光在介质中产生双折射现象,也是降低了检测灵敏度的一大因素;其三,机械振动温度变化等因素都会引起输出光强的变化,以及传输输入光信号的光纤所表现出的偏振特性受到应力温度等因素影响,而产生部分偏振,使输入光信号进入偏振器后因为消偏而引起光强波动,导致互感器测量误差。可以看出,光电式互感器将是未来互感技术的主流,但是互感器存在不足之处,需要继续投入分析和研究。

6结语

互感器技术是继电保护的基础,在继电保护工作中占据重要地位。但由于现有的互感器仍有很多不足之处,致使继电保护工作事故时有发生,或需要投入大量运检人工,才能确保电网保护正常运行。新型电子式互感器因其线性特性好、误差小、受环境影响低等优点,将会是电磁式互感器技术的理想替代品。本文意在给广大电力工作者和相关专业讲述现有互感器技术在继电保护工作中的应用,讨论了电磁式互感器的不足,介绍了新式光电互感器技术的发展现状,呼吁广大技术人员积极投入互感器技术的研究和创新,为智能电网发展提供支持。

【参考文献】

[1]周迁.剩磁对电流互感器误差的影响[J].通信电源技术,2018,35(12):32-33.

[2]刘天晓,晁岳振,杨绍辉.浅谈当前电力系统继电保护运行维护与应用[J].山东工业技术,2019(7):209.

[3]杨飞.分析智能变电站继电保护检测和调试技术[J].科技与创新,2019(15):79-80.

[4]吴路明,薛明军,陈琦,等.一起电子互感器异常引发的复杂发展性故障分析及改进[J].华电技术,2020,42(6):10-15,30.

互感器范文篇6

关键词:智能电网;互感器;传变特性;影响

1智能建筑配电系统相关概述

1.1智能配电系统的含义与特点

智能配电系统集物联网、大数据、云计算、人工智能、专家系统、生物识别、图像识别、全息感知、5G通讯、北斗短报文等新技术,构建了一个多源协调管控、输配电智能监管运维、智慧用电为一体的综合能源管理平台。其特点主要包括:(1)无人值守,自动监测;(2)自主预警,分级推送;(3)精准监控,智能分析;(4)灵活设置,管理闭环。

1.2智能建筑配电系统的设计要求

近年来,智能电网加速建设进一步扩大了市场和用户侧对于智能设备的需求,一二次设备的融合使得整个电力系统及传统电力设备制造行业发生了巨大的变革。越来越多的二次设备被就地化安置,在自动控制领域采用多层分布式的保护与控制系统,实现了设备的就地化控制和自动保护脱离。配电网络内的电磁干扰突出表现在一次系统对于二次设备的干扰,例如开关或断路器操作时产生的暂态电磁干扰。据国家电网公司不完全统计,1835台现场运行的电子式互感器其中发生ECT故障137次,发生EVT故障51次。为了确保智能电力二次设备的正常可靠运行,研究和抑制电子式互感器收到的干扰信号能有效减少二次设备的误操作,能在根源上增强设备的抗干扰能力,对互感器进行电磁兼容设计具有重大的现实意义。供配电系统的设计关系到相关建筑和住户、商铺的安全,再设计过程中的要求有:(1)安全性;(2)可靠性;(3)高效低质量使用电力。我国的标准规定:额定输出频率范围是50Hz,允许频率偏差范围是0.2~0.5Hz;(4)灵活性和方便性;(5)经济性;(6)可扩性。

1.3智能建筑配电系统的网络协同性

配电系统通常是智能建筑最主要的能源来源,一旦电力中断,大部分系统就会立即失效。因此,可靠、连续地供电是使智能建筑正常工作的前提条件。与常规配电系统相比,智能建筑的配电系统可以自动、持续地监测所有配电设备的运行/故障状况和运行参数,并具有自动应急处理功能,因此,它具有较高的可靠性,更好的电力连续性;智能建筑配电系统柔性好,可扩展性强,可以随时变更、扩展,满足发展需要;自动化度高,可以大大提高配电系统管理水平,实现无人值守配电系统,并能够提高能量的利用,最大程度地实现节能;智能建筑的配电系统也可以很方便地连接到其他建筑自动化系统,构成了完整的建筑自动化监测系统。智能建筑的配电系统是智能区域内必不或缺的一个重要部分。第二,在智能建筑的7个弱电系统中,只有配电系统处于强和弱电的两大类系统中。它既是弱电系统的一部分,又是强电系统的一部分,对配电设备实行连续、持续的监测。这就决定了在智能区配电系统设计、生产和安装时,必须处理强弱之间的关系,以保证系统功能的满足,同时确保系统安全可靠。

