光子范文10篇

时间:2023-04-07 20:48:44

光子

光子范文篇1

【教学时间】一课时。

【教学目标】

1.知识与技能

●了解并识别光电效应现象。

●能表述光电效应现象的规律。

●了解光子的概念,会用光子说解释光电效应现象的规律。

●理解光电效应方程。

●粗略了解光电效应研究史实。

2.过程与方法

●观察赫兹实验中的放电现象,体验发现的过程。

●经历“探究光电效应规律”的过程,获得探究活动的体验。

●尝试发现波动理论面对光电效应规律遇到的困难。

●领略“观察、实验──提出假说──实验验证──新的假说……”的物理学研究方法。

3.情感态度与价值观

●体验探究自然规律的艰辛与喜悦。

●陶冶崇尚科学、仰慕科学家,欣赏物理学的奇妙与和谐的情愫。

●学习科学家敢于坚持真理、勇于创新和实事求是的科学态度和科学精神,培养判断有关信息是否科学的意识。

【教学用具】

1.实验装置赫兹实验装置;光电效应现象演示装置。

2.多媒体课件;资料文字;赫兹实验装置示意动画;研究光电效应实验示意动画;光电效应的波动说描述与光子说描述动画;密立根证实光电方程实验示意动画;普朗克、爱因斯坦、密立根资料图片动画;

【设计理念】本课教材蕴含着十分丰富的教学内容:在知识方面,本课作为后牛顿物理两大支柱之一──量子理论的入门,涉及量子物理最基础的内容,同时,还有着厚重的物理学科文化积淀,有物理学史、科学方法、辩证唯物主义思想、创新意识等人文精神教育的题材。教材在知识陈述上较为浅显直接,而关于这些知识的“背景”,则是相当丰满、承赋人文,为实施“科学的人文教育价值”提供了很大的空间。基于教材特点,本教案设计“以人为本”,突出从赫兹发现光电效应,勒纳德研究光电效应规律,爱因斯坦提出光子说解释光电效应规律,到密立根实验验证光电效应方程,物理学家们上下求索三十年的历程,在让学生学到量子论基础知识与基本技能、发展微观思维方法的同时,获得物理课程文化的浸润与陶冶,体现物理教育在个性品质、好奇求知、质疑创新、科学美及责任心等方面的价值导向。

本课总体设计思想是:课堂教学以光电效应三十年精彩历程为线索,通过充分展示围绕“光电效应”所发生的发现现象、研究规律、提出假说、实验验证这样一个科学发现过程,在科学过程展示中推出学科知识,渗透科学思想方法,借助多媒体课件播放、实验装置重现现象及教师解说,着力于撼动青年学生崇尚科学的情感,弘扬深厚的物理课程文化。

【教学过程】全课以下列四个标题作引导,按历史的发展顺序展开教学活动。

(动画显示课题后,教师引入主题)

引入本课要学习的光电效应,在量子理论的发展中有着特殊的意义。人类对光的本性的认识,到麦克斯韦提出光是一种电磁波,光的波动说似乎已完美无缺了。然而,就是在证实电磁波存在的过程中,人们发现了光具有粒子性的重大事实,这就是光电效应现象。光电效应及其规律的研究,使人类对物质世界的观念发生了变革:大自然在微观层次上是不连续的,即“量子化”的,而不是牛顿物理假设的在一切层次上都是连续的!光电效应最先由赫兹发现,他的学生勒纳德对光电效应的研究卓有成效并获1905年诺贝尔物理学奖,爱因斯坦提出光子论从理论上成功解决了光电效应面临的难题并因此获1921年诺贝尔物理学奖,美国物理学家密立根通过精确实验证实了爱因斯坦的理论,并获1923年诺贝尔物理学奖。光电效应的科学之光经众多物理学家前赴后继,三十年努力求索,在物理学史上成为绚丽夺目的篇章。让我们翻开这炫目的一页,沐浴科学的阳光吧!

(屏幕切换显示四个标题)

一、赫兹意外发现光电效应

介绍赫兹实验动画显示赫兹实验示意图如图1所示。1885年,赫兹用如图1所示的装置来证实电磁波的存在:电磁波发生器是在两根铜棒上各焊接一个磨光的黄铜球,另一端各连接一块正方形锌板,它们共轴放置,两球间留有一空隙,它们相当于一个电容器,与感应圈连接,构成了LC电路,感应圈使两黄铜球聚集大量电荷,从而在空隙间产生电火花,形成高频振荡电流,辐射高频电磁波。与这个回路相距一定距离有电磁波接收器,是用一根粗铜导线弯成一开口的圆环,开口端各焊一黄铜球,之间有可作微调的空隙,这个接收器实际上也是一个LC电路。调节间隙改变接收电路的固有频率可与发射过来的电磁波产生共振,从而在接收器的空隙间观察到电火花。

介绍赫兹的发现并演示利用电火花实验装置,赫兹测量了电磁波速、进行了研究电磁波的反射、聚焦、折射、衍射、干涉、偏振等各种波现象的实验,大量反复地实验不但证实了麦克斯韦电磁波理论,同时意外地发现了表明光具有粒子性的一个重要现象:当发射器间隙的火光被阻隔时,原来接收间隙的火花变暗(如图3所示),而用其他任何火花的光照射到接收器铜球,也能促使间隙发生电火花,进一步研究发现这一现象中直接起作用的是火光中的紫外线,当火花的光照到间隙的负极时,作用最强,这种情况下接收器间隙发生的电火花实际上是紫外线的照射使一极铜球上飞出电子到另一极铜球所形成,赫兹称之为“紫外光对放电现象的效应”,也就是光电效应。

演示光电效应现象动画显示光电效应演示仪原理如图4所示,课堂演示,引导学生观察在紫外线照射下,电流计指示电路中出现了电流。

归纳什么是光电效应

(文字显示)

在光的照射下物体发射电子的现象,叫做光电效应,发射出来的电子叫做光电子。

二、勒纳德研究光电效应现象的规律

引入赫兹的发现吸引了许多人去深入研究光电效应成因与规律,其中德国物理学家、赫兹的助手勒纳德的研究卓有成效。对光电效应的研究方向就是弄清其发生的条件。

介绍勒纳德实验研究原理动画显示勒纳德研究光电效应规律的实验装置如图5所示。当入射光照射到光洁的金属阴极K表面,就有光电子发射出来,若有光电子到达阳极A,电路中就有电流,所以可通过电流计了解用各种光照射阴极K以及对两极加不同电压时的光电流,从中摸索规律。

介绍勒纳德实验研究结果勒纳德通过实验总结出光电效应现象的重要规律:

(文字显示)

1.对各种金属都存在着极限频率和极限波长,低于极限频率的任何入射光强度再大、照射时间再长都不会发生光电效应。

2.光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。

3.只要入射光频率高于金属的极限频率,照到金属表面时光电子的发射几乎是瞬时的,不超过10-9s。

4.发生光电效应时,光电流的强度与入射光的强度成正比。

光电效应规律性的演示用如图4所示的光电效应演示仪演示(1)用红光、蓝光照射锌板时,不会产生光电流;(2)用玻璃隔断紫外线时,光电流消失;(3)光电流达到饱和后,改变电压,光电流不变,改变入射光强度,光电流增大。

设问1.用光的电磁波理论如何解释光电效应的发生?

2.波动理论可以解释光电效应发生时的规律吗?

讨论与总结请全班同学议论,由学生尝试定性解释光电效应后,教师概括辅以如图6所示动画显示:光到达金属表面时,连续的电磁波能量分布在其表面,振动的电磁场不断地“摇晃”金属表面的电子,一些结合最松散的电子被摇下来。

由学生提出现有理论与观察事实的矛盾后,教师整理为两大困难,并以文字显示。

矛盾波动理论解释实验事实

之一

之二到达金属表面的光能量连续地分布,对某个电子只能吸收其中很少一部分,应有一段时间积累到足够的能量方能从金属表面挣脱。

光波的振幅表征光能量大小,强光对金属作用足够长时间,有足够能量应该可以使电子从金属表面挣脱。光电效应是否产生存在极限频率(波长)而与光强无关,光电子最大初动能也只与入射光频率成正相关。

若能发生光电效应,即使光很弱,也是瞬间发生的

三、爱因斯坦提出光子论圆满解释

引入观察与理论的互动就是科学,观察是科学进程的开端,观察激发思考导致理论以解释观察结果,而理论又在新的观察中受到检验、引发新的理论,对观察结果进行解释或统一。

原来的电磁波理论与光电效应的实验事实不相符合,促使人们改变认识,构建新的思想框架来解释观察结果。1905年,爱因斯坦用突破性的量子化思想对光电效应做出了现在为科学界普遍接受的解释。

介绍爱因斯坦光量子假说教师介绍普朗克对电磁波辐射所作的量子化假设:振动物体的能量只能取特定的一组允许值。这种思想在当时并没有引起人们多少注意,但爱因斯坦敏锐地捕捉了这一思想闪光,并彻底贯穿到光的辐射与吸收问题中。

教师介绍光子说,并显示文字内容:

在空间传播的光(的能量)不是连续的,而是一份一份的,每一份叫做一个光量子,简称光子,一份光子的能量E=hv。

用光子说对光电效应规律作解释用如图7所示动画辅助描述光子说下的光电效应:光子像下雨一样落在金属表面上,打出电子,就像机枪子弹从混凝土墙上打下混凝土块一样。

解释极限频率的存在;

解释光电效应的瞬时性;

给出逸出功概念,用光电效应方程

(屏幕展示)解释光电子最大初动能只与入射光频率正相关;

解释光电流的强度与入射光的强度成正比。

小结在爱因斯坦提出光子模型后,用来解释光电效应变得出奇地简单明了,今天,我们中学生运用光电方程计算光电效应已不是什么难题,但在上个世纪初,科学家对量子化的物理却极不适应,爱因斯坦的独创性、物理洞察力和对简洁解释的追求使他在忙碌的1905年发表了相对论,成功解释了光电效应,建树起近代物理学研究的两座丰碑。

四、密立根精确实验证实光电效应方程

引入至此,研究光电效应的科学活动并未完成,爱因斯坦的光子假设与光电方程作为假说──一种有根据的猜测,一种尝试性的未经确认的看法,要上升为理论,要为人们认同──当时对这一假说的怀疑超过了狭义相对论,甚至包括普朗克本人也持反对态度,还必须经受实验的检验。许多物理学家都想方设法用实验测量普朗克恒量h,验证光电效应方程。

简介密立根的工作一直对光子假设持有保留的美国物理学家密立根,设计了高精确度的实验装置如图8所示,经过十年的试验,不断解决一些技术难点,终于验证了光电方程的直线性,并测出普朗克恒量h=6.56×10-34j·s,在事实面前,密立根服从真理,宣布爱因斯坦假说得到证实。科学就是严峻的怀疑态度和对新思想的开放态度的混合,科学常常会发生这种情况:科学家说:“那的确是个好论据,我错了。”然后真的改变想法,扬弃旧观点,科学就是这样进步的。

