固化范文10篇

时间:2023-03-16 13:04:45

固化范文篇1

论文摘要:本文根据土固精牌土壤固化剂施工前期的准备及工艺流程,对土固精的施工准备及厂拌法特点、施工注意事项等进行了论述。

近年来,随着中国经济的持续发展,城市化进程的建设步伐也随之加快,随着车流量等因素的增大,城市道路的新建、改扩建等工程也在加大,从城市主干道、次干道、区道到街巷小道,都在有计划、分期分批地进行新建和改扩建,在城市道路建设中,从环境的保护和投资方面、道路基层强度等因素考虑,使用土壤固化剂施工既环保又利用旧料节约成本,为了保证道路全年通车,提高行车速度,增强安全性和舒适性,降低运输成本和延长道路使用年限,使用土固精土壤固化剂施工流程简单,只需按照湖南路捷公司的施工工艺流程,施工流程、监理、检测标准、方法进行即可。

一、土固精土壤固化剂施工前期的准备工作

(1)固化土结构层施工采用路拌法和厂拌法。对于二级以下的公路或塑性指数较大的土质,基层和底基层可采用路拌法施工;对于二级公路,底基层宜采用稳定土拌和机路拌,基层宜采用厂拌法拌制混合料。对于高速公路和一级公路,基层必须采用厂拌法拌制混合料并宜用摊铺机摊铺混合料

(2)固化土结构层完成施工日最低气温应在3。c以上,宜经历半个月左右温暖和热的气候养生为最佳。多雨地区,应避免在雨季进行固化土结构层的施工

(3)在雨季施工固化土结构层时,应采取必要的防雨水措施,防止运到路上集料过分潮湿,并应采取措施保护石灰(或水泥)免遭雨淋。有条件的地方要做好基层用土的土场防雨,防止雨后土中水分过大,影响使用

(4)在固化土结构层施工时,应遵守下列原则:

a、细粒土应尽可能粉碎,土块最大尺寸不应大于15mm。

b、配料应准确,根据不同层次,采用0.012%-0.018%的比例稀释。

c、路拌法施工时,水泥或石灰应摊铺均匀。

d、固化剂剂量应准确,使用前摇匀,合沉淀充分溶解。

e、喷洒固化剂稀释液及拌和应均匀。

f、应严格控制基层的厚度和高程,其路拱横坡应与面层一致。

g、应在混合料处于最佳含水量或略小于最佳含水量(1%-2%)时进行碾压。

h、固化土结构层结构层应用18-22t以上的压路机碾压,最好采用重型压路机,以达到最佳的压实效果。每层的压实厚度可以根据试验适量增加。压实厚度过大时,应分层铺筑,每层的最小压实厚度为12cm,下层宜稍厚。对于固化土结构层,应采用先轻型、后重型压路机碾压。

j、用于固化层的素土摊铺为要求压实厚度的1.5倍左右。

k、路拌法施工时,必须严密组织,采用流水作业法施工,宜边拌和边运至现场摊铺,防止混合料积存和堆底不净现象。尽可能缩短从加固化剂稀释液拌到碾压终了的延迟时间,此时间不应超过3-4h,并应短于水泥的终凝时间。

l、固化土结构层上未铺封层和面层时,禁止开放交通;当施工中断,临时开放交通时,应采取保护措施,不使基层表面遭到破坏。

i、固化土结构层作为沥青路面的基层时,还应采取措施加强基层与面层的联结。

二、土固精土壤固化剂在旧路改造的施工工艺流程

针对旧路改造给施工带来的不便和旧路改造综合处治方案设计时考虑,最好采取固化土厂拌法来施工

三、厂拌法的特点

(1)机动灵活。(可以分几个步骤施工、取土。晒土、保存、搅碎、拌合、摊铺、压实)

(2)施工时间短,摊铺后直接压实,不会引起半封闭路段堵车,特别是路窄,车流量大的道路

(3)粘性度大的土壤易被搅碎,土壤保持干燥

(4)适宜于变化多端的南方雨水天气

厂拌法要具有的条件:挖取土壤的特点,土壤的实验报告,最佳含水量的配比,晾晒土壤的场地,干土壤保存场所,挖土机,搅碎拌合机,运输车辆,平铺机(可用人工),压路机等设备,石灰或水泥,固化剂的准备,依天气情况进行施工。

制定合理科学的施工方案。

在施工现场提取具有代表性的样土做实验报告,落实取土地点,晒土场地。

拌合之前应充分了解天气情况,拌合时首先用搅拌机把现场土充分搅碎,然后依据实验报告按比例加入稀释的固化剂、水泥和石灰等进行拌合。

搅拌好的混合土应迅速运入路床进行摊铺,摊铺时做好路床两边路桩、放样、标高。混合料放入路面中要迅速摊铺。(摊铺20cm高的路基需铺30cm高的混合土)要求摊铺平整,厚度一致。公务员之家

四、土壤固化剂厂拌法在施工过程中的注意事项

路床压实时:

(1)清除路床表层积水、垃圾及松软土

(2)控制路床平整度

(3)路床压实时,应先稳压后振动再碾压,压实度要达到检测要求

(4)压实后,如路床出现弹簧,应及时清理弹簧路床下的松软土或其他杂物,然后回填;路面开裂应及时翻晒,也可加适量的石灰或水泥搅拌;如果出现路床表面翘皮,首先清除表面翘皮部分,然后用旋耕机打毛表层,再加适量的灰土,再压实。

旧路在做路基处理时:

软路基一定要换填。

换填时,压实机一定要压实。

换填处不要用干土壤掺和,只能是碎石(或加入一点有固化剂的混合料)。

是老路基的,较硬部分不要再动,只要填平。

最好做厂拌法拌合混合料。

做样路时:

没有洒水车的,可以使用洗车机或者喷雾器。

没有中置式拌和机的,可以用20—30公分刀径的大型施耕机。

路段最好选路基较好的地段,并做好老硬好的标记,最好是选居住人口较少的、交通相对较少的路段。

固化范文篇2

耐久性粉末涂料具有很好的耐光致老化与降解性能,它即可用于室内制品的涂装,也可用于室外制品的涂装。为了得到良好的室外涂膜性能,粉末涂料所有组份包括交联剂,必须具有良好的耐光致老化与降解性能。氨基树脂交联剂如密胺类树脂具有优异耐久性能而广泛应用于液体涂料工业;由于几十年来良好的记录,它们成为液体涂料的首选交联剂,并且可得到低成本、耐久的、光稳定的坚硬涂膜。

Powderlink1174树脂(氰特工业有限公司生产,以下简称1174)是另一种氨基树脂交联剂,它是以甘脲而不是以密胺为基础的。人们都知道甘脲型氨基树脂涂料具有优异的室外耐久性能,而1174它主要是单体的四甲氧基甲基甘脲(TMMGU),它是高熔点的非粘性、不结块、易粉碎的固体,特别适合于室外型耐久粉末涂料的配制。产品1174其熔点高于90℃,它的主要成份TMMGU结构如图一所示。本论文我们将对Powderkink1174固化的粉末涂料配方研究和开发的最新成果作一论述(1)。

二、Powderlink1174交联剂和催化剂的特殊作用

在酸催化剂的存在下,氨基树脂交联剂包括1174,能够和含有羟基、羧基、酰胺基、氨基甲酸酯、硫醇基及氨基官能团的聚合物反应并交联。酸催化剂如PowderlinkMTSI催化剂(甲苯基甲基磺酰亚胺,氰特工业有限公司生产),可促进TMMGU中甲氧基甲基官能团与聚合物链上反应性官能团的交换反应,形成交联网络并生成甲醇。该反应如图二所示。前文中(2,3)我们讨论了几种有效催化剂,通过选择不同的催化剂,使用1174可得到多种多样的粉末涂料,如高光的、无光的和皱纹的粉末涂料。另外使用添加剂常常可以改变指定酸催化剂的强度,采用这种方式也可以使涂料的性能和外观得到明显的改善。我们发现使用磺酰亚胺催化剂MTSI,可以得到平滑的、无缺陷的、高光泽的厚膜涂料(4)。

三、高光泽无缺陷厚膜粉末涂料

对绝大多数最终用途来说,粉末涂层的典型膜厚不超过3密耳,近几年来粉末涂料涂膜厚度的发展趋势是趋于薄层化。很明显如果1.5∽2密耳的涂层能得到同样的外观和保护效果,3∽4密耳的涂层就有点浪费了。但是在某些用途中要求厚膜涂层,例如欧洲建筑涂料就有这种特殊要求。在欧洲建筑涂料要标上“合格”标签需要经过严格审批,合格涂料要求最低膜厚为2.4密尔(60微米)。为了达到上述膜厚,并考虑到法拉第屏蔽效应(在工件某些区域粉末的静电排斥效应),施工者不得不喷涂得比所需膜厚更厚,偶尔膜厚高达5密耳,图三描绘了这种情况。尽管用TMMGU和MTSI制造的粉末涂料固化时挥发份只有典型聚氨酯粉末涂料的一半左右(3),如果不使用助剂,甲醇的挥发将在膜比较厚(>3.5密耳)的地方造成针孔。为了使Powderlink1174粉末涂料能够得到厚度大于5密耳的无缺陷涂膜,我们做了很多努力研究其配方。

为了膜厚达到3.5密耳的涂膜充分脱气,防止针孔,1174粉末涂料必须有足够的流动性并且有足够时间让涂料在固化前充分‘愈合’其缺陷。粉末涂料,包括TMMGU粉末涂料固化时的流动性和流度,都可以用流变仪方便地测定(5)。

四、流变性、添加剂和厚膜涂层

本研究中平板流变仪使用RheometricRMS-605力学谱图仪,试验中复合粘度地测定在升温速度2℃/min,切变频率10rad/s,并改变应力的条件下进行。流变仪测定每一剪切应力下的弹性模量(G′)和损失模量(G″)。从这些数据我们可计算出流动指数、平均流度、固化起始温度和最低粘度。再将这些数据与粉末涂料性质即凝胶时间和斜板流动性以及固化膜性质,特别是外观和无针孔时的膜厚进行比较。

图四是一典型固化流变图,图的纵坐标为动力粘度(η,其定义见表一),横坐标为温度。实验的开始,温度很低,粘度非常大;开始加热后,粘度随着温度的上升几乎是以指数级地下降;达到一定温度后,交联反应开始,粘度不再下降;然后随者温度的进一步上升;粘度急剧上升;最终,交联反应停止,动力粘度保持为常数。固化起始温度是按图四所示方式确定的。

表1、流变学定义

G′弹性剪切模量

G″损失剪切模量

ω切变频率

η′动力粘度G″/ω

η″复合粘度模拟部分G′/ω

η*复合动力粘度η*=(η′2+η″2)0.5

流动指数计算方式如图五所示,粘度代表阻止流动的能力,流度代表流动的能力。图五是流度既粘度的倒数对样品在2℃/min加热速度下加热时间作图所得。动力粘度η对于描述低粘度(高流度)下的流变性能比较好。粉末涂料的流平性不仅取决于低的粘度,而且取决于它保持在低粘度下的时间长短。对流度时间曲线下一直到凝胶点的区域进行积分,所得到的数值即流动指数。流动指数的单位压力的倒数,1/Pa,它可以被认为是单位压力下每密耳厚的膜侧向流动的距离(密耳)。

表2、1174粉末涂料标准配方及其涂膜性能

聚酯树脂Crylcoat310994.00

安息香1.40

催化剂PowderlinkMTSI0.50

钛白粉R-96040.00

流平剂ResiflowP-671.30

固化剂Powderlink1174(TMMGU)6.00

涂膜性质

烘烤温度(℃)175190

烘烤时间(min)2020

底材(磷酸铁处理CRS)BO1000BO1000

甲基乙基酮擦拭200+200+

涂膜外观致密桔皮致密桔皮

涂膜厚度(密耳)2.0/2.21.8/2.8

KNOOP硬度11.811.9

正/反冲击(in*lb)160/160160/160

60°光泽78.594.1

20°光泽45.677.2

盐雾试验,1008小时

蠕变性00

外观99

耐湿性,60℃,504小时无变化无变化

表二列出了用Powderlink1174交联剂配制的粉末涂料配方及其性能。图六显示了安息香,一种常用的粉末涂料脱气剂对流变性质的影响。标有1的曲线没有加安息香,标有2的曲线加了配方量的1.4%,标有3的曲线加了2.4%的安息香。安息香的加入降低了玻璃化温度,增加了固化起始温度。使用增塑剂是配制厚膜PMMGU粉末涂料的途径之一,但是安息香用量超过配方量的1.4%后对性能几乎没有改善;安息香用量为1.4%和2.4%时都可以得到3.2-3.5密耳厚的无针孔涂膜。

低溶解性的弱碱如碳酸钙和氧化镁可很好的延缓酸催化作用、调节固化进程,以使涂料完全固化前厚膜部位得以充分脱气。图七和表三说明碳酸钙的加入可以增加流动指数、平均流度和固化起始温度,最小粘度略有下降。结果是凝胶时间变长,在不改变斜板流动性情况下可得到外观更好的无针孔厚膜(∽4密耳)涂层。

好在甘脲型氨基树脂的固化速度率可以通过加入催化剂以及对催化剂有作用的助剂来调节。TMMGU粉末涂料中使用胺添加剂可提供更为广阔的配方范围。例如在使用氨基树脂固化剂的热固性液体涂料中,常常使用‘封闭胺’作为催化剂体系的一部分以获得更好的包装稳定性(6)。一般来讲使用胺封闭的体系要比不封闭的体系固化速率低;这是因为在这种体系中实际上存在着质子化的胺,即一种弱酸(高的pKa)。当喷涂好的涂料烘烤时,胺挥发导致催化剂有效解封闭,酸强度增加(低的pKa),从而促使氨基树脂交联反应以较高速度进行。胺封闭酸催化剂体系的pKa和挥发性对固化进程有决定性的影响。