2低压电子式互感器应用概述

2.1电子式互感器的概念

根据国家标准GB/T20840.7-2007定义,电子式互感器是一种由连接到传输系统和二次转换器的一个或多个电流或电压传感器组成的测量装置,用于传输正比于被测量的量,以供给测量仪器、仪表和继电保护或控制装置。基于法拉第电磁感应原理,传统的电流互感器(CT)通常采用罗氏线圈结构或低功率线圈结构,电压互感器(VT)则通常为电容、电阻或者阻容分压器。其对于高电压、大电流采得的信号为模拟信号,不仅体积大,且抗电磁干扰能力弱。电子式电流互感器(ECT)和电子式电压互感器(EVT)在传统的基础上加装了一种将模拟量就地数字化的转换器,用非常小的尺寸达到了高性能的标准。其目的是在接近信号源的地方,将采集到的电压或电流的模拟信号转换为稳定而可靠数字量,再经由光纤或电缆将采样得到的数字信号传递到二次转换器和合并单元。

2.2电子式互感器的分类及特点

电子式互感器的构成要素主要分为传感单元、采集器和合并单元3个部分。其中电流传感单元可以划分为四种方式:罗氏线圈、低功率线圈、磁光玻璃和光纤环;电压传感单元主要是电容、电阻、阻容分压器或光学分压设备。此外,根据传感单元是否需要电源供电还可以将其分为有源型电子式互感器和无源型电子式互感器。虽然电子式互感器的传感原件的类型繁多,但是从整体上看可以简略地划分为电气传感元件和光学传感元件两种。以电子式电流互感器为例,电气传感探头的工作原理是利用法拉第电磁感应原理,通过采样绕组采集到高压侧电流信号,经过光电转换,再通过光纤传递到低压侧,还原成电信号后进行放大和输出;光学传感元件(磁光玻璃)的工作原理是利用低压侧光源发出的偏振光,通过光纤传递到高压侧的过程中偏振面在磁场中的产生旋转,完成对一次侧电流的测量。与传统电磁式互感器相比较,电子式互感器具备绝缘简单、质量轻、成本低、动态范围大、精度高、频带宽的性能优势。在运行中,传统的电磁式互感器二次回路不能出现开路的情况,否则在复变绕组中感应出的高电压会严重危及设备和人员的安全。由于电子式互感器的高低压侧之间采用光纤通信,完成了一二次设备的电气隔离,极大地提高了设备运营的安全性,因此电子式互感器已被广泛地运用于配电网络的建设中。

3低压互感器建模方法

3.1数据采集与模型建立方法

通过文献调研,目前国内外对于互感器和电子式互感器宽频等效模型的研究资料比较匮乏,由于不同公司生产、不同工作原理、不同安装方式的互感器对于其模型有非常大的影响,目前学术界罕有能反映某一类互感器工况的分布参数模型,对于电子式互感器的频率响应研究也主要集中于数值计算。因此在电子式互感器仿真模型建立和参数确定的过程中缺乏理论依据。本文将采用现场测量和数值仿真计算相结合的方式,对照Comsol有限元模型的仿真值,综合确定HCLJ32-10中各参数,特别是杂散参数的取值,建立该一体化传感器的分布参数模型。在此基础上,分别将模型中的各个参量在一定邻域内变动。倘若变动范围较小,则可以将模型中的各个参数看作线性独立的参量,也即某一参数的变化不影响其他参数的取值。由此得出互感器对于其回路拓扑中的各个参数的敏感度,得到此类互感器较为普适性的敏感参数。最后,对HCLJ32-10的分布参数模型进行时域仿真,对其输入端施加模拟操作波干扰,研究二次侧响应,分析在实际开关动作过程中可能出现的问题,对该一体化传感器的电磁兼容防护给出改进建议。