全课总结本课学习,我们了解了光电效应现象,了解了进行科学活动的方法。光电效应把我们带进了量子化的物理学,光电效应告诉我们理解微观世界要有新的观念,光电效应引领了近代物理学的发展,对哲学、文化和技术的影响深远。让我们怀着对量子理论先驱们的崇敬心情,从科学回到生活。

播放音乐与三位物理学家资料画像,如图9所示。

[课件简介]本课件采用PowerPointXP-F1ashMX制作,充分发挥PowerPoint媒体展示功能与FIashMX的强大的动画功能。其制作过程如下:

光子范文篇2

教学时间一课时。

教学目标

1.知识与技能

了解并识别光电效应现象。

能表述光电效应现象的规律。

了解光子的概念,会用光子说解释光电效应现象的规律。

理解光电效应方程。

粗略了解光电效应研究史实。

2.过程与方法

观察赫兹实验中的放电现象,体验发现的过程。

经历“探究光电效应规律”的过程,获得探究活动的体验。

尝试发现波动理论面对光电效应规律遇到的困难。

领略“观察、实验──提出假说──实验验证──新的假说……”的物理学研究方法。

3.情感态度与价值观

体验探究自然规律的艰辛与喜悦。

陶冶崇尚科学、仰慕科学家,欣赏物理学的奇妙与和谐的情愫。

学习科学家敢于坚持真理、勇于创新和实事求是的科学态度和科学精神,培养判断有关信息是否科学的意识。

教学用具

1.实验装置赫兹实验装置;光电效应现象演示装置。

2.多媒体课件;资料文字;赫兹实验装置示意动画;研究光电效应实验示意动画;光电效应的波动说描述与光子说描述动画;密立根证实光电方程实验示意动画;普朗克、爱因斯坦、密立根资料图片动画;

设计理念本课教材蕴含着十分丰富的教学内容:在知识方面,本课作为后牛顿物理两大支柱之一──量子理论的入门,涉及量子物理最基础的内容,同时,还有着厚重的物理学科文化积淀,有物理学史、科学方法、辩证唯物主义思想、创新意识等人文精神教育的题材。教材在知识陈述上较为浅显直接,而关于这些知识的“背景”,则是相当丰满、承赋人文,为实施“科学的人文教育价值”提供了很大的空间。基于教材特点,本教案设计“以人为本”,突出从赫兹发现光电效应,勒纳德研究光电效应规律,爱因斯坦提出光子说解释光电效应规律,到密立根实验验证光电效应方程,物理学家们上下求索三十年的历程,在让学生学到量子论基础知识与基本技能、发展微观思维方法的同时,获得物理课程文化的浸润与陶冶,体现物理教育在个性品质、好奇求知、质疑创新、科学美及责任心等方面的价值导向。

本课总体设计思想是:课堂教学以光电效应三十年精彩历程为线索,通过充分展示围绕“光电效应”所发生的发现现象、研究规律、提出假说、实验验证这样一个科学发现过程,在科学过程展示中推出学科知识,渗透科学思想方法,借助多媒体课件播放、实验装置重现现象及教师解说,着力于撼动青年学生崇尚科学的情感,弘扬深厚的物理课程文化。

教学过程全课以下列四个标题作引导,按历史的发展顺序展开教学活动。

(动画显示课题后,教师引入主题)

引入本课要学习的光电效应,在量子理论的发展中有着特殊的意义。人类对光的本性的认识,到麦克斯韦提出光是一种电磁波,光的波动说似乎已完美无缺了。然而,就是在证实电磁波存在的过程中,人们发现了光具有粒子性的重大事实,这就是光电效应现象。光电效应及其规律的研究,使人类对物质世界的观念发生了变革:大自然在微观层次上是不连续的,即“量子化”的,而不是牛顿物理假设的在一切层次上都是连续的!光电效应最先由赫兹发现,他的学生勒纳德对光电效应的研究卓有成效并获1905年诺贝尔物理学奖,爱因斯坦提出光子论从理论上成功解决了光电效应面临的难题并因此获1921年诺贝尔物理学奖,美国物理学家密立根通过精确实验证实了爱因斯坦的理论,并获1923年诺贝尔物理学奖。光电效应的科学之光经众多物理学家前赴后继,三十年努力求索,在物理学史上成为绚丽夺目的篇章。让我们翻开这炫目的一页,沐浴科学的阳光吧!

(屏幕切换显示四个标题)

一、赫兹意外发现光电效应

介绍赫兹实验动画显示赫兹实验示意图如图1所示。1885年,赫兹用如图1所示的装置来证实电磁波的存在:电磁波发生器是在两根铜棒上各焊接一个磨光的黄铜球,另一端各连接一块正方形锌板,它们共轴放置,两球间留有一空隙,它们相当于一个电容器,与感应圈连接,构成了LC电路,感应圈使两黄铜球聚集大量电荷,从而在空隙间产生电火花,形成高频振荡电流,辐射高频电磁波。与这个回路相距一定距离有电磁波接收器,是用一根粗铜导线弯成一开口的圆环,开口端各焊一黄铜球,之间有可作微调的空隙,这个接收器实际上也是一个LC电路。调节间隙改变接收电路的固有频率可与发射过来的电磁波产生共振,从而在接收器的空隙间观察到电火花。

介绍赫兹的发现并演示利用电火花实验装置,赫兹测量了电磁波速、进行了研究电磁波的反射、聚焦、折射、衍射、干涉、偏振等各种波现象的实验,大量反复地实验不但证实了麦克斯韦电磁波理论,同时意外地发现了表明光具有粒子性的一个重要现象:当发射器间隙的火光被阻隔时,原来接收间隙的火花变暗(如图3所示),而用其他任何火花的光照射到接收器铜球,也能促使间隙发生电火花,进一步研究发现这一现象中直接起作用的是火光中的紫外线,当火花的光照到间隙的负极时,作用最强,这种情况下接收器间隙发生的电火花实际上是紫外线的照射使一极铜球上飞出电子到另一极铜球所形成,赫兹称之为“紫外光对放电现象的效应”,也就是光电效应。

演示光电效应现象动画显示光电效应演示仪原理如图4所示,课堂演示,引导学生观察在紫外线照射下,电流计指示电路中出现了电流。归纳什么是光电效应

(文字显示)

在光的照射下物体发射电子的现象,叫做光电效应,发射出来的电子叫做光电子。

二、勒纳德研究光电效应现象的规律

引入赫兹的发现吸引了许多人去深入研究光电效应成因与规律,其中德国物理学家、赫兹的助手勒纳德的研究卓有成效。对光电效应的研究方向就是弄清其发生的条件。

介绍勒纳德实验研究原理动画显示勒纳德研究光电效应规律的实验装置如图5所示。当入射光照射到光洁的金属阴极K表面,就有光电子发射出来,若有光电子到达阳极A,电路中就有电流,所以可通过电流计了解用各种光照射阴极K以及对两极加不同电压时的光电流,从中摸索规律。

介绍勒纳德实验研究结果勒纳德通过实验总结出光电效应现象的重要规律:

(文字显示)

1.对各种金属都存在着极限频率和极限波长,低于极限频率的任何入射光强度再大、照射时间再长都不会发生光电效应。

2.光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。

3.只要入射光频率高于金属的极限频率,照到金属表面时光电子的发射几乎是瞬时的,不超过10-9s。

4.发生光电效应时,光电流的强度与入射光的强度成正比。

光电效应规律性的演示用如图4所示的光电效应演示仪演示(1)用红光、蓝光照射锌板时,不会产生光电流;(2)用玻璃隔断紫外线时,光电流消失;(3)光电流达到饱和后,改变电压,光电流不变,改变入射光强度,光电流增大。

设问1.用光的电磁波理论如何解释光电效应的发生?

2.波动理论可以解释光电效应发生时的规律吗?

讨论与总结请全班同学议论,由学生尝试定性解释光电效应后,教师概括辅以如图6所示动画显示:光到达金属表面时,连续的电磁波能量分布在其表面,振动的电磁场不断地“摇晃”金属表面的电子,一些结合最松散的电子被摇下来。

由学生提出现有理论与观察事实的矛盾后,教师整理为两大困难,并以文字显示。

矛盾波动理论解释实验事实

之一

之二到达金属表面的光能量连续地分布,对某个电子只能吸收其中很少一部分,应有一段时间积累到足够的能量方能从金属表面挣脱。

光波的振幅表征光能量大小,强光对金属作用足够长时间,有足够能量应该可以使电子从金属表面挣脱。光电效应是否产生存在极限频率(波长)而与光强无关,光电子最大初动能也只与入射光频率成正相关。

若能发生光电效应,即使光很弱,也是瞬间发生的

三、爱因斯坦提出光子论圆满解释

引入观察与理论的互动就是科学,观察是科学进程的开端,观察激发思考导致理论以解释观察结果,而理论又在新的观察中受到检验、引发新的理论,对观察结果进行解释或统一。

原来的电磁波理论与光电效应的实验事实不相符合,促使人们改变认识,构建新的思想框架来解释观察结果。1905年,爱因斯坦用突破性的量子化思想对光电效应做出了现在为科学界普遍接受的解释。

介绍爱因斯坦光量子假说教师介绍普朗克对电磁波辐射所作的量子化假设:振动物体的能量只能取特定的一组允许值。这种思想在当时并没有引起人们多少注意,但爱因斯坦敏锐地捕捉了这一思想闪光,并彻底贯穿到光的辐射与吸收问题中。

教师介绍光子说,并显示文字内容:

在空间传播的光(的能量)不是连续的,而是一份一份的,每一份叫做一个光量子,简称光子,一份光子的能量E=hv。

用光子说对光电效应规律作解释用如图7所示动画辅助描述光子说下的光电效应:光子像下雨一样落在金属表面上,打出电子,就像机枪子弹从混凝土墙上打下混凝土块一样。

解释极限频率的存在;

解释光电效应的瞬时性;

给出逸出功概念,用光电效应方程

(屏幕展示)解释光电子最大初动能只与入射光频率正相关;

解释光电流的强度与入射光的强度成正比。

小结在爱因斯坦提出光子模型后,用来解释光电效应变得出奇地简单明了,今天,我们中学生运用光电方程计算光电效应已不是什么难题,但在上个世纪初,科学家对量子化的物理却极不适应,爱因斯坦的独创性、物理洞察力和对简洁解释的追求使他在忙碌的1905年发表了相对论,成功解释了光电效应,建树起近代物理学研究的两座丰碑。

四、密立根精确实验证实光电效应方程

引入至此,研究光电效应的科学活动并未完成,爱因斯坦的光子假设与光电方程作为假说──一种有根据的猜测,一种尝试性的未经确认的看法,要上升为理论,要为人们认同──当时对这一假说的怀疑超过了狭义相对论,甚至包括普朗克本人也持反对态度,还必须经受实验的检验。许多物理学家都想方设法用实验测量普朗克恒量h,验证光电效应方程。

简介密立根的工作一直对光子假设持有保留的美国物理学家密立根,设计了高精确度的实验装置如图8所示,经过十年的试验,不断解决一些技术难点,终于验证了光电方程的直线性,并测出普朗克恒量h=6.56×10-34j·s,在事实面前,密立根服从真理,宣布爱因斯坦假说得到证实。科学就是严峻的怀疑态度和对新思想的开放态度的混合,科学常常会发生这种情况:科学家说:“那的确是个好论据,我错了。”然后真的改变想法,扬弃旧观点,科学就是这样进步的。

