换热器范文10篇

时间:2023-04-09 07:50:09

换热器范文篇1

关键词:逆流换热器热力学优化温差场均匀性因子火用效率熵产

1.引言

换热器作为一种各工业领域广泛使用的设备,它的研究倍受重视。目前关于换热器的研究大致有两个方向,一是研究换热器传热强化,主要目的是提高换热器流体和固壁间的对流换热系数,进而提高换热器的效能。二是从可用能的角度研究换热器的热力学优化,包括换热器的熵产分析、火用效率分析等,从使换热过程不可逆性最小的角度来优化换热器。其中过增元提出的换热器温差场均匀性原则,一方面可以指导新的提高换热器效能的方法,另一方面也可以对换热器热力学优化做分析。本文是从温差场均匀性原则出发,将其应用于逆流换热器的优化过程,并对各种优化方法进行分析比较。

2.换热器温差场均匀性原则

过增元在1992年《热流体学》[1]一书中定义了温差场不均匀因子,应用于顺流、逆流和叉流换热器,发现在相同的传热单元数NTU、热容量比W和流体进口温度的条件下,逆流换热器温差场最均匀,效能也最高,熵产也最小。进而在1996[2]年定义温差场均匀性因子,提出了换热器热性能的温差场均匀性原则:在NTU和W一定时,换热器的温差场越均匀,其效能越高。并采用数值方法对13种换热器的温差场和效能进行了分析,验证此原则的正确性。通过熵产分析指出此原则是以热力学第二定律为理论依据的。同时针对叉流换热器,提出了分配换热面积来改善换热器性能的新方法。过先生又在2002[3]年给出了简单顺流、逆流、叉流换热器温差场均匀性因子的解析表达式,同时通过实验的方法对此原则进行了验证,针对多流程叉流换热器,举例说明用改变管路连接的方法来改变温差场均匀因子,进而改变换热器的效能。在2003[4]年提出基于温差场均匀的场协同原则,同时将此原则应用于多股流换热器中,提出换热器传热性能的高低取决于冷热流体温度场的协同程度,而不是流动方式。

从上述温差场均匀性原则的提出、验证和发展历程来看,这一理论已经比较成熟,也是从传热物理机制方面优化换热器的新探索,可以利用它比较实际换热器的换热性能。很多换热器大都是复合型流动方式的换热器,基本上没有解析表达式;尤其对于叉流换热器,应用此原则,可以在NTU和W给定时,改变传热面积的分布或是管路连接方式,来改变换热器的效能。温差场均匀性原则前提条件是NTU和W值恒定。对于换热方式(逆流)已定的换热器,在W和NTU变化时,应该如何应用此原则是本文讨论的主要内容。

3.温差场均匀性原则在逆流换热器热力学优化中的应用

过先生[3]将温差场均匀性原则用于指导叉流换热器的优化,并对优化效果进行了分析验证。温差场均匀性原则,是从研究对流换热的物理机制出发[5],用于指导各种形式换热器的优化。本文目的就是应用这一原则来指导逆流换热器优化方法的选择。

3.1逆流换热器已有热力学优化方法比较分析

以目标函数区分的优化方法大概有两类:一是传热过程熵产分析,二是定义火用效率分析。

关于熵产,徐志明、杨善让[6]等人定义熵产生数Ns:单位换热量的熵产。以Ns最小为目标,通过泛函求极值求得换热器温度和热流的最优分布,得到结论:使W略大于1实现最优参数分布。他们从温度分布的角度来优化换热器,提供了一种从换热内部的细节研究问题的思路。能大曦[7]等人在分析换热器的熵产时得到了类似的结论:在W为1时,换热器的Ns最小。同时指出徐志明等人研究得到的W略大于1的结论,是因为他们定义的NTU与常规的定义不同。综合分析前二者可以得到:当NTU一定W变化时,使W为1,换热器性能最佳。对于逆流换热器,W为1就意味着温差场均匀,符合温差场均匀的原则。当W不变NTU变化时,对于Ns的变化,能大曦[7]等人的研究得到:对于逆流换热器,W不变,随着NTU的变化,Ns单调减小。

关于火用效率分析,徐志明、杨善让[8]等人,给出考虑阻力的火用效率取极大值的方法。通过定义火用效率:

分析火用效率随NTU和W的变化,下图是他们分析的结果。从上述结果看出:对于逆流换热器,W不变,NTU较大时,随着NTU的变化,η会越来越低,NTU不变,W变化时,η在W近似为1时取得最大。

比较熵产和火用效率两种方法的结论可以得到,NTU不变,W变化时,二者结论基本一致。而对于W不变,NTU变化的情况,随着W增大,Ns单调减小,而也降低了。两种方法出现了矛盾。下面通过温差场均匀性原则对两种方法比较选择。

3.2逆流换热器熵产和温差场均匀性分析

3.2.1逆流换热器W变化时,看换热器的效能、Ns、温差不均匀因子变化规律。

分析中采用文献中已有的表达式:

(a)换热器的效能[8]:

(b)换热器的熵产[7]:

(c)熵产生数[7]:

其中:。

的解析表达式见文献[7],换热器的表达式见[3],图1给出W从0.1变到0.9时,、以及变化结果。其中

由图中得到:随着热容量比接近于1,换热器温差场均匀性因子增加了,熵产减小了。同时结合徐志明[8]等人分析火用效率的结论,综合得到:在NTU不变,W越接近于1,换热器温差场均匀性因子越大,熵产生数越小,火用效率越高。即熵产分析和火用分析均符合温差场均匀性原则。另外从图中看出效能随着温差场的均匀而降低了,用效能来评价换热器性能和热力学分析结论出现了矛盾。当NTU一定,如果要求不同的W得到相同的换热量的话,那么W小的流体,热侧流体的流量很大,保证如此高的流量也要有代价,同时由于流量大,通过换热器时阻力损失也大,与之相对应的火用损失也大,火用效率[7]降低了。因此同时得到单纯用效能来评价换热器是不可靠的结论。

3.2.2W一定,NTU变化时,温差场均匀性因子、熵产生数以及效能的变化。为便于和火用效率[7]分析的结果作对比,取热容量比:

得到结果如下:

图2Ns-NTUφ-NTU和ε-NTU曲线

由上图可见,当W不变时,随着NTU的增加,Ns变小了,效能增加了,但温差场变得不均匀了。结合徐志明[8]的结论,火用效率变小。发现此时火用效率判据符合温差场的均匀性原则,而熵产分析却和原则相反了。Bejan[10]曾把逆流换热器传热过程的熵产分为不平衡流动即热容量不匹配的熵产和由于传热面积有限引起的熵产。能大曦[7]等人对两部分熵产比较得到:两部分的熵产随NTU的变化,趋势是相反的。由于换热面积有限引起的熵产随NTU增加而减小,由于不平衡流动的熵产随NTU增加而增大。对于逆流换热器,温差场均匀与否只取决于W是否为1。不难理解只有由热容量不匹配引起的熵产变化趋势能用温差场均匀性原则来解释。换句话说,熵产生数来做判据包含了换热的物理机制之外的部分,在对换热器做优化时,应怎样用它还有待进一步的分析。从这个角度考虑,基于换热的物理机制建议选择火用效率作为换热器热力学优化的判据。

4.结论

(1)针对逆流换热器,比较已有优化方法,发现熵产分析和火用效率分析在W一定,NTU变化时得到的结论出现了矛盾。

(2)应用温差场均匀性原则,对比温差场均匀性程度变化的趋势和熵产生数、火用效率的变化趋势,得到火用效率和温差场均匀程度变化趋势相协调,选用火用效率来做优化更能反映换热的物理机制。因此建议用火用效率来优化换热器。

参考文献

[1]过增元,热流体学,清华大学出版社,1992

[2]过增元、李志信、周森泉、能大曦,中国科学(E辑),1996.2

[3]GuoZeng-Yuan,ZhouSen-Quan,LiZhi-Xin.InternationalJournalofHeatandMassTransfer,2002,45:2119-2127

[4]过增元、魏澎、程新广,科学通报,2003.11

[5]过增元,科学通报.2000.45(19):2118-2122

[6]徐志明、杨善让、陈钟颀,化工学报,Vol.46No.1,1995.2

[7]能大曦、李志信、过增元,工程热物理学报,Vol.No.1,Jan.1997

[8]杨善让、徐志明等,工程热物理学报,Dec.1996

[9]杨世铭、陶文铨等,传热学,高等教育出版社,1998

[10]BejanA.EntropyGenerationthroughHeatandFluidFlow.NewYork:Wiley-Interscience,1982

换热器范文篇2

关键词:结霜工况热泵翅片管换热器正则摄动方法最优化

1引言

目前,热泵的应用越来越广泛。在冬季制热工况下,当室外换热器的温度低于环境空气的露点温度时,翅片表面就会产生冷凝水。如果温度进一步低于0℃就会结霜,由此导致传热情况恶化,严重时机组无法正常运行。为了确保机组正常运行,除霜所以必不可少,而除霜又消耗了额外的能量,这些甚至影响了热泵的推广应用。所以在保证换热器的传热性能不恶化的前提下,除霜周期的延长对于节约能量的实际意义是明显的。因而对结霜工况下热泵机组的翅片管换热器的传热传质现象进行分析和优化设计,具有极大的实际意义。

由于霜对换热的影响明显,国内外对于翅片管换热器的结霜的研究相当活跃,但主要集中在除霜控制[1][2]、对霜的形成机理、霜及霜的特性的分析[3]和换热器结霜特性的模拟[4]的研究上。对于换热器自身的结构对结霜的影响,则主要集中翅片变间距的研究[5]。邓东泉[6]等通过实验对不同材料的翅片的传热特性进行了比较。在变片距设计已经成为设计人员和研究人员的共识的情况下,对于翅片自身尺寸的设定往往由干工况下的经验而定,充分考虑结霜的影响方面的研究未见公开报道。

热泵机组的换热器,多用等厚度环型肋片来强化换热效率。魏琪[7][8]等人对变热力参数和湿工况下的等厚度环肋的传热传质进行了研究,得到了相应工况下的一些有意义的结论。本文基于等厚度环肋的基本模型,探索结霜工况一定体积下最大换热量时的优化尺寸。

由于霜层的影响因素众多,对结霜工况下的换热器的换热计算,Sanders将饱和空气的焓做线性处理[9],Kondepudi则将传热传质影响直接表示为综合换热系数[4];Barrow则认为结霜导致的流道阻力升高是主要因素,霜层热阻仅为次要因素[10]。本文则根据能量守恒,应用正则摄动方法[11],分析在无量纲量2αr1/λ〈〈1的情况,结霜工况下翅片管换热器上的传热传质,利用所得到的结论,结合实例进行了优化分析。