表3、碳酸钙的影响

碳酸钙用量(wt.%)

02537.550

流动指数(1/P)21426890

平均流度(1/Pa*s)0.0110.0190.0260.032

最小粘度(Pa*s)49161915

起始固化温度(℃)185192210219

凝胶时间(s)358457774775

斜板流动性(cm)7.78.87.48.2

无针孔膜厚(密耳)∽3.44.04.03.9

涂膜外观致密桔皮平滑桔皮平滑桔皮平滑桔皮

在MTSI催化的TMMGU粉末涂料配方中,DABCO三乙烯二胺(一种非泛黄性固体胺,缩写为TED,空气产品和化工公司生产)的影响如图八和表四所示。TED的加入会导致流动指数(流度对时间的积分)和平均流度(平均粘度的倒数)增加,另外最低粘度会降低,起始固化温度会上升。结果使凝胶时间变长,斜板流动性更好,从而使外观得到改善(平滑桔皮)的厚膜涂层。TED用量最大(0.5%重量)时,不发生固化反应,因此表中没有列出其数据。

在甘脲固化的粉末涂料中,加入那些能够提高酸催化剂pKa的非泛黄性胺添加剂,虽然不能完全但基本可以防止粉末涂料在其粒子开始熔融阶段和聚结阶段发生交联反应。熔融膜可以达到较低的粘度和更好的流平。随着进

表4、TED浓度的影响

TED用量(wt.%)

0.00.330.41

流动指数(1/P)2772112

平均流度(1/Pa*s)0.0130.0350.053

最小粘度(Pa*s)391411

起始固化温度(℃)172200214

凝胶时间(s)358515775

斜板流动性(cm)7.79.718.7

无针孔膜厚(密耳)∽3.4>3.8>4.7

涂膜外观致密桔皮平滑桔皮平滑桔皮

一步的加热,封闭胺的挥发也可防止膜表面过早的热固化或‘结皮’,促进‘表面愈合’。四甲基哌醇(TAA-o1,赫斯公司生产),一种作为阻位胺光稳定剂中间体而出售的非泛黄性固体胺有类似作用。用上述两种添加剂都可以得到非常平滑的、高光泽的、厚达5密耳的无针孔膜。(见表五和表六)

表5、TAA-ol和DABCO催化的无缺陷1174粉末涂料配方

组份WtWt

聚酯树脂Crylcoat349392.094.0

DABCO(三乙烯二胺)0.23

TAA-ol(四甲基哌醇)0.3

催化剂PowderlinkMTSI0.50.4

流平剂Modaflow20001.3

流平剂ResiflowP671.4

安息香1.51.3

钛白粉R-96040.040.0

固化剂Powderlink11748.06.0

采用复合添加剂的方式甚至可以得到更厚的无缺陷膜。加入配方量5%的增塑剂单硬酸铝和0.3%的TED的效果如图九所示。TED和单硬脂酸铝复合使用可大幅度的降低最低粘度(3.1Pa·s),提高流动性;这样可以得到厚达17

表6、无缺陷涂膜性质

涂膜性质TAA-olDABCO

烘烤温度(℃)190190

最大无针孔厚度(密耳)5.04.5

测试涂膜厚度(密耳)2.2/2.71.8/2.5

甲基乙基酮擦拭200+200+

涂膜外观光滑光滑

黄变指数-0.56-1.08

KNOOP硬度12.512.4

正/反冲击(in*lb)160/160160/160

60°光泽92.394.7

20°光泽78.888.4

储存稳定性(40℃,天)>21>21

盐雾试验,500小时

蠕变性00

外观1010

耐湿性,60℃,504小时无变化无变化

表7、TAA-ol或DABCO/单硬脂酸铝催化的1174粉末涂料配方

组份DABCO/DABCO/TAA-ol/

单硬脂酸铝单硬脂酸铝单硬脂酸铝

聚酯树脂Crylcoat310994.0

聚酯树脂Crylcoat349394.092.0

单硬脂酸铝5.05.03.0

DABCO(三乙烯二胺)0.30.2

TAA-ol(四甲基哌醇)0.3

催化剂PowderlinkMTSI0.50.40.5转

流平剂Modaflow20001.31.3

流平剂ResiflowP671.4

安息香1.41.41.5

钛白粉R-96040.040.040.0

固化剂Powderlink11746.06.08.0

密耳的无针孔涂膜,在正常膜厚(1∽3密耳)时其性能保持良好。当这个复合添加剂应用于高Tg,高分支聚酯树脂Crylcoat3493(UCB化学公司生产)配制的粉末涂料时,流动性仍然很好(最低粘度31Pa·s),无针孔膜厚度可达10密耳;该配方的优点是具有极好的储存稳定性,它既可以在较高温度下快速固

化,也可以在较低温度下固化。TAA-o1和单硬脂酸铝复合添加剂也有相似效果(参见表七和表八)。

表8、TAA-ol或DABCO/单硬脂酸铝催化的1174粉末涂料涂膜性质

涂膜性质DABCO/DABCO/TAA-ol/

单硬脂酸铝单硬脂酸铝单硬脂酸铝

烘烤温度(℃)200190190

最大无针孔厚度(密耳)171012

测试涂膜厚度(密耳)1.9/3.02.8/3.92.5/2.8

甲基乙基酮擦拭200+200+200+

涂膜外观光滑光滑光滑

黄变指数0.670.36-0.56

KNOOP硬度10.111.812.2

正/反冲击(in*lb)160/16030/5160/160

60°光泽81.090.099.5

20°光泽50.052.070.5

储存稳定性(40℃,天)>10>60>21

盐雾试验,500小时

蠕变性000

外观101010

耐湿性,60℃,504小时无变化无变化无变化

五、平滑的TMMGU无光粉末涂料

Powderlink1174固化的粉末涂料的一个独特性能是通过催化剂的选择能够将涂膜外观由光滑的表面改变为所希望的外观如平滑无光和皱纹表面,这一点是其他粉末涂料很难做到的。这种特性是不久前用环已烷基氨基磺酸(Cyclamicacid,Abbott实验室提供)作TMMGU粉末涂料催化剂时发现的(3,7),在与某些聚酯树脂搭配时,不用加蜡或二氧化硅就可得到60度光泽为35%∽45%平滑无光膜,并且具有良好的性能(参见表九和表十)。

表九和表十还列出了另外两个通过选择催化剂得到的无光粉末涂料配方及其涂膜性质。各种金属的磺酸盐用作1174粉末涂料的催化剂都可以得到很好的无光膜,甲磺酸锡是一种特别好的催化剂,它可以给出非常平滑的无光膜,且具有很好的耐冲击性能和其他机械性能。另外该涂料通过烘烤后不泛黄,且具有极好的耐老化性能。

表9、平滑无光1174粉末涂料配方

组份wt.wt.wt.

聚酯树脂Crylcoat310994.0

聚酯树脂Crylcoat349377.4

聚酯树脂Kuotex1000H63.6

安息香1.41.41.4

催化剂Cyclamicacid0.3

催化剂(2%甲磺酸锡母料)20.030.0

流平剂ResiflowP671.31.31.3

钛白粉R-96040.040.040.0

固化剂Powderlink11746.06.07.0

表10、平滑无光1174粉末涂料涂膜性质

涂膜性质CyclamicCrylcoatKuotex

acid34931000H

烘烤温度(℃)190190185

甲基乙基酮擦拭200+200+200+

涂膜外观光滑光滑光滑

涂膜厚度(密耳)2.52.42.0

黄变指数-2.4-3.9

KNOOP硬度10.712.812.4

正/反冲击(in*lb)90/60160/160160/160

60°光泽485043.1

20°光泽13118.8

盐雾试验,1008小时

蠕变性000

外观999

耐湿性,60℃,504小时无变化无变化无变化

图十一是一涂履环已烷基氨基磺酸催化的Powderlink1174无光粉末涂料样板的照片,很明显该涂料外观平滑,流平极佳。图十二是同一样板45倍显微照片。尽管手摸眼看样板是平滑的,但显微照片表明涂膜表面上布满了微小花纹,外观几乎是微粒状的。正是这种表面使光线发生有效散射,导致宏观平滑无光的涂膜表面。

六、耐久性TMMGU皱纹、花纹粉末涂料

皱纹、花纹粉末涂料正在赢得某些液体涂料甚至平滑粉末涂料所占据的传统市场,这种涂料令人爽心悦目,手感可从柔软的改变到坚韧的甚至粗糙或毛糙的。人们发现Powderlink1174粉末涂料用几种不同的胺封闭磺酸催化时,可得到外观极好的耐候皱纹粉末涂料(8)。虽然人们都知道有同类型的环氧基粉末涂料(9),但到目前为止,这类涂料还很难得到耐候性皱纹涂料。由于Powderlink1174粉末涂料本身具有极佳的耐候性能,因此使用胺封闭磺酸催化剂就可配制耐候性优异的皱纹粉末涂料。另外高的聚酯树脂/固化剂比(94/6)也使它具有经济优势。它的用途包括收录机、影碟机、计算机、家用电器及其它电子、电气产品、室外家具、栅栏、球场设施及卡车工具箱也是其潜在用途。

表十一列出了皱纹性TMMGU粉末涂料配方,在这些配方中用胺封闭磺酸作催化剂。配方A中催化剂为二甲基乙醇胺封闭的对甲苯磺酸盐(DMEA/P-TSA盐),配方B为二甲胺基丙醇封闭的对甲苯磺酸盐(DMAMP/P-TSA盐,氰特工业有限公司产,商品名为WL-catalystX-320)。配方C为三氟甲磺酸二乙胺盐(3M化工公司产品,商品名为FluoradFC-520催化剂)(10),所有这些催化剂都是以溶液形成得到的,必须与聚酯树脂通过熔融混合做成母料并除去溶剂。

表11、耐久的皱纹型1174粉末涂料配方

组份wt.wt.wt.

聚酯树脂Crylcoat310981.881.878.5

安息香2.42.42.4

DMEA/p-TSA(2.4%母料)12.50

DMAMP/p-TSA(2.4%母料)12.50

FC-520(1.9%母料)15.80

流平剂ResiflowP671.301.301.30

钛白粉R-96040.040.040.0

固化剂Powderlink11746.06.06.0

表12、耐久的皱纹型1174粉末涂料涂膜性质

涂膜性质DMEA/p-TSADMAMP/p-TSAFC-520

烘烤温度(℃)190175175

甲基乙基酮擦拭200+200+200+

涂膜外观重皱纹柔软皱纹粗糙皱纹

涂膜厚度(密耳)3.4/4.13.4/4.12.9/3.8

KNOOP硬度12.412.412.0

正/反冲击(in*lb)160/160130/130130/110

60°光泽12.07.94.3

20°光泽2.82.52.4

盐雾试验,1008小时

蠕变性000

外观999

耐湿性,60℃,504小时无变化无变化无变化

从表一十二可知,上述配方制备的皱纹粉末涂料性能都很好。配方A加入了0.3%的DMEA/p-TSA催化剂,得到仿皮感的重皱纹涂膜;配方B加入了0.3%DMAMP/p-TSA催化剂,得到一种令人愉快的无规花纹涂膜,它手感柔软更为平滑;而配方C加入了0.3%的FluoradFC-520催化剂,得到一种有点星状的皱纹涂膜,它手感较为粗糙或毛糙,令人联想起古老的铸铁表面。图一十三和一十四分别为WL-catalystX-320和FluoradFC-520封闭磺酸催化的1174粉末涂料样板的照片,他们都具有令人悦目的外观,只是花纹象上面所说的有点不同。他们的显微照片更能说明问题,图一十五是X-320的显微照片,其皱纹花样为无规状,宽度0.25∽0.50mm,平均膜厚5∽8密耳,无针孔(我们发现膜厚超过10密耳也没有针孔)。图一十六是FC-520的显微照片,它显示星状外观;星状花纹中心没有针孔,它只是好几条皱纹的会聚点;我们发现不论星形出现与否,该涂料都具有很好的性能。

采用新的聚酯树脂如Crylcoat3493,Kuotex1000H(产协企业股份有限公司产)和Rucote620(Ruco聚合物公司产)配制1174皱纹性粉末涂料,其性能具有良好的重现性。最近UCB化工公司推出的一种新的聚酯树脂Crylcoat820和一种新的皱纹性催化剂Crylcoat120,是为配制耐久性的1174皱纹粉末涂料专门设计的。另一途径是采用Synthron公司的SI32-18a催化剂,它是以附载在固体负载物上的形式提供的。所有以上产品与TMMGU正确配合的话都可以得到性能优异的美丽的皱纹性粉末涂料。表一十三和表一十四列出了一些配方及其涂膜性质。加入少量的着色颜料,则可以得到各种漂亮动人的彩色皱纹涂料。(见表一十五和表一十六

表13、耐久的皱纹型1174粉末涂料配方

组份wt.wt.wt.wt.