3.2电压互感器模型分析

HCLJ32-10一体化传感器中所使用的电压互感器为电容分压器,采用多电容串联分压结构。考虑到杂散电阻和电感的影响,电容分压器的每一个电容都可以等效为RLC的串联支路,且阻值和电感值都极小。电容器的内阻和内感是由电容器的材料、结构和制造工艺所决定的,不可能从根源上消除,这使得电容器在不同频段显现出不同的特性。电容分压器的杂散电阻测量值在较宽频带下呈现出稳定的特性,在模型建立中取中频段电阻稳定值与谐振点阻抗计算值相比较.发现误差较小。经过重复测量,HCLJ32-10中电压互感器各项参数均较为稳定,如图1所示。在分析时,可将较宽频段内电容器的杂散电阻视为恒定值。图2a)、b)分别为实际测量得到的HCLJ32-10一体式互感器中电压互感器高低压臂电容的频率特性。注:图中测量结果电容负值即表示该器件呈现出电感特性。a)低压臂频率特性b)高压臂频率特性图3-2电压互感器频率特性测量图由于HCLJ32-10中互感器采用频率响应特性较好的薄膜电容,具有较好的频率响应。图2为电容互感器实际测得的频率响应曲线。从图中可以看出,电容器低压臂由容性元件转为感性元件的频率点为116kHz,高压臂为1.12MHz。随着频率继续升高,在3.82MHz左右,互感器的高压臂电容组电抗再次发生突变。当频率高于3.82MHz时,测得电容组再次对外呈现容性。由于HCLJ32-10一体化传感器中电容分压器高压臂采用多电容串联分压结构,怀疑当外施电压频率在3.82MHz时,呈现感性的高压臂电容组和设备与地之间的分布电容产生了并联谐振。表1电容分压器参数低压臂高压臂工频CRLCRL变比测量值1.96μF0.179Ω0.8μH604pF8.61Ω30μH3245官方值1.8μF620pF3077相对偏差8.9%2.6%5.4%经过多次测量,得到电容分压器的具体参数。如表1所示,同厂商给出的参考值相比较,HCLJ32-10中电容分压器测定的各项参数偏差较小。此外,由于电流互感器中某些杂散参数的量级过小,如一二次侧绕组之间的电容等,无法利用仪表直接测定。本文采用简化模型的数值计算和Comsol有限元仿真电场模型来给出参考值。COMSOLMultiphysics软件一款对基于偏微分方程的多物理场系统进行建模和仿真计算的分析平台,可以灵活地自定义模型,同时也支持多种模型格式文件的直接导入。软件中内嵌了大量的材料库供用户直接调用,同时也可以任意更改修正材料的物理属性及边界条件。图3为HCLJ32-10一体化传感器额定工作状态下内部及周围空间内的电场分布情况。以一二次侧之间的分布电容为例,从图中可以看出10kV母线导杆、连接件和电容分压器等高电位元件均较为密集的分布在线圈的周围,大大增加了ECT和EVT之间的容性传导耦合关系,增加了一二次侧之间的分布电容。仅考虑导杆对线圈的分布电容时,该分布电容的简化计算值为10.8pF,仿真结果为8.91pF,两者偏差不大。当考虑了连接件等线圈其他元件对线圈的分布电容情况时,一二次侧之间的电容增大为18.4pF。当高压引线中有电磁侵入波传来时,这种特殊的结构可能会在电流互感器二次侧耦合出幅值更高的干扰波,影响互感器及与其相连接设备的电磁兼容性能。根据计算和仿真得到的结果,可以确定电流互感器模型中各元件参数的取值,建立起该ECT的电路结构模型。

3.3互感器敏感性分析

敏感性分析方法是一种分析系统稳定性的系统分析方法。存在某一系统,其系统特性P存在n个影响因子,且存在函数关系。在基准值状态下,有。令某一影响因素在其概率值域范围内浮动,P的取值将发生变化。通过分析xi的变动使得特性P偏离P*的程度和趋势,可以判断系统特征P对于影响因素xi的敏感程度。这种分析方法被称作敏感性分析法。系统的敏感程度用敏感度S来表示:以表2中网络参数的选定值作为基准值,选取,研究在频段10Hz~1GHz区间中,存在任意一点达到敏感条件标准,则认为影响因子为该电流互感器幅频响应的敏感参数。经过研究归纳,HCLJ32-10一体化传感器的电流测量频率响应的敏感参数包括二次侧对地电容和线圈内阻;较敏感参数为一二次侧之间的分布电容。试验结果表明,影响低功率线圈型电流互感器传递函数的主要杂散参数为一二次侧之间的分布电容、二次侧对地电容和线圈内阻。其中,一二次侧之间的分布电容和二次侧对地电容主要影响线圈的高频特性,增大其电容值均会降低互感器的上限截止频率;线圈内阻主要影响线圈的低频特性,增大线圈内阻会使得互感器的下限截止频率增加。有效降低线圈内阻对于配电网络测量所使用的工频电子式互感器性能意义重大。

4结语

互感器范文篇7

关键词:应用电子式;电流互感器;变压器差动保护研究

我国一直致力于民生事业的建设,随着科技的发展,电力已经成为了人们日常生活中不可或缺的必需物,而在电力输送过程中电流互感器以及变压器等继电器的存在是保障电流等电信号满足人们日常所需的关键,这也是由于目前所采用的继电器多为电磁式互感器,而而这种互感器极易受到外界影响,进而影响电力的正常输送,而无论城乡电网还是低级电网随着时间的推移都逐渐出现饱和的趋势,而电子式电流互感器的出现对于饱和的电信号有着重要作用。