2本模型及简化条件

用于圆柱表面肋化的等厚度环肋的结构如图1所示,给定肋的内半径r1,外半径r2和肋厚δ,肋片材料的导热系数为λ,为研究方便,假设肋片导热系数沿肋高方向为常数。图2为一环形肋片的表面覆盖一层霜的工况下的剖面图。假设霜层的厚度为,霜层的导热系数为,肋片厚度与霜层厚度为同一数量级。

为研究方便,假设:(1)霜层热阻为影响传热的主要因素;(2)结霜过程视为准稳态过程;(3)各处霜厚相等;(4)翅片传热沿翅片方向,霜层内部传热垂直于翅片表面;(5)肋片表面的对流换热系数α沿肋周为常数;(6)忽略肋表面发出和接受的辐射热量和肋端散热。

图1等厚环肋的结构简图图2结霜工况下肋片剖面图

3方程的建立

取未受肋片散热影响的流体温度t∞为为温度起算基准,对于翅片表面温度tw,令过余温度为=t∞-tw。相应的肋根的过余温度为1=t∞-t1,其中t1为肋根的温度。

从距肋基r处选取长度为dr的微元体,如图2所示,霜层导入的热量作为内热源处理,根据能量守恒定律有:

(1)

(2)

其中:-霜层外表面的温度,℃

、-肋片、霜层的导热系数,•℃)

、—肋片、霜层的厚度,

—析湿系数,即传热时总热量与显热量之比。

整理,可得

(3)

引入下列无因次量,ζ=,L=,ε=

相应的无因次方程及边界条件为:

定义肋片的无因次体积为

U=(6)

肋片的无因次散热量为

===(7)

不考虑霜层很薄或无霜,问题就化为在一定U下求的最大值问题。

4方程的求解

热泵机组制热工况下的无因次量,很明显,这时的ε也很小,可以用正则摄动方法求解上述问题。

将无因次过余温度展开为

(,)=0()+1()+22()(8)

将式(8)代入(4),并对各阶小量进行比较,得到关于0()、1()、2()的常微分方程

(9)

(10)

(11)

依次解上述方程及其边值问题,得到肋片的无因次传热量为

==(13)

引入式(5)所定义的无因次体积,上式化为

=(14)

将对L求导,并令其等于0:

简化后得到在肋片体积一定的条件下,肋片传热量达到最大应该满足的条件为

U=(15)

根据上式,可以求出各种不同的肋片体积下使肋片的传热量最大的无因次优化几何尺寸Lopt和εopt。当肋片的无因次体积在10—2000范围内变化时,图3给出了Lopt、εopt和opt的定量关系。

5算例

根据文献[12],换热器为铜管铝片式,铜管尺寸ф9.52*0.35,42排管高,4排管厚,管间距为25.4mm,铝平翅片,片厚0.2mm,翅片高12mm,翅距2.3mm,翅基温度为-15℃,来流空气温度为0℃,相对湿度为70%,流速3m/s。

图3Lopt、εopt和op与U的关系图图4与霜层厚度的定量关系图

霜层的密度和导热系数按文献[4]选取,结霜工况下空气侧对流换热系数和析湿系数按文献[14]选取。考虑当霜厚=0.8mm时的情况,此时2αr1/λ=3.58×10-3,故满足2αr1/λ〈〈1的条件。由式(6)得到U=36.8,从图3中可以查得Lopt=2.81,εopt=0.211,Qopt=3.17,由此得到此时的优化尺寸:肋高L=9.25mm,肋厚δ=0.26mm。与算例中的换热量相比,肋片尺寸的很小的改动,就使肋片的换热量提高了27.1%。

在此工况下,霜厚超过1.1mm将使总传热系数和空气动力阻力恶化至系统不能正常工作[2],所以选择运行1小时后霜厚1.0mm时开始除霜。当从0.1mm变化至1.0mm时,在此优化尺寸下的换热量与原肋片的换热量之比与的变化曲线如图4所示。霜层最初的下降,即优化效果的不明显,可能是由于最初的霜层导致温度沿肋片长度方向的均匀化,使翅片最初的效率有所升高所致。

6结束语

6.1由图3可知,在优化解附近的很大范围内,参数ε远小于1,这说明把ε视为小参数,对结霜工况下的翅片管的传热分析应用正则摄动法是可行的。

6.2采用析湿系数以后,忽略了霜表面温度与翅基霜表面温度的差异,实际应用中可以参照文献[13]做适当修正。

6.3考虑到风机性能、流动压降及制冷系统其余部分特性匹配等的影响,实际优化效果尚需要综合考虑各方面影响进行进一步的实验研究。

6.4对机组换热器的优化设计,再结合较好的化霜控制方式,将会提高热泵的运行效率,增加供热能力,使机组运行安全高效又节能。

综上所述,在结霜工况下换热器翅片管的工程设计中,本文所述方法是一种简便而有效的优化方法。

参考文献

[1]陈汝东,许东晟.流体机械,1999,28(2):55-57

[2]黄虎,虞维平,李志浩.暖通空调,2001,31(3):67-69

[3]孙玉清,吴桂涛.工程热物理学报,1997,18(1):95-98

[4]S.N.Kondepudi,D.L.O’Neal.Int.J.Refrigeration,1993,16(3):175-184

[5]T.S.Catchilov,V.S.Ivanova.XVInternationalCongressofRefrigeration,1979,B(2):71-75

[6]邓东泉,徐烈,徐世琼.低温与超导,2002,30(2):7-13

[7]魏琪.江苏工学院学报,1989,10(4):18-23

[8]侯海炎,魏琪,张战,施爱平.建筑热能通风空调,2002,5:12-14

[9]C.T.Sanders.Theinfluenceoffrostformationanddefrostingonperformanceofaircoolers,TechnischeHogeschool,Delft,NetherLands,1974

[10]H.Barrow.HeatRecoverySystems,1985,3:17-20

[11]A.Aziz,T.Y.Na.PerturbationMethodsinHeatTransfer,Berlin,Springer-Verlag,1984:21-49

[12]陈丽萍.流体机械,2002,30(7):59-61

换热器范文篇3

关键词:换热器激波加热器

二十一世纪,环境和能源成为人类面临的重要问题。为拨户环境和有效利用现有资源,节能使用资源显得尤其重要。对于用户来说,节约能源意味着减少支出、增加经济效益、增强企业的竞争力。

在暖通领域,对于能耗巨大的汽水换热过程,节能降耗的方式无外乎提高传热效率、合理能源分布结构。目前实际工程中使用的汽水换热器大多为间接式换热器,这类换热器存在换热效率逐年降低、维修量大、凝结水回收困难、基建投资及电耗大等问题。

清华大学江亿院士指出:激波加热器是解决现有汽水间接换热问题的最简单、经济、可靠的一种换热器。

激波加热器由三段组成一蒸汽喷射段、汽水混合段、射流扩压段。它的工作原理:激波加热器是利用蒸汽和水直接混合进行供热或生活热水供应领域的高新技术产品。运行时汽、水瞬间混合,形成流态复杂的、具有超可压缩性(即压缩系数骤增)的汽水两相流体,混合后流体流速迅速由压音速转变为超音速却无需消耗机械能。在经过瞬间的热量与动量传递后,蒸汽完全凝结入水中共同形成高温高压的热水从该设备中输出,直接进行供热循环或热水供应。也就是说在一定条件下(如能提供一定要求的蒸汽压力)激波加热器运行时可以取代泵或减少泵的功率推动系统的循环。

图示:激波加热器三段构造及压力分布图

现在具体谈谈激波加热器三段的工作过程及原理:

蒸汽喷射段

主要是实现蒸汽压力能向动能的转化,。当具有一定压力,流速的蒸汽进入喷射段后,由于与进口水的作用压力降低,体积急剧增大,形成高速气流由喷管射出。

混合段

混合段完成热能传递和转换的场所。当高速蒸汽进入混合段后,与环隙喷入的水相遇凝结,在极短的时间内形成均匀的两相超音速流体,进而形成激波,推动热水进入扩压段。

扩压段

扩压段主要完成混合物动能向压力能的转化,实现混合物压力的剧增,当高温,高速的水流流入扩压段时,由于管径增大。水流流速逐渐减小至外界循环网的正常流速。这样部分动能转化为压力能,使压力升高,从而代替循环泵,实现系统的循环。

激波加热器有以下优点:

(1)换热效率高(节流)——由于汽水直接混合,蒸汽100%地进入系统循环,换热效率接近100%。另外相对于以前的汽水换热器,蒸汽进入量不受系统压力影响,并且压差很大,进入量大,供热能力强,节省蒸汽15%-30%.

(2)节电——激波加热器是换热器和泵的组合,其在系统中运行可以降低原循环泵的运行功率或者在一定条件下取代泵。因为激波加热器是汽水直接混合式换热器,其运行时系统补水量大大减小,因此也节约了补水泵的电耗,节电50%以上。

(3)改善系统循环——因为对于一般的供暖系统补水箱都不隔绝空气,因此补水中携带大量的氧气,不补水就意味着系统封闭,就能最大限度的减少系统的氧腐蚀,对于延长系统设备和管道的寿命这有着重大的意义。另外激波加热器运行时,多余的水是通过稳压装置排出,系统压力稳定,相对于间接式换热器亏水、补水水压不稳的状况,水力动态特性好,调整容易,相对节能。

(4)易维护——激波加热器器件完全采用不锈钢材料,耐腐蚀,可适用各种水质,使用寿命达10年以上,运行时汽水流速很快,内部不容易结垢,维修方便,每年可节省大量的维修费用。由于激波加热器运行时汽水流速很快,难以形成结垢底层,因此不易结垢。另外激波加热器体积小,没有运转部件,拆卸、检修非常方便。

(5)体积小,节省基建投资——激波加热器体积小,供热能力大,因此相对于间接式换热器无论是操作间空间和所需阀门管件口径都大幅降低,循环泵口径减小,节约大量基建投资。

换热器范文篇4

关键词空气源热泵冷热水机组结霜动态模拟

1前言

空气源热泵冷热水机组作业中央空调的冷热源有很多优势,如冬夏共用,设备利用率高;省去了锅炉房和一套冷却水系统;机组可安装在室外,节省了机房的建筑面积;不污染环境等。因此该机组在气候适宜地区的中小型建筑中得到了广泛地应用。但机组在冬季运行时,当空气侧换热器表面温度低于周围空气的露点温度且低于0℃时,换热器表面就会结霜。结霜后换热器的传热效果急剧恶化,严重时机组会停止运行。因此换热器结霜是影响机组应用和发展的主要问题,研究机组在结霜工况下的工作性能具有十分重要的意义。