安息香1.41.41.41.4

聚酯树脂Crylcoat349382.994.0

聚酯树脂Crylcoat82087.2

聚酯树脂Kuotex1000H82.9

催化剂X-320(2.5%母料)11.411.4

催化剂SI-32-18a1.5

流平剂ResiflowP671.31.31.31.3

钛白粉R-96040.040.040.040.0

固化剂Powderlink11746.06.06.36.0

表14、耐久的皱纹型1174粉末涂料涂膜性质

涂膜性质3493/1000H/820/3493/

X-320X-32012032-18a

烘烤温度(℃)190190190190

烘烤时间(min)20202020

甲基乙基酮擦拭200+200+200+200+

涂膜外观无规皱纹平滑皱纹无规皱纹无规皱纹

涂膜厚度(密耳)2.1/2.93.4/3.83.8/4.43.2/4.1

KNOOP硬度13.412.612.612.7

正/反冲击(in*lb)160/160160/160160/160160/160

60°光泽4.13.92.73.4

20°光泽2.32.22.22.2

盐雾试验,1008小时

蠕变性0000

外观10101010

耐湿性,60℃,504小时无变化无变化无变化无变化

表15、耐久的彩色皱纹型1174粉末涂料配方

组份蓝色洋红色绿色黑色

聚酯树脂Crylcoat349382.982.982.982.9

安息香1.41.41.41.4

X-320(2.6%母料)11.411.411.411.4

流平剂ResiflowP671.31.31.31.3

钛白粉R-96040.040.040.01.0

固化剂Powderlink11746.06.06.06.0

蓝颜料NCNF2.0

红颜料1226.0

绿颜料GLN2.0

碳酸钙20.0

黑颜料FW2002.0

表16、耐久的彩色皱纹型1174粉末涂料涂膜性质

涂膜性质蓝色绿色洋红色黑色

烘烤温度(℃)190190190190

烘烤时间(min)20202020

甲基乙基酮擦拭200+200+200+200+

涂膜厚度(密耳)3.03.02.03.2

KNOOP硬度12-1312-1312-1312.5

正/反冲击(in*lb)160/160160/160160/160160/160

60°光泽2.42.82.43.9

20°光泽0.81.80.80.4

盐雾试验,1008小时

蠕变性0000

外观10101010

耐湿性,60℃,504小时无变化无变化无变化无变化

七、结论

Powderlink1174作为一种耐久性粉末涂料交联剂,给粉末涂料工业带来了新的配方选择,该交联剂能提供普通的耐候高光厚涂膜、平滑无光和皱纹涂膜。通过使用添加剂可以调节酸催化剂强度和固化前的流变性能,从而得到非常厚的、性能良好的高光无缺陷粉末涂料。使用环己烷基氨基磺酸或其他催化剂配制无光粉末,使用胺封闭磺酸催化剂配制皱纹粉末,这点在粉末涂料工业是独特的。皱纹性粉末涂料最终外观和性能取决于胺封闭磺酸的类型和浓度,皱纹的深浅和手感也是一样。

总之,含有Powderlink1174交联剂的粉末涂料具有化学多样性,各种方式包括加入添加剂和催化剂都可以改善其流动性能,最终得到所需要的涂膜性质和外观,以满足不同的应用要求。

固化范文篇3

【关键词】固化剂;工业厂房;地面施工

1引言

工业厂房地面建设工作中以水泥混凝土为主要材料,经打磨处理后使用混凝土密封固化剂,可起到改善材料性能的效果,地面硬度得到大幅提升,可达到莫氏硬度7级以上,并且还具备提高地面亮度的能力。

2工程概况

古巴联合利华项目包含新建HPC工厂、配送中心、公司办公室。主体建筑面积13200m2,附属建筑面积3400m2,道路硬化面积12100m2,室外绿化面积11300m2。本工程为单层工业厂房,主厂房地面施工均使用到混凝土密封固化剂。

3混凝土密封固化剂特点

3.1硬。作为普通的水泥混凝土材料,在此基础上使用混凝土密封固化剂后,可起到改善地面强度的效果,通常可提升至莫氏硬度7级以上,且伴随使用时间的延长,硬度在后续12个月里还将呈较大幅度的提升趋势,若工艺水平良好,达到莫氏硬度9级并非难事。3.2亮。工业厂房地面施工中使用混凝土密封固化剂后,再辅以抛光处理措施,可改变传统方式下地面亮度不足的问题,此时亮度提升至45cd/m2甚至更高,而长期使用之后,因人员与设备的频繁走动,该亮度还具备大幅提升的空间,经验表明可达到95cd/m2。3.3密。在混凝土密封固化剂的作用下,施工后的地面在密实度指标上更为良好,地面可有效隔绝外界物质的渗入,可达到“油水不进”的施工效果。

4工艺流程及操作方法

工业厂房地面施工中,若要提升混凝土密封固化剂的应用效果,要将各环节操作落实到位,即粗磨、细磨、增添固化剂等。在整个工艺流程中,粗磨是最为基础的环节,必须打磨到位,且要一次性完成。后续还需做好细磨与精磨处理,此阶段加大磨片更换频率,及时清理现场,满足要求后上固化剂,要求渗透时间至少达到4h。具体可分为以下8个步骤:清理混凝土寅基层研磨地面寅喷洒固化剂寅二次研磨寅清洗基面寅喷洒焊丝寅初步抛光寅全面抛光。若要提升固化剂的应用效果,首要前提在于水泥混凝土地面整体品质较好,否则无论采取何种处理方式,固化剂的使用都会大打折扣【1】。具体要求为:混凝土强度至少达C30;水灰比约0.45;施作细石混凝土并将其作为找平层,此部分厚度至少为50mm;坍落度以75耀100mm为宜。4.1施工方法。在基面处理环节,以现场情况为准采取合适的处理措施,要求将残留的养护剂、油渍、松散材料等物质清理干净。利用打磨机深度处理,该设备需配置30目、80目金刚石磨片,此环节采取的是加水湿磨的方法,根据实际情况灵活调整研磨遍数,通常以3耀5遍为宜。此后,再使用50目、300目、500目树脂磨片依次处理,此处依然为湿磨的方式。经上述施工后,要求地面具有足够的平整性,伴随地面平整度的提升,表明实际处理效果越理想。晾干地面,全程均要保持足够洁净的状态,作业现场如图1所示。(金刚石磨片湿磨)待地面完全干燥后,于该处喷洒密封固化剂A剂,施工人员用尘推均匀地浸润,通过此方式尽可能达到地面对材料吸收率最大化的效果。加强对浸透过程的检查,若出现地面发白或结晶现象,表明该处聚集量较大,首先要通过洒水的方式令其溶解,再使用扫把扫匀。经过持续4h的浸泡处理后,再次研磨地面,此处选择的是500目、1000目的磨片,结合现场情况确定研磨遍数,通常为3耀5遍;在上述基础上,再使用洗地机磨洗,施工中部分区域易出现固化剂堆积现象,需使用吸水机清理,随后晾干地面,全程保持完全洁净的状态。待地面达到干燥状态后,可使用滚筒向地面均匀涂上纳路特聚碳硅密封固化剂1008焊丝,最后干抛地面即可。4.2提高混凝土密封固化剂地坪的光亮度。工业厂房地面对于亮度提出较高的要求,若要提升地面亮度,需做好如下几项工作:1)确保地面平整度。根据物理学知识可知,物体表面越光滑,其具备的光线反射能力越强,能给使用者营造优良的感官体验,在视觉上形成“高亮度”的认知;反之,若地面平整度欠佳,则会明显降低光泽度。因此,前期的地面研磨处理尤为关键,材料为金刚磨片。2)深度打磨地面。粗磨是最为基础的环节,会对后续作业效果带来直接影响,各道打磨工序环环相扣,若粗磨效果欠佳,后续无论采取何种工艺方法也无济于事。鉴于此,必须安排专业人员将打磨的各道工序落实到位,在施工标准的指导下完成各项操作,达到一次性打磨平整的效果。3)选择混凝土密封固化剂1008焊丝,以确保原材料质量为基本前提,合理控制材料用量,以设计要求为指导完成施工作业,确保地面处理质量。4.3保持混凝土密封固化剂地坪光亮度。4.3.1注重对地面的清理。根据混凝土密封固化剂的性质,可以得知该材料不可与碱性溶剂长时间接触,否则将发生腐蚀。该固化剂pH为10耀11,表现为强碱性,地面施工所用混凝土的pH普遍在7以上,2类碱性材料接触后将发生反应,若地面存在残留的固化剂,由于其具备高碱性的特点,将带来地面腐蚀现象,不利于整体光泽度。对此,施工后需将多余的材料清理干净。此原则在日常使用中也适用,若地坪表面存在高强碱性物质,需及时将其清理干净。4.3.2选择酸性溶剂清理表面。结束施工作业后且混凝土密封固化剂地坪使用时间满2个月时,可使用酸性溶剂对其采取清理措施,在酸性溶剂的作用下可促进混凝土密封固化剂发生反应,同时具备降低碱性的效果,缓解对混凝土的损伤【2】。4.3.3做到每日清扫。工业厂房使用过程中会产生大量杂物,如地面上附着油污等,尽管混凝土密封固化剂具备强化地面的效果,但前期施工中所用的混凝土具备多孔性,一旦油污的存留时间过长,则会在地面上留下印记,不利于整体美观感,且光洁度也大幅下降。混凝土密封固化剂地面集多重优势于一体,如防尘、抗风化、稳定性好等,无论是在强度、亮度等指标上都较为良好,可满足工业厂房的使用需求,成为当前厂房建设中的主要形式。

5质量标准

5.1固化地坪的密封性。地坪可发挥出“屏蔽”作用,能够有效隔绝污渍等各类污染物。通常而言,混凝土密封固化剂地坪具备较强的隔绝污染物的能力,但并不能达到完全阻止的效果。相比于原地面而言,经过处理后的地坪在防污性能上有着较大幅度的提升。5.2固化地坪的强度。在混凝土密封固化剂的支持下,产生的地坪具备良好的强度,通常情况下其莫氏硬度可达到7级以上。当然,并非所有地坪验收工作都采取该标准,但无论如何,经处理后的地坪至少具备不起灰、不起沙的特点,即便是金属物在该处划过,由于其硬度较好,也几乎不会产生划痕【3】。5.3固化地坪的防尘。经施工后的地坪,至少要具备防尘的特点,这也是评定施工效果的最低标准。5.4固化地坪的光泽度。在原混凝土地面的基础上使用混凝土密封固化剂后,可改善地面光泽度,该材料有效填堵混凝土毛孔,改变传统方式下大量光线漫反射的特点,从而形成大范围镜面反射,在视觉上实现光亮度的提升。若对地面光亮度提出较高要求,可在高速抛光机的作用下进一步打磨,使其产生镜面效果。

6结语

工程实际结果表明,混凝土密封固化剂的应用效果优良,可解决混凝土地面强度不足、光洁度欠佳等问题,经施工后地面具备更优良的光泽度与硬度,满足工业厂房的生产需求,给工作人员提供更优良的观感体验,该技术已经得到社会各界的高度重视,具有较高的推广价值。

【参考文献】

【1】林庆泉.混凝土密封固化剂在耐磨地坪中的应用[J].福建建筑,2013(12):77-78.

【2】兀建蓉,岳金鑫.混凝土密封固体剂在施工中的应用[J].山西建筑,2015(10):103-104.

固化范文篇4

耐久性粉末涂料具有很好的耐光致老化与降解性能,它即可用于室内制品的涂装,也可用于室外制品的涂装。为了得到良好的室外涂膜性能,粉末涂料所有组份包括交联剂,必须具有良好的耐光致老化与降解性能。氨基树脂交联剂如密胺类树脂具有优异耐久性能而广泛应用于液体涂料工业;由于几十年来良好的记录,它们成为液体涂料的首选交联剂,并且可得到低成本、耐久的、光稳定的坚硬涂膜。

Powderlink1174树脂(氰特工业有限公司生产,以下简称1174)是另一种氨基树脂交联剂,它是以甘脲而不是以密胺为基础的。人们都知道甘脲型氨基树脂涂料具有优异的室外耐久性能,而1174它主要是单体的四甲氧基甲基甘脲(TMMGU),它是高熔点的非粘性、不结块、易粉碎的固体,特别适合于室外型耐久粉末涂料的配制。产品1174其熔点高于90℃,它的主要成份TMMGU结构如图一所示。本论文我们将对Powderkink1174固化的粉末涂料配方研究和开发的最新成果作一论述(1)。

二、Powderlink1174交联剂和催化剂的特殊作用

在酸催化剂的存在下,氨基树脂交联剂包括1174,能够和含有羟基、羧基、酰胺基、氨基甲酸酯、硫醇基及氨基官能团的聚合物反应并交联。酸催化剂如PowderlinkMTSI催化剂(甲苯基甲基磺酰亚胺,氰特工业有限公司生产),可促进TMMGU中甲氧基甲基官能团与聚合物链上反应性官能团的交换反应,形成交联网络并生成甲醇。该反应如图二所示。前文中(2,3)我们讨论了几种有效催化剂,通过选择不同的催化剂,使用1174可得到多种多样的粉末涂料,如高光的、无光的和皱纹的粉末涂料。另外使用添加剂常常可以改变指定酸催化剂的强度,采用这种方式也可以使涂料的性能和外观得到明显的改善。我们发现使用磺酰亚胺催化剂MTSI,可以得到平滑的、无缺陷的、高光泽的厚膜涂料(4)。

三、高光泽无缺陷厚膜粉末涂料

对绝大多数最终用途来说,粉末涂层的典型膜厚不超过3密耳,近几年来粉末涂料涂膜厚度的发展趋势是趋于薄层化。很明显如果1.5∽2密耳的涂层能得到同样的外观和保护效果,3∽4密耳的涂层就有点浪费了。但是在某些用途中要求厚膜涂层,例如欧洲建筑涂料就有这种特殊要求。在欧洲建筑涂料要标上“合格”标签需要经过严格审批,合格涂料要求最低膜厚为2.4密尔(60微米)。为了达到上述膜厚,并考虑到法拉第屏蔽效应(在工件某些区域粉末的静电排斥效应),施工者不得不喷涂得比所需膜厚更厚,偶尔膜厚高达5密耳,图三描绘了这种情况。尽管用TMMGU和MTSI制造的粉末涂料固化时挥发份只有典型聚氨酯粉末涂料的一半左右(3),如果不使用助剂,甲醇的挥发将在膜比较厚(>3.5密耳)的地方造成针孔。为了使Powderlink1174粉末涂料能够得到厚度大于5密耳的无缺陷涂膜,我们做了很多努力研究其配方。

为了膜厚达到3.5密耳的涂膜充分脱气,防止针孔,1174粉末涂料必须有足够的流动性并且有足够时间让涂料在固化前充分‘愈合’其缺陷。粉末涂料,包括TMMGU粉末涂料固化时的流动性和流度,都可以用流变仪方便地测定(5)。