1电子式电流互感器综述

虽然电子式电流互感器在解决电流等电信号饱和上有着得天独厚的优势,但是不可否认由于电子式电流互感器出现的时间较晚,使得绝大多数人员依旧采用传统的电磁式互感器,所以为了推动电子式电流互感器的使用,就必须对其有一定的了解。1.1电子式电流互感器的概念。随着信息化脚步的加快,目前社会上的绝大多数的仪器都在朝智能化的方向迈进,以期望能在解放劳动力的同时提高工作效率,毫无疑问,变电站的危险性相对较高,因此当前一部分智能变电站的出现使得电力中转更为便捷,但是传统的电磁式互感器极易受到影响,损耗了大亮的电信号,因此电子式电流互感器的出现使得智能变电站更为符合时代的发展,这主要是由于相对于传统的互感器,电子式电流互感器具有体积小,重量轻,绝缘材料简单,动态范围较宽,无磁饱和现象,数字量、模拟量输出均可,且二次输出可开路,但是温度对其影响较大。目前社会上广泛使用的电子式电流互感器包括应用电子式电流互感器以及光学互感器。1.2电子式电流互感器工作原理。电子式电流互感器之所以能快速的代替传统的电磁式互感器的原因正是由于其所具有的特点,同样也离不开电子式电流互感器的工作原理。电子式电流互感器的工作原理包括:罗氏线圈原理、低功率小铁心线圈原理、电阻分压原理、阻容分压原理以及串联感应分压原理,其中罗氏线圈原理是通过电磁感应定律算出导体的电动势,从而调节线圈,进而使得互感器更为合理、科学;而低功率小铁心线圈原理则是算出电路中的电功率,从而调节小铁心线圈,进而提高互感器的电流调节作用;电阻分压原理利用电阻并联的方法对工作中的电子式电流互感器进行差动保护;而阻容分压则是通过为了降低过高电压通过的可能性,进而避免短路的情况出现,从而起到保护变压器的作用;串联感应分压器原理就是将多种不同级的电抗器串联在电路中,从而根据反馈的电信号合理的尽心线圈设置,从而保障电子式电流互感器的工作。

2应用电子式电流互感器的变压器差动保护的必要性

显然,正是由于电子式电流互感器的优点使得传统的电磁式互感器的应用价值受到了威胁,尤其是在全面智能化的未来,但是即便如此也需要对电子式电流互感器采取一定的措施进行保护,这是由于尽管电子式电流互感器尽管不具备磁饱和现象影响电力信号的传输,但是却极易受到温度的影响,也就是说如果通过的电子式电流互感器的电压或电流过高轻则损耗电力,重则会产生危险,所以为了保障电子式电流互感器能够正常的工作,有必要对应用电子式电流互感器进行变压器差动保护。

3变压器差动保护的研究现状

正是由于变压器差动保护对于电子式电流互感器的工作正常有着十分重要的作用,所以必须对差动保护原理有一定的了解,并了解当前电子式电流互感其以及差动保护的现状。3.1差动保护原理分析。由于差动保护的原理简单并且上手容易,所以被广泛的应用在各大变电站电力保护中,是十分重要的电力运输保护原理。一般所采用的差动保护分为全电流差动保护以及基于故障分量的电流差动保护,主要通过对比不同级别的电压侧得电流,一般情况下智能变电站所采用的是三相变压器差动保护相位补偿方式,通过对不对等的电流进行处理,令两侧的电流差为零,但是这种差动保护方式并不能体现出电子式电流互感器的使用优点,所以必须对其进行改善。3.2电子式电流互感器变压器差动保护的原理分析。电子式电流互感器与传统的电磁互感器之间最大的不同的就是当遇到系统障碍时,电子式电流互感器不会遇到饱和的问题,所以仅仅是简单的采用传统的差动保护原理是不足以体现出电子式电流互感器的应用价值的,所以必须对变压器差动保护进行改善,现在所采用的电子式电流互感器变压器差动保护原理包括差动保护整合算式以及运行过程中的差动保护方案,前者通过对互感器差动保护中的电流进行运算,确定保护条件,从而得出额定电压,进而最大程度的保障电子式电流互感器的工作安全以及工作效率,而后者则是为了使差动保护的效率提高而提出的运行方案,这是由于在电子式电流互感器工作期间可能会出现意外的情况影响其工作,所以在此过程中必须根据电子式电流互感器的工作原理,进行合理的运算,得出其工作过程中的电力参数,进而帮助工作人员合理的调节线圈的大小,使其满足电子式电流互感器的差动保护要求,同时也可以根据电子电流互感器的差动保护特性进行及时的调节,从而提高电子式电流互感器的差动保护效率,进而保证电子式电流互感器的工作质量。