2.结霜模型的建立

霜的积累速率是由进出室外换热器空气湿度的变化决定的:

(1)

式中:----空气的质量流量,kg/s;

di,d0----分别为空气进、出换热器的含湿量,kg/kg。

由于霜的多孔性和分子扩散作用,在表面温度低于0℃的换热器上沉降为霜的水分一部分用以提高霜层的厚度,一部分用以增加霜的密度[1],即

(2)

式中用于霜密度变化的结霜量变化率由下式确定[2]:

(3)

式中:----换热器的全热交换量,W;

iSV----水蒸气的升华潜热,J/kg;

λfr----霜的导热系数,W/(m·K);

R----水蒸气的气体常数,461.9/(kg·K);

TS----霜表面的温度,K;

pV----水蒸气的分压力,Pa;

vV,vi----分别为水蒸气、冰的比容,kg/m3。

ρfr,ρi----分别为霜、冰的密度,m3/kg;

DS----霜表面水蒸气的扩散系数,m2/s。

而霜的密度ρfr与换热器表面的温度、空气的温度、相对湿度、流速和结霜的时间等有关,结霜时间越长,霜的密度越大。计算时,先假设一个初始密度,由下式计算霜的导热系数,再计算霜密度和厚度的变化。

(4)

对于每一个时间步长Δt,霜密度的变化和厚度的变化为:

(5)

(6)

式中:At----换热器的总换热面积,m2;

δt----霜层的厚度,m。

3模型的求解

我们对空气侧换热器后个换热单元在不同工况下的结霜情况进行了模拟计算,该单元的结霜情况可以反映出整个换热器的结霜情况。空气侧换热器由160个这种换热单元组成。计算的换热器单元结构参数见表1,计算工况见表2。

换热器单元的结构参数表1

管材铜管径Φ×0.15风向管排数4

迎风管排数20管间距S125.4管间距S222mm

翅片材料铝片型波纹片片厚0.2mm

片间距2.0mm翅化系数17.8单根管长16m

分液路数10

在求解结霜的动态模型时,必须考虑结霜的密度和厚度随时间的变化,但在以往的结霜量计算中,均未同时考虑结霜的密度和厚度随时间的变化。如Д.А.Чирен-ко[3]建立了空冷器上结霜的数学模型,并将模拟结果与实验数据进行了比较。由于假设霜层均匀分布,且霜的厚度随时间线性增加,而霜的密度不随时间变化,使得模拟霜的厚度比实验值大20%~30%。

计算工况表2

工况编号空气温度

(℃)相对湿度

(%)风量

(m3/h)蒸发温度

(℃)过热水度

(℃)冷凝温度

(℃)过冷度

(℃)制冷剂流量

(kg/s)

1A0651062-1355050.0096

B0751062-1355050.0096

C0851062-1355050.0096

2D-4651062-1355050.00816

E-4751062-1355050.00816

F-4851062-1355050.00816

本文根据一些实验数据和结霜密度的变化规律,首次提出了结霜密度随时间的变化关系式,并认为在刚开始结霜时,结霜量度要是增加霜的厚度,而密度变化很小。随着时间的推移,霜厚度的增加变缓,而密度变化增加,而且霜的密度随时间呈抛物线规律变化。

由稳态模型和公式(3),可以计算出用于霜密度变化的结霜量变化率,并把这一值认为是结霜终了时霜密度的变化。根据霜的密度随时间呈抛物线的变化规律以及一些实验数据,拟合出了霜的密度随时间的变化关系。对于表2中所列的工况1,用于霜密度变化的结霜量变化率随时间的变化关系如下:

(7)

式中为结霜的时间,min。

为验证所建的换热器结霜模型正确性,将模拟结果与实验数据进行了比较,我们采用文献[4]中的实验数据。实验是日本工业标准(JapaneseIndustrialStandard)的结霜条件下进行的,我们找出最接近的实验工况的模拟工况(即工况C)进行比较,实验工况与模拟工况见表3,实验换热器与模拟换热器的结构参数基本相同。

实验工况与模拟工况表3

空气温度(℃)相对湿度(%)制冷剂温度(℃)迎面风速(m/s)

实验工况1.585-7.53.3

模拟工况085-132.5

由于实验工况与模拟工况换热器的换热面积不同,因此单纯地比较结霜量的变化是没有实际意义的。为此提出了单位换热面积结霜量的概念,即结霜量与总换热面积之比。实验工况与模拟工况的单位换热面积结霜量变化见图1。由图可见,模拟值与实验工况的条件略有差异造成的,因为模拟工况的蒸发温度比实验工况低,且迎面风速小,而蒸发温度越低,结霜量越多;迎面风速越低,结霜量也越多。这两方面的因素造成了模拟值略大于实验值。通过比较进一步验证了所建模型的正确性。

图2为空气温度一定(0℃)时,不同相对湿度(65%、75%、85%)下结霜速率随时间的变化。由图可见,相对湿度越高,结霜速度越大。结霜速率越大,融霜的时间间隔载短。目前,空气源热泵冷热水机组的融霜普遍采用时间-温度控制法,此方法是当空气侧换热器翅片温度达到设计值并且与上一次融霜的时间间隔也达到设计修理时,融霜开始。因此研究结霜速率随时间的变化,以正确地确定融霜的时间间隔,才能提高时间-温度控制法的融霜效果。从图2还可以看出,在开始的几分钟内,结霜速率急剧升高,而在5分钟以后的运行时间里,其结霜速率变化缓慢,几乎不变。

图1结霜量的模拟值与实验值的比较

图2结霜速率随时间的变化

图3和图4为动态工况下霜密度随时间的变化。图3为空气温度一定(0℃)时,不同相对湿度(65%、75%、85%)下霜密度的变化。由图可见,随着时间的增加,霜的密度不断增加,在工况A的条件下,结霜2小时后,霜密度可从50kg/m3增加到300kgm3。一些研究者进行实验研究的数值也基本在这个范围[5]。Gatchilov得到的霜密度的数据是从20kg/m3到250kgm3。Loze和到的霜密度的数据是在20kgm3到400kgm3范围之间。Biguria和Wensl得到的霜密度的数据是在30kg/m3到480kgm3范围之间。

图3不同相对湿度下霜密度的变化

图4不同温度下霜密度的变化

图4为相对湿度一定(65%)时,不同空气温度(0℃、-4℃)下霜密度的变化。由图可见,0℃时(工况A)霜密度的变化略大于-4℃时(工况D)霜密度的变化。

霜的密度对于空气侧换热器的传热与空气动力计算是一个十分重要的参数。因为对于已知的结霜量而言,霜层的厚度是其密度的函数,霜的密度又是随时间而变化的。因此,以往结霜量计算中,不同时考虑结霜的密度和厚度随时间的变化,将会为空气侧换热器结霜工况的传热与空气动力计算结果带来较大的误差,也会为融霜提供错误的信息。

图5和图6为动态工况下霜厚度随时间的变化。图5为空气温度一定(0℃)时,不同相对湿度(65%、75%、85%)下霜厚度的变化。由图可见,随着时间的增加,霜的厚度迅速增加,而且相对湿度越大,霜厚度增加越快。在该计算工况下,霜厚度在到0.5mm左右时,应开始融霜。

图5不同相对湿度下霜厚度的变化

图6不同温度下直厚度的变化

图6为相对湿度一定(75%)时,不同空气温度(0℃、-4℃)下霜厚度的变化。由图可见,0℃,75%工况(工况B)下,运行60分钟左右就需要融霜,而-4℃、75%工况(工况E)下,则运行115分钟时才需融霜。

显然,空气源热泵冷热水机组除霜控制方法常用的时间控制法和时间-温度控制法是不符合霜厚度随时间的变化规律的。如当机组设定的固定除霜时间按工况C确定时,那么工况B和工况A将会出现不必要的除霜,从而影响了机组的效率。同样,许多生产厂家虽采用时间-温度控制法,但还是采用统一固定的除霜启动值和除霜时间值,因此由于空气温度、相对湿度的不同,结霜的厚度不同,除霜效果也就不一样。结霜规律的正确预测,才是保证除霜效果良好的前提。

4结论

空气侧面换热器结霜过程中,不仅霜的厚度发生变化,霜的密度也在发生变化,本文同时考虑了结霜的密度和厚度随时间的变化,并根据一些实验数据和结霜密度的变化规律,首次提出了用于霜密度变化的结霜量变化率随时间的变化关系式,并认为在刚开始结霜时,结霜量主要是增加霜的厚度,而密度变化很小。随着时间的推移,霜的厚度增加减缓,而密度变化增加,而且霜的密度随时间呈抛物线规律变化。

分别计算了不同工况下的结霜速率、霜的密度、霜的厚度随时间的变化。计算结果表明,在不同的工况下,空气侧换热器的结霜情况是不同的。在空气温度一定时,相对温度越大,结霜越严重,融霜的时间间隔越短;在空气相对湿度一定时,0℃工况的结霜比-4℃工况的结霜严重。而且计算出了不同工况下融霜的时间间隔,为采取有效的除霜控制方法提供了依据。

将模拟结果与实验数据进行了比较,两者吻合很好,进一步验证了所建模型的可靠性。

参考文献

1S.N.Kondepudi,D.L.ONeal.PerformanceofFinned-TubeHeatExchangersunderFrostingConditions:I.SimulationModel.Int.J.ofRefrig.1993,16(3):175~180

2姚杨,姜益强,马最良,空气源热泵冷热水机组空气侧换热器结霜规律的研究,哈尔滨工业大学学报,2002(6)

换热器范文篇5

本文作者:琚成新宫玉川刘玲工作单位:洛阳钼业集团金属材料有限公司

采用WSA制酸工艺生产的硫酸,产品外观为无色的透明油状液体,但酸浓最高只能达到97.8%,无法达到98%以上。尤其到夏季一次水温高和外界温度高时,硫酸的酸浓会降到97%以下。净化工艺中由于添加硅酸钠溶液,导致板式换热器和填料洗涤塔经常堵塞。