四、流变性、添加剂和厚膜涂层

本研究中平板流变仪使用RheometricRMS-605力学谱图仪,试验中复合粘度地测定在升温速度2℃/min,切变频率10rad/s,并改变应力的条件下进行。流变仪测定每一剪切应力下的弹性模量(G′)和损失模量(G″)。从这些数据我们可计算出流动指数、平均流度、固化起始温度和最低粘度。再将这些数据与粉末涂料性质即凝胶时间和斜板流动性以及固化膜性质,特别是外观和无针孔时的膜厚进行比较。

图四是一典型固化流变图,图的纵坐标为动力粘度(η,其定义见表一),横坐标为温度。实验的开始,温度很低,粘度非常大;开始加热后,粘度随着温度的上升几乎是以指数级地下降;达到一定温度后,交联反应开始,粘度不再下降;然后随者温度的进一步上升;粘度急剧上升;最终,交联反应停止,动力粘度保持为常数。固化起始温度是按图四所示方式确定的。

表1、流变学定义

G′弹性剪切模量

G″损失剪切模量

ω切变频率

η′动力粘度G″/ω

η″复合粘度模拟部分G′/ω

η*复合动力粘度η*=(η′2+η″2)0.5

流动指数计算方式如图五所示,粘度代表阻止流动的能力,流度代表流动的能力。图五是流度既粘度的倒数对样品在2℃/min加热速度下加热时间作图所得。动力粘度η对于描述低粘度(高流度)下的流变性能比较好。粉末涂料的流平性不仅取决于低的粘度,而且取决于它保持在低粘度下的时间长短。对流度时间曲线下一直到凝胶点的区域进行积分,所得到的数值即流动指数。流动指数的单位压力的倒数,1/Pa,它可以被认为是单位压力下每密耳厚的膜侧向流动的距离(密耳)。

表2、1174粉末涂料标准配方及其涂膜性能

聚酯树脂Crylcoat310994.00

安息香1.40

催化剂PowderlinkMTSI0.50

钛白粉R-960

40.00

流平剂ResiflowP-671.30

固化剂Powderlink1174(TMMGU)6.00

涂膜性质

烘烤温度(℃)175190

烘烤时间(min)2020

底材(磷酸铁处理CRS)BO1000BO1000

甲基乙基酮擦拭200+200+

涂膜外观致密桔皮致密桔皮

涂膜厚度(密耳)2.0/2.21.8/2.8

KNOOP硬度11.811.9

正/反冲击(in*lb)160/160160/160

60°光泽78.594.1

20°光泽45.677.2

盐雾试验,1008小时

蠕变性00

外观99

耐湿性,60℃,504小时无变化无变化

表二列出了用Powderlink1174交联剂配制的粉末涂料配方及其性能。图六显示了安息香,一种常用的粉末涂料脱气剂对流变性质的影响。标有1的曲线没有加安息香,标有2的曲线加了配方量的1.4%,标有3的曲线加了2.4%的安息香。安息香的加入降低了玻璃化温度,增加了固化起始温度。使用增塑剂是配制厚膜PMMGU粉末涂料的途径之一,但是安息香用量超过配方量的1.4%后对性能几乎没有改善;安息香用量为1.4%和2.4%时都可以得到3.2-3.5密耳厚的无针孔涂膜。

低溶解性的弱碱如碳酸钙和氧化镁可很好的延缓酸催化作用、调节固化进程,以使涂料完全固化前厚膜部位得以充分脱气。图七和表三说明碳酸钙的加入可以增加流动指数、平均流度和固化起始温度,最小粘度略有下降。结果是凝胶时间变长,在不改变斜板流动性情况下可得到外观更好的无针孔厚膜(∽4密耳)涂层。

好在甘脲型氨基树脂的固化速度率可以通过加入催化剂以及对催化剂有作用的助剂来调节。TMMGU粉末涂料中使用胺添加剂可提供更为广阔的配方范围。例如在使用氨基树脂固化剂的热固性液体涂料中,常常使用‘封闭胺’作为催化剂体系的一部分以获得更好的包装稳定性(6)。一般来讲使用胺封闭的体系要比不封闭的体系固化速率低;这是因为在这种体系中实际上存在着质子化的胺,即一种弱酸(高的pKa)。当喷涂好的涂料烘烤时,胺挥发导致催化剂有效解封闭,酸强度增加(低的pKa),从而促使氨基树脂交联反应以较高速度进行。胺封闭酸催化剂体系的pKa和挥发性对固化进程有决定性的影响。

表3、碳酸钙的影响

碳酸钙用量(wt.%)

02537.550

流动指数(1/P)21426890

平均流度(1/Pa*s)0.0110.0190.0260.032

最小粘度(Pa*s)49161915

起始固化温度(℃)185192210219

凝胶时间(s)358457774775

斜板流动性(cm)7.78.87.48.2

无针孔膜厚(密耳)∽3.44.04.03.9

涂膜外观致密桔皮平滑桔皮平滑桔皮平滑桔皮

在MTSI催化的TMMGU粉末涂料配方中,DABCO三乙烯二胺(一种非泛黄性固体胺,缩写为TED,空气产品和化工公司生产)的影响如图八和表四所示。TED的加入会导致流动指数(流度对时间的积分

)和平均流度(平均粘度的倒数)增加,另外最低粘度会降低,起始固化温度会上升。结果使凝胶时间变长,斜板流动性更好,从而使外观得到改善(平滑桔皮)的厚膜涂层。TED用量最大(0.5%重量)时,不发生固化反应,因此表中没有列出其数据。

在甘脲固化的粉末涂料中,加入那些能够提高酸催化剂pKa的非泛黄性胺添加剂,虽然不能完全但基本可以防止粉末涂料在其粒子开始熔融阶段和聚结阶段发生交联反应。熔融膜可以达到较低的粘度和更好的流平。随着进

表4、TED浓度的影响

TED用量(wt.%)

0.00.330.41

流动指数(1/P)2772112

平均流度(1/Pa*s)0.0130.0350.053

最小粘度(Pa*s)391411

起始固化温度(℃)172200214

凝胶时间(s)358515775

斜板流动性(cm)7.79.718.7

无针孔膜厚(密耳)∽3.4>3.8>4.7

涂膜外观致密桔皮平滑桔皮平滑桔皮

一步的加热,封闭胺的挥发也可防止膜表面过早的热固化或‘结皮’,促进‘表面愈合’。四甲基哌醇(TAA-o1,赫斯公司生产),一种作为阻位胺光稳定剂中间体而出售的非泛黄性固体胺有类似作用。用上述两种添加剂都可以得到非常平滑的、高光泽的、厚达5密耳的无针孔膜。(见表五和表六)

表5、TAA-ol和DABCO催化的无缺陷1174粉末涂料配方

组份WtWt

聚酯树脂Crylcoat349392.094.0

DABCO(三乙烯二胺)0.23

TAA-ol(四甲基哌醇)0.3

催化剂PowderlinkMTSI0.50.4

流平剂Modaflow20001.3

流平剂ResiflowP671.4

安息香1.51.3

钛白粉R-96040.040.0

固化剂Powderlink11748.06.0

采用复合添加剂的方式甚至可以得到更厚的无缺陷膜。加入配方量5%的增塑剂单硬酸铝和0.3%的TED的效果如图九所示。TED和单硬脂酸铝复合使用可大幅度的降低最低粘度(3.1Pa?s),提高流动性;这样可以得到厚达17

表6、无缺陷涂膜性质

涂膜性质TAA-olDABCO

烘烤温度(℃)190190

最大无针孔厚度(密耳)5.04.5

测试涂膜厚度(密耳)2.2/2.71.8/2.5

甲基

乙基酮擦拭200+200+

涂膜外观光滑光滑

黄变指数-0.56-1.08

KNOOP硬度12.512.4

正/反冲击(in*lb)160/160160/160

60°光泽92.394.7

20°光泽78.888.4

储存稳定性(40℃,天)>21>21

盐雾试验,500小时

蠕变性00

外观1010

耐湿性,60℃,504小时无变化无变化

表7、TAA-ol或DABCO/单硬脂酸铝催化的1174粉末涂料配方

组份DABCO/DABCO/TAA-ol/

单硬脂酸铝单硬脂酸铝单硬脂酸铝

聚酯树脂Crylcoat310994.0

聚酯树脂Crylcoat349394.092.0

单硬脂酸铝5.05.03.0

DABCO(三乙烯二胺)0.30.2

TAA-ol(四甲基哌醇)0.3

催化剂PowderlinkMTSI0.50.40.5

流平剂Modaflow20001.31.3

流平剂ResiflowP671.4

安息香1.41.41.5

钛白粉R-96040.040.040.0

固化剂Powderlink11746.06.08.0

密耳的无针孔涂膜,在正常膜厚(1∽3密耳)时其性能保持良好。当这个复合添加剂应用于高Tg,高分支聚酯树脂Crylcoat3493(UCB化学公司生产)配制的粉末涂料时,流动性仍然很好(最低粘度31Pa?s),无针孔膜厚度可达10密耳;该配方的优点是具有极好的储存稳定性,它既可以在较高温度下快速固

化,也可以在较低温度下固化。TAA-o1和单硬脂酸铝复合添加剂也有相似效果(参见表七和表八)。

表8、TAA-ol或DABCO/单硬脂酸铝催化的1174粉末涂料涂膜性质

涂膜性质DABCO/DABCO/TAA-ol/

单硬脂酸铝单硬脂酸铝单硬脂酸铝

烘烤温度(℃)200190190

最大无针孔厚度(密耳)171012

测试涂膜厚度(密耳)1.9/3.02.8/3.92.5/2.8

甲基乙基酮擦拭200+20

0+200+

涂膜外观光滑光滑光滑

黄变指数0.670.36-0.56

KNOOP硬度10.111.812.2

正/反冲击(in*lb)160/16030/5160/160

60°光泽81.090.099.5

20°光泽50.052.070.5

储存稳定性(40℃,天)>10>60>21

盐雾试验,500小时

蠕变性000

外观101010

耐湿性,60℃,504小时无变化无变化无变化

五、平滑的TMMGU无光粉末涂料

Powderlink1174固化的粉末涂料的一个独特性能是通过催化剂的选择能够将涂膜外观由光滑的表面改变为所希望的外观如平滑无光和皱纹表面,这一点是其他粉末涂料很难做到的。这种特性是不久前用环已烷基氨基磺酸(Cyclamicacid,Abbott实验室提供)作TMMGU粉末涂料催化剂时发现的(3,7),在与某些聚酯树脂搭配时,不用加蜡或二氧化硅就可得到60度光泽为35%∽45%平滑无光膜,并且具有良好的性能(参见表九和表十)。

表九和表十还列出了另外两个通过选择催化剂得到的无光粉末涂料配方及其涂膜性质。各种金属的磺酸盐用作1174粉末涂料的催化剂都可以得到很好的无光膜,甲磺酸锡是一种特别好的催化剂,它可以给出非常平滑的无光膜,且具有很好的耐冲击性能和其他机械性能。另外该涂料通过烘烤后不泛黄,且具有极好的耐老化性能。

表9、平滑无光1174粉末涂料配方

组份wt.wt.wt.

聚酯树脂Crylcoat310994.0

聚酯树脂Crylcoat349377.4

聚酯树脂Kuotex1000H63.6

安息香1.41.41.4

催化剂Cyclamicacid0.3

催化剂(2%甲磺酸锡母料)20.030.0

流平剂ResiflowP671.31.31.3

钛白粉R-96040.040.040.0

固化剂Powderlink11746.06.07.0

表10、平滑无光1174粉末涂料涂膜性质

涂膜性质CyclamicCrylcoatKuotex

acid34931000H

烘烤温度(℃)190190185

甲基乙基酮擦拭200+200+200+

涂膜外观光滑光滑光滑

涂膜厚度(密耳)2.52.42.0

黄变指数

-2.4-3.9

KNOOP硬度10.712.812.4

固化范文篇5

耐久性粉末涂料具有很好的耐光致老化与降解性能,它即可用于室内制品的涂装,也可用于室外制品的涂装。为了得到良好的室外涂膜性能,粉末涂料所有组份包括交联剂,必须具有良好的耐光致老化与降解性能。氨基树脂交联剂如密胺类树脂具有优异耐久性能而广泛应用于液体涂料工业;由于几十年来良好的记录,它们成为液体涂料的首选交联剂,并且可得到低成本、耐久的、光稳定的坚硬涂膜。

Powderlink1174树脂(氰特工业有限公司生产,以下简称1174)是另一种氨基树脂交联剂,它是以甘脲而不是以密胺为基础的。人们都知道甘脲型氨基树脂涂料具有优异的室外耐久性能,而1174它主要是单体的四甲氧基甲基甘脲(TMMGU),它是高熔点的非粘性、不结块、易粉碎的固体,特别适合于室外型耐久粉末涂料的配制。产品1174其熔点高于90℃,它的主要成份TMMGU结构如图一所示。本论文我们将对Powderkink1174固化的粉末涂料配方研究和开发的最新成果作一论述(1)。

二、Powderlink1174交联剂和催化剂的特殊作用

在酸催化剂的存在下,氨基树脂交联剂包括1174,能够和含有羟基、羧基、酰胺基、氨基甲酸酯、硫醇基及氨基官能团的聚合物反应并交联。酸催化剂如PowderlinkMTSI催化剂(甲苯基甲基磺酰亚胺,氰特工业有限公司生产),可促进TMMGU中甲氧基甲基官能团与聚合物链上反应性官能团的交换反应,形成交联网络并生成甲醇。该反应如图二所示。前文中(2,3)我们讨论了几种有效催化剂,通过选择不同的催化剂,使用1174可得到多种多样的粉末涂料,如高光的、无光的和皱纹的粉末涂料。另外使用添加剂常常可以改变指定酸催化剂的强度,采用这种方式也可以使涂料的性能和外观得到明显的改善。我们发现使用磺酰亚胺催化剂MTSI,可以得到平滑的、无缺陷的、高光泽的厚膜涂料(4)。