4应用电子式电流互感器的变压器差动保护情况

如今应用电子式电流互感器的使用范围越来越广,而为了保障电子式电流互感器的工作效率以及工作质量,对其进行变压器差动保护是十分必要,更遑论,但是当今社会对于继电器的保护装置的研究十分重视,但是由于电子式电流互感器的出现较短,且又需要其能在商业化应用中具有更高的价值,就必须对电子式电流互感器的变压器差动保护提出更高的要求,应用电子式电流互感器在工作过程中由于损耗等问题不同级别的电流量是时刻变化的,而这在动态保护方案中虽然也被考虑到,但是却由于信息采集不到位而导致电子式电流互感器的工作出现问题,因此必须同步采样,保障两侧的电力信息能最大化的同步,可采用GPS硬件时钟法,最大化的实现全电站的样本采集的同步化,除此之外,必须对电子式电流互感器进行多次分析及时的发现差动保护的漏洞,进而针对解决,同时也要对差动保护进一步的研究,从而保证电子式电流互感器的工作质量。

综上所述,随着社会的变迁,时代的发展,智能化的变电站会最大化的保障人们日常对电力的需求,也能解放劳动力,但是电磁式互感器却并不适用于智能变电站,因此为了提高智能变电站的商业价值,必须推进应用电子式电流互感器的普及以及使用。而电子式电流互感器的优点时期成为了炙手可热的新一代传感器,因此对其进行变压器差动保护具有十分重要的作用。

作者:臧红波 管志岳 单位:1.无锡职业技术学院 2.宝克(无锡)测试设备有限公司

参考文献

互感器范文篇8

摘要:电流互感器主要缺陷绝缘

某变电站安装有500kVLB2-500W2型电流互感器36台,出厂日期是97年8月,投运日期是98年8月。

爆炸情况

该变电站500kV电流互感器在运行中发生爆炸并发生火灾,电流互感器中约3t变压器油和绝缘纸一起燃烧,40分钟后扑灭了明火。除已爆炸的电流互感器外,相邻的三只电流互感器的外瓷套部分损坏,一台500kV刀闸严重损坏,五台刀闸部分绝缘瓷瓶损坏。发生爆炸的电流互感器外瓷套完全炸碎,但是,电流互感器的防爆玻璃完好无损。最远爆炸碎片飞了72米。

二、爆炸设备的情况

该台电流互感器在交接试验时,油中含有乙炔,并超过注重值,达1.3ppm,厂家对此新问题的答复是这台电流器在出厂时由于漏油,对它进行了补焊,可能是补焊时产生的乙炔,厂家在现场进行了47小时冲氮脱气处理,含气量由3.05%降到了2.6%,乙炔也降到0.2ppm。

在投运后1年的预检中发现,该电流互感器的乙炔又增大到1.01ppm,跟踪取样测试,乙炔为0.91ppm。厂家认为,电流互感器本身没有新问题,同时告诉我们在有停电机会的时候,可以将油中的乙炔气体脱掉。该电流互感器的其它试验数据无异常。

该电流互感器爆炸后,对爆炸原因进行了初步分析,认为摘要:该台电流互感器存在制造固有缺陷,由于产品质量原因造成这台电流互感器在正常运行中,内部发生突发性绝缘击穿短路,引起互感器爆炸。

主要原因是摘要:

(1)、该电流互感器在制造过程中存在绝缘包扎缺陷,主要体现在零屏外,直径从98mm到126mm范围内的绝缘包扎有断层、凹坑现象;

(2)、由于电流互感器绝缘层包扎缺陷引起局部放电,导致电流互感器内部绝缘层损坏,最后发生爆炸。

有关新问题的讨论

该公司的500kV电流互感器发生了多次次爆炸,其它电流互感器解体发现的新问题也是绝缘包扎有缺陷。

如何搞好该类设备的绝缘监督,避免同类事故的发生,是大家关心的新问题。

1、质量管理

同类设备连续三次发生爆炸,说明该厂在绕制绝缘时确实存在工艺控制不严,只有制造厂家提高产品,消除设备的固有缺陷,才能保证设备平安运行。在产品制造过程中,一次线圈的包扎主要是将宽16mm厚0.2mm的电缆纸带,半叠均匀绕在一次绕组上,每台需包扎约两百多层,因此,工人对绕制工艺的执行好坏直接影响到产品质量。发生事故后,制造厂家在一次线圈绝缘绕制工序中从五个方面进行了质量整改,加强了对一次绕组绝缘包扎的质量监督管理。

2、局部放电试验

对于这种缺陷,用局部放电试验可以比较有效地发现缺陷。在现场,由于试验电压较高,现场电场干扰大,电晕放电噪音大,基本上无法进行该项试验。因此,要认真作好出厂试验中局部放电试验,从技术上把好质量关。