原设计的净化工艺为:从绝热急冷塔出来的气体进入填料洗涤塔中进一步进行气体冷却,采用稀酸板式换热器将稀酸温度降到34℃以下,进而将烟气温度降到37℃以下。由于烟气中含有少量的氟化物,氟化物能使WSA的催化剂中毒、腐蚀加热器和冷凝器中的玻璃管,需要将其去除以便延长酸厂催化剂和玻璃管的寿命和效率。因此,在烟气净化工段需要将烟气中的氟除去而添加硅酸钠,在填料塔淋洗过程会形成胶状物,不仅容易将板式换热器堵塞,影响换热效果,而且造成填料塔的填料堵塞,影响烟气的通过,给系统造成堵塞,需要不断清理板式换热器和定期清洗填料塔里的填料。当板式换热器出现堵塞时,工艺气的温度会逐渐升高到37℃以上,我们采用2台换热器同时开启降低温度,但2台板式换热器会都堵塞,直至彻底堵死,不能换热;造成酸浓降低,烟囱有白烟冒出。通过两年多的观察,我们总结为:当净化后的烟气温度高时,产品硫酸浓度就降低,当烟气温度低时硫酸的浓度就高。为了合理控制烟气的温度,生产的硫酸浓度达到98.5%,不出现板式换热器堵塞和最大延长清理周期,我们采取了以下措施:控制添加硅酸钠的量和浓度工业用硅酸钠溶液的浓度一般在35%~42%,为了使烟气中氟的反应进行完全和降低淋洗液的浓度,将添加的硅酸钠溶液稀释到4%,在绝热冷却塔和填料洗涤塔中与氟化氢反应,从而去除烟气中的氟化氢。要定期取样对绝热冷却塔和洗涤塔的淋洗液进行分析,根据氟的含量,确定硅酸钠的加入量。控制绝热冷却塔和填料洗涤塔中排污量和排放频率洗涤塔的淋洗液由于随工艺气带到电除雾器会造成淋洗液的缺失,洗涤塔的液面增加是由于绝热冷却塔的淋洗液会随烟气流入,因此洗涤塔的溶液要及时返回到冷却塔;冷却塔必须往外排液体,避免冷却塔底部出现溢流。要及时将2个塔的循环酸溶液排出,以便把液位和杂质水平控制在一个合理的范围。如果液体中的杂质浓度过高,则尾气中的颗粒就不能全部去除。另外,弱酸溶液的排出也会使酸的百分比浓度保持在12%以下。如果溶液酸性过大,会损坏设备。工艺水连续地加入填料洗涤塔底部,通过从洗涤塔到冷却塔的溢流对溶液进行足够的稀释,使得冷却塔溶液的比重落在正确的范围内。然而,如果电收尘和旋风除尘器运转不是很正常,或者多膛炉内钼精矿产生的粉尘特别多,在绝热冷却塔溶液内粉尘量就会过多。这时,就需要通过一个手动阀向冷却塔加入工艺水,使溶液比重和重金属浓度足够低。要定期取样对绝热冷却塔和洗涤塔的淋洗液进行分析,根据钼的含量和酸度,设定淋洗液的排放量和排放频率。

控制板式换热器的清洗频率洗涤塔热交换器是用来把填料洗涤塔内的弱酸溶液从55℃冷却至37℃,冷却水在板式热交换器中用作冷却媒介。要能够检测板式换热器进口的冷却水温度、出口的冷却水温度、冷却水流量和冷却水出口的pH值。检测冷却水pH值的目的是了解填料洗涤塔热交换器有无泄漏。如果冷却水酸性变得较强(pH<5),则填料洗涤塔热交换器中存在泄漏,应及时采取相应的措施。弱酸溶液出口的温度通过旁通热的弱酸溶液来控制,这一控制由每台填料洗涤塔热交换器出口的温度控制器来自动实现。当酸性循环溶液温度降幅变化不大时,应考虑板式换热器的堵塞。2台板式换热器要1台运行,1台备用,当温度超过要求时要启动备用的1台,及时对堵塞的进行清理。如果清理频率低于3个月要考虑板式换热器的换热面积和结构选型是否合理。

对板式换热器的选型要求板式换热器是由许多波纹形的传热板片,按一定的间隔,通过橡胶垫片压紧组成的可拆卸的换热设备。故板式换热器有封密周边较长、容易泄漏、使用温度只能低于150℃、承受压差较小、处理量较小、一旦发现板片结垢必须拆开清洗的缺点。清洗频率高时易造成密封条的损坏,不仅费时,而且费力。选用板式换热器时要考虑换热面积,比理论计算富裕5%~10%,板式换热器的叶片沟槽要深且宽。这样冷却效果好且不易堵塞。4降低烟气温度的方法探讨(1)采用稀酸板式换热器只要选型合理,就能将烟气的温度降到30℃以下,且不易造成堵塞,清理频率低,可以使系统稳定运行,当工艺气温度低于30℃以下,WSA制酸的酸浓可达到98.5%以上。(2)可以采用间冷器方式代替板式换热器。采用间冷器是对工艺气直接降温,不会形成堵塞,系统可以长时间稳定运行。但存在设备投资和占地面积大,使用冷却水量增大,工艺系统阻力增加等缺点。要结合实际的工艺特点和现场情况,选择合适的方式,使烟气温度降到30℃以下,并要保证系统能长期稳定运行,检修和维护方便。5结论(1)采用WSA制酸工艺,通过调整工艺,采取措施,降低净化工段烟气温度的方法,可以实现WSA制酸酸浓在98%以上。(2)降低净化后的烟气温度要采用冷却效果好,检修方便、不会或不易堵塞的冷却设备;设备选型至关重要。

换热器范文篇6

关键词:PT(质子重离子医疗);冷却水;温度;压力

上海某医院主要利用高能射线治疗肿瘤,在日常的医疗活动中,需要防护辐射,减少辐射带来的危害。如何利用智能化技术手段实时监视、自动控制、统一管理PT(质子重离子医疗)区内的各种机电设备,从而保证各种设备的正常运行,是智能化系统建设的重要任务。PT区域是全院的核心所在,PT区域配套保障系统及医院常规智能化系统分别是医院正常运营的核心部分和基础部分。医院常规智能化系统的建设和实施的目的是为医院正常开展工作提供基础保障平台。PT区域的冷却水温度压力控制系统为医院直线加速器等专业医疗设备的正常运行提供支撑和保障。如何利用智能化技术对PT区域的冷却水温度和压力做出精准控制则是本项目的技术重点和技术难点。PT区域的冷却水温度的控制要求在±0.5℃和±1℃之间,各水管接口的温度压力均有要求达到的测量值。在这个温度压力允许范围内,通过调节冷却水的阀门、泵和电热器的制热比例等各种控制手段,最终达到接口温度和水流压力的恒定。

1工艺冷却水的系统划分及技术要求

1.1一次冷却水系统

一次冷却水系统分为直线加速器系统、直线及离子源房系统、同步辐射冷却水系统三部分,其技术参数和要求见表1。需要注意的是,每个Header(冷却水前端装置)的水冷负荷已包括安全余量,实际运行时整个工艺冷却水系统的总冷负荷不大于3500kW。

1.2二次冷却水系统

二次冷却水系统作为一个整体系统,根据冷却水温度、控制精度和调试方式等条件设置为三个分路子系统,其技术参数和要求见表2。

2接口冷却水的温度要求

主要的循环水量,也就是流经大部分接头(分流器)的水,温度应该保持27℃±1℃。对于高频系统管道的接头,循环水流经的温度在29℃±1℃。这部分系统有很高的水压。直线加速器必须使用没有处理过的水来运行和冷却。冷却水的温度在29℃±0.5℃。

3系统压力

连接循环水的主流量的接头都按照最大10bar的系统压力来设计,并在开放的位置安装安全阀保护,以防止超过最大可允许的压力。如果逆水流安装的压力传感器探测到流过的水流压力超过了限制,离心泵就会自动关闭。这些逆流压力传感器会在接头一个连一个开动时,保证主泵的正常运行。激活连续的接头是另外一种调节接头顺流压力的办法,这样在连接的时候有理想的压力差。流过直线加速器和高频区的循环水应该通过热交换器与主循环水流隔离,并在压力上分别考虑。在直线加速器里,系统压力损失是2bar,最高可允许的输入压力是6bar。在这个接头处,系统的注入压力必须被监控和限制,必须安装一个适当的安全阀以防止压力过高。高频区的管道有3bar的压力损失,允许最大压力5bar。在这里,必须使用安全阀精确地限制系统压力。

4系统实现功能

冷却水系统是用来抵消医疗装置运行时产生的热量,控制装置处的温度,使其保持在合理的范围内,冷却水自控系统的性能是PT设备能否正常运行的关键条件。冷却水系统控制冷却水进入医疗装置前的温度在±0.5℃和±1℃之间。各水管接口的温度最终所要求达到的测量值见表3。在这个温度允许范围内,通过调节冷却水的阀门、泵以及调节电热器的制热比例等各种控制手段,最终达到接口温度的恒定。