全课总结本课学习,我们了解了光电效应现象,了解了进行科学活动的方法。光电效应把我们带进了量子化的物理学,光电效应告诉我们理解微观世界要有新的观念,光电效应引领了近代物理学的发展,对哲学、文化和技术的影响深远。让我们怀着对量子理论先驱们的崇敬心情,从科学回到生活。

播放音乐与三位物理学家资料画像,如图9所示。

[课件简介]本课件采用PowerPointXP-F1ashMX制作,充分发挥PowerPoint媒体展示功能与FIashMX的强大的动画功能。其制作过程如下:

光子范文篇3

当人们用望远镜观测银河系以外的星系时,可以发现绝大多数星系光谱都存在红移或蓝移现象,并且越远的星系其光谱红移值越大。根据多普勒效应:星系光谱存在红移说明星系正离我们远去,星系光谱存在蓝移说明星系正向着我们运动。需要指出的是越远的星系红移值也越大,看起来所有的星系都好象以银河系为中心向外爆炸形成的一样,越远的星系离开我们的速度也越大。鉴于此有人提出宇宙大爆炸假说:认为宇宙是由150亿年前发生的一次大爆炸形成的,人类居住的银河系则是宇宙的中心。可是人们在观测银河系和河外星系时,却并没有发现银河系有什么特别之处。有人据此怀疑宇宙大爆炸假说;也有人从星系的演化推算出宇宙的年龄大于150亿年;还有人认为若宇宙大爆炸假说是正确的,那么宇宙辐射在各个方向上就会表现出各向异性;更有人担心宇宙的膨胀没有尽头,遂认为宇宙的膨胀和收缩是交替进行的……。但不管怎样,大部分人还是相信“眼见为实”,由星系光谱的红移现象承认了宇宙大爆炸假说。更有人把红移现象与宇宙背景辐射和宇宙元素丰度并作宇宙大爆炸假说的三大支柱。那么宇宙是否发生过爆炸并仍在向外扩张,年龄是否只有150亿年呢?非也!

1.星系光谱红移原因

20世纪初,当人们用望远镜观测银河系以外的星系时,发现绝大多数星系光谱都有红移现象,并且越远的星系其光谱红移值越大。有人认为星系光谱红移是因为星系正在离我们远去,从而得出这样的结论:所有的星系都是以我们银河系为中心向外爆炸后形成的,越远的星系离开我们的速度也越大;宇宙中所有的星系都在彼此分离,并且越远的星系相互分离的速度越大。值得一提的是,我们银河系正处在爆炸中心,足以值得我们自豪的是:银河系是宇宙中独一无二的星系—因为它是宇宙的中心。更让我们惊奇的是,银河系自身也在不断运动着,然而无论它运动到哪里,它始终是银河系的中心。我们解释不了银河系为什么是宇宙的中心,因为银河系也和其它星系一样,并沒有什么特别之处。有人以为,银河系处于宇宙的中心是一个巧合,虽然银河系从上个世纪至今一直在不断运动,但它走过的距离和整个宇宙空间的尺寸比起来是微不足道的,所以银河系目前仍然处在宇宙的中心,这种看法未免有些牵强。因为人们在观测近处的星系时,发现近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系正在以某一个中心为起点向外膨胀。因此“银河中心说”颇值得怀疑。还有的人虽然承认宇宙大爆炸假说,但不承认“银河中心说”,他们不认为银河系是宇宙的中心。这种观点同样也是站不住脚的。我们可以这样分析:如果宇宙大爆炸假说是正确的,那么宇宙中所有的星系必定在以某一个中心为起点向外膨胀,星系之间彼此互相分离。目前我们观测到近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系在以某一个中心为起点向外膨胀。倘若我们不是在宇宙的中心而是处于偏离宇宙中心的任一点处,因为在我们周围的星系都没有相互分离的趋势,也没有以某一个中心为起点向外膨胀,这样一来,倘若宇宙中任一点处的星系都没有相互分离的趋势,那么整个宇宙也不可能在膨胀,即宇宙大爆炸假说是错误的。

前事不忘,后事之师。人类文明发展到今天,“地心说”和“日心说”都被证明是为科学,难道我们还要重蹈覆辙提出“银河中心说”吗?愚以为,我们应当承认这样一个假设,那就是:银河系按目前的速度运动下去,100万年,100亿年以后,我们仍然会发现自己处在宇宙的“中心”,无论我们处在宇宙的任何地方,中心也好,边缘也好,我们都会发现宇宙中越远的星系光谱红移值也越大,就好象我们处在宇宙的“中心”一样。事实上,这个“中心”是光子在宇宙空间中的传播特性引起我们视觉上的错误,“眼见”未必“为实”,我们不能过分相信“眼见”的东西。

红移现象是否由观测者自身的运动引起的呢?不是的!如果红移现象是由观测者自身的运动引起的,那么我们将观测到与我们相向运动的星系光谱将发生蓝移而与我们相背运动的星系光谱将发生红移,然而事实并非如此。再者,虽然我们“坐地日行八万里”,但这个速度和光速比起来实在算不了什么,不至于影响观测结果。换句话说,我们在观测星系红移值时,观测者自身运动速度的影响可以忽略不计。红移现象说明光子与观察者之间的相对速度变小了。产生这种情况有两种可能:第一是星系正离我们远去,第二是光子在穿越宇宙空间时速度变小了。这两种情况都可能导致星系光谱红移。我们认为导致星系光谱红移的原因是后者。光子在穿越宇宙空间时会与各种粒子(比如引力子)相互作用从而使其速度逐渐减小。当然单个粒子与光子作用时间极短,引起光子速度的改变量也是极其微小的,以致于我们观测不到。随着光子穿越宇宙空间距离的增大,与光子作用的粒子数目也逐渐增多,光子速度的减小量也越明显。可以推测:光子在穿越一定的宇宙空间距离后速度将减小到零。由于光子速度为零故相对我们的能量也为零,这样的光子当然不会被我们观测到。可见用光学法观测宇宙空间尺度时有一个极限:150亿光年(也有人认为是200亿光年)。在这个尺度以外的星系发出的光子由于在没有到达地球时速度已经降低到零,所以这样的星系不可能被我们观测到,至少目前还没有办法观测到。也有人认为,红移现象是由光子频率减小引起的,即认同第一种可能:认为星系正离我们远去。这种观点听起来很有道理,却经不起分析。我们知道,星系离我们远去时会引起光子频率减小,但各种不同频率光子的频率减小量应该相同,反应在星系光谱上,各种不同频率光子的红移量应该相同。因此,不论星系离我们多远,星系光谱虽然发生红移但不应该变宽,但事实上远处星系光谱却被拉宽了(星系光谱不会变宽是指星系光谱中任意两条谱线的距离恒定,虽然它们都发生了红移,但它们移动的距离相等,因此各谱线之间的距离不变)。而且能量越小的光子红移值越大,能量越大的光子红移值越小。不同频率光子的频率减小量不同,说明红移现象不是由光子频率减小引起的。即第一种可能站不住脚。假设宇宙中所有的星系都是静止的,宇宙空间中的物质是均匀分布的,那么光子穿越宇宙空间时的速度衰减量仅与其通过的空间距离有关。光子穿越的宇宙空间越长,其速度衰减量也越大。这样星系光谱的红移值仅与其离我们的距离有关,离我们越远的星系红移值也越大,就好象越远的星系正在以越快的速度离开我们一样。这也正是哈勃定律所揭示的:星系远离银河系的速度ν与距离成正比,ν=H*D,其中H为哈勃常数。实际上宇宙中各星系都在不断运动着,宇宙空间中的物质也并非均匀分布的,造成星系光谱红移的原因也很多,所以光谱的实际红移值要考虑许多情况。

2.谱线红移与光子速度衰减

光子与宇宙空间中的粒子是如何作用的呢?可以设想,宇宙空间中存在许多比光子质量小得多的粒子(比如引力子)。由于光子在与粒子作用后仍然是光子,可以认为光子仅与粒子发生了弹性碰撞。既然是弹性碰撞,我们知道,二者质量越接近光子损失的能量越大。由于光子的质量远远大于引力子的质量,所以在不同频率(质量)的光子中,频率(质量)较小的光子损失的能量较大。于是经过同一段宇宙空间以后,在不同频率(质量)的光子中,频率(质量)较大的光子损失的能量较少,频率(质量)较小的光子损失的能量较大,例如红光损失的能量比紫光损失的能量多。由于不同频率(质量)的光子在宇宙空间运动时都损失了能量,这样整个星系的光谱将向红端移动,但由于红光损失的能量多向红端移动的距离大,而紫光损失的能量少向红端移动的距离小,于是整个光谱被“拉宽”了。如果不同频率(质量)光子的能量损失率相同,虽然它们都产生红移,但是它们红移的距离相等,这样星系光谱虽存在红移但不会被“拉宽”,星系光谱存在红移而且被“拉宽”说明两点:第一光子在穿越宇宙空间时速度会衰减,第二不同频率(质量)的光子速度衰减率不同。显然,由于不同频率(质量)光子的能量损失率不同,各种光子的速度衰减量差异将随着空间距离的增加而增大,这样星系光谱被“拉宽”的程度与其离我们的距离有关,离我们越远的星系其光谱被拉宽的程度也越大。另外,星系光谱被拉宽时还有一个特点,那就是能量大的光子被拉宽的程度小,能量小的光子被拉宽的程度大。也就是说,越靠近红端光谱被拉宽的程度越大,越靠近紫端光谱被拉宽的程度越小。考虑到星系引力场的影响,实际情况还要复杂一些。

上面我们谈到光子在宇宙空间运动时速度会逐渐减小,这和人们熟悉的“真空中光速不变”的看法相矛盾。实际上宇宙空间并非真空,即使宇宙空间是绝对真空它还存在引力场。换句话说,光子在真空中速度变不变的问题,实际上是光子受不受引力作用的问题。如果光子不受引力作用,那么真空中光速不变,但这样一来不论星体的引力再强,对光子都没有影响,从而宇宙中也不可能产生“黑洞”了,而现在的黑洞理论基础将不复存在;假如光子受引力作用,则就不应该有“真空中光速不变”的结论。有人对此这样解释:宇宙空间中各星体的引力分布在不同的方向上,它们的作用力相互抵消,因此光子在宇宙空间中的速度不变。这种解释也是站不住脚的。我们知道在太阳系内,引力的方向是指向太阳的;在银河系里引力的方向是指向银河系中心的,所以局部的宇宙空间引力总是有一定的方向的。我们认为光子作为一种物质实体,它的速度并非一成不变的。无论在真空中还是在介质中,它的运动速度都会越来越小。所以,光速不变只是一个神话,光年也不能作为距离单位,因为光子在前一年中走过的路程总比后一年中走过的路程长。