国家标准对局部放电试验有两个程序,即程序A和程序B。

程序A摘要:工频耐压试验之后,在降压过程中,降到局部放电测量电压,在30S内测量局部放电量。

程序B摘要:工频耐压试验后,进行局部放电试验,施加的电压是工频耐压的80%,持续时间不少于60S。然后,直接降到规定的局部放电测量电压,在30S内测量局部放电量。

测量电压Um时,局部放电量不大于10pc,测量电压为(1.2Um/)时局部放电量不大于5pc。

该电流互感器的厂家是按照程序B进行的。这些设备出厂试验的局部放电量合格,为什么运行后又发生事故?厂方对此进行了分析和对比试验,认为摘要:一是由于局部放电测量是在工频耐压试验后进行,可能在680kV时激发的局部放电已经消失。二是局部放电测量的预加电压较低,不能激发局部放电。因此,厂家改进了局部放电的试验方法摘要:加电压680kV做工频耐压试验,耐压1分钟,降至550kV。1分钟后,测量局部放电量,其值不大于5pc。

据厂家介绍,他们按新试验程序发现,通过新程序的电流互感器绝缘包扎良好,符合图纸及工艺要求。而未通过新程序的产品,绝缘包扎有断层,内侧起棱现象。

3、油色谱

厂家对油色谱进行了一定的分析,对新局部放电试验方法,查处有新问题的两台产品,反复做了局部放电试验和色谱分析,其结果如下摘要:当放电量达到10万pc时,加压40小时,油色谱中乙炔从0上升到1.5ppm。

三、运行中监督

该厂的这种型号的产品已经运行了二十多年,全国目前已有600多台在运行,在1997年发现93年、94年出厂的产品,由于混油新问题(大连油和锦西油混用)造成的介损上升新问题,目前又出现绝缘包扎的新问题。由于在现场无法检测哪些设备的绝缘包扎存在缺陷,因此,该站的同类设备全部还厂重新包扎绝缘,按照新的局部放电测量方法测量局部放电,确保产品质量。

这批电流互感器投运后,由于油色谱超标,现场充氮脱气处理了两台次,同样由于油色谱超标,更换了3台,新安装时由于二次绕组绝缘电阻不合格(为0)更换了一台。1999年,一台电流互感器由于油色谱中氢(H2)含量超过20,000ppm,解体检查发现CT内部一次引线的螺丝松动造成氢含量超标。

互感器范文篇9

关键词:电压互感器消谐措施选择

长期以来,石河子电网6~35kV系统均采用不接地运行方式。这种运行方式在系统发生单相接地时,允许一定的时间内带故障运行,因而大大提高了系统的供电可靠性。随着区域电网的超前发展,系统对地电容也迅速增大。在系统发生某些扰动时,极易引发系统内电磁式电压互感器的饱和,激发谐振过电压,导致系统接地电压互感器(TV)高压保险熔断烧毁,严重时出现设备闪络跳闸。根据本地区电网的实际情况,选择了不同的措施来抑制由于TV饱和引起的谐振过电压。

1TV三角形开口装设消谐电阻

由110/35kV紫泥泉变电站35kV设备,35kV红沟变电站及石场变电站的35kV设备,以及它们之间的35kV联络线(紫红线:20km,紫石线:8km)组成局部的35kV系统,其所带的负荷常年在较低水平,自建成后,频繁发生谐振,每年都有数个35kVTV喷油烧毁,损失惨重。严重威胁着电网的安全运行。经由分析该系统发生分频谐振的区域为

XC0/XL=0.01~0.08(1)

发生基波谐振的区域为

XC0/XL=0.08~0.5(2)

式中XC0——系统的零序电容容抗;

XL——电压互感器(tv)单相绕组在额定线电压下的激磁阻抗。

输电线路的电容电流一般采用下式计算

IC0=3Uφ(1/Xco)×103(3)

式中Uφ——相对地电压,kV。

由式(3)可求得该35kV系统零序电容容抗XC0为0.0187MW。这几个站的JDJJ2-35型TV的激磁阻抗,约在2.2MW左右,代入式(1)中可求得XC0/XL=0.0256,该值落在1/2分频谐振范围,因此当该系统有单相接地、雷击、合闸等条件激发时,将产生分频谐振。此时,电压互感器的励磁电流急剧增加,可高达额定励磁电流的几十倍以上,从而造成电压互感器的烧毁。为了抑制TV的分频谐振,选择了在TV二次三角形开口处并联一阻尼电阻,其阻值可由下式求出

R=XL/K2(4)

式中XL——系统感抗;