5整体解决方案

5.1二次水系统

1)控制要求四台循环水泵:CTP-1-1~4(三用一备);三台冷却塔:CT-R-4~6;五台冷冻水板式换热器:PHE-1-6~10;一个旁通电动控制阀;一台闭式储水箱:WT-1-6。旁通电动控制阀调节:循环水泵前的进水的目标温度设定为28℃(暂定),应根据设定的目标温度和实际温度的差值进行比较,计算需要经冷却塔冷却的进水量,采用PID(比例-积分-微分)控制方式调节旁通电动控制阀的开度。冷却塔控制:每台冷却塔有1台变频风机,当系统正常运行时,控制打开冷却塔的进水电动阀。气温由高变低:当水温高于设定温度某一数值时,三台冷却塔风机在工作频率下运行。当水温逐渐下降并接近所设定的目标温度时,系统根据设定的目标温度和实际温度的差值进行比较,计算需要冷却的热量,采用PID控制方式调节冷却塔风机的工作频率,使得冷却塔风机全部停止工作。气温由低变高:当水温低于设定温度某一数值时,三台冷却塔风机停止运行。当水温逐渐上升并高于所设定的目标温度时,系统根据设定的目标温度和实际温度的差值进行比较,计算需要冷却的热量,采用PID控制方式调节冷却塔风机的工作频率,使得冷却塔风机在工作频率下正常运行。二次水循环泵进水温度设定值:直线加速器系统二次水的被控温度目标值为18℃,而其他系统二次水的被控温度目标值为24℃,目标温度值相差有6℃,进二次水循环泵的水温度的目标值28℃是否合理有待调试、运行时验证。一旦二者不能兼顾,需要相关单位决定以哪个系统为优先。冷冻水板式换热器(PHE-1-6)的控制:由于二次水系统的回水温度低于32℃,故在夏季冷却塔是无法提供冷却能力的。这时可以通过旁通管路避开冷却塔,直接由冷水板式换热器冷却达到所需的温度。在过渡季节,当冷却塔的出水温度低于二次水系统的回水温度时,则首先由冷却塔冷却,然后由冷水板式换热器进一步冷却达到所需的温度。直线加速器系统冷冻水板式换热器二次侧出水的目标温度设定为18℃,被控温度应根据设定的目标温度和实际温度的差值进行比较,计算需要冷却的热量、对应冷冻水板式换热器一次侧的冷冻水量,采用PID控制方式,调节冷冻水二通电动控制阀的开度,控制被控温度不偏离目标温度值。冷冻水板式换热器(PHE-1-7)的控制:射频系统冷冻水板式换热器二次侧出水的目标温度设定为24℃,被控温度应根据设定的目标温度和实际温度的差值进行比较,计算需要冷却的热量、对应冷冻水板式换热器一次侧的冷冻水量,采用PID控制方式,调节冷冻水二通电动控制阀的开度,控制被控温度不偏离目标温度值。冷冻水板式换热器(PHE-1-8)的控制:直线及离子源房系统冷冻水板式换热器二次侧出水的目标温度设定为24℃,被控温度应根据设定的目标温度和实际温度的差值进行比较,计算需要冷却的热量、对应冷冻水板式换热器一次侧的冷冻水量,采用PID控制方式,调节冷冻水二通电动控制阀的开度,控制被控温度不偏离目标温度值。冷冻水板式换热器(PHE-1-9)的控制:输运线冷却水系统冷冻水板式换热器二次侧出水的目标温度设定为24℃,被控温度应根据设定的目标温度和实际温度的差值进行比较,计算需要冷却的热量、对应冷冻水板式换热器一次侧的冷冻水量,采用PID控制方式,调节冷冻水二通电动控制阀的开度,控制被控温度不偏离目标温度值。冷冻水板式换热器(PHE-1-10)的控制:同步辐射冷却水系统冷冻水板式换热器二次侧出水的目标温度设定为24℃,被控温度应根据设定的目标温度和实际温度的差值进行比较,计算需要冷却的热量、对应冷冻水板式换热器一次侧的冷冻水量,采用PID控制方式,调节冷冻水二通电动控制阀的开度,控制被控温度不偏离目标温度值。2)监测要求监控二次水循环水泵的运行,故障状态,二次水泵进出水压力;监控冷却塔风机的手/自动,运行,故障,启停状态;监控蝶阀的开,关,启停状态;监视旁通调节阀反馈信号;监视冷却塔水出水温度。监视闭式水箱的温度;监视循环水的电导率;冷冻水板式换热器的进出水温度、二次水进冷冻水板式换热器的压力。3)监控逻辑当二次循环水泵全关状态时,冷却塔进水蝶阀关闭,冷却塔风机关闭,二次水旁通阀关闭。冷冻水板式换热器PHE-1-6~10二通调节阀关闭,一次水板式换热器PHE-1-1~5三通调节阀关闭。

5.2直线加速器系统(一次水)

1)一次水板式换热器(PHE-1-1)的控制直线加速器系统一次水板式换热器PHE-1-1一次侧出水的目标温度设定为20℃,被控温度应根据设定的目标温度和实际温度的差值进行比较,计算需要冷却的热量、对应一次水板式换热器二次侧的冷却水量,采用PID控制方式,调节二次水三通电动控制阀的开度,使得控制温度不偏离目标温度值。2)电加热(DR-1-1)的控制电加热DR-1-1出水的目标温度设定为20℃,被控温度应根据设定的目标温度和实际温度的差值进行比较,计算出需要补充调节的热量,采用PID控制方式,调节电加热DR-1-1的加热功率,使得控制温度不偏离目标温度值。电加热器根据水泵的运行状态投入调节控制。当水温高于某个设定值(如45℃)时,为避免出现异常情况,控制系统必须关闭电加热器DR-1-1。3)检测一次水板式换热器PHE-1-1的进出水温度、三通调节水阀的开度反馈;电加热器DR-1-1的手/自动、状态、故障、三相电流值;#30医疗装置的进水溶解氧含量、PH值、电导率、压力、温度,出水压力、温度、流量,进出水开关阀状态;一次水循环水泵的运行、故障状态,循环泵出水的压力。4)监控逻辑系统要求运行:打开一次水循环水泵,水泵的运行状态信号反馈至控制器,控制器通过确认电加热输出为零时,打开电加热器的启动信号,并根据现场温度状况调节电加热器的实际功率。系统要求停止:关闭电加热器的功率输出,控制器确定电流为零时,发出正常停止的指令信号,否则发出信号报警;当确认电加热器正常停止工作时,一次循环水泵方可停止工作。系统发生设备故障、跳闸和漏水等情况:自控系统调节电加热输出至零;自控系统给电加热发出触发短路信号,延时半分钟,电加热主回路关闭;主回路电源切断。

5.3直线及离子源房系统(一次水)

1)一次水板式换热器(PHE-1-3)的控制直线及离子源房系统一次水板式换热器PHE-1-3一次侧出水的目标温度设定为27℃,被控温度应根据设定的目标温度和实际温度的差值进行比较,计算需要冷却的热量、对应一次水板式换热器二次侧的冷却水量,采用PID控制方式,调节二次水三通电动控制阀的开度,使得控制温度不偏离目标温度值。2)电加热(DR-1-3)的控制电加热DR-1-3出水的目标温度设定为27℃,被控温度应根据设定的目标温度和实际温度的差值进行比较,计算出需要补充调节的热量,采用PID控制方式,调节电加热DR-1-3的加热功率,使得控制温度不偏离目标温度值。电加热器根据水泵的运行状态投入调节控制。当水温高于某个设定值(如45℃)时,为避免出现异常情况,控制系统必须关闭电加热器DR-1-3的输出。3)检测分别检测:电加热器DR-1-3的手/自动状态、故障信号和三相电流值;一次水板式换热器PHE-1-3的进出水温度值及三通调节水阀的开合度状态。直线及离子源房系统医疗装置进水部分的压力、温度、电导率和PH值,出水部分的压力和温度。其他各医疗装置的进/出水部分的压力、温度和流量,进出水开关阀的状态。监视一次水循环水泵的运行、故障状态,循环泵出水的压力。4)监控逻辑系统要求运行:首先打开一次水循环水泵,水泵的运行状态信号反馈至控制器,控制器通过确认电加热输出为零时,打开电加热器的启动信号,并根据现场温度状况调节电加热器的实际功率。系统要求停止:关闭电加热器的功率输出,控制器确定电流为零时,发出正常停止的指令信号,否则发出信号报警;当确认电加热器正常停止工作时,一次循环水泵方可停止工作。系统发生设备故障、跳闸和漏水等情况:自控系统调节电加热输出至零;自控系统给电加热发出触发短路信号,延时半分钟,电加热主回路关闭;主回路电源切断。

5.4同步辐射冷却水系统(一次水)

1)一次水板式换热器(PHE-1-5)的控制同步辐射冷却水系统一次水板式换热器PHE-1-5一次侧出水的目标温度设定为27℃,被控温度应根据设定的目标温度和实际温度的差值进行比较,计算需要冷却的热量、对应一次水板式换热器二次侧的冷却水量,采用PID控制方式,调节二次水三通电动控制阀的开度,使得控制温度不偏离目标温度值。2)电加热(DR-1-5)的控制电加热DR-1-5出水的目标温度设定为27℃,被控温度应根据设定的目标温度和实际温度的差值进行比较,计算出需要补充调节的热量,采用PID控制方式,对电加热DR-1-5的加热功率进行调节,使得控制温度不偏离目标温度值。电加热器根据水泵的运行状态投入调节控制。当水温高于某个设定值(如45℃)时,为避免出现异常情况,控制系统必须关闭电加热器DR-1-5的输出。3)检测一次水板式换热器PHE-1-5的进出水温度、三通调节水阀的开度反馈;电加热器DR-1-5的手/自动、状态、故障、三相电流值;同步辐射冷却水系统医疗装置的进水PH值、电导率、压力、温度,出水压力温度;各医疗装置的进水压力、温度,出水压力、温度、流量,进出水开关阀状态;一次水循环水泵运行、故障状态,循环泵出水的压力。4)监控逻辑系统要求运行:打开一次水循环水泵,水泵的运行状态信号反馈至控制器,控制器确认电加热输出为零时,打开电加热器的启动信号,并根据现场温度状况调节电加热器的实际功率。系统要求停止:关闭电加热器的功率输出,控制器确定电流为零时,发出正常停止的指令信号,否则发出信号报警;当确认电加热器正常停止工作时,一次循环水泵方可停止工作。系统发生设备故障、跳闸和漏水等情况:自控系统调节电加热输出至零;自控系统给电加热发出触发短路信号,延时半分钟,电加热主回路关闭;主回路电源切断。

6结束语

换热器范文篇7

关键词:地源热泵竖直埋管综合传热系数

1概述

地源热泵是一项高效节能型、环保型并能实现可持续发展的新技术,它既不会污染地下水,又不会影响地面沉降。因此,目前在国内空调行业引起了人们广泛的关注,希望尽快应用这项新技术。现在尚未见到有关地源热泵技术设计手册供设计人员使用,但又不能等待设计手册出版后才使用地源热泵技术。笔者从实践角度对中小型地源热泵空调工程设计程序进行深讨,供同行讨论。

地源热泵技术的关键是地下换热器的设计。本文将着重探讨有关地下换热器的问题。

2地源热泵地下换热器的形式

众所周知,热泵机组的热源有空气源、水源、土壤源等。

土壤源热泵空调也叫地源热泵空调,就是在地下埋设管道作为换热器,管道与热泵机组连接形成闭式环路,管道中有液体流动通过循环将热泵机组的凝结热通过管道散入地下(供冷工况),或从大地吸取热量供给热泵机组向建筑物供热(供热工况)。

土壤源热泵换热器有多种形式,如水平埋管、竖直埋管等。这两种埋管型式各有自身的特点和应用环境。在中国采用竖直埋管更显示出其优越性:节约用地面积,换热性能好,可安装在建筑物基础、道路、绿地、广场、操场等下面而不影响上部的使用功能,甚至可在建筑物桩基中设置埋管,见缝插针充分利用可利用的土地面积。

3竖直埋管换热器型式

最常用的竖直埋管换热器就是由垂直埋入地下的U型管连接组成。

3.1竖直埋管深度

竖直埋管可深可浅,须根据当地地质条件而定,如20m、30m……直到200m以下。确定深度应综合考虑占地面积、钻孔设备、钻孔成本和工程规模。例如天津地区地表土壤层很厚,钻孔费用相对便宜,宜采用较深的竖直埋管,因深埋管的成本低、换热性能好、并可节约用地。