3.光子在引力场中的运动

星光在通过太阳附近时会受到太阳引力的作用而发生弯曲,说明光子也会受到引力的作用。其实光子也有质量,当然会受到引力作用了。通常我们认为:引力场中物质的加速度仅与引力场的强弱有关,而与物质的质量无关。如在地球表面不管是1吨的物体还是1千克的物体,其每秒获得的速度增量都是9.8米/秒。但引力场中光子的加速度与其质量有关:质量越小的光子加速度越大,质量越大的光子加速度越小。既然光子也受引力作用,那么很自然,光子在离开引力场时必然会被减速,在进入引力场时必然会被加速,在垂直于引力方向(或其它方向)运动时受引力影响其运动轨迹也会发生变化。既然光子在离开引力场时会被减速,而且质量越小的光子速度衰减量也越大,那么星体发出的不同频率的光子就有不同的速度。一般而言,星体引力越强,其发出的光速度也越小;当星体引力足够强时甚至可能使一部分光子摆脱不了星体引力的束缚,产生黑洞现象。对同一星体而言,在它发出的光中,质量大的光子速度大,到达地球的时间也越早;质量小的光子速度小,到达地球的时间也越晚。我们通常认为不同频率的光同时到达地球,这其实是错误的。关于这一点我们可以用实验来证实。当星体发生爆发或其它异常时,总是能量较大的X射线或γ射线先被我们观测到,其次才是可见光,然后才是红外线。虽然理论上如此,但在实际观测中总有这样或那样的因素及别的解释使大部分人不相信这一点。如果条件允许的话,我们可以用一个实验来证实我们的观点。在离我们很远的宇宙飞船上以两种不同能量的光子同时发出一种信号,这两种光子的能量差异越大它们到达地球的时间差异也越大。实际上考虑到不同能量的光子在同一介质中的传播速度不同,我们应该想到不同频率的光子在真空中的传播速度也不相同。由于光子在穿越宇宙空间时速度逐渐减小,并且质量小的光子速度衰减得快,可以想象,在经过一段相当长的距离以后,质量小的光子速度已经衰减到零而质量大的光子速度不为零,这样我们就只能观测到质量大的光子。若星体离我们更远一些,则我们只能观测到质量更大的光子……,随着空间距离的增大,最终我们将看不到远处星体发出的光,这个距离就是我们现在认为的宇宙极限--150亿光年。人们在观测宇宙时总有一个错误想法:由于真空中光速不变,所以不管离我们多远的星系,只要足够亮就可以被我们发现。事实上宇宙空间并非真空,光子在其中穿行时速度会逐渐减小,所以任何星系发出的光只能传播一定的距离,也正因为如此,不管我们在宇宙中任何地方,始终只能看到有限的宇宙空间。换句话说,目前我们能够观测到的宇宙空间的尺度实际上是光子在宇宙空间中传播的最远距离。

4.光子在宇宙空间中的运动

实际上光子在宇宙空间运动时并不总是做减速运动。在光子离开星体时它要挣脱引力的束缚而作减速运动,当它脱离星体的引力场在空间自由运动时,也作减速运动;如果它进入另一个星体的引力场向着该星体运动时,就会在该星体的引力作用下作加速运动。光子就这样减速--加速--减速--加速……不停地穿越宇宙空间,直到其速度为零。倘若星体离我们很近而引力又很小,从该星体发出的光速度衰减量不大,但进入银河系时光子的速度增加量有可能很大,当光子的速度增加量大于其速度衰减量,或者说大于刚离开星体表面时的速度,在我们看来该星体光谱就发生了蓝移。忽略距离因素,由于星体自身在不断运动,这样它相对银河系引力场的强弱也可能发生变化,所以其光谱也可能有规律的发生红移或蓝移。通常情况下,宇宙空间对光子的减速作用总大于加速作用,所以星系的光谱以红移的居多。

光子在引力场中速度变化的问题许多人恐怕不相信也不能理解。一些人认为光子没有静质量,况且光子是一种波,在引力场中的运动规律和宏观物质不同。其实持这种观点的人把光子神话了,弄的不可捉摸了。现在大多数人都接受了“黑洞”的概念,认为当一个星体的引力足够强时甚至连光子也逃脱不了,因而是漆黑的一团。这里实际上指出了光子也会受到引力作用。既然光子也受引力作用,那么它在引力场中的加速与减速自然就可以理解了。稍后我们将看到,引力作用是造成衍射现象的重要因素之一。

5.类星体

一个很明显的事实是:宇宙中离我们越远的星体能量越大,通常类星体离我们的距离都在10亿光年以上,并且远处星体发出的光中能量较大的光子占有很大的成分。有人把这作为支持宇宙大爆炸的依据,认为:若宇宙中物质是均匀分布的话,则在我们银河系或其周围就应该有象类星体这样的高能星体存在。为什么我们在近处发现不了类星体呢?一些人看见远处的星体发出的光中含有大量的X射线或γ射线成分,就推测此类星体存在着目前尚不为我们知道的能量源。这种观点未免有些片面。实际上宇宙中大部分恒星的能量都差不多,能量特别大的和能量特别小的只是极少数,恒星的能量呈中间多、两头少的分布态势。从远处的恒星发出的光,在经过漫长的宇宙空间以后,能量小的光子由于速度衰减率大而停了下来,不被我们观测到;只有X射线和γ射线才能到达地球。所以我们观测到该星体的光子中,X射线和γ射线占有很大的成分,以致于我们误认为这类星体只向外发出X射线和γ射线。实际上这类星体也向外发射可见光和红外线,但是可见光和红外线由于速度衰减到零故我们观测不到。这就导致我们观测到极远处的星体,其颜色通常是蓝色或紫色,事实上可能和该星体的真实颜色相差极大。这说明我们看到的星体的颜色未必就是星体的真实颜色,星体的颜色是由其自身能量状况和离我们的距离决定的,星体离我们的距离越大往往使其颜色中的蓝色和紫色成分增加。另外,我们认为类星体离我们非常远,是因为类星体的红移值很大。也就是说我们没有直接证据表明类星体真的离我们很远。考虑到光子在引力场中的运动,我们知道:当星体的引力足够大时,其发出的光子速度衰减量也较大,因而该星体的光谱也将发生较大的红移。这就是说,引力因素也可以使星系光谱产生红移。倘若星体引力足够大又离我们很近,由于星体红移值较大,往往导致我们认为该星体离我们很远。举例来说,假设有一个引力较大的星体处于银河系的中心,由于该星体引力很强,导致它发出的光子速度衰减量极大,我们在观测其光谱时就会观测到很大的红移值,根据该星体很大的红移值我们就会认为它离我们非常遥远,绝不会想到它就在银河系中心。

如何解释类星体离我们那么远而其发射的X射线和γ射线又是如此强烈呢?只有两种可能。第一,类星体的能量非常大,向外发出的X射线和γ射线非常强;第二,类星体离我们并没有原先认为的那么远,类星体光谱的红移是由类星体的引力造成而并非由距离因素造成的。我们认为两种因素都有。因为如果类星体离我们非常远,那么我们观测到其向外发出的X射线或γ射线就不可能很强;倘若类星体的能量不是很大,它的引力场也不可能很强,不足以使其光谱产生较大的红移。这说明:星系光谱发生红移可能是距离因素造成的,也可能是引力因素造成的,红移值大的星体未必就离我们远。那么,如何区别星体的引力红移和距离红移呢?对观测者而言,由距离因素造成红移的星体发出的光不可能很强,而由引力因素造成红移的星体发出的光往往很强,特别是X射线或γ射线的成分多。类星体的发射光谱和吸收光谱的宽度不同,通常吸收光谱的宽度比发射光谱窄,为什么呢?我们知道,吸收光谱是由于光子经过大气后产生的,这说明类星体周围也存在气体。光子从高温星体内部发出以后,总会有一部分光子没有被气体吸收而直接射向宇宙空间,这些光子形成发射光谱;还有一部分光子在与气体作用后,频率(质量)大的光子损失的能量大,频率(质量)小的光子损失的能量小;光子离开类星体在宇宙空间中运动时,则是频率(质量)大的光子损失的能量小而频率(质量)小的光子损失的能量大,总的看来各种不同频率的光子速度差异减小,所以其光谱红移值也较发射光谱小。实际上类星体的吸收光谱还可能有几种不同的宽度。

6.黑洞与星体引力

最初在人们考虑黑洞时,认为它的引力强到连光子也逃脱不了,因而是漆黑的一团,黑洞是宇宙中物质的坟墓。后来人们认为黑洞可以向外发出X射线和γ射线。同样是光子,能量大的可以逃脱,能量小的逃脱不了,说明(黑洞的)引力对光子的作用是不一样的。事实上我们知道当星体的引力逐渐增强时,总是质量较小的光子逃脱不了,质量较大的光子则可以摆脱星体的引力,并不是所有的光子全部被吸入星体中。所以从这个意义上来说,狭义上的黑洞仅指引力强到可见光不能脱离的星体,即在可见光波段观测不到的星体;广义上的黑洞指引力强到使一部分光子不能脱离的星体,即在某一能量较小的波段观测不到的星体,这里广义上的黑洞甚至可能非常亮,可以被我们肉眼看到,但在红外线波段或能量更小的波段却观测不到。从理论上讲,“黑洞”并不黑,至少它可以向外发射X射线和γ射线或能量更高的光子,完全不向外抛射粒子的黑洞是不存在的。那么宇宙中黑洞存在吗?当然存在了。当星体离我们足够远,以致于该星体发出的红外线速度衰减为零而不被我们观测到时,它就像一个“黑洞”;若星体离我们再远一些,可见光不再为我们观测到,只能观测到X射线和γ射线,这时它就是漆黑的一团,成为名副其实的黑洞;而宇宙中150亿光年以外的星体对我们来说是完全彻底的黑洞,因为我们完全观测不到它们。除了因空间距离造成“黑洞”现象以外,星体的引力也可以造成黑洞现象。黑洞现象并不是我们原先想象的那样:“当星体的引力足够大时,所有的光子都被吸入星体中,整个星体变成黑暗的一团”。当星体的引力逐渐增大时,它对光子的束缚作用也逐渐增强。星体的引力足够大时,红外线光子将摆脱不了星体引力的束缚,而可见光、紫外线则可以摆脱星体引力的束缚;星体的引力再增大时,可见光将摆脱不了星体引力的束缚,而紫外线则可以摆脱星体引力的束缚;若星体的引力再增大,可能只有γ射线放出。应该明确指出:黑洞现象是与星系光谱的红移紧密相连的。若某一星体的光谱不存在红移现象,则它一定不是黑洞;若某一星体的光谱存在红移现象,则它可能是黑洞也可能是距离因素造成的。

总的来说,我们对黑洞的认识经历了三个阶段:第一阶段认为黑洞的引力足够强,所有的光子都不能摆脱黑洞的引力,因而整个星体是黑暗的一团;第二阶段认为黑洞可以向外发出强烈的X射线或γ射线,人们认识到黑洞的引力对不同能量光子的作用不同;第三阶段也就是现在正在探索的阶段。应该明确指出:与黑洞现象紧密联系的因素有两个,引力因素和距离因素。以往我们在考虑黑洞现象时往往只考虑引力因素而忽略了距离因素,这就导致我们认为整个宇宙空间仅有150亿光年,对150亿光年以外的宇宙空间,认为看不见的就是不存在的。