K——tv变比系数。

将相关参数代入等式(4)可得:R=25W。由于天气原因,检修人员只在紫变,石场变的35kVTV开口三角形装设了25W的阻尼电阻,而红沟变未能及时安装。暴风雨过后,红沟变有两台35kVTV又因谐振而喷油烧毁。后来将红沟变更换TV后的二次开口三角形装上的阻尼电阻。现运行近一年,该35kV系统的所有TV再未发生因谐振而烧毁的事故。经验表明,必须在同一系统,所有TV二次开口三角装设阻尼电阻,才能有效的抑制谐振。

2Tv中性点装设阻尼电阻

石河子电网很多变电站分布在边远的农牧团场,负荷以季节性的农业灌溉,棉花加工为主,变化起伏很大。在10kV线路轻载时,遇到线路上接地故障,或值班员拉路查找接地点时,都时常引发10kV系统谐振,站内三相指针式电压监控仪表的表针全部打到头,数分钟不返回,随后就是10kVTV保险的熔断,电压回零。经检查TV绝缘严重降低,高压对低压绕组及高压对地的绝缘电阻已不足2MW,无法投入运行。也曾试图用第一种办法解决,但考虑到团场10kV电网属农电公司管理,线路参数处于经常变化之中,确切的参数无法及时收集。因此采取了在TV一次中性点对地接入LXQ-10型阻尼电阻。它的直流特性与传统的RXQ消谐器相近,但结构设计迥异,具有体积小,重量轻,表面经过特殊处理,户内户外可通用,安装也很方便的特点。在几个易发生10kV系统谐振的变电站安装后,效果良好。但在选择阻尼电阻时应注意TV的绝缘等级是全绝缘还是半绝缘,若是半绝缘应选择弱绝缘型的LXQ-10阻尼电阻与TV相匹配。此外该阻尼电阻不能固定在JDZJ-10型TV的紧固螺栓上,因为该处是不接地的,而应与接地螺栓相连接,并检查接地良好。

3装设抗谐振全绝缘电压互感器

本地区35kV小拐乡无人变电站,距离石河子市区150km,路况不好,变电所的数据远传功能还未完善。每当线路有接地时,不能及时发现,接地故障不能在规程规定的时间内消除,造成户外10kV干式电压互感器多次烧坏。直到几天后有人巡视时才发现。针对这种情况,选择励磁特性饱和点较高的抗谐振全绝缘电压互感器,使其可以在系统有接地时,能够长时间运行而不烧毁。该设备已投入近半年,状况良好。

4装设消弧线圈自动调谐装置

位于石河子市区的几个变电站,电缆出线多,接地电容电流很大,发生接地后电弧不易熄灭,容易激发TV的饱和谐振过电压和间歇性的弧光接地过电压,导致事故跳闸率上升。为了提高市区供电的可靠性,减少谐振过电压发生的机会,装设了消弧线圈自动调谐装置。该装置可以自动调整消弧线圈的感性电流,补偿故障点的电容电流,使故障点的残流减少,从而达到自然熄弧目的,抑制过电压的产生。运行经验表明,消弧线圈对抑制电磁式电压互感器饱和而产生的谐振过电压,降低线路的事故跳闸率有明显作用。但在选择消弧线圈时有以下几个问题应引起重视:

·要测算所装设电网的电容电流;

·要考虑电网的发展趋势,合理选择消弧线圈的容量;

·选择质量、性能可靠的自动跟踪补偿测控系统。

互感器范文篇10

关键词:电磁式电压互感器误差特性分析

电磁式电压互感器(下文简称为TV)作为电能计量装置的一个重要组成部分,其误差特性影响着电能计量的准确性。TV的误差特性是根据检定规程要求按铭牌参数进行试验。而TV是在实际条件下运行,在某些情况下,TV的实际误差可能超出了允许值。正因为我们在TV的使用中忽视了这些情况,导致TV误差特性恶化而未被察觉,即所谓的隐性恶化。由此,为减少电能计量误差而在其它方面采取的措施得到的成效,反被TV误差特性恶化而部分或全部抵消。因此,对引起TV误差特性恶化的原因作了如下的分析。

1额定容量不足引起TV误差特性恶化

由于TV绕组存在直流电阻和漏电抗,接上负载时必然产生压降,引起二次电压随着负载而变化,即TV误差随之变化。按规程规定,选择TV二次额定容量Sn时,应使实际二次容量S不大于Sn,但不小于(1/4)Sn,即(1/4)Sn≤S≤Sn。TV实际二次容量可按下式计算:

S=[(∑Skcosφk)2+(∑Sksinφk)2]1/2=[(∑Pk)2+(∑Qk)2]1/2

式中cosφk-接在TV二次侧的各设备的功率因数

Sk-接在TV二次侧的各设备的视在功率(一般设计手册可查到)