3.2竖直埋管材料

埋管材料最好采用塑料管,因与金属管相比,塑料管具有耐腐蚀、易加工、传热性能可满足换热要求、价格便宜等优点。可供选用的管材有高密度聚乙烯管(PE管),铝塑管等。竖直埋管的管径也可有不同选择,如DN20、DN25、DN32等。

3.3竖直埋管换热器钻孔孔径及回填材料

竖直埋管换热器的形成是从地面向下钻孔达到预计深度,将制作好的U型管下入孔中,然后在孔中回填不同材料。在接近地表层处用水平集水管、分水管将所有U型管并联构成地下换热器。

根据地质结构不同,钻孔孔径可以是Ф100、Ф150、Ф200或Ф300,天津地区地表土壤层很厚,为了钻孔、下管方便多采用Ф300孔径。

回填材料可以选用浇铸混凝土、回填沙石散料或回填土壤等。材料选择要兼顾工程造价、传热性能、施工方便等因素。从实际测试比较浇铸混凝土换热性能最好,但造价高、施工难度大,但可结合建筑物桩基一起施工。回填沙石或碎石换热效果比较好,而且施工容易、造价低,可广泛采用。

4竖直埋管换热器中循环水温度的设定

竖直埋管换热器中流动的循环水的温度是不断变化的。夏季供冷工况进行时,由于蓄热地温提高,机组运行时水温不断上升,停机时水温又有所下降,当建筑物得热达到最大时水温升至最高点。冬季供热工况运行时则相反,由于取热地温下降,当建筑物失热最多时,换热器中水温达到最低点。

设计时,首先应设定换热器埋管中循环水最高温度和最低温度,因为这个设定和整个空调系统有关。如夏季温度设定较低,对热泵压缩机制冷工况有利,机组耗能少,但埋管换热器换热面积要加大,即钻孔数要增加,埋管长度要加长。反之温度设定较高,钻孔数和埋管长度均可减少,可节省投资,但热泵机组的制冷系数cop值下降,能耗增加。设定值应通过经济比较选择最佳状态点。笔者认为埋管水温应如下设定:

4.1热泵机组夏季向末端系统供冷水,设计供回水温度为7—12℃,与普通冷水机组相同。地埋管中循环水进入U管的最高温度应<37℃,与冷却塔进水温度相同。

4.2热泵机组冬季向末端系统供水温度与常规空调不同,在满足供热条件下,应尽量减低供热水温度,这样可改善热泵机组运行工况、减小压缩比、提高cop值,并降低能耗。

我们知道风机盘管供热能力大于供冷能力,而一般建筑物的夏季冷负荷大于冬季热负荷,所以风机盘管的选型是以夏季冷负荷选型、冬季热负荷校核。采用地源热泵空调冬季供热时,可根据冬季热负荷实际情况,让风机盘管冬季也满负荷运行而反算出供热水温度,此温度要小于常规空调60℃的供水温度(大约供水为40℃左右)。将此温度定为热泵机组冬季供水温度。供回水温差取7~10℃。

地埋管中循环水冬季进水温度,以水不冻结并留安全余地为好,可取3—4℃。当然为了使地埋管换热器获得更多热量,可加大循环水与大地间温差传热,然而大地的温度是不变的,因此只有将循环水温降至0℃以下,为此循环水必须使用防冻液,如乙二醇溶液或食盐水。但这样会提高工程造价、增加对设备的腐蚀。在严寒地区不得不这样做,而在华北地区的工程中用水就可满足要求,不一定要加防冻液。

5换热面积与综合传热系数

5.1换热面积

一般换热器换热面积计算公式为:

……………………⑴

式中:

Q—换热器换热量w;

K—传热系数w/m·℃;

ΔT—对数温差℃。

5.2综合传热系数

地埋管换热器用以上公式计算很不方便,因为很难确定其换热面积。

竖直埋管换热器可以假设为“线热源”模型。引入综合传热系数进行计算,则较为简单、方便。

这里,将以某一流经地埋管换热器内的流体介质与大地初始温度每相差1℃,通过单位长度换热管,单位时间所传递的热量定义为综合传热系数K。

……………………⑵

式中:

K—综合传热系数w/m℃;

Q—换热器单位时间换热量,Q=Cm(t进-t出)W;

L—换热管有效长度m;

TP—流体介质平均温度,℃;

T进—U型管换热器进水温度℃;

T出—U型管换热器出水温度℃;

C—水比热4.180KJ/Kg·k;

m—水的质量流量kg/s;

Td—地温℃。

地温是恒定值,可通过测井实测。有关资料介绍某地地下约100米的地温是当地年平均气温加4℃左右。天津市年平均气温是12.2℃,实测天津市地下约100米的地温约为16℃,基本符合以上规律。

影响竖直埋管综合传热系数的因素有:地理位置、地质构造、埋管深度、埋管材料及管径、钻孔直径及回填材料、管中水的流速、热泵运行方式(连续运转还是间断运转)。

综合传热系数k可通过测井测得。由公式⑵可以看出,做一个地面钻孔与预计工程应用完全相同的U型竖直埋管,人为制作冷、热源,通入冷、热水,测出各个参数带入公式⑵即可计算出综合传热系数。

测井也可测出U型竖埋管出水温度T出。

综合传热系数K在系统运行初期波动值较大,系统运行一段时间后其值趋于一稳定值。我们通过实测K值波动在一个较小的范围内,在目前数据资料较少情况下可取波动平均值作为计算数据误差不会太大。

6竖直埋管地源热泵空调的设计

6.1确定设计参数与热泵机组

6.1.1计算建筑物空调夏季冷负荷及冬季热负荷。

6.1.2确定夏季冷水的供回水温度及地埋管进出水温度,进而确定机组中工质的夏季蒸发温度及冷凝温

度。

6.1.3计算冬季风机盘管的供水温度,取回水温度比供水温度低7~12℃。设定地埋管进水温度,根据测井测出的进出水温差推算出地埋管出水温度,进而确定热泵机组中工质冬季的蒸发温度和冷凝温度。

6.1.4由建筑物空调夏季冷负荷、机组蒸发温度和冷凝温度,以及冬季热负荷和冬季机组蒸发温度和冷凝

温度,就可以进行热泵机组的选型设计,或将参数提供给生产厂家,由厂家制造热泵机组。

6.1.5确定热泵机组型式(活塞机、螺杆机、蜗旋压缩机等),查出或计算出

该机组在夏季埋管水温最高时和冬季埋管水温最低时工况下的COP值。

6.2计算夏季总放热量和冬季总吸热量

6.2.1夏季竖直埋管换热器总放热量等于建筑总冷负荷加上埋管最高水温时机组消耗功率(机组消耗功率等于夏季冷负荷除以埋管最高水温时的COP值)。

6.2.2冬季竖直埋管换热器总吸热量等于建筑物总热负荷减去埋管最低水温

时机组所消耗的功率(机组消耗功率等于冬季热负荷除以埋管最低水温时COP值)。

6.3计算竖直埋管总长度

6.3.1夏季竖直埋管总长度计算

①夏季换热温差DTx8C

DTx=Tx-Td……………………⑶

式中:

Txü夏季竖直埋管内最高设计平均水温8C;

Tdü地温8C。

②夏季每米竖直埋管散热量qxW/m

qx=Kx·DTx……………………⑷

式中:

Kxü夏季综合传热系数W/m8C。

③夏季竖直埋管换热器埋管总长度Lxm

……………………⑸

式中:

Q夏—建筑物夏季总冷负荷W;

A—安全系数,取1.1-1.2。

6.3.2冬季竖直埋管总长度计算

①冬季换热温差DTD8C

DTD=Td-TD……………………⑹

式中:

TDü冬季竖直埋管内最低设计平均水温8C。

②冬季每米竖直埋管散热量qDW/m

qD=KD·DTD……………………⑺

式中:

KDü冬季综合传热系数W/m8C。

③冬季竖直埋管换热器埋管总长度LDm

……………………⑻

式中:

Q冬—建筑物冬季总热负荷W;

A—安全系数取1.1-1.2。

6.3.3确定竖直埋管换热器埋管总长度

以上计算取LX、LD二者中较大数值为本工程埋管总长度Lm。

6.4计算竖直埋管数量并确定布置形式

6.4.1竖直埋管数量计算

……………………⑼

式中:

n—U型竖直埋管个数;

H—竖直埋管设计有效深度m;

L—埋管总长度m。

6.4.2竖直埋管布置形式

结合工程场地可一字型布置、L型布置或矩阵型布置均可,根据测试结果分析,U型竖直埋管间距以5—6m为宜。

6.5确定竖直埋管水流速度与水泵选型

6.5.1确定水流速

试验显示,竖直埋管中如提高水流速度则换热量可适当增加,但增加量不与流速提高量成比例。竖直埋管中水流应为紊流状态,流速太快会增加循环水泵能量消耗,流速取1m/s左右为宜。

6.5.2确定水泵型号

流速确定后计算循环水流量及压力损失即可选择循环水泵的型号。

7结论

7.1地源热泵空调是节能、环保、对地下水无污染,并不影响地面沉降的好形式。特别是竖直埋管地源热泵更具有诸多优点,应予推广。

7.2采用土壤钻孔的综合传热系数法,可简化地源热泵的传热计算。

7.3竖直埋管地源热泵空调的设计步骤,为设计人员提供了一种设计方法,有利于提高设计速度,并减少设计失误。

参考文献

1、曾淼等,地源热泵地下U型管换热器实验研究,全国暖通空调制冷1998年学术年会《论文集》,P371;

换热器范文篇8

关键词:地源热泵超强吸树脂螺旋盘管U型管制热系数

0前言

新能源的研究、开发和利用已经成为世界各个先进国家能源战略的共同目标,浅层地能作为一种可再生绿色新能源,清洁、无污染,以及其巨大的储存量(地表浅层吸收了47%的太阳能,比人类每年利用能量的500倍还要多),已经使得人们认识到了浅层地能的利用价值。能够一机多用的地源热泵系统则在浅层地能应用中日趋活跃,广泛应用于供暖,空调领域中。然而地源热泵系统中埋地换热器受土壤性能影响较大,在连续运行工况下,热泵的冷凝温度和蒸发温度受周围土壤温度变化发生波动而不稳定。为了达到换热效果,目前大多采用垂直U型埋管,这需要钻相当深度的井,费用比较高,占初投资中很大比例。针对这一现状,对螺旋管和U型管在超强吸水树脂与源土混合作为回填材料的情况下,进行了实验研究。

1超强吸水树脂及回填材料性能描述

超强吸水树脂是一种吸水能力特别强的高分子材料,吸水率为自身的几十至几百倍,甚至千多倍。如Sumika凝胶S-50的吸水倍率为500~700(g/g),在低温(900C以下)吸水倍率基本不随温度变化;保水能力也非常高,吸水后无论加多大压力也不会脱水,但会随时间慢慢释放水分,且具有良好的蓄热、蓄冷能力[3]。