7.恒态宇宙

也许有人会问,既然光子的速度能够降低到零,那么宇宙中会不会堆积越来越多的光子呢?不会的!光子作为物质的一种存在方式,它不是永恒的,在一定条件下光子可以转化为别的物质,也就是说光子是有一定寿命的。任何一个光子不可能永远存在下去,它必将转化为别的物质形式。宇宙中的物质无时无刻不在运动,所以宇宙中不会堆积越来越多的光子。虽然我们目前并不知道光子是如何转化为别的物质的,但我们依然相信整个宇宙是稳定的、恒态的,而局部宇宙则可能是不稳定的,处于演化过程中的。同样的道理,整个宇宙也不会被光子均匀照亮。由于光子在宇宙空间中运动时速度逐渐减小,所以任何星体发出的光只能传播到有限远处。也正因为如此,我们所观测到的宇宙始终是有限的。如果想观测更远的宇宙空间,一个方法是派出宇宙飞船,另一个办法是在宇宙空间中建立许多中转站,在光信号速度未衰减到零以前接受、放大、转播它。理论上讲,只要中转站的数量足够多,我们就可以看见任意远处的宇宙空间。

8.浩瀚宇宙

假设我们能够乘座一艘高速飞行的宇宙飞船遨游太空,在刚离开地球时,我们可以观测到150亿光年的宇宙,离我们越远的星体其红移值也越大,远处的星体放出强烈的X射线或γ射线。随着我们飞行距离的增大,我们会发现银河系的红移值越来越大,并且其颜色逐渐偏蓝,而原先我们观测到呈蓝色或紫色的星体颜色逐渐偏红,最终银河系将消失在我们的视野之外。当我们飞到离银河系150亿光年的地方,我们发现展现在我们面前的宇宙范围仍然有150亿光年;而原先我们认为正在以很大速度分离的星体或膨胀的宇宙空间并没有膨胀。无论我们飞到哪里,始终只能看见150亿光年的宇宙空间,也始终能够看见150亿光年的宇宙空间,宇宙是无限的;并且我们始终是宇宙的“中心”,因为所有的星体看起来所有的星体都好象以我们为中心向外爆炸形成的一样,越远的星系(红移值越大)离开我们的速度也越大。我们认为,宇宙是无始无终的,物质的存在是永恒的,对某一特定的物质形态有其产生和消亡的过程,但整个宇宙不存在产生和消亡的过程,它是自始至终存在并且不会消亡的。同时也应该看到,宇宙是无限的,不会仅仅只有150亿光年的空间。

从上个世纪以来,人们已经探索到了上百亿光年的宇宙空间,然而这只不过是苍海一粟。也许还要几十年甚至上百年人类才能认识到宇宙的无限性,但只要天下有志之士携手合作,这一天定会早日到来。

二、浅谈光的衍射

通常情况下光总是直线传播。但当光线经过足够窄的窄缝时将形成明暗相间的衍射条纹。由于光子不带电,在电磁场中不偏转,所以光子的衍射不是电磁力作用的结果,而是引力子与光子作用产生的。光子与引力子作用不是一个简单的碰撞过程,而是一个极为复杂的过程。在光子与引力子相遇的一瞬间它们形成一个混合体,这就打破了结合前光子内部各部分的平衡,混合体内部存在着排斥力和凝聚力两种作用。若排斥力占主导作用,则混合体将在极短的时间内“裂变”放出引力子;若凝聚力占主导作用,则混合体将形成一个新的光子。那么满足什么条件的混合体(光子)才是稳定的呢?经典电磁理论指出:所有光子的能量均为某个最小能量的整数倍。也即所有光子的质量均为某个最小质量的正整数倍,只有这样的光子才能稳定存在。当然这并不表明能量为某个最小能量的非整数倍的光子就不存在,只不过由于它们极不稳定,在形成后瞬间就“裂变”生成能够稳定存在的光子,目前我们还没有观测到或注意到这类光子罢了。从这里我们可以看出,与原子核一样,所有光子的质量均为某个最小质量的正整数倍,说明光子也有一定的内部结构,某些质量的光子由于极不稳定,在其形成后瞬间就“裂变”生成能够稳定存在的光子,这就造成稳定存在的光子质量的不连续。言归正传,由于引力子质量远远小于光子的质量,所以光子不可能吸收一个引力子形成新的光子(因为这样的光子是不稳定的)。但是若在同一时刻,光子与许多引力子相互作用,而这些引力子质量之和又大于最小光子的质量,光子就有可能吸收质量和等于最小光子质量的引力子数目而形成新的光子。举例来说,若最小光子的质量是引力子质量的10万倍,那么当同一瞬间有15万个引力子作用于光子时,光子只可能吸收10万个引力子,另外5万个引力子不被光子吸收,仅对光子产生微小的冲量。倘若在同一瞬间有9万个引力子作用于光子,那么这9万个引力子都不会被光子吸收,它们仅对光子产生微小的冲量。光子可能吸收的引力子数目只可能是10万的正整数倍。只有光子吸收引力子形成新的光子才能全部吸收引力子的冲量,否则的话,光子仅受到极小的冲量。

现有一个宽度为α的窄缝,绝大多数光子经过窄缝时虽然与许多引力子作用,但大多不会形成新的光子,这样大部分光子仅以极其微小的发散角投射到屏幕上,形成宽度略大于α的中央亮纹。由于衍射条纹是对称分布的,所以我们只讨论一半。拿中央亮纹以上的条纹来说,这些条纹是由缝中心到缝顶部经过的光子偏转形成的。从缝中心到缝顶部经过的光子,若吸收10万个引力子则形成稳定的新光子,而新光子由于全部吸收了引力子的冲量因而向上发生较大的偏移,从而在屏幕上形成宽度为0.5α的第一条亮纹。从缝中心到缝顶部经过的光子,若吸收20万个引力子则它向上的偏移量是第一条亮纹偏移量的两倍,形成第二条亮纹。同样形成第3条、第4条、第5条……第n条亮纹。中央亮纹以下的亮纹也是这样形成的,并且中央亮纹的宽度约为其它亮纹宽度的两倍。由于从缝中心到缝顶部引力逐渐增大,所以与光子作用的引力子数目也可能逐渐增多。假设在离开缝中心向上的极小位移处,在该处最多只可能有10万个引力子与光子发生作用,那么经过该处的光子最多只可能偏移到第一条亮纹处。换句话说它最多只可能对第一条亮纹的形成做贡献,对第2条、第3条、第4条……第n条亮纹都没有贡献。由此在向上某处经过的光子最多只可能吸收20万个引力子,但也可能吸收10万个引力子,故经过该处的光子对第1条、第2条亮纹的形成做出贡献而对第3条至第n条亮纹都没有贡献……;从缝顶部经过的光子可能吸收10万*1、10万*2、10万*3……10万*n个引力子,所以从该处经过的光子对第1条、第2条、第3条至第n条亮纹的形成都有贡献。这样形成的亮纹亮度依次为第一条>第二条>第三条>……>第n条。若缝变窄,则在离开缝中心向上的极小位移处,光子最多可能有20万个引力子,经过该处的光子对第1条、第2条亮纹的形成都有贡献,这样就减小了第1条、第2条亮纹亮度的差异。也就是说,缝越窄条纹亮度越向两边分散,缝越宽条纹亮度越向中央集中。当缝很宽时,条纹亮度几乎全部集中在中央区域,两边的光子数几乎为零。这就是我们看到的光的直线传播现象。由于光子并不是一种波,其偏离直线传播(衍射)现象是由引力子引起的,所以光的衍射现象与缝的宽度无关。物体在阳光下的阴影边缘常常较模糊,这说明光子在经过物体表面时受到引力作用而偏离了直线传播。理论上来说只要光子的运动方向和引力方向不在一条直线上,光子就会偏离原来的运动轨迹,并且引力场越强光子弯曲的程度也越大。星光在经过恒星以后通常会发生弯曲,有时我们甚至能够看到星体后面的其它星体发出的光。

三、论电子结构与原子光谱现象

1.电子发光

原子是如何发光的?要弄清这个问题首先必须明白光子是由原子的哪一部分发出的。我们知道,原子是由原子核和核外的电子组成的,原子核的结合能很大,不可能发出光子,所以光子只可能是电子发出的。在化学反应中伴随着电子的得失,常常有能量(光子)放出,光电效应、激光现象及其它一些实验也证明了光子是由电子发出的,所以可以肯定原子发光其实是电子发出光子。既然电子可以放出光子,那么光子必然是电子的组成部分,或者说电子有一定的内部结构,光子是其组成部分之一;由于光子不带电,说明电子内部电荷的分布是不均匀的,因为如果电子内部电荷是均匀分布的,则光子就应该带电。原子中原子核和电子之间的距离很小,它们之间的静电力很强,因为电子内部电荷分布不均匀,所以在原子核强大的静电力作用下电子内部电荷将重新分布,甚至可能发生裂变,这就为电子放出光子创造了条件。当电子裂变放出光子后,它的各个组成部分结合的更加紧密,在适当的时候可能吸收一个光子,这就为电子吸收光子储存能量创造了条件。而电子正是通过不停地吸收、放出光子来和外界交换能量的。稍后我们将看到,原子正是通过电子不断吸收、放出光子来和外界完成能量交换的。一般来说,电子质量越大其内部各部分结合的越松散,在静电力作用下越容易发生裂变;电子质量越小其内部各部分结合的越紧密,在静电力作用下越不容易发生裂变。与原子核“幻数”相似,总有特定质量的电子的结合力相当大,比其它质量电子的结合力大许多,这些特定质量的电子往往对应于某些稳定的轨道。

有人认为物质发光是由于物质中的原子或分子受到扰动的结果,认为光子是由原子或分子发出的。其实这是一种错误的看法。我们知道,原子是由原子核和核外电子组成的,光子是一种物质实体,或者是由原子核发出的,或者是由电子发出的,除此以外再没有别的选择。说光子是由原子发出的,这是一种不确切的说法。

2.原子核和电子之间的磁力作用

两个相距一定距离的异种点电荷在静电力作用下必然会吸引在一起,因为静电力作用在两点电荷连线上。而原子核和电子不会吸引在一起。这就启示我们在原子核和电子中必然存在一种其它作用力。这个力就是原子核和电子之间的磁力。我们知道,在通以相同方向电流的两条平行导线间会产生磁力作用,在磁力作用下它们将彼此吸引,原子核和电子的相向运动正相当于通以相同方向电流的两条平行导线,在它们之间也将产生磁力作用。静电力的作用总是使电子获得指向原子核的向心速度,而原子核和电子之间的磁力则使电子获得切向速度,并且原子核和电子之间的相对速度越大,它们之间的磁力也越大。当原子核和电子之间彼此相对静止在一定远处时,在静电力和磁力的共同作用下,它们并不会吸引在一起。因为静电力使电子获得向心速度,磁力使电子获得切向速度,电子并不是沿着直线靠近原子核,而是沿着螺旋线靠近原子核。开始时螺旋线的半径为无穷大,电子作直线运动;一旦电子相对原子核的速度不为零,磁力开始起作用,电子的运动轨迹开始发生弯曲;当电子与原子核靠近到一定的距离时,电子和原子核之间的静电力恰好等于电子作圆周运动所需的向心力,此时电子处于平衡状态,螺旋线变成了圆。同样在电子离开原子核时也是沿着螺旋线运动的。在静电力作用下,电子总要尽量靠近原子核,在磁力作用下,电子有远离原子核的离心趋势,正是在这两种力作用下,电子处于稳定的平衡状态中。电子在原子核中处于稳定状态时,它的轨迹是圆。因为当电子的轨迹不是圆时,它总要受到磁力的作用,这个力使电子的切向速度增加、运动轨迹向圆靠近。而电子受磁力作用时它的运动轨迹就要发生变化,就不是稳定的,只有当电子的轨迹是圆时才不受磁力的作用,所以说电子在原子核中的稳定轨迹是圆。太阳系中的行星在太阳引力作用下,其运动轨迹可以是圆或椭圆,但在原子系统中,电子在原子核静电力作用下,其稳定轨迹只可能是圆而不可能是椭圆。