TV额定容量选取不足的原因,归纳起来,有如下方面:

(1)先天不足:

①设计人员缺乏必要的计量专业知识,在额定容量的选取问题上认识不足;

②对各种测量性质不同的表计,或同一类不同工作原理的表计的电压回路参数、结构知之不详,又不愿查有关的手册,因而引起计算错误;

③对计量不够重视,工作疏忽,对接入设备数量不清楚,如后备线路未计算在内;

④为了节约投资,选取了额定容量较小或额定容量裕量不足的TV。

(2)后天造成:

在计量设备安装时,额定容量已正确选取了,因实时监测和管理的需要,除原来已接入的继保设备、监视用的电压表、功率表、功率因数(相位)表、频率表外,又接入遥测用的电压变送器、功率变送器,电压监测仪,失压仪,谐波监测仪等等,这最容易发生在运行多年的变电所。最严重的是,这些设备中,某些设备的工作电源还由TV供给,若只取自某一相时会使TV各相负载变得不平衡。还有,因用电形势发展出乎意料的迅速,新线路一下子增加了许多而令TV回路设备相应增加很多。这些不断接入的设备,可能会使TV二次回路的总实际容量超出最初设计时选定的额定容量。而设备的接入人员或没有及时通知相关部门的管理人员,或管理人员疏于职守,管理不善,没有察觉到TV的实际容量已超出额定容量。

2各TV的实际功率因数低于额定功率因数引起TV误差特性恶化

感应式的三相电能表,其电压线圈的功率因数约为0.2~0.3,电子式电能表由于其电压回路一般都使用小型TV作为隔离和采样,工作电源也由小型变压器降压整流获得,故其功率因数也在0.3~0.5,加上其它接入设备的感性负载,整个电压二次回路的功率因数约为0.3左右。目前广泛用于电力系统的电磁式TV,额定功率因数为0.8(感性),当TV二次负载的功率因数与额定功率因数相差较大时,将会超出允许误差。

3谐波引起TV误差特性的恶化

由于大容量用电整流或换流设备以及其它非线性负荷接入电力网造成系统中存在谐波。对于中、低电压等级的系统,一般都采用电磁感应式TV,此种TV在高次谐波条件下运行时,由于原、副边的漏阻抗以及原、副边间的电容和副边负载引起附加误差。当满足TV的铁芯不饱和、一次绕组的漏抗很小、TV空载等条件时,则附加误差很小,但TV负载较重时,误差特性迅速恶化。TV的误差随正弦波畸变率的增大而非线性地增大,偶次谐波对TV误差的影响比奇次谐波更甚。工作在谐波环境中的TV的误差特性是无法通过选择接线形式来改善的。所幸的是,我们在多年的谐波测试中发现,注入电力系统的谐波,引起电网某点电压畸变的程度,与该点的短路容量、运行方式大小成反比。电网中存在的主要是奇次谐波,对于某次含量最大的谐波分量,其后的该序组的谐波分量的含量随次数的增大出现较快的衰减,其余序组的各次谐波分量的含量则迅速衰减。但试验表明,不能忽视其对TV的误差特性乃至整个电能计量装置的误差的影响。

4电力系统过电压引起TV误差特性恶化

电力系统中形式各异的电感元件,如变压器、TV(因其容量相对于变压器容量而言微不足道,故相当于空载运行的变压器)、发电机、消弧线圈等,与电力系统中存在的各式电容,如线路的对地、相间电容,补偿用的串、并联电容及各种高压设备的寄生电容,可能形成不同的振荡回路,在一定条件下将产生谐振现象,引起谐振过电压。谐振过电压不仅会在操作或发生故障时产生,而且可能在过渡过程结束后的较长时间内稳定存在,直至谐振条件被破坏为止。在中性点不接地的系统中,系统在非全相运行的状态下,如输电线路因意外折断,断路器非全相操作以及熔断器的一相熔断等情况下,常会发生谐振过电压。在系统发生单相接地故障时,非故障相的电压升高可能超出线电压三角形之外,中性点发生位移、不稳定,单相接地电弧熄灭后,容易导致TV的铁芯饱和激发起中性点不稳定电压。上述均可能引起TV严重超差。在中性点不接地系统中,因单相短路接地时可带病运行达两小时之久,TV不但超差甚至可能过热损坏。

5长期的热作用使TV铁芯磁导率下降,引起误差特性恶化

运行5年以上的TV,由于铁芯在各种损耗转变成热能的长期作用下,引起铁芯磁导率下降,误差偏负甚至超差。我们在对运行多年的TV做试验取得的数据与安装前试验数据作比较证明了这一点。