地源热泵系统中,理论计算以及实验研究表明,回填材料的导热系数K是决定地下换热效果和系统效率的主要因素,常温下,回填物质组成确定以后,对回填材料导热系数起决定作用的是密度和含水率,函数关系可表示为[1]:

K=ƒ(ρ,ω)(1)

ρ——回填材料密度(Kg/m3);

ω——回填材料的含水率(%)

如果把回填材料作为一种能量传递介质考虑,它把自己储存和吸收的能量传给地下换热器以及热循环介质,在这个能量转换过程中,水分起到了能量转换和储存的作用,所以回填材料中含水率的大小对换热器换热效果起着很大的作用。以下按照一定比例在源土中混合超强吸水树脂作为回填材料,并采用螺旋盘管和U型管两种地下换热形式,进行实验研究和分析。

2试验系统介绍

实验台由地源热泵、地下换热器等组成,主要设备见表1,采暖空调房间面积65m2积,

实验共打井4口,其中1、2号井,换热器形式采用螺旋盘管,井深6.0m,螺旋直径1.0m,螺旋间距200mm,并设计注水装置[2],具体结构图见图(1);3、4号井采用U型管,井深40.0m,每套螺旋管和U型管均为管径DN32,壁厚3mm,管长80m的PE管。整个系统见图(2)。

实验所选地地势相对较高,地下水位比较低(地下8-10米),土壤为非饱和态,回填之前对螺旋盘管打井源土采样测试,土壤密度约为1450Kg/m3,土壤含水率约为18%-20%。其中1号井,采用源土回填,2、3、4号井则按照质量比1:1000在源土中混入吸水倍率1:500的Sumika凝胶S-50超强吸水树脂。整个系统中,在热泵冷却水,冷冻水进出口,螺旋盘管和U型管进出口管外壁以及其他不同位置设置k型铜-康铜热电偶36组,1号和2号井热电偶对称布置,具体位置如图(3)

3试验数据分析

实验台搭建完毕后,测得换热器周围土壤初始平均温度为21.50C,10月底开始对系统在制冷、制热工况下进行了运行调试。调试完毕,通过注水器向1、2号井中分别注水2m3。由于环境温度影响,首先在制热工况下对系统进行测试。

工况1:12月6日在制热工况下系统连续运行24个小时后,于12月9日至23日期间,夜间平均室外温度100C,开启部分或全部房间门窗,室内温度保持在22-240C,热泵机组热水出水温度设定为最高温500C的条件下,调节各个管路阀门,使每套管井中的流量基本相同(0.8m3/H),分别以U型管和螺旋盘管单独作为地下换热器,各自连续运行7天,每天运行10小时,对所测得数据进行分析比较如下:

为定流量系统运行过程中螺旋盘管不同位置处热电偶温度变化曲线。图4中,混合超强吸水树脂的2号井,出水管外壁温度明显高于1号井,且随运行时间的延长,1号井温度变化大于2号井。

不同位置处热电偶日平均温度显示,距离螺旋盘管外侧600mm处(14#、24#)土壤温度在测试期间,基本没有变化,300mm处(15#、25#),温度变化比较小,如图5,外侧100mm处(16#、26#),土壤温度则随时间变化明显。流量相同的情况下,随测试时间的延长,图4中可以看出,2号吸热量大于1号,周围土壤热量随水分迁移,第四天开始,26#温度降低更加明显,16#温度变化则比较稳定;距离管内侧250mm(17#、27#)处,因实验前注水,水分渗透,起始温度低于原来土壤温度。运行过程中,17#日平均温度变化小于27#热电偶,图4和图5可以看出源土中混合超强吸水树脂,增大了土壤的导热系数,增强了系统停止期间土壤热恢复性能。

为U型管和螺旋盘管单独作为地下换热器时换热器总管进出水温变化曲线。螺旋盘管进、出口水温随时间变化比U型管小。实验测得系统COPs和压缩机COP平均值,螺旋盘管大于U型管,但两套系统单独运行时,COP数值并不高,且连续下降,如图7。其原因主要是由于单独作为地下换热器,换热面积小,吸热量满足不了系统要求。

工况2:12月27日至12月30日,室外平均温度70C,关闭所有门窗,室内温度保持在20-230C,热泵机组热水出水温度设定为460C,螺旋盘管和U型管作为地下换热器同时运行,压缩机每30分钟开停一次,开停时间比为1:2,间歇性连续运行50小时,取10-40小时之间测试数值

间歇运行期间,整个系统比较稳定,地下换热器进、出水温程周期性变化,并随时间延长逐渐降低,系统和压缩机制热系数都比较高,具体见表2。相比之下,其它地区不同形式埋管如天津商学院对单层水平蛇形管冬季取热实验得到单位管长吸热量为14W/m[4],重庆建筑大学对垂直套管得到单位孔深换热量为55.67W/m[5]。

4结论

通过供暖实验表明:超强吸水树脂与源土混合,作为回填材料,在注入少量水的情况下,能够很好地改善土壤的非饱和性,增大源土壤的导热系数,提高了土壤的热恢复性能,很明显地增大了单位管长的吸热量,适合于干旱、土壤非饱和以及地下水位比较低的地区,特别有利于螺旋盘管的应用,可以极大地降低地源热泵系统初投资,值得推广和应用。

[参考文献]

[1]庄迎春,孙友宏,谢康和.直埋闭式地源热泵回填土性能研究.太阳能学报,2004,25(4):216-220.

[2]YuehongBi,LingenChen,ChihWu.GroundHeatExchangerTemperatureDistributionAnalysisandExperimentalVerification.AplliedThermeralEngineering,2002,22,183-189.

[3]邹新禧.超强吸水剂.北京:化学工业出版社:1991年.9.

换热器范文篇9

关键词:污水换热器热泵经济性

ApplicationofsewageheatpumptechnologytoMiyunSewagePlantByYanghaijingandluk

Abstract:ThesewageheatpumpprojectofMiyunsewageplant,introducedtheNorthernEuropeadvancedtechnologyandequipment.Adoptingthemunicipalsewagewithoutanytreatmentasheatsourceandheatsink,istheinnovativetechnicthatcantransferthelowtemperatureenergyofsewagewatertohightemperatureenergythroughheatpumpsystemforheating,airconditioningandhotwatersupply.

Keyword:sewageheatexchangeheatpumpeconomicalefficiency

一、项目概况:

密云县檀州污水处理厂坐落于美丽的潮白河畔,是密云县城唯一的污水集中处理点,每日承担着密云县城近24000m3的污水的处理。污水水质稳定,常年温度在13oC-15oC.厂内有约10000m2建筑(写字楼,厂房,车库等),利用未经处理的城市污水为热源供本厂的供暖及部分制冷(只有办公楼需要制冷),并且还可供生活热水使用。它在制热时以污水为热源,而在制冷时以污水为热汇。由于污水处理厂污水供应充足,提取和排放热量能够满足供暖制冷的需要。

该项工程是密云县檀州污水处理厂原燃煤锅炉房的改造工程。由于原燃煤锅炉每年造成一定的大气污染,为适应北京市环境保护的需求,决定对这套供热系统进行改造,不再使用燃煤,因此采用了既能供热,又能制冷的污水源热泵系统。污水处理厂改造分为两部分,一部分是办公楼的改造,另一部分是设备厂房的改造,办公楼内安装的是能够制冷制热的风机盘管,设备厂房内安装的是散热性能较好的钢串式暖气片。

二、系统原理及设计

冬季,污水温度约12-15℃经过换热器换热后排出温度约为7-10℃,系统提取污水中的热量作为水源热泵机组的低温热源,进入热泵机组蒸发器,热泵冷凝器出水作为供暖系统循环水,供回水温度为50-45℃。夏季,污水温度约为14-18℃经过换热器换热后的排出温度为19-23℃,污水带走系统中的热量作为水源热泵机组制冷时的冷却水,热泵蒸发器出水作为供冷系统循环水,供回水温度为7-12℃。该热泵具有热回收功能,在冬夏季工况运行的同时确保了生活热水的供应。用户侧供水通过分集水器分别供到每个单体楼。系统冬、夏季工况的转换通过切换站房系统中的阀门来实现。

三、项目重点及难点

1、污水换热器

利用未经处理的污水作为水源进行采暖制冷,是水源热泵的一种方式,由于污水中悬浮物、污垢沉淀物较多,而且污水的酸碱度较大,极易对换热器产生腐蚀,结垢、堵塞等现象,从而严重地影响传热效率。通过实验测试,城市原生污水动力粘度(15℃)较清水动力粘度(15℃,1.14×10-6㎡/s);大40倍左右,即4.56×10-5㎡/s.如此高的粘度、腐蚀性和悬浮物对换热器的材质、表面粗糙度和内部结构设计都提出了很高的要求。根据对国内换热器行业的考察,目前国内还很少有能够满足如此恶劣工作条件且价格适宜的换热器,因此,最终作为项目参与方的北欧相关专家组根据实地污水采样检测,经过长时间的研究,确定了该污水换热器的材料,采用各种新型材料及表面处理技术,解决了防腐、堵塞和结垢等问题。该换热器部件采购于芬兰、瑞典、丹麦等国家,最终由马来西亚组装成型。项目运行三年以来,换热器未出现任何腐蚀、堵塞和结垢的现象,基本能够满足污水热泵系统正常运行的需要,证明这种换热器比较适合中国国内的污水水质现状。

2、格栅

污水在进入沉淀池前先经过一道粗格栅,以拦截污水中较大颗粒的漂浮物和悬浮物,拦截的栅渣由人工清除。污水从沉淀池出来后再经过一道细格栅,以拦截污水中小颗粒的漂浮物和悬浮物,拦截的栅渣每隔大约半个小时自动传输到垃圾池。经过两道格栅的过滤,污水中的大小颗粒漂浮物和悬浮物已经基本拦截,而后再进入污水换热器,这样可以避免换热器的堵塞。

四、实测数据分析

该水源热泵系统从2003年1月10日投入正常运行后,经历了北京近年来最寒冷的冬天,充分考验了污水源热泵机组的性能。机组冻夏季运转状况良好。

为了更准确的分析污水源热泵的经济性,我们安排专职人员在设备运转现场连续记录了两个多月,每隔两个小时记录一次数据,包括电表数、温度、压力等。

五、项目优点

1.环保

污水源热泵是利用了污水原水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、燃油等锅炉房系统,没有燃烧过程,减少温室气体CO2和其它大气污染物的排放;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,使环境更优美。

2.节能

污水热泵机组可利用的污水温度冬季为11-15℃,污水温度比环境空气温度高,是较好的低温热源;夏季污水温度为17-21℃,污水温度比环境空气温度低,是较好的散热体。这种温度特性使得污水热泵比传统空调系统运行效率要高20%.