3.基态电子的稳定性

处于基态的电子为什么是稳定的?为什么不会被原子核吸收?人们通常认为:做加速运动的电荷会向外辐射能量.如果电子在原子核中做圆周运动,则它就有加速度,必然会不断地向外辐射电磁波,随着电子能量的减小它将沿着螺旋线落入原子核中,这样整个原子就是不稳定的,然而事实并非如此。于是人们推测电子在原子核中不可能做圆周运动。我们认为以上推断是错误的,电子的确在原子核中做圆周运动,其理由如下:第一,电子辐射电磁波并不是一个只出不进的过程。电子时刻不停地向外辐射能量,也在时刻不停地吸收光子,这是一个动态平衡过程。如果电子吸收的能量大于其辐射的能量则原子的温度升高,如果电子吸收的能量小于其辐射的能量则原子的温度降低,倘若没有外界能量输入,原子总会由于向外辐射能量而降低温度,只要物体的温度在绝对零度以上就会向外辐射电磁波。第二,电子在原子中的质量并非一成不变的。一般而言,电子离核越近质量越小,离核越远质量越大(这一点我们稍后证明)。第三,电子和原子核之间并非只有静电力作用,还存在磁力作用。正因为磁力作用的存在使电子在靠近原子核时切线速度不断增大,从而使其离心力逐渐增大,以致于可以与静电力抗衡维持电子在原子核中的稳定。

这里需要我们证明随着电子离核距离的减小,离心力的增加速度大于静电力的增加速度。设电子稳定时质量为M,速度为V,与原子核相距R,原子核电量为Q,此时静电力F正好等于电子作圆周运动的向心力,

离心力大于静电力,所以此时电子作离心运动,将回到距核R的轨道上。同样当电子受到远离原子核的扰动后,静电力F大于电子作圆周运动的向心力,电子将向原子核运动,最终要回到距核R的轨道上,这里不再证明。

另外我们认为,做加速运动的电荷会向外辐射电磁波这个提法不够确切,应该说做加速运动的自由电荷会向外辐射电磁波,而电子在原子核中做圆周运动时不会向外辐射电磁波。两者有什么区别呢?我们知道,在原子核和电子结合成原子的过程中要向外放出能量,即自由电子要在原子核静电力作用下裂变放出光子才能够成为原子中的电子,原子中的电子和自由电子是有区别的。自由电子的质量大于原子中的电子的质量,自由电子各部分结合得较为松散,受到外界扰动(有加速度)时会向外辐射电磁波;而原子中的电子质量小,各部分结合得较为紧密,受到外界扰动(有加速度)时未必会向外辐射电磁波,只有当外界扰动(加速度)足够大时才会裂变辐射电磁波,所以电子可以在原子中做圆周运动而并不向外辐射电磁波。

4.稳定轨道的形成

对于处于基态的电子来说,每秒会有许多光子与其作用。这些作用有指向原子核的,也有指向核外的。电子在吸收一个或几个光子以后质量增加,形成新的电子。我们先考虑指向核外的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R+Δr,我们知道,一定质量的电子总有与一条特定轨道与之对应,比如电子的质量为M时其轨道半径为R,那么当电子质量为M+Δm时就可能停留在半径为R+Δr的轨道。但这里我们少考虑了一个条件,那就是质量为M+Δm的电子的结合能。我们知道电子在每秒内会受到许多光子的扰动,假设质量为M+Δm的电子运行在半径为R+Δr的轨道上,若它受到一个指向原子核的扰动,离核距离变为R+Δr-r,此时原子核静电力对它的作用增强,若它的结合能小的话则电子立即裂变放出光子重新回到其原来的轨道R上;如果质量为M+Δm的电子内部的结合能非常小,以至于受到微小的扰动时立即裂变放出光子,那么它在半径为R+Δr的轨道上停留的时间也趋近于零,换句话说半径为R+Δr的轨道根本不存在;如果质量为M+Δm的电子内部的结合能非常大,以致于受到很大的扰动时它才裂变放出光子,那么电子就能够在半径为R+Δr的轨道上停留一段时间,这段时间就是原子的平均寿命。假设有一群电子处于同一激发态,由于每个电子受到的扰动情况不一样,有的电子受到的扰动大有的电子受到的扰动小,而只有电子受到足够大的扰动并运动到离核足够近的地方才会裂变放出光子,所以电子裂变回到基态的时间也不一样。处于同一激发态的原子的平均寿命和两个因素有关:一是电子的结合能,二是电子受到的扰动。电子内部的结合能与原子核“幻数”相似,只有特定质量的电子的结合能才是很大的,所以电子的轨道也是特定的、不连续的,其它质量的电子由于结合能很小,裂变时间极短,所以它们不可能稳定停留在原子中,也形成不了稳定轨道甚至根本就没有轨道。我们再来考虑指向原子核的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R-Δr,此时原子核对电子的静电力增强,电子立即裂变放出质量为Δm的光子,由前面的证明我们知道,此时电子的速度增大,离心力大于静电力,电子最终将停留在半径为R的稳定轨道上。也许有人会怀疑,这样看来电子可能存在的稳定轨道岂不是唯一的了?实际上由于电子在原子核外有几个不同的稳定质量,所以它也有几条稳定轨道,一定的质量总是与某一条特定轨道相对应。从这里我们可以看出,电子在原子核中的稳定轨道往往对应于电子结合能极大的质量,结合能小的质量由于在原子中不稳定因而不会形成稳定轨道。

5.电子结构与不同跃迁轨道

对于处于同一激发态的一群电子而言,设电子的质量为M+Δm,它们可能会有不同的跃迁轨道,放出的光子的能量(质量)也不同,但总是跃迁到离核近的电子放出的光子的能量(质量)大。电子从激发态回到基态的过程并不是先放出光子再回到基态,而是先回到比基态更近的地方放出光子然后才回到基态。当电子回到离核R-Δr处时,在静电力作用下电子裂变放出质量为Δm的光子,此时离心力大于静电力,电子将回到半径为R的稳定轨道上。那么电子为什么会有多条跃迁轨道呢?这说明处于同一激发态的电子内部结构(结合力)不同,有的结合力大,有的结合力小,结合力小的光子在离核较远的地方裂变,放出的光子能量也较小;结合力大的光子在离核较近的地方裂变,放出的光子能量也较大,电子的跃迁方式是由其内部结构决定的。同一质量的电子可能有多种裂变方式,再次向我们说明电子具有内部结构,在考虑原子光谱时一定要考虑电子的内部结构。处于激发态的电子在向基态跃迁时会发出光子;把原子的内层电子打掉以后外层电子会放出光子并向离核更近的轨道跃迁。这些现象启示我们:电子离核越近质量越小,电子离核越远质量越大。从这里也可以看出,电子质量越小其内部结合力越大。因为离核越近电子受到的静电力越大,而电子能够稳定存在说明其内部结合力越大。在同一个原子中,内层电子的质量小于外层电子的质量;同一个电子离核越近质量越小。

人们发射的人造卫星可以设定轨道,其轨道变化可以是连续的,但对原子核中的电子来说,其轨道变化则是不连续的。怎样理解这一点呢?让我们做一个假想实验。把两个带异种电荷的点电荷放置在一定远处,并且假定它们之间除了静电力以外不在受到其它力的作用,则最终它们将互相吸引在一起。无论怎样改变这两个电荷的质量、电量,结果都是相同的。这说明:用宏观电荷不可能模拟原子核和电子之间的作用力。说到这里,好事者马上就会解释,因为宏观电荷物质波的波长极短而电子物质波的波长较大,所以用宏观电荷不可能模拟原子核和电子之间的作用力。换一个角度来说,宏观物质和微观物质是有区别的,用宏观物质不能模拟微观物质。但区别究竟在哪里?一个是宏观物质而另一个是微观物质,这个解释近乎无聊了。还是让我们来仔细分析为什么用宏观电荷不可能模拟原子核和电子之间的作用力。我们知道,在静电力作用下,电子和原子核开始时相向运动,而后在磁力作用下沿着螺旋线相互靠近,正是由于原子核和电子之间的磁力使电子获得了绕原子核运动的切向加速度,并使整个原子处于稳定状态。那么,两个宏观点电荷之间的运动轨迹为什么是一条直线呢?这是因为宏观电荷的荷质比远远小于原子核和电子的荷质比,在静电力作用下宏观点电荷获得的最终速度也小得可怜,因此宏观点电荷之间因相对运动而产生的磁力也微乎其微,近似于零。所以宏观点电荷在静电力作用下表现为相向运动,其运动轨迹接近直线。从这里我们可以得出这样一个结论:虽然静电力作用在两个电荷的连心线上,但是仅在静电力作用下,电荷的运动轨迹不一定就是直线,两个电荷的荷质比越小,其运动轨迹越接近直线,反之则越接近曲线。那么,如果宏观点电荷的荷质比足够大甚至可以与原子核或电子相比时,是否可以用宏观点电荷模拟原子核和电子相之间的作用呢?也不能!如果宏观点电荷的荷质比足够大,甚至可以与原子核或电子相比,那么这样的两个异种电荷在静电力作用下会沿着螺旋线相互接近,最终会处于稳定状态,但由于宏观点电荷的质量不会发生变化,因此最多只能形成一条稳定轨道,而不可能象电子那样在原子核中有多条稳定轨道。

在多电子原子中,各电子间有什么主要区别呢?有人认为离核越近的电子能量越低,越不容易失去;离核越远电子能量越高越容易失去,但这还不是最主要的区别。多电子原子中各电子间最主要的区别在于它们的质量不同。离核越近的电子质量越小,离核越远的电子质量越大,同一个原子中没有两个质量相同的电子存在。在氢原子中也是电子离核越近质量越小,离核越远质量越大。