三、高光泽无缺陷厚膜粉末涂料

对绝大多数最终用途来说,粉末涂层的典型膜厚不超过3密耳,近几年来粉末涂料涂膜厚度的发展趋势是趋于薄层化。很明显如果1.5∽2密耳的涂层能得到同样的外观和保护效果,3∽4密耳的涂层就有点浪费了。但是在某些用途中要求厚膜涂层,例如欧洲建筑涂料就有这种特殊要求。在欧洲建筑涂料要标上“合格”标签需要经过严格审批,合格涂料要求最低膜厚为2.4密尔(60微米)。为了达到上述膜厚,并考虑到法拉第屏蔽效应(在工件某些区域粉末的静电排斥效应),施工者不得不喷涂得比所需膜厚更厚,偶尔膜厚高达5密耳,图三描绘了这种情况。尽管用TMMGU和MTSI制造的粉末涂料固化时挥发份只有典型聚氨酯粉末涂料的一半左右(3),如果不使用助剂,甲醇的挥发将在膜比较厚(>3.5密耳)的地方造成针孔。为了使Powderlink1174粉末涂料能够得到厚度大于5密耳的无缺陷涂膜,我们做了很多努力研究其配方。

为了膜厚达到3.5密耳的涂膜充分脱气,防止针孔,1174粉末涂料必须有足够的流动性并且有足够时间让涂料在固化前充分‘愈合’其缺陷。粉末涂料,包括TMMGU粉末涂料固化时的流动性和流度,都可以用流变仪方便地测定(5)。

四、流变性、添加剂和厚膜涂层

本研究中平板流变仪使用RheometricRMS-605力学谱图仪,试验中复合粘度地测定在升温速度2℃/min,切变频率10rad/s,并改变应力的条件下进行。流变仪测定每一剪切应力下的弹性模量(G′)和损失模量(G″)。从这些数据我们可计算出流动指数、平均流度、固化起始温度和最低粘度。再将这些数据与粉末涂料性质即凝胶时间和斜板流动性以及固化膜性质,特别是外观和无针孔时的膜厚进行比较。

图四是一典型固化流变图,图的纵坐标为动力粘度(η,其定义见表一),横坐标为温度。实验的开始,温度很低,粘度非常大;开始加热后,粘度随着温度的上升几乎是以指数级地下降;达到一定温度后,交联反应开始,粘度不再下降;然后随者温度的进一步上升;粘度急剧上升;最终,交联反应停止,动力粘度保持为常数。固化起始温度是按图四所示方式确定的。

流动指数计算方式如图五所示,粘度代表阻止流动的能力,流度代表流动的能力。图五是流度既粘度的倒数对样品在2℃/min加热速度下加热时间作图所得。动力粘度η对于描述低粘度(高流度)下的流变性能比较好。粉末涂料的流平性不仅取决于低的粘度,而且取决于它保持在低粘度下的时间长短。对流度时间曲线下一直到凝胶点的区域进行积分,所得到的数值即流动指数。流动指数的单位压力的倒数,1/Pa,它可以被认为是单位压力下每密耳厚的膜侧向流动的距离(密耳)。

表二列出了用Powderlink1174交联剂配制的粉末涂料配方及其性能。图六显示了安息香,一种常用的粉末涂料脱气剂对流变性质的影响。标有1的曲线没有加安息香,标有2的曲线加了配方量的1.4%,标有3的曲线加了2.4%的安息香。安息香的加入降低了玻璃化温度,增加了固化起始温度。使用增塑剂是配制厚膜PMMGU粉末涂料的途径之一,但是安息香用量超过配方量的1.4%后对性能几乎没有改善;安息香用量为1.4

%和2.4%时都可以得到3.2-3.5密耳厚的无针孔涂膜。

低溶解性的弱碱如碳酸钙和氧化镁可很好的延缓酸催化作用、调节固化进程,以使涂料完全固化前厚膜部位得以充分脱气。图七和表三说明碳酸钙的加入可以增加流动指数、平均流度和固化起始温度,最小粘度略有下降。结果是凝胶时间变长,在不改变斜板流动性情况下可得到外观更好的无针孔厚膜(∽4密耳)涂层。

好在甘脲型氨基树脂的固化速度率可以通过加入催化剂以及对催化剂有作用的助剂来调节。TMMGU粉末涂料中使用胺添加剂可提供更为广阔的配方范围。例如在使用氨基树脂固化剂的热固性液体涂料中,常常使用‘封闭胺’作为催化剂体系的一部分以获得更好的包装稳定性(6)。一般来讲使用胺封闭的体系要比不封闭的体系固化速率低;这是因为在这种体系中实际上存在着质子化的胺,即一种弱酸(高的pKa)。当喷涂好的涂料烘烤时,胺挥发导致催化剂有效解封闭,酸强度增加(低的pKa),从而促使氨基树脂交联反应以较高速度进行。胺封闭酸催化剂体系的pKa和挥发性对固化进程有决定性的影响。

在MTSI催化的TMMGU粉末涂料配方中,DABCO三乙烯二胺(一种非泛黄性固体胺,缩写为TED,空气产品和化工公司生产)的影响如图八和表四所示。TED的加入会导致流动指数(流度对时间的积分)和平均流度(平均粘度的倒数)增加,另外最低粘度会降低,起始固化温度会上升。结果使凝胶时间变长,斜板流动性更好,从而使外观得到改善(平滑桔皮)的厚膜涂层。TED用量最大(0.5%重量)时,不发生固化反应,因此表中没有列出其数据。

在甘脲固化的粉末涂料中,加入那些能够提高酸催化剂pKa的非泛黄性胺添加剂,虽然不能完全但基本可以防止粉末涂料在其粒子开始熔融阶段和聚结阶段发生交联反应。熔融膜可以达到较低的粘度和更好的流平。随着进

一步的加热,封闭胺的挥发也可防止膜表面过早的热固化或‘结皮’,促进‘表面愈合’。四甲基哌醇(TAA-o1,赫斯公司生产),一种作为阻位胺光稳定剂中间体而出售的非泛黄性固体胺有类似作用。用上述两种添加剂都可以得到非常平滑的、高光泽的、厚达5密耳的无针孔膜。(见表五和表六)

采用复合添加剂的方式甚至可以得到更厚的无缺陷膜。加入配方量5%的增塑剂单硬酸铝和0.3%的TED的效果如图九所示。TED和单硬脂酸铝复合使用可大幅度的降低最低粘度(3.1Pa·s),提高流动性;这样可以得到厚达17

密耳的无针孔涂膜,在正常膜厚(1∽3密耳)时其性能保持良好。当这个复合添加剂应用于高Tg,高分支聚酯树脂Crylcoat3493(UCB化学公司生产)配制的粉末涂料时,流动性仍然很好(最低粘度31Pa·s),无针孔膜厚度可达10密耳;该配方的优点是具有极好的储存稳定性,它既可以在较高温度下快速固

化,也可以在较低温度下固化。TAA-o1和单硬脂酸铝复合添加剂也有相似效果(参见表七和表八)。

五、平滑的TMMGU无光粉末涂料

Powderlink1174固化的粉末涂料的一个独特性能是通过催化剂的选择能够将涂膜外观由光滑的表面改变为所希望的外观如平滑无光和皱纹表面,这一点是其他粉末涂料很难做到的。这种特性是不久前用环已烷基氨基磺酸(Cyclamicacid,Abbott实验室提供)作TMMGU粉末涂料催化剂时发现的(3,7),在与某些聚酯树脂搭配时,不用加蜡或二氧化硅就可得到60度光泽为35%∽45%平滑无光膜,并且具有良好的性能(参见表九和表十)。

表九和表十还列出了另外两个通过选择催化剂得到的无光粉末涂料配方及其涂膜性质。各种金属的磺酸盐用作1174粉末涂料的催化剂都可以得到很好的无光膜,甲磺酸锡是一种特别好的催化剂,它可以给出非常平滑的无光膜,且具有很好的耐冲击性能和其他机械性能。另外该涂料通过烘烤后不泛黄,且具有极好的耐老化性能。

涂履环已烷基氨基磺酸催化的Powderlink1174无光粉末涂料样板的照片,很明显该涂料外观平滑,流平极佳。图十二是同一样板45倍显微照片。尽管手摸眼看样板是平滑的,但显微照片表明涂膜表面上布满了微小花纹,外观几乎是微粒状的。正是这种表面使光线发生有效散射,导致宏观平滑无光的涂膜表面。

六、耐久性TMMGU皱纹、花纹粉末涂料

皱纹、花纹粉末涂料正在赢得某些液体涂料甚至平滑粉末涂料所占据的传统市场,这种涂料令人爽心悦目,手感可从柔软的改变到坚韧的甚至粗糙或毛糙的。人们发现Powderlink1174粉末涂料用几种不同的胺封闭磺酸催化时,可得到外观极好的耐候皱纹粉末涂料(8)。虽然人们都知道有同类型的环氧基粉末涂料(9),但到目

前为止,这类涂料还很难得到耐候性皱纹涂料。由于Powderlink1174粉末涂料本身具有极佳的耐候性能,因此使用胺封闭磺酸催化剂就可配制耐候性优异的皱纹粉末涂料。另外高的聚酯树脂/固化剂比(94/6)也使它具有经济优势。它的用途包括收录机、影碟机、计算机、家用电器及其它电子、电气产品、室外家具、栅栏、球场设施及卡车工具箱也是其潜在用途。

表十一列出了皱纹性TMMGU粉末涂料配方,在这些配方中用胺封闭磺酸作催化剂。配方A中催化剂为二甲基乙醇胺封闭的对甲苯磺酸盐(DMEA/P-TSA盐),配方B为二甲胺基丙醇封闭的对甲苯磺酸盐(DMAMP/P-TSA盐,氰特工业有限公司产,商品名为WL-catalystX-320)。配方C为三氟甲磺酸二乙胺盐(3M化工公司产品,商品名为FluoradFC-520催化剂)(10),所有这些催化剂都是以溶液形成得到的,必须与聚酯树脂通过熔融混合做成母料并除去溶剂。

配方制备的皱纹粉末涂料性能都很好。配方A加入了0.3%的DMEA/p-TSA催化剂,得到仿皮感的重皱纹涂膜;配方B加入了0.3%DMAMP/p-TSA催化剂,得到一种令人愉快的无规花纹涂膜,它手感柔软更为平滑;而配方C加入了0.3%的FluoradFC-520催化剂,得到一种有点星状的皱纹涂膜,它手感较为粗糙或毛糙,令人联想起古老的铸铁表面。图一十三和一十四分别为WL-catalystX-320和FluoradFC-520封闭磺酸催化的1174粉末涂料样板的照片,他们都具有令人悦目的外观,只是花纹象上面所说的有点不同。他们的显微照片更能说明问题,图一十五是X-320的显微照片,其皱纹花样为无规状,宽度0.25∽0.50mm,平均膜厚5∽8密耳,无针孔(我们发现膜厚超过10密耳也没有针孔)。图一十六是FC-520的显微照片,它显示星状外观;星状花纹中心没有针孔,它只是好几条皱纹的会聚点;我们发现不论星形出现与否,该涂料都具有很好的性能。

采用新的聚酯树脂如Crylcoat3493,Kuotex1000H(产协企业股份有限公司产)和Rucote620(Ruco聚合物公司产)配制1174皱纹性粉末涂料,其性能具有良好的重现性。最近UCB化工公司推出的一种新的聚酯树脂Crylcoat820和一种新的皱纹性催化剂Crylcoat120,是为配制耐久性的1174皱纹粉末涂料专门设计的。另一途径是采用Synthron公司的SI32-18a催化剂,它是以附载在固体负载物上的形式提供的。所有以上产品与TMMGU正确配合的话都可以得到性能优异的美丽的皱纹性粉末涂料。表一十三和表一十四列出了一些配方及其涂膜性质。加入少量的着色颜料,则可以得到各种漂亮动人的彩色皱纹涂料。

七、结论

Powderlink1174作为一种耐久性粉末涂料交联剂,给粉末涂料工业带来了新的配方选择,该交联剂能提供普通的耐候高光厚涂膜、平滑无光和皱纹涂膜。通过使用添加剂可以调节酸催化剂强度和固化前的流变性能,从而得到非常厚的、性能良好的高光无缺陷粉末涂料。使用环己烷基氨基磺酸或其他催化剂配制无光粉末,使用胺封闭磺酸催化剂配制皱纹粉末,这点在粉末涂料工业是独特的。皱纹性粉末涂料最终外观和性能取决于胺封闭磺酸的类型和浓度,皱纹的深浅和手感也是一样。

总之,含有Powderlink1174交联剂的粉末涂料具有化学多样性,各种方式包括加入添加剂和催化剂都可以改善其流动性能,最终得到所需要的涂膜性质和外观,以满足不同的应用要求。

固化范文篇6

论文摘要:本文根据土固精牌土壤固化剂施工前期的准备及工艺流程,对土固精的施工准备及厂拌法特点、施工注意事项等进行了论述。

近年来,随着中国经济的持续发展,城市化进程的建设步伐也随之加快,随着车流量等因素的增大,城市道路的新建、改扩建等工程也在加大,从城市主干道、次干道、区道到街巷小道,都在有计划、分期分批地进行新建和改扩建,在城市道路建设中,从环境的保护和投资方面、道路基层强度等因素考虑,使用土壤固化剂施工既环保又利用旧料节约成本,为了保证道路全年通车,提高行车速度,增强安全性和舒适性,降低运输成本和延长道路使用年限,使用土固精土壤固化剂施工流程简单,只需按照湖南路捷公司的施工工艺流程,施工流程、监理、检测标准、方法进行即可。

一、土固精土壤固化剂施工前期的准备工作

(1)固化土结构层施工采用路拌法和厂拌法。对于二级以下的公路或塑性指数较大的土质,基层和底基层可采用路拌法施工;对于二级公路,底基层宜采用稳定土拌和机路拌,基层宜采用厂拌法拌制混合料。对于高速公路和一级公路,基层必须采用厂拌法拌制混合料并宜用摊铺机摊铺混合料