3.节资

该系统还可以集采暖、空调制冷和提供生活热水于一身。—套热泵系统可以替换原有的供热锅炉、制冷空调和生活热水加热的三套装置或系统,从而也增加了经济性。

4.稳定

污水的温度相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,污水温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。

5.自控程度高

根据系统特点,我们选用四台压缩机的机组,系统根据负荷的波动,自动选择压缩机的启停,提高系统运行效率;自动控制程度高,运行过程无需专人职守;管理相对容易,机组维护费用低;使用寿命高达15年以上。

六、结语

换热器范文篇10

关键词:冷凝式锅炉热泵节能环保

1引言

我国北方地区一直以传统的燃煤、燃油采暖,随着经济的发展、城市规模的扩大,这些传统的采暖方式的缺点越来越突出,不能适应可持续发展的要求,据统计燃煤采暖已经成为北方城市冬季空气污染的罪魁祸首。如北京1999年北京市终端能源消费量为3828万吨标煤,其中煤炭消费量2011万吨;约占终端能源消费量的53%,是造成大气污染的主要根源[1]。为了避免尾部受热面的低温腐蚀,传统的燃煤供热锅炉排烟温度通常高于150℃,蒸汽锅炉甚至高于200℃,大多数燃气热水锅炉的排烟温度在140℃-200℃之间。过高的排烟温度不仅耗费了大量的能源,而且提高了锅炉的运行成本[2,3]。因此对于这些地区探索出一些洁净,节能高效的采暖技术就具有非常现实而重要的意义,并逐渐成为工程界、学术界普遍关注的热点问题。

为此,20世纪70年代以来,西欧和美国等相继研制了冷凝式锅炉,即在传统锅炉的基础上加设冷凝式热交换受热面,将排烟温度降到40-50℃,使烟气中的水蒸气冷凝下来并释放潜热,可以使热效率提高到100%以上(以低位发热量计算);同时研究发现,在烟气冷凝时,烟气中的SOx、NOx、CO2、CO以及飞灰和烟尘能部分或者全部溶解于水中,这样就使排入大气中的有害物质大大减少,有利于环保[2,3]。因此,采用冷凝式锅炉对节能和环保都具有非常重要的意义。但是我国采用传统95/70℃闭式供热系统,相当多的锅炉按80/70℃运行[4]。当采用洁净燃料天然气时,烟气的露点温度一般在55℃左右,要通过原有供热系统的回水去完成烟气的冷凝是不可行的。并且较高温度的排烟,相对于用空气源热泵采暖的系统来说,应是较好的低温热源[5]。针对冷凝式锅炉应用于我国传统供热存在的问题,为了达到节能和环保的目的,介绍国外广泛应用的烟气的余热回收系统—冷凝式锅炉与热泵联合系统。

2冷凝式锅炉与热泵联合系统

冷凝式锅炉与热泵联合系统不仅利用了冷凝式锅炉节能和环保的原理,还利用了热泵提高低品位热能到高品位热能的原理。在该系统中为了使热泵系统尽可能的回收较低品位的热能,减少热泵系统装机容量和电耗,做到尽可能的节能,先将热网回水与来自冷凝式锅炉本体高温的排烟进行换热,使烟气冷却至一定的温度,再将低温的烟气通过冷凝换热器(为防腐材料,如不锈钢),回收烟气中的部分潜热和显热。为了维持热泵蒸发端低温热源温度的稳定性,并减小蒸发端的传热平均温差,采用烟气先通过间壁式冷凝换热器(如板式、管式等)或接触式冷凝换热器(如液柱式、填料式等),用低温水(冷却水)先与烟气换热,再将被加热的冷却水用水泵抽送到热泵的蒸发端,和热泵工质(如R11等)发生热交换。下面介绍冷凝换热器与热泵联合热能回收系统,该系统有两种型式:如图1间壁式冷凝换热器与热泵联合热能回收系统和图2接触式冷凝换热器与热泵联合热能回收系统。

图1间壁式冷凝换热器与热泵联合热能回收系统

1-锅炉本体2-冷凝用烟气通道3-烟气旁通通道4-排烟至烟囱通道5-间壁式冷凝热交换器6-待处理的冷凝液排放管7,13-来自区域热网的回水8-烟气冷却器9-冷却水循环泵10-热泵蒸发器11-节流阀12-热泵冷凝器14-压缩机

图2接触式冷凝换热器与热泵联合热能回收系统

1-锅炉本体2-冷凝用烟气通道3-烟气旁通通道4-排烟至烟囱通道5-接触式冷凝热交换器6-烟气冷却器7,15-来自区域热网的回水8-冷却水循环泵9-处理液循环泵10-污水排放管11-水处理器12-热泵蒸发器13-压缩机14-热泵冷凝器16-节流阀

在图1中,间壁式冷凝换热器与热泵联合热能回收系统除锅炉本体的换热外,存在四个热交换过程:(1)在烟气冷却器8中,高温烟气和来自区域热网的回水之间的热交换过程;(2)在间壁式冷凝换热器5中,来自烟气冷却器的低温温烟气与冷却水(热泵的低温热源)之间的热交换过程;(3)在热泵的蒸发器10中,来自间壁式冷凝换热器的冷却水与热泵低温工质之间的热交换过程;(4)在热泵的冷凝器13中,热泵高温工质与来自区域热网的回水之间的热交换过程。在冷凝式换热器5产生的冷凝水通过待处理的冷凝液排放管6排放,在冷凝式换热器5中被冷凝的烟气和来自旁通烟道3的烟气混合,进入烟囱。

在图2中,接触式冷凝换热器与热泵联合热能回收系统与间壁式系统显著区别在与烟气的冷凝换热器,采用接触式换热器,烟气与冷却水发生直接接触换热,并且冷却水受到污染,需要定时处理和进行排污。

间壁式冷凝换热器和接触式冷凝换热器在国外都得到了利用,它们各自有自己的优缺点。如间壁式具有烟气与水分离,水质无污染,但换热存在较大温差,受结构尺寸限制,换热面积有限,存在间壁热阻和污垢热阻,换热效率低等。接触式具有气液两相离散接触,传热温差小,换热面积大大增大,烟气中污染物得到清洗,利于环保,但水质受影响,需处理等。

3冷凝式锅炉与热泵联合系统的应用

在国外,采用先进的方法回收烟气中热能的系统得到了大力的发展,冷凝式锅炉与热泵联合系统广泛的用于诸如区域供热锅炉房,尤其是使用如生活垃圾、碎木屑等比较湿的燃料以及天然气为燃料的锅炉房[6,7,8]。例如,1985年瑞典在其最大的城市垃圾焚烧厂(位于东南部的乌普萨拉市)安装了一套回收热能为20MW的冷凝式锅炉与热泵联合系统。安装主要设备的投资(包括安装)及余热回收的年效益如表1[2]。

表1主要设备的投资(包括安装)及余热回收的年效益系统类型

采用间壁冷凝式换热的系统

采用直接接触式冷凝器系统

热泵类型

吸收式热泵

机械式热泵

吸收式热泵

机械式热泵

总投资(百万瑞典克郎)

气体冷却器

0.7

0.7

0.7

0.7

冷凝器/吸收塔

1.2

1.2

1.6

1.6

热泵

7.1

8.2

7.1

8.2

所用主要设备的总投资

9.0

10.1

9.5

10.6

回收1MW热的总投资

1.2

1.3

1.2

1.3

来自热回收的年净收益

4.7

4.3

4.7

4.3

通过经济性计算,虽然初投资较大,但与通过建立一个锅炉来增加产热量所用的资金相比,所用的投资都是较低的,并且它在提高热生产效率的同时,除去烟气中的酸性气体和汞,因此从节能和环保的角度来说,这将是十分有利的。因此在一些急需扩建,改造和新建的集中供热锅炉房中,采用冷凝式锅炉与热泵联合系统,应是一种节能环保的方式。

根据《北京市城市热网集中供热设施建设“九五”计划及2010年发展规划》,现有一热和二热等7家热源厂将改扩建,设计供热面积将增加592万平方米。另拟新建2个热电厂,新增供热规模1000万平方米左右。2005年热力供热面积预期达到8359万平方米,占市建筑面积的31.13%[1]。并且北京开始以环境评价为中心目标,重点分析各种供热方式对环境保护带来的影响,并将之作为分析比较的基准点和出发点,同时兼顾能源利用效率、资源利用、投资和经济效益等因素的研究,因此在该地区实行冷凝式锅炉与热泵联合系统的研究具有重要的意义。并且在燃烧清洁燃料天然气时,在理论上每标准立方米约可产生1.6kg的冷凝水,如WNS4.2-1.0/95/70-Q型热水锅炉的燃料消耗约为440Nm3/h,如果产生的水蒸气的60%被冷却下来,可产生440×1.6×0.6=422.4kg/h的水,可以看出所获得的水量是可观的。如果采取措施对这一部分水加以利用,对一些缺水地区无疑会产生积极的作用[2,9]。

4结束语

冷凝式锅炉与热泵联合系统是一种高效节能和环保的热能回收系统,针对我国目前供热现状:污染严重,热量不足,急需扩建和新建一些锅炉房资金紧缺等问题,采用冷凝式锅炉与热泵联合系统应是一种值得探讨和应用的节能和环保方式。该系统还能能产生可观的冷凝水,这一部分水可以加以处理并利用,可作为一些水质要求不高的工业用水和畜牧用水。并且该系统的热泵部分在夏季也能给用户提供冷量,作小型的中央空调使用,具有更大的节能性。

参考文献

1沙心诚,赵迎,叶运良,等.北京城市采暖供热方式研究.中国国际工程咨询公司,2001,5.中国能源网:/focus/bluesky

2车得福.冷凝式锅炉及其系统.北京:机械工业出版社,2002

3贾力,孙金栋,李孝萍.天然气锅炉烟气冷凝热能回收的研究.节能与环保,2001,31(1):31~33

4贺平,孙刚,等.供热工程.北京:中国建筑出版社,1993.

5徐邦裕陆亚俊马最良.热泵中国建筑工业出版社,1988

6MakansiJ.Optionsmultiplyforlow-temperatureheatrecovery.Power,1985,129(8):73-75

7BernsteinR.ExperienceinSwedenwithcondensingheatexchangerswhenfiringdifferentfuels.SymposumonCondensingHeatExchangersProceedings,1982