6.原子的吸收光谱和明线光谱

在原子的吸收光谱中,只有特定能量的光子才被电子吸收;在原子的明线光谱中,同样也只能发出特定能量的光子。于是人们认为电子只能吸收或发出特定能量的光子。我们知道,只要物体的温度在绝对零度以上,就会向外发射电磁波,物质的发射光谱是连续光谱。那么其它能量的光子是由哪一部分发出又是如何发出的呢?显然还是由电子发出的,因为原子核不可能发出光子。当我们用电子束轰击汞原子蒸汽时,可以发现当电子的能量为某些特定值时,汞原子强烈地吸收其能量;对于其它能量的电子汞原子只吸收其一部分能量。汞原子只吸收电子束的能量实际是汞原子中的电子吸收电子束的能量。可见,原子中的电子可以吸收各种能量(质量),但对特定的能量(质量)吸收能力十分强。在原子的吸收光谱中,电子可以吸收各种能量的光子,只不过大部分光子被电子吸收后与电子的结合能并不大,受到微小的扰动后立即放出光子,由于该过程极短,所以当连续光通过原子蒸汽时,大部分光子被吸收后又很快放出,看起来似乎没有与原子作用,只有极少数具有特定能量的光子与电子的结合力极大,这类光子被吸收后要保持一段时间才可能放出,故吸收光谱会出现几条暗线。至于原子的明线光谱,与其说是明线光谱还不如说原子的发射光谱中有几条线特别亮。这是因为处于激发态的电子比别的能量状态的电子稳定,停留的时间较长,所以在一群原子中处于激发态的电子数目总比别的状态的电子数目多,因而它们发出的光也更亮一些。事实上原子的发射光谱不仅仅是明线光谱,明线光谱只是原子发射光谱中极个别的具有代表性的光子,原子几乎可以发出小于一定能量的任何光子。电子在原子中时刻不停地吸收各种能量的光子,由于电子与绝大部分光子的结合力都不大,所以电子也在时刻不停地放出各种能量的光子,因此物质的发射光谱往往是连续光谱。

许多人都认为原子只能吸收特定能量的光子,原子也只能放出几种特定能量的光子,因为他们看到原子的吸收光谱中仅有几条特定频率的暗线,而子的发射光谱也仅仅是几条特定频率的明线而已。其实这种看法是错误的。我们不妨这样分析,若原子只能吸收特定能量的光子,则只有特定能量的几种光子对物体具有明显的热效应,并且每种物质的敏感光子不同。实际上并非如此。我们知道,红外线具有显著的热效应,对任何物质都是如此。此外,物质的发射光谱是连续光谱,这也说明原子或分子的吸收(或发射)出的光子是广谱性的。为了充分理解这个问题,需要作进一步的说明。现代物理学指出:氢原子吸收的光子能量只能是13.6/n*n电子伏(这里n取自然数),也就是13.6、3.4、1.5……电子伏,并且认为对于10电子伏、3电子伏这样的其它能量的光子不会被电子吸收。我们认为:电子吸收的光子能量是连续的,对于10电子伏、3电子伏这样的其它能量的光子同样会被电子吸收,只不过电子吸收这些光子后,电子和光子的结合能不够大形不成稳定的轨道,所以电子又很快放出该光子,由于作用时间极短,以致于我们误认为电子没有吸收光子。换一个角度来考虑,当大量的原子吸收了能量连续的光子时,由于大部分电子与光子的结合力都不大,所以这些电子在极短的时间内(设为t)就会裂变放出光子,而能量为13.6、3.4、1.5……电子伏的光子与电子的结合力很大,所以电子裂变放出光子的时间也很长,如果这个时间是100t,则电子放出相应的光子也比其它光子亮100倍;如果这个时间是1000t,则电子放出相应的光子也比其它光子亮1000倍……,这样,在原子的明线光谱中自然就形成几条特殊的亮线了。由此我们得出一个结论:在原子的发射光谱中,任意一条谱线的亮度与处于相应激发态的原子的平均寿命成正比,原子的平均寿命越长,谱线的亮度越大;原子的平均寿命越短,线的亮度越小。当然这有个前提,那就是被原子吸收的连续光谱中各种能量的光子是平均分布的。

7.热现象的本质

由于电子时刻不停地受到光子的扰动,不断地吸收各种能量的光子,也不停地放出各种能量的光子,所以电子在原子核中并不是处于稳定状态,它的运动轨迹也不是正圆。一般来说,温度越高,电子受到的扰动越大,其运动轨迹偏离圆形的趋势越明显;温度越低,电子受到的扰动越小,电子的运动轨迹越接近圆(只有在绝对零度时,电子的运动轨迹才可能是正圆)。从这个意义上来说,原子模型可以看作是卢瑟福的行星模型和电子云模型的结合:温度越高,原子模型越接近行星模型;温度越低,原子模型越接近电子云模型(但在某一瞬间,电子在原子核中有确切的位置)。温度的高低反映了电子偏离稳定轨道程度的大小,单个原子(分子)也有温度。电子偏离圆形轨道的程度越大,表明该原子的温度越高,电子裂变后放出的能量也越大。所以温度升高时物体发出的电磁辐射向短波方向移动。对于温度一定的物体来说,它内部包含了大量的原子,这些原子中的电子由于受到的扰动大小不同,它们裂变放出光子的质量也不同,但大致满足正态分布,即发出的光子中能量特别大的和能量特别小的都是极少数。由前面的论述我们知道,电子在原子核中的能量大小并非定值:电子离核越远电势能越大,离核越近电势能越小。与宏观电荷一样,电子的电势能是其与原子核距离的函数,电子和原子核间的作用力服从库仑定律。温度越高,电子离核越远,电势能也越大,因而也越容易失去;温度越低,电子离核越近,电势能也越小,也越不容易失去。

什么是热现象呢?这似乎是不是问题的问题。人们通常认为:热现象是大量分子无规则运动的反映,温度越高分子的平均速率越大,温度越低分子的平均速率越小。果真如此吗?我们知道,太阳时刻不停地向外抛射高能粒子,这些粒子的速度接近光速,宇宙中其它恒星也在不停地向外抛射高能粒子,所以在宇宙空间任何地方,都有许多高能粒子正在做杂乱无章的运动,这些粒子的速度通常都接近光速或亚光速。这样看来宇宙空间的温度应该很高(至少比恒星内部高),宇宙空间应该是很明亮的。但事实上,宇宙空间是漆黑的一团,温度只超过绝对零度一点。这说明粒子运动速度大未必温度就很高,物体的温度不是由组成它的原子(分子)的平均运动速度决定的。温度升高,原子(分子)的平均速度增大。但反过来,原子(分子)的平均速度增大并不意味着温度升高。我们知道,只要物体的温度在绝对零度以上就会向外辐射电磁波,而物质向外辐射电磁波的原因是电子受到扰动后在静电力作用下放出光子,并且光子受到的扰动越大放出的光子能量也越大,相应的物体的温度也越高。从这个意义上来说,原子是储存热量的最小单位,单个原子也有温度,因为它可以储存热能。但单个的带电粒子如质子、电子在不受外界任何扰动时,即便速度再大也不会向外界释放能量,因此它们都不能储存热能,因而也没有温度。应该看到,原子(分子)的高速运动所具有的能量仅仅是动能而不是热能,和宏观物体一样,速度大未必温度高。宏观物体的速度与其温度无关,原子(分子)也是如此。一个原子(分子)的速度比其它原子(分子)的速度大,只能说明它的动能大,储存的热能未必就多。热能仅储存于原子核和电子形成的原子体系中,两者中缺少任何一个都不能储存热能。在日常生活中我们用红外线(微波)加热而不用紫外线,紫外线的热效应远远小于红外线(微波)。这是因为红外线(微波)光子的质量小,和原子中电子的结合力大(包括内层电子),而紫外线和原子中电子的结合力小(它几乎不与内层电子作用),所以红外线往往容易被物体吸收,其热效应当然比紫外线强。

再进一步考虑,什么是热现象呢?热现象和温度之间有什么关系呢?我们认为:对一个物体而言,倘若它储存了热能它就有温度,并且它储存的热能越多它的温度就越高,反之则温度越低;倘若物体没有储存热能则它就没有温度或者说它的温度是绝对零度;倘若物体不能储存热能,则用温度来衡量该物体是没有意义的。我们知道,原子是储存热能的最基本单位,原子的热能实际上是储存在电子中的。单独的原子核、单独的电子都不能储存热能,所以单独的原子核、单独的电子都没有温度。同样的道理,光子也不能储存热能,它仅仅是热能的载体,因为单独的原子可以储存热能,所以单独的原子有温度,但由于单独的光子不能储存热能,所以单独的光子没有温度,不同能量的光子之间只有能量的差异而没有温度的差异,用温度来衡量光子是毫无意义的。倘若光子也有温度,则在太阳系中离太阳越近的空间温度就应该越高,离太阳越远的空间温度就应该越低,事实上完全不是这么回事。

8.电子的质量-结合能曲线表

光子范文篇4

当人们用望远镜观测银河系以外的星系时,可以发现绝大多数星系光谱都存在红移或蓝移现象,并且越远的星系其光谱红移值越大。根据多普勒效应:星系光谱存在红移说明星系正离我们远去,星系光谱存在蓝移说明星系正向着我们运动。需要指出的是越远的星系红移值也越大,看起来所有的星系都好象以银河系为中心向外爆炸形成的一样,越远的星系离开我们的速度也越大。鉴于此有人提出宇宙大爆炸假说:认为宇宙是由150亿年前发生的一次大爆炸形成的,人类居住的银河系则是宇宙的中心。可是人们在观测银河系和河外星系时,却并没有发现银河系有什么特别之处。有人据此怀疑宇宙大爆炸假说;也有人从星系的演化推算出宇宙的年龄大于150亿年;还有人认为若宇宙大爆炸假说是正确的,那么宇宙辐射在各个方向上就会表现出各向异性;更有人担心宇宙的膨胀没有尽头,遂认为宇宙的膨胀和收缩是交替进行的……。但不管怎样,大部分人还是相信“眼见为实”,由星系光谱的红移现象承认了宇宙大爆炸假说。更有人把红移现象与宇宙背景辐射和宇宙元素丰度并作宇宙大爆炸假说的三大支柱。那么宇宙是否发生过爆炸并仍在向外扩张,年龄是否只有150亿年呢?非也!