(2)固化土结构层完成施工日最低气温应在3。c以上,宜经历半个月左右温暖和热的气候养生为最佳。多雨地区,应避免在雨季进行固化土结构层的施工

(3)在雨季施工固化土结构层时,应采取必要的防雨水措施,防止运到路上集料过分潮湿,并应采取措施保护石灰(或水泥)免遭雨淋。有条件的地方要做好基层用土的土场防雨,防止雨后土中水分过大,影响使用

(4)在固化土结构层施工时,应遵守下列原则:

a、细粒土应尽可能粉碎,土块最大尺寸不应大于15mm。

b、配料应准确,根据不同层次,采用0.012%-0.018%的比例稀释。

c、路拌法施工时,水泥或石灰应摊铺均匀。

d、固化剂剂量应准确,使用前摇匀,合沉淀充分溶解。

e、喷洒固化剂稀释液及拌和应均匀。

f、应严格控制基层的厚度和高程,其路拱横坡应与面层一致。

g、应在混合料处于最佳含水量或略小于最佳含水量(1%-2%)时进行碾压。

h、固化土结构层结构层应用18-22t以上的压路机碾压,最好采用重型压路机,以达到最佳的压实效果。每层的压实厚度可以根据试验适量增加。压实厚度过大时,应分层铺筑,每层的最小压实厚度为12cm,下层宜稍厚。对于固化土结构层,应采用先轻型、后重型压路机碾压。

j、用于固化层的素土摊铺为要求压实厚度的1.5倍左右。

k、路拌法施工时,必须严密组织,采用流水作业法施工,宜边拌和边运至现场摊铺,防止混合料积存和堆底不净现象。尽可能缩短从加固化剂稀释液拌到碾压终了的延迟时间,此时间不应超过3-4h,并应短于水泥的终凝时间。

l、固化土结构层上未铺封层和面层时,禁止开放交通;当施工中断,临时开放交通时,应采取保护措施,不使基层表面遭到破坏。

i、固化土结构层作为沥青路面的基层时,还应采取措施加强基层与面层的联结。

二、土固精土壤固化剂在旧路改造的施工工艺流程

针对旧路改造给施工带来的不便和旧路改造综合处治方案设计时考虑,最好采取固化土厂拌法来施工SHAPE\*MERGEFORMAT

三、厂拌法的特点

(1)机动灵活。(可以分几个步骤施工、取土。晒土、保存、搅碎、拌合、摊铺、压实)

(2)施工时间短,摊铺后直接压实,不会引起半封闭路段堵车,特别是路窄,车流量大的道路

(3)粘性度大的土壤易被搅碎,土壤保持干燥

(4)适宜于变化多端的南方雨水天气

厂拌法要具有的条件:挖取土壤的特点,土壤的实验报告,最佳含水量的配比,晾晒土壤的场地,干土壤保存场所,挖土机,搅碎拌合机,运输车辆,平铺机(可用人工),压路机等设备,石灰或水泥,固化剂的准备,依天气情况进行施工。

制定合理科学的施工方案。

在施工现场提取具有代表性的样土做实验报告,落实取土地点,晒土场地。

拌合之前应充分了解天气情况,拌合时首先用搅拌机把现场土充分搅碎,然后依据实验报告按比例加入稀释的固化剂、水泥和石灰等进行拌合。

搅拌好的混合土应迅速运入路床进行摊铺,摊铺时做好路床两边路桩、放样、标高。混合料放入路面中要迅速摊铺。(摊铺20cm高的路基需铺30cm高的混合土)要求摊铺平整,厚度一致。

四、土壤固化剂厂拌法在施工过程中的注意事项

路床压实时:

(1)清除路床表层积水、垃圾及松软土

(2)控制路床平整度

(3)路床压实时,应先稳压后振动再碾压,压实度要达到检测要求

(4)压实后,如路床出现弹簧,应及时清理弹簧路床下的松软土或其他杂物,然后回填;路面开裂应及时翻晒,也可加适量的石灰或水泥搅拌;如果出现路床表面翘皮,首先清除表面翘皮部分,然后用旋耕机打毛表层,再加适量的灰土,再压实。

旧路在做路基处理时:

软路基一定要换填。

换填时,压实机一定要压实。

换填处不要用干土壤掺和,只能是碎石(或加入一点有固化剂的混合料)。

是老路基的,较硬部分不要再动,只要填平。

最好做厂拌法拌合混合料。

做样路时:

没有洒水车的,可以使用洗车机或者喷雾器。

没有中置式拌和机的,可以用20—30公分刀径的大型施耕机。

路段最好选路基较好的地段,并做好老硬好的标记,最好是选居住人口较少的、交通相对较少的路段。

固化范文篇7

1前言

天然气是一种高效、洁净的能源。在功率相同的条件下,燃烧天然气所产生的CO2、NOx、CO量比燃烧油或煤都少。而且没有烟尘又极少SO2的污染。天然气既可以为燃料来获得热能,又可以实现冷热电联产。就上海而言,天然气的供应较为丰富.距上海370公里的东海平湖油田,已探明储量折合天然气约400亿m3,1999年4月开始向上海浦东地区日供天然气120万m3;,等到2003年“西气东输”的实现将为上海提供更充足的气源。

近年来,人们对空调的需求不断增加,用电量也随之剧增,特别是加重了夏季的用电负荷。如果部分改用天然气作驱动能源,不仅能够调整能源结构,降低环境污染,两且能够对电和燃气分别起到削峰、填谷的作用。

在国外,尤其是能源紧缺、环保要求高的国家里。使用煤气空调已较普遍,具有先进的技术和成熟的经验。1994年,上海市煤气公司在美华大楼开始使用煤气空调系统,以后在上海图书馆、天然气公司等大楼都使用了人工煤气或天然气空调系统。

2天然气空调冷热源机组

目前,天然气在空调系统中的应用主要有三种方式:一是利用天然气燃烧产生热量的吸收式冷热水机组;二是利用天然气发动机驱动的压缩式制冷机;三是利用天然气燃烧余热的除湿冷却式空调机。

2.1天然气直燃型溴化锂吸收式冷热水机组

吸收式冷热水机组主要由发生器、冷凝器、节流机构、蒸发器和吸收器等组成,工质是两种沸点不同的物质组成的二元混合物。当前以水-溴化锂为工质对的直燃型溴化锂吸收式冷热水机组应用较为广泛。溴化锂稀溶液受燃烧直接加热后产生高压水蒸汽,并被冷却水冷却成冷凝水,水在低压下蒸发吸热,使冷冻水的温度降低;蒸发后的水蒸气再被溴化锂溶液吸收,形成制冷循环。当冬天需要供暖时,由燃烧加热溴化锂稀溶液产生水蒸气,水蒸气凝结时释放热量,加热采暖用热水,形成供热循环。

由于溴化锂水溶液需要在发生器中吸收热量,产生水蒸汽,因此可以来用直接燃烧天然气的方法来提供这部分热量,即以天然气为燃料的直燃型溴化锂吸收式冷热水机组。该机组既可以制冷,又可以供热。如果在高压发生器上再加一个热水换热器,就可以同时提供生活用热水,达到一机三用和省电的目的.而且使用天然气的直燃型溴化锂吸收式冷热水机组还有下面的优点:

(1)由于通过直接燃烧天然气来加热吸收器内的溴化锂溶液,因此省去了由锅炉产生蒸汽,再由蒸汽加热溴化锂溶液的二次加热过程,提高了传热效率。同时,因省去了锅炉而大大减少了占地面积及设备、土建初投资。

(2)由于以燃烧天然气的方式提供热量,避免了间接通过烧煤或油锅炉提供热量的方式,降低了环境污染,调整了能源结构。

(3)直燃型溴化铿吸收式机组除功率较小的泵外,没有其他运动部件,机组噪音和振动都很小。

(4)直燃型溴化锂吸收式机组用吸收器和发生器代替了压缩机,因此大大降低了电耗。但这种直燃型冷热水机组与水冷离心式和螺杆冷水机组相比,一次能耗大,制冷效率低,而且不适用于热负荷大,生活热水用量大的建筑物。

2.2天然气发动机驱动的压缩式制冷机

压缩式制冷主要是制冷剂在压缩机(螺杆式、往复式、离心式)、冷凝器、节流机构、蒸发器等设备中循环流动,完成制冷、制热的过程。传统上压缩机是由电带动进行工作的,因此设备耗电量较大.把天然气用于压缩式制冷机,即通过燃烧天然气的狄塞尔发动机或者燃气轮机提供动力,来推动制冷压缩机运转。

用天然气发动机驱动的压缩式制冷机具有以下优点:

(1)用天然气发动机驱动压缩机运转,可以根据室内温度变化调节发动机,使之以最高效率运转,实现快速制冷和节能;

(2)由于压缩机并不通过煤或油发电驱动,而是用天然气发动机,因此减少了对环境的污染。

(3)天然气发动机驱动的压缩式制冷机组除一些辅助设备外,基本不耗电。而且避免了用电高峰时因电力不足成停电造成的电动压缩式制冷机无法运转的麻烦。

(4)天然气发动机驱动的压缩式制冷机除可以制冷、供暖外,还可以回收天然气发动机的尾气废热,所以提高了机组的供暖能力。

2.3天然气用于除湿冷却式空调机

要达到室内的温湿度要求,仅依靠常规的制冷机组对于新风负荷较大,而室内湿度要求低的环境是不够的.为了满足要求,可以在机组中加入转轮除湿机先对室外空气进行除湿处理。在该机组中,室外新风首先进入转轮除湿机,除湿后进入空调机进行处理,再进入空调房间,完成制冷或制热过程。

转轮除温机由吸湿转轮、传动机构、外壳、风机及再生用加热器组成。用来吸收室外新风中水分的吸湿剂一般为硅胶或分子筛.当吸温剂达到含湿量的极限时,会失去吸湿能力,为了重复使用,需要进行再生处理。再生是用180—240℃的热空气即再生空气来加热除湿剂,使其空隙中的水分蒸发。而热空气就是通过在再生用加热器中利用天然气燃烧后尾气的废热与空气进行热交换获得的。

天然气用于除温冷却式空调机有下面的优点:

(1)天然气燃烧后尾气的余热用来加热再生空气,充分利用余热,起到节能的作用。

(2)除温冷却式空调因新风经过除湿处理,能够承担较大的冷负荷和湿负荷。节约了能耗,有较好的经济性.而且避免了制冷剂的蒸发温度过低影响制冷效率,也避免了凝结水排放不当造成的渗漏。

3.办公楼采用天然气作为空调驱动能源的经济性分析

以上海地区商用分公楼为对象,通过对四种典型的空调冷热源设计方案进行经济比较,分析天然气应用于空调系统的优缺点。

3.1方案简介

3.1.1办公楼概况

建筑面积20000m2,楼层数20层,钢筋混凝土结构,宙培面积比为1/3。该建筑物高峰负荷时:夏季供冷量QL2326kw(8374MJ/h);冬季供热量QR2868kw(10325MJ/h)。

设计条件:夏季室外空气设计温度tw.n=34℃,湿球温度28.4℃,空气烙92kJ/kg,室内设计温度tN=25℃,空气焓50kJ/kg;冬季室外空气设计温度tW.M=-4℃,空气焓0kJ/kg。

3.1.2冷热源系统方案

3.2冷热源机组设备投资

这里仅讨论设备费及安装费,土建费应另考虑。至于天然气和电的增容费,目前上海市已可申请减免。

3.2.1冷热源主机设备费用

不同容量的冷热源机组设备费用以下图表示。具体主机设备费用见下表2。

3.2.2辅机费用

辅机费用主要指冷却水泵、冷却塔和锅炉给水泵等设备的费用

3.2.3设备安装费用

主、辅机设备安装费用,除热泵以设备费用的15%计外,其它设备以25%计。

3.3年运行费

年运行费包括能耗费、维修费和人工费.由于各方案的人工费差不多,比较时可以略去。固定费,包括设备折旧费、占有空间费、利息和税金等,暂不予考虑。

3.3.1能耗费用

(1)对各冷热源方案进行能耗分析

a.制冷机组的全年能耗

在制冷系统容量和运行时间一定时,全年能耗取决于制冷组的类型、单机容量、台数、不同机型不同容量机组的搭配方式等.如果知道机组的额定冷量和部分负荷调节特性,结合用户全年冷负荷的分布规律,就可以计算其全年能耗。

美国制冷学会ARI-550标准中提出综合部分负荷能耗值IPLV(IntegratedPantLoadValue)和部分负荷应用值APLV(ApplicationPartLoadValue):

IPLV=0.05A十0.30B十0.40C十0.25D

APLV=IPLV/T

式中:A--100%负荷时的耗能量;

B--75%负荷时的耗能量;

C--50%负荷时的耗能量;

D--25%负荷时的耗能量;

T--制冷机组全年运行时间(h/a)。

制冷系统全年能耗为:

ER=IPLV,或ER=APLV×T

b.热源机组的全年能耗

在实际应用中,热源机组的系统负荷率往往比较低。为了便于计算,一般采用间歇调节年,假定机组成者处于满负荷运行,或者处于停机。把全年的热负荷总量qh(kJ/a)与热源机组额定出力qH(kJ/h)之比,定义为“全年当量满负荷运行时间τEH”,即τEH=qh/qH。

热源机组全年能耗为

EH=τEH·WH

式中:WH--热源机组满负荷运行时的单位能耗,(kJ/h)

如果机组实际运行时间为TH,定义平均负荷率ξ:

ξ=τEH/TH

则系统总耗能为

EH=WH·TH·ξ

c.各冷热源方案全年能耗汇总

考虑各方案辅机的能耗消耗,并综合前面主机机组的能耗得到下面各方案全年主机与铺机的能耗如下表4:

考虑6月1日-9月31日和11月1日-次年3月31日,全年空调期间(共274天)有休息日78天,在加上元旦、新年放假,实际空调系统运行时间为计算的70%,修正后的空调系统实际能耗见表5。

在表4、表5中,电力资源是二次能源,需要转换成一次能源的能耗。由于上海的发电厂全是燃煤电厂,因此电力资源折算成一次能源时采用下面公式:

W''''=W/(ηf×ηw)

W--机组耗电量;

W''''--电力折算一次能耗量;

ηf-燃煤电厂发电热效率,取35%;

ηW-电网输送效率,取92%;

如果考虑火电机组在调蜂运行时的发电效率只有约25%,方案一和方案四的一次能耗将显著增大。

(2)全年能耗费用

在上海目前价格体系下,电价为1元/kwh,轻油价格为3.2元/kg,天然气价格为2.1元/Nm3。根据前面能耗分析,得到各方案的全年能耗费

3.3.2年维修费用

固化范文篇8

一、风险管理的内涵及特点

风险管理是20世纪初兴起的研究风险发生规律和风险控制技术的一门新兴管理学科,它是指经济单位透过对风险的认识、衡量和分析,选择最有效的方式,主动地、有目的、有计划地处理风险,以最小的成本争取获得最大的安全保证的管理方法。目前,国际风险管理领域存在诸多的企业内部控制和风险管理标准,但都与美国COSC)委员会(由反欺诈财务报告全国委员会发起的一个组织)正式的企业风险管理框架(EnterpriseRiskManagerment,简称ERM)紧密相关,ERM框架已成为当今企业全面风险管理的标准。虽然,ERM框架是基于企业风险管理需要总结和提炼的.但风险管理本身具有其内在的规律性,在不同的组织之间具有一定共通性,借鉴企业风险管理的这一方法论,对于税务机关建立健全税收执法风险体系,全面改善税收执法风险防范和控制工作具有积极意义。

风险管理的主要内容包括:协调风险容量与战略、增进风险应对决策、抑减意外和损失、识别和管理多重的和贯穿于组织之中的风险、抓住机会、改善资源配置等六个方面。风险管理主要体现在三个维度上,分别是目标、风险管理要素和管理层级:目标包括四种类型,即战略、经营、报告和合规:风险管理要素包括八个方面,即内外环境、目标设定、事项识别、风险评估、风险应对、控制活动、信息与沟通、监控;管理层级包括管理决策层、职能部门、业务单位和分支机构四个层次。各管理层级是风险管理主体,风险管理要素是必备条件,目标是要努力实现的对象,各个管理层级都要按照风险管理的八个要素为四个目标服务。其中,八个要素是风险管理的核心内容:

1.内外环境。内部环境包含组织的基调,它为主体内的人员如何认识和对待风险设定了基础,包括风险管理理念和风险容量、诚信和道德价值观,以及他们所处的外部环境。

2.目标设定。必须先有目标,管理当局才能识别影响目标实现的潜在事项。企业风险管理确保管理当局采取适当的程序去设定目标,确保所选定的目标支持和切合该主体的使命,并且与它的风险容量相符。

3.事项识别。必须识别影响主体目标实现的内部和外部事项,区分风险和机会。机会被反馈到管理当局的战略或目标制定过程中。

4.风险评估。通过考虑风险的可能性和影响来对其加以分析,并以此作为决定如何进行管理的依据。风险评估应立足于固有风险和剩余风险。

5.风险应对。管理当局选择风险应对一回避、承受、降低或者分担风险一采取一系列行动以便把风险控制在主体的风险容限(risktolerance)和风险容量以内。

6.控制活动。制定和执行政策与程序以帮助确保风险应对得以有效实施。

7.信息与沟通。相关的信息以确保员工履行其职责的方式和时机予以识别、获取和沟通。有效沟通的含义比较广泛,包括信息在主体中的向下、平行和向上流动。

8监控。对企业风险管理进行全面监控,必要时加以修正。监控可以通过持续的管理活动、个别评价或者两者结合来完成。

综合分析ERM风险管理框架的主要内容.可以发现其具有以下几个关键点:一是风险管理是一个过程.持续地流动于组织活动之中:二是风险管理涉及各个层级及其人员,并由他们实施;三是强调风险管理与发展战略目标必须相协调,并最终融入组织文化之中;四是强调风险管理贯穿于组织运行的各个方面,涉及治理、管理和操作等所有层级;五是风险管理不是单纯的内部控制,而是要形成主动管理风险、风险组合发生的观念,并依靠整合的管理和技术手段来控制各种不确定性因素:六是管理风险就必须把风险控制在可承受的容量之内,并积极把风险转化为发展的机会,以创造更大价值。应该说,ERM风险管理框架的这些内容对于当前我国推进包括税收执法风险管理在内的税收风险管理理论研究和实践工作具有积极意义。

二、我国税收执法风险管理情况及存在问题

回顾我国税收法治化建设的历程,不难发现,随着依法治税工作的深入推进,我国各级税务机关在增强法治意识、健全制度建设、完善管理手段、强化监督制约和提高队伍素质能力等方面做了大量工作,这有力地促进了防范和控制税收执法风险工作的开展,并于实践中取得了一些积极进展,其中有许多好的做法和经验是值得继承和发扬的。但我们也必须看到,当前我国税收执法风险的防范和控制工作还处于一个比较初级的阶段,由于没有科学的方法论作指导.没有形成较为系统的框架体系,实践中的许多措施显得较为零散.有的效果也差强人意。这些问题必须引起各级税务管理者、决策者的重视。笔者尝试运用ERM风险管理框架理论查找当前税收执法风险防范和控制工作中存在的问题,以期为改进税收执法风险管理确定工作的重点。具体包括以下方面:

1.在内外环境方面。(1)在一些领导和税务干部头脑中,税收执法风险意识不强,有的认为风险管理等同于强化监督.或仅在发生失职渎职事件后进行问题补救.缺乏把风险管理贯穿各项税收工作的主动精神、整体观念、系统意识。(2)现行税收制度体系结构不完善、科学性不足,法律级次偏低、法律法规衔接不够,且考虑发挥税收职能作用多,考虑税收执法风险容量不足,造成税务机关执法依据不完备,执法者掌握和运用难度偏高:征管体系自身的风险防御能力不足,给税务机关的执法行为留下了较多隐患。(3)税收执法风险管理尚未作为一项工作职能明确纳入各级税务机关的工作范畴,没有专门机构和专职人员研究、推动税收执法风险管理工作,这与税务机关所面对的日益升高的执法风险形成了鲜明落差。(4)税务干部的法治教育和职业道德教育的针对性有待加强.执法风险的防范意识有待增强。(5)税收执法的外部环境有待进一步改善。

2.在目标设定方面。(1)税收执法风险管理基本上还没有被纳入决策者和管理者的视野,成为税收改革和发展战略的重要组成部分。(2)目前尚缺乏对税收执法风险管理的主要任务和目标进行系统的研究和定义。(3)对于当前税收执法体系所能承受以及未来可以承受的风险容量未进行过充分的测量,也还没有科学有效的测量机制和方法。

3.在风险识别方面。(1)对税收执法风险发生的研究大部分停留在具体行政行为方面,而对其内在的影响因素分析与理解不足。(2)对于税收执法风险特别是潜在风险的识别尚无科学、系统的方法和手段。(3)对于如何及时、有效地洞察发生几率较高的税收执法风险还缺乏针对性强的措施。(4)对于税收执法风险与机会还缺乏辩证的认识和理解。

4.在风险评估方面。(1)税收执法风险评估机制尚未建立健全,对如何从制度上确定风险评估的主体、程序、标准和评估结果的应用缺乏系统的操作办法。(2)风险评估缺乏科学方法论指导,基本停留在经验判断阶段,还没有一套科学的模型作为评估依据,没有形成科学的评估方法。(3)对税收执法风险的评估主要停留在固有风险层面,对采取防范措施后仍然存在的剩余风险缺乏评估和管理的意识。

5在风险应对方面。(1)税收执法风险的应对策略设计不足,没有一揽子防范和控制税收执法风险的措施及其适用要件的确定办法。(2)缺乏整合的风险应对观念,对税收执法风险的应对基本停留在一事一议、一案一策的阶段。(3)对税收执法风险防范和控制的成本和收益分析不够。

6.在风险控制方面。(1)受到人力资源相对不足和执法任务快速增长的影响,税收执法权的职责分离存在设计的科学性不足和执行的难以到位问题。(2)税收征、管、查、审等环节内部及相互之间的互动机制尚未建立健全,导致信息不对称和协调配合不够,降低了执法风险的防控能力。(3)税收征管质量考核、工作人员业绩评价与税收执法风险控制缺乏有效衔接。(4)税收执法的自由裁量权存在有的裁量要件细化不够,运作程序不规范,过程不够透明,缺乏配套制度约束:有的自由裁量权运行缺乏跟踪指导,预警机制还不健全;自由裁量过程的责任分解不够科学.责任追究机制尚不完善。

7.在信息与沟通方面。(1)在一定程度上存在税收执法人员不能全面、及时、便捷获取各种法律法规和相关政策规定信息的问题。(2)税务机关专业化运作与信息高效共享之间仍然存在矛盾,相关的制度机制和手段需要进一步完善。(3)税务机关与相关政府部门之间的信息共享,税务机关与司法机关之间税收执法风险防控和业务交流工作需要加强。

8在风险监控方面。(1)税收执法管理信息系统的业务监控范围还不够全面,系统指标设计的科学性还有待提高,相关的申诉、复核、追究制度仍需完善。(2)税收执法风险的内部监控尚未实现信息化、动态化、日常化。(3)外部监督的力度需要加大,方式方法还需继续完善。

三、借鉴风险管理理论改进我国税收执法风险管理的建议

风险管理是一种全新的管理理念和方法,税务部门及其工作人员要有效防范税收执法风险,就必须尽快转变长期以来逐渐固化的观念和思维定式,加快建立健全税收执法风险管理体系。ERM框架强调,认定一个主体的风险管理是否“有效”,关键在于八个构成要素是否存在并得到有效运行,如果构成要素存在并且正常运行,那么就可能没有重大缺陷,而风险则可能已经被控制在主体的风险容量范围之内。为此,笔者围绕风险管理的八个构成要素提出以下改进税收执法风险管理的对策建议:

(一)优化风险管理环境

内部环境是整个风险控制框架的基础,决定了风险管理的基调,体现了认识和对待风险的态度。税收执法活动直接关系国家利益,涉及千家万户,风险不是一次性的“突发事件”,而是一种“常态”。因此,风险管理不应只被视作“非典型性”工作,而应作为一项常态性的工作,纳入日常税收工作体系中去,全面强化风险管理。

(二)科学规划风险管理目标

结合当前税收工作实际,现阶段建设税收执法风险管理体系应初步确立六大目标:一是更有效地协调税收执法风险的承受能力与税收改革和发展的战略选择;二是更有效地提高各级税务机关应对税收执法风险的决策、组织能力;三是更有效地提高税务执法人员处置和应对税收执法风险的素质和能力;四是更有效地识别和管理多重的和贯穿于税收执法过程的各种风险;五是更有效地把握改进税收管理的机会;六是更有效地促进税收执法外部环境的改善和纳税人税法遵从度的提高。

(三)提高风险评估能力

首先,建立健全风险评估机制。加强税收执法风险评估的制度建设,明晰风险评估的主体、程序、标准和评估结果的应用方式,确保长期的、动态的跟踪和评价税收执法风险的发生状况、防控体系运作情况。其次,建立风险评估模型。基于案例分析税收执法风险的表现形式和形成原因,找出风险形成的规律,一方面估计风险发生的可能性或概率,另一方面估计风险发生所产生的后果,建立起风险指标体系,区分不同的风险级别,计算风险分值,并分别按照不同风险度进行警示。第三,采用科学方法开展风险评估。(1)要做到定性与定量相结合:(2)要做到防范税收执法风险和纳税人遵从风险相结合。第四,重视剩余风险的评估和防范。剩余风险是税务机关采取了防范措施后,仍然残余的风险,是相对没有采取措施来改变风险的可能性或影响的固有风险而言的。如在改进税收执法管理和强化税收执法监督的过程中,要充分考虑税收制度变化、税收执法环境特点、执法人员素质等因素导致的发展和变化情况,预设应急策略及措施,做到持续改进。

固化范文篇9

如果我们还留存记忆,应该有这样一个清晰的印象:改革开放之后的,一度成为中国关注的焦点。其间的十几、二十年,一批又一批“取经”人,不远千万里来到这个城市,感受创新的活力,学习缔造的民营经济奇迹。

的辉煌延续,是不断激发创新活力形成一种特有模式的结果,但我们注意到,这个模式似乎在站上一个时代的高点后日渐式微。《中国经济时报》曾在全面看待“模式”的文章中,罗列出经济面临的十个问题,其中有一点切中要害,即“改革创新很难取得突破性进展”,文章认为,目前的情况与上世纪80年代初期不同,那时因体制创新走在全国前面而享受到了先发的好处。而现在来自微观层面的创新已基本完成,全国各地在体制创新上趋于均衡,有些地方甚至创造出了比更加灵活的办法,而创新的空间和效益,显然没有过去大了。

客观地看待这个结果,理性地做出评判,我们就不难发现,在这个时代背景下,创新精神已经后继乏力,我们应当思考的是,这种模式该如何在完善中重新崛起?究竟我们是将这种模式视为的曾经?还是在今天再度挖掘其最为基本的实用价值?

“模式”是特定历史时期的产物,这种模式的创造,有很多因素在起作用,比如框定于特殊时期的穷则思变,比如特定历史背景下弘扬先天禀赋的变而求新。这些来自民间的自发性力量,给人缔造一个极大的创新舞台。当然,这种模式的形成,还与当初体制机制不断创新的大环境须臾不离。这种创新的表现形式,就在于政府放手民间的激进,默许改革者犯错,鼓励百姓“异想天开”和“无中生有”。政府看似“无为”,却在关键时刻起到“纠偏”的作用,曾经主政的一位老领导说,在外界质疑声中背负压力,“我把‘乌纱帽’挂在裤腰带上顶风做事,这是最大的有为。”

可是,“模式”并不是永续利用的固定模式,在它形成之初就已经存在一些问题。已故著名经济学家董辅礽曾经认为,经济的发展虽然推进了市场经济的形成,但还是受到市场发展不足及不完善的约束。他的预言表明,任何一种经济社会发展的模式都不是一成不变的。但“模式”从形成直到今天,其个体和私营经济的核心主体并没有改变。这种固化容易使我们陷入一种“模式怪圈”,变得固步自封甚至因循守旧而不思进取。这种依赖导致的惰性,往往使我们受制于模式而不能积极创新、与时俱进,而一种失去内在活力的模式,无疑会对我们的发展形成阻碍。

如今,阻碍正逐渐暴露出来,就模式本身而言,它的自发特性,随着时代的变迁,很容易被环境左右而停滞不前。如今,似乎就缺少了原先“舍我其谁”的底气和霸气。与这个时展变化相适应的新的基因,没有在裂变中新生。可以这么说,“模式”所具有的影响力正在萎缩,这种模式正与经济社会的发展形成隔阂。

经济学上有“木桶理论”即“短板效应”,现在,这只“木桶”不仅短了一块板,而是让人觉得这个“木桶”整体偏小了,因此,再造一个“木桶”,已经是迫在眉睫。如何再造?就是要全面推行体制机制的创新,就是要消除不利于发展的各种阻碍和制约,扬长避短,拾遗补“短”。

一些不利于发展的问题,如果一而再、再而三的发生,那就一定是体制机制的问题。市委、市政府在近期推出的系列体制机制改革创新,无疑是针对现状的有的放矢。我们看到,体制机制改革创新没有直接对应“模式”,但这种改革创新显然可以对固化的模式引来源头活水。当前最突出的问题,是发展相对滞后,而滞后的主要根源,就是模式的固化甚至僵化,以及体制机制上存在着的障碍,比如市场经济体制不完善、微观经济主体制度建设不规范、城乡区域发展不协调、社会管理体制改革滞后、行政管理体制改革不配套、政府与市场边界不够明晰、宏观层面改革不到位等系列问题。这些问题,很多已经是周而复始的问题,甚至都到积重难返的程度,逼得我们“退无可退”的境地,使得我们必须全面推进机制体制上的改革创新。

现在推行的体制机制改革创新,就是试图根治不断复发的老毛病,就是要通过再造“水桶”,把各种有利于完善模式的积极因素,有利于发展的外源活力和内源动力蓄积好,成为破解难题、实现跨越发展的“膏方”。

“模式”是民间力量缔造的市场经济模式,而体制机制改革创新则是对现行制度的重建和再造,因为政府机构设置和现行体制机制运行中逐渐暴露的弊端,正成为模式创新和社会发展的最大制约。很多与改革开放、区域发展不相适应的政策和做法,基于局部甚至个人利益的行政作为,犹如锈死的齿轮无法形成良性运行,已经到了非改不可的地步。

当然,任何一种创新和改革,都会涉及到方方面面,都会波及到局部和个体利益,因此,政府职能部门首先要理解改革创新、支持改革创新、推进改革创新;其次要对过去模式构建的经验有所取舍,要把“模式”勇于开拓、善于变通的基因,嫁接到体制机制的改革创新中;同时,政府不能成为孤立的主体,不能忽略民间自发性的力量,而是通过与这种力量的整合,找到适合科学发展、跨越发展的出路。

历史的经验告诉我们,没有机制体制的不断改革创新,就不能促进一种模式的不断完善和成熟,就不能激发活力让一个地方去适应新的形势变化,就不能以新的目光洞察未来。如今的,别无他途,就是靠创新制胜,靠改革出位。我们落后于别人,是我们改革的力度小了,创新的步子慢了。我们推行体制机制改革创新,就是要打破固化的模式和格局,让一潭死水变成一池活水。现在,我们出台系列创新举措,以新的思维去突破旧的格局,总结和提升过去的经验,寻求更好的发展。

让模式在创新中激发新活力

不能否认,这几年外媒对的正面关注度有所下降,而导致这种情况出现的原因主要有两方面,一是自身发展相对滞后;二是被外界“妖魔化”,一些属于部分人的行为被冠以标签。

作为一个新人,我感觉这个城市的建设和环境营建等方面的前进步伐迈得不够快,落在了许多城市的后头。改革开放后,人不等不靠不要,以敢为人先的闯劲,把市场做到了全国乃至世界各地。当时政府的“无为”状态,为老百姓闯江湖提供了自由发展的空间。这一切与同期国内其他城市相比,独树一帜。然而,随着城市慢慢长大,单纯依靠民间力量已难以为继,城市整体缺少规划已经被暴露出来,比如特有的城中村现象等。此外,形象被“妖魔化”,炒房团、炒棉团……个别人的行为,被打上“牌”,而这些需要新闻媒体给予客观、公正的对待。

在城市发展的进程中,一座城市不可能没有短板。记得上世纪90年代,武林广场的一把火,烧掉了劣质皮鞋,但也同时燃起了人二次创业、质量立市的奋勇前行,也折射“知耻而后勇”的胆气。在新一轮的转型升级中,虽然没能走在全省的前列,但人从哪里跌倒从哪里爬起精神,以及日前启动的国企整合重组、城建体制改革等一系列突破、创新,我们期待在不久的将来,这片热土能再次焕发生机。

社会转型是对模式的创新和扬弃

原先的“模式”,主要是由基层和农民创造的模式,其人力资本优势主要集中在讲求功利,吃苦耐劳,勇于竞争,敢于冒险,善于经商等方面。

但是,在这种模式的背后,也存在着明显的不足,比如缺乏现代人力资源和教育、科技的应有发展,以至于经济发展到现在,民营企业管理水平普遍不高,技术水平和产业层次总体较低,这与人群体素质状况是密切相关的。就是被人们赞扬的人的价值观,也有不适应市场经济发展要求的诸多方面,如竞争意识强而合作精神弱,“宁为鸡头,不为凤尾”;追求发家致富和物质享受动力强,但缺乏现代企业家精神和干大事业的雄心;重血缘、亲缘和地缘关系,家庭、家族观念强,但缺乏普遍主义原则;个人自主性和冒险精神强,但相对缺乏应有的自律意识和自由契约精神。因此,从现代市场经济发展和社会转型的要求看,人的价值观念确实需要继续创新和变革。但是,这种社会转型,实际上是对模式的创新和扬弃,而并不意味着模式的终结。这对模式、对经济的发展也是一件好事情。

面对区域经济发展新趋向,应加快培育区域中心城市功能,以推进城市化为重点,带动城乡一体化和社会主义新农村建设;应充分开发、利用港口资源,适度发展重化工业,培育经济发展后劲;应努力提高自主创新能力,增强制造业的核心竞争力;应着力转变经济发展方式,从粗放(外延)型向集约(内涵)型转变,从主要依靠内源力量向依靠内源和外部力量并重转变,从主要依靠工业发展向依靠三大产业(特别是现代服务业)协调发展转变。而这一切,都有赖于如何深化改革,扩大开放,不断推进制度创新。公务员之家

唯有创新才能赢得发展

作为民营企业的重要代表之一,正泰集团至今仍迎接着一批又一批全国各地的考察团。从以前了解民营经济的发展状况、企业自身经营,到如今观摩企业转型升级、非公党建、企业文化等,充满活力和创新成果的正泰,在不同时期带给参观者的,是与时俱进的学习内容以及内心感受。

从知名低压电器生产商,到逐鹿新能源产业的华丽转身,这是顺应产业结构调整的产物,也是在原有基础上的创新与突破。改革开放30多年来,人民创造了模式,“精神”带动了民营经济蓬勃发展。然而,任何一种经济现象都不能永恒维持,只有继承并创新发展才有出路。在新的历史时期,人也必须把自强不息、奋勇拼搏精神转移到提高素质上来,以适应时代潮流。如今,非公党建、企业文化等,已成为不少企业新时代风采的展示窗口,也让员工有更强的归属感。然而,如今的,还有不少企业的生产、经营,仍延续着地缘、血缘、亲缘的社会网络,部分企业家素质还需提升。唯有创新才是一个企业赢得发展,保持旺盛生命力的源泉所在。

协调创新力量再创辉煌

固化范文篇10

关键词:石灰土基层有网状裂缝;面层薄层沥青;路基无防水;面层基层层间结合

1工程现状及问题的提出

1.1工程概况①已施工成型的固化石灰土基层在高温及施工工程车辆的动荷载影响下,发生程度不等、大范围的温缩和干缩裂缝。经查,最深裂缝深达30mm-50mm不等。②路基成型表层仍在继续采用湿治洒水养生,后期未考虑路基防水措施。③设计面层AC-16沥青厚度6cm,属薄层面层施工。当采用固化石灰土做基层时,应充分考虑面层与基层的结合联结应稳固的技术措施。④该广场设计使用为停车场,亦应充分考虑停车环境。当沥青混合料的高温强度不足或抗永久变形能力不强时,特别是在高温季节又有雨水易侵入内部的情况下,易产生剪切变形。轻荷载大交通量,亦可造成沥青路面发生车辙。

1.2问题的提出鉴于基层有网状裂缝,面层属薄层沥青施工,防水性能差,石灰土基层上铺筑薄层中粒式沥青混凝土,应充分关注面层与基层的结合,预控工程施工后期工程质量,提出以下可能发生的工程质量病害:①沥青面层(尤其是较薄时)与石灰加固类基层间的结合,是一个重要的问题。一些路面破坏就是由于处理层间结合失当所致。②石灰土基层产生温缩和干缩裂缝,在工程中已发生程度不等(最深裂缝达30mm-50mm)、大范围的网状裂缝,常常导致其上铺筑的较薄沥青面层发生相应的收缩性反射裂缝。

以上工程质量预防、前瞻可能发生的路面病害应在施工中予以充分关注和消除。

2工程实践施工方案

2.1提高土基回弹模量,减小基层和面层的变形,提高路面结构的疲劳寿命JTGD50-2006《公路沥青路面设计规范》规定设计宜使路基处于干燥或中湿状态,土基回弹模量应>30MPa,重交通、特重交通公路土基回弹模量应>40MPa。沥青路面结构层可简化为面层和基层两部分,垫层和土基一般可理解为基层。基层主要承受由面层传递下来的车辆垂直荷载,并把它扩散到垫层和土基中,具有足够强度和刚度的基层是路面良好使用性能的必要保证。不少研究成果表明,面层质量是保证路面初期使用性能的关键,而弯沉是保证中后期路面使用性能的关键。对于半刚性基层沥青路面结构,沥青顶部的剪应力是导致路面车辙和开裂的主要原因;弯拉应变是路面疲劳开裂的主要原因。半刚性基层、底基层的弯拉应力起主要控制作用,沥青层的弯拉应力不起控制作用,随着土基回弹模量的增加,基层和底基层层底弯拉应力有明显的减少。因此,提高土基回弹模量对减小基层底面拉应力效果明显,并且,可以减少基层和面层的变形,提高路面的疲劳寿命。

通过分析提高土基回弹模量的具体措施如下:在土基与路面层间增设垫层,是一种提高土基回弹模量的措施。此垫层材料可以充分利用当地方便而经济的材料,如碎石、砂砾、矿渣、粗砂等,厚度可根据实际而定,级配不需要太严格的要求。此方案的优点可以充分利用当地材料,不会过多的增加工程造价,还可以大大改善路面结构的使用性能。

2.2设置改性沥青防水膜下封层通过设置改性沥青防水膜下封层可以解决防水、层间结合、防止层间反射裂缝等问题,优于传统的沥青表处式等下封层。较有效的防止薄层沥青路面水下渗造成的基层顶面的软化而引起沥青路面的开裂和坑槽病害发生,预防措施是在基层顶面设置沥青防水下封层。除防水、防止软化基层外,尚有对新铺基层的养护、养生作用及冬季防冻作用,还有提高面层与基层的结合能力、增强路面的整体性和减少路面反射裂缝等优点,延长沥青路面使用寿命。

工艺流程:基层验收及顶面清理→洒布乳化改性沥青透层和石屑→洒布改性沥青和碎石→碾压成型→检查验收

对于碎石宜选用粒径16~19mm石灰岩碎石,且石料应干燥、清洁、验收符合施工技术规范的要求即可。经试验此粒径范围的石料可以较有效地解决施工碾压粘轮的问题。而且,适量的石料嵌入下面层中,增强了封层与下面层的整体连接。经济分析,造价适中。

2.3土工格栅和玻纤格栅从作用机理上分析,土路基采用土工格栅和石灰基层上采用玻纤格栅具有很高的抗拉强度、低延伸率与沥青的结合好等优点,而且物理化学性能好,耐高温与限制作用强等特点。其作用主要是改善路面结构应力分布,提高沥青结构层的强度。具有抵抗拉应力的能力,从而达到防止沥青路面开裂的目的,提高路面寿命。公务员之家

在铺设过程中,首先,对基层上可能影响格栅与底层结合的物质进行清理。格栅铺设时,应保持其平整、拉紧,不得起皱,使其具备有效的张力。严格控制运送混合料的车辆出入,在栅格层上禁止车辆急转弯、急刹车等,以防至对格栅的损坏。

3结语

在薄层沥青施工中,提高土基回弹模量减小基层和面层的变形、设置改性沥青防水膜下封层、设置土工格栅和玻纤格栅是比较经济且能有效防止和消除沥青路面病害的三种方案。在施工中可根据工程所在地及环境的不同选择不同的施工方案。随着新型材料的出现和施工工艺的不断更新,不同地区实践中还会有较为实用而经济的施工方案有待总结。

参考文献:

[1]《公路路面基层施工技术规范》(JTJ034-2000).

[2]《公路沥青路面设计规范》(JTGD50-2006).