1.星系光谱红移原因

20世纪初,当人们用望远镜观测银河系以外的星系时,发现绝大多数星系光谱都有红移现象,并且越远的星系其光谱红移值越大。有人认为星系光谱红移是因为星系正在离我们远去,从而得出这样的结论:所有的星系都是以我们银河系为中心向外爆炸后形成的,越远的星系离开我们的速度也越大;宇宙中所有的星系都在彼此分离,并且越远的星系相互分离的速度越大。值得一提的是,我们银河系正处在爆炸中心,足以值得我们自豪的是:银河系是宇宙中独一无二的星系—因为它是宇宙的中心。更让我们惊奇的是,银河系自身也在不断运动着,然而无论它运动到哪里,它始终是银河系的中心。我们解释不了银河系为什么是宇宙的中心,因为银河系也和其它星系一样,并沒有什么特别之处。有人以为,银河系处于宇宙的中心是一个巧合,虽然银河系从上个世纪至今一直在不断运动,但它走过的距离和整个宇宙空间的尺寸比起来是微不足道的,所以银河系目前仍然处在宇宙的中心,这种看法未免有些牵强。因为人们在观测近处的星系时,发现近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系正在以某一个中心为起点向外膨胀。因此“银河中心说”颇值得怀疑。还有的人虽然承认宇宙大爆炸假说,但不承认“银河中心说”,他们不认为银河系是宇宙的中心。这种观点同样也是站不住脚的。我们可以这样分析:如果宇宙大爆炸假说是正确的,那么宇宙中所有的星系必定在以某一个中心为起点向外膨胀,星系之间彼此互相分离。目前我们观测到近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系在以某一个中心为起点向外膨胀。倘若我们不是在宇宙的中心而是处于偏离宇宙中心的任一点处,因为在我们周围的星系都没有相互分离的趋势,也没有以某一个中心为起点向外膨胀,这样一来,倘若宇宙中任一点处的星系都没有相互分离的趋势,那么整个宇宙也不可能在膨胀,即宇宙大爆炸假说是错误的。

前事不忘,后事之师。人类文明发展到今天,“地心说”和“日心说”都被证明是为科学,难道我们还要重蹈覆辙提出“银河中心说”吗?愚以为,我们应当承认这样一个假设,那就是:银河系按目前的速度运动下去,100万年,100亿年以后,我们仍然会发现自己处在宇宙的“中心”,无论我们处在宇宙的任何地方,中心也好,边缘也好,我们都会发现宇宙中越远的星系光谱红移值也越大,就好象我们处在宇宙的“中心”一样。事实上,这个“中心”是光子在宇宙空间中的传播特性引起我们视觉上的错误,“眼见”未必“为实”,我们不能过分相信“眼见”的东西。

红移现象是否由观测者自身的运动引起的呢?不是的!如果红移现象是由观测者自身的运动引起的,那么我们将观测到与我们相向运动的星系光谱将发生蓝移而与我们相背运动的星系光谱将发生红移,然而事实并非如此。再者,虽然我们“坐地日行八万里”,但这个速度和光速比起来实在算不了什么,不至于影响观测结果。换句话说,我们在观测星系红移值时,观测者自身运动速度的影响可以忽略不计。红移现象说明光子与观察者之间的相对速度变小了。产生这种情况有两种可能:第一是星系正离我们远去,第二是光子在穿越宇宙空间时速度变小了。这两种情况都可能导致星系光谱红移。我们认为导致星系光谱红移的原因是后者。光子在穿越宇宙空间时会与各种粒子(比如引力子)相互作用从而使其速度逐渐减小。当然单个粒子与光子作用时间极短,引起光子速度的改变量也是极其微小的,以致于我们观测不到。随着光子穿越宇宙空间距离的增大,与光子作用的粒子数目也逐渐增多,光子速度的减小量也越明显。可以推测:光子在穿越一定的宇宙空间距离后速度将减小到零。由于光子速度为零故相对我们的能量也为零,这样的光子当然不会被我们观测到。可见用光学法观测宇宙空间尺度时有一个极限:150亿光年(也有人认为是200亿光年)。在这个尺度以外的星系发出的光子由于在没有到达地球时速度已经降低到零,所以这样的星系不可能被我们观测到,至少目前还没有办法观测到。也有人认为,红移现象是由光子频率减小引起的,即认同第一种可能:认为星系正离我们远去。这种观点听起来很有道理,却经不起分析。我们知道,星系离我们远去时会引起光子频率减小,但各种不同频率光子的频率减小量应该相同,反应在星系光谱上,各种不同频率光子的红移量应该相同。因此,不论星系离我们多远,星系光谱虽然发生红移但不应该变宽,但事实上远处星系光谱却被拉宽了(星系光谱不会变宽是指星系光谱中任意两条谱线的距离恒定,虽然它们都发生了红移,但它们移动的距离相等,因此各谱线之间的距离不变)。而且能量越小的光子红移值越大,能量越大的光子红移值越小。不同频率光子的频率减小量不同,说明红移现象不是由光子频率减小引起的。即第一种可能站不住脚。假设宇宙中所有的星系都是静止的,宇宙空间中的物质是均匀分布的,那么光子穿越宇宙空间时的速度衰减量仅与其通过的空间距离有关。光子穿越的宇宙空间越长,其速度衰减量也越大。这样星系光谱的红移值仅与其离我们的距离有关,离我们越远的星系红移值也越大,就好象越远的星系正在以越快的速度离开我们一样。这也正是哈勃定律所揭示的:星系远离银河系的速度ν与距离成正比,ν=H*D,其中H为哈勃常数。实际上宇宙中各星系都在不断运动着,宇宙空间中的物质也并非均匀分布的,造成星系光谱红移的原因也很多,所以光谱的实际红移值要考虑许多情况。

2.谱线红移与光子速度衰减

光子与宇宙空间中的粒子是如何作用的呢?可以设想,宇宙空间中存在许多比光子质量小得多的粒子(比如引力子)。由于光子在与粒子作用后仍然是光子,可以认为光子仅与粒子发生了弹性碰撞。既然是弹性碰撞,我们知道,二者质量越接近光子损失的能量越大。由于光子的质量远远大于引力子的质量,所以在不同频率(质量)的光子中,频率(质量)较小的光子损失的能量较大。于是经过同一段宇宙空间以后,在不同频率(质量)的光子中,频率(质量)较大的光子损失的能量较少,频率(质量)较小的光子损失的能量较大,例如红光损失的能量比紫光损失的能量多。由于不同频率(质量)的光子在宇宙空间运动时都损失了能量,这样整个星系的光谱将向红端移动,但由于红光损失的能量多向红端移动的距离大,而紫光损失的能量少向红端移动的距离小,于是整个光谱被“拉宽”了。如果不同频率(质量)光子的能量损失率相同,虽然它们都产生红移,但是它们红移的距离相等,这样星系光谱虽存在红移但不会被“拉宽”,星系光谱存在红移而且被“拉宽”说明两点:第一光子在穿越宇宙空间时速度会衰减,第二不同频率(质量)的光子速度衰减率不同。显然,由于不同频率(质量)光子的能量损失率不同,各种光子的速度衰减量差异将随着空间距离的增加而增大,这样星系光谱被“拉宽”的程度与其离我们的距离有关,离我们越远的星系其光谱被拉宽的程度也越大。另外,星系光谱被拉宽时还有一个特点,那就是能量大的光子被拉宽的程度小,能量小的光子被拉宽的程度大。也就是说,越靠近红端光谱被拉宽的程度越大,越靠近紫端光谱被拉宽的程度越小。考虑到星系引力场的影响,实际情况还要复杂一些。

上面我们谈到光子在宇宙空间运动时速度会逐渐减小,这和人们熟悉的“真空中光速不变”的看法相矛盾。实际上宇宙空间并非真空,即使宇宙空间是绝对真空它还存在引力场。换句话说,光子在真空中速度变不变的问题,实际上是光子受不受引力作用的问题。如果光子不受引力作用,那么真空中光速不变,但这样一来不论星体的引力再强,对光子都没有影响,从而宇宙中也不可能产生“黑洞”了,而现在的黑洞理论基础将不复存在;假如光子受引力作用,则就不应该有“真空中光速不变”的结论。有人对此这样解释:宇宙空间中各星体的引力分布在不同的方向上,它们的作用力相互抵消,因此光子在宇宙空间中的速度不变。这种解释也是站不住脚的。我们知道在太阳系内,引力的方向是指向太阳的;在银河系里引力的方向是指向银河系中心的,所以局部的宇宙空间引力总是有一定的方向的。我们认为光子作为一种物质实体,它的速度并非一成不变的。无论在真空中还是在介质中,它的运动速度都会越来越小。所以,光速不变只是一个神话,光年也不能作为距离单位,因为光子在前一年中走过的路程总比后一年中走过的路程长。

3.光子在引力场中的运动

星光在通过太阳附近时会受到太阳引力的作用而发生弯曲,说明光子也会受到引力的作用。其实光子也有质量,当然会受到引力作用了。通常我们认为:引力场中物质的加速度仅与引力场的强弱有关,而与物质的质量无关。如在地球表面不管是1吨的物体还是1千克的物体,其每秒获得的速度增量都是9.8米/秒。但引力场中光子的加速度与其质量有关:质量越小的光子加速度越大,质量越大的光子加速度越小。既然光子也受引力作用,那么很自然,光子在离开引力场时必然会被减速,在进入引力场时必然会被加速,在垂直于引力方向(或其它方向)运动时受引力影响其运动轨迹也会发生变化。既然光子在离开引力场时会被减速,而且质量越小的光子速度衰减量也越大,那么星体发出的不同频率的光子就有不同的速度。一般而言,星体引力越强,其发出的光速度也越小;当星体引力足够强时甚至可能使一部分光子摆脱不了星体引力的束缚,产生黑洞现象。对同一星体而言,在它发出的光中,质量大的光子速度大,到达地球的时间也越早;质量小的光子速度小,到达地球的时间也越晚。我们通常认为不同频率的光同时到达地球,这其实是错误的。关于这一点我们可以用实验来证实。当星体发生爆发或其它异常时,总是能量较大的X射线或γ射线先被我们观测到,其次才是可见光,然后才是红外线。虽然理论上如此,但在实际观测中总有这样或那样的因素及别的解释使大部分人不相信这一点。如果条件允许的话,我们可以用一个实验来证实我们的观点。在离我们很远的宇宙飞船上以两种不同能量的光子同时发出一种信号,这两种光子的能量差异越大它们到达地球的时间差异也越大。实际上考虑到不同能量的光子在同一介质中的传播速度不同,我们应该想到不同频率的光子在真空中的传播速度也不相同。由于光子在穿越宇宙空间时速度逐渐减小,并且质量小的光子速度衰减得快,可以想象,在经过一段相当长的距离以后,质量小的光子速度已经衰减到零而质量大的光子速度不为零,这样我们就只能观测到质量大的光子。若星体离我们更远一些,则我们只能观测到质量更大的光子……,随着空间距离的增大,最终我们将看不到远处星体发出的光,这个距离就是我们现在认为的宇宙极限--150亿光年。人们在观测宇宙时总有一个错误想法:由于真空中光速不变,所以不管离我们多远的星系,只要足够亮就可以被我们发现。事实上宇宙空间并非真空,光子在其中穿行时速度会逐渐减小,所以任何星系发出的光只能传播一定的距离,也正因为如此,不管我们在宇宙中任何地方,始终只能看到有限的宇宙空间。换句话说,目前我们能够观测到的宇宙空间的尺度实际上是光子在宇宙空间中传播的最远距离。

4.光子在宇宙空间中的运动

实际上光子在宇宙空间运动时并不总是做减速运动。在光子离开星体时它要挣脱引力的束缚而作减速运动,当它脱离星体的引力场在空间自由运动时,也作减速运动;如果它进入另一个星体的引力场向着该星体运动时,就会在该星体的引力作用下作加速运动。光子就这样减速--加速--减速--加速……不停地穿越宇宙空间,直到其速度为零。倘若星体离我们很近而引力又很小,从该星体发出的光速度衰减量不大,但进入银河系时光子的速度增加量有可能很大,当光子的速度增加量大于其速度衰减量,或者说大于刚离开星体表面时的速度,在我们看来该星体光谱就发生了蓝移。忽略距离因素,由于星体自身在不断运动,这样它相对银河系引力场的强弱也可能发生变化,所以其光谱也可能有规律的发生红移或蓝移。通常情况下,宇宙空间对光子的减速作用总大于加速作用,所以星系的光谱以红移的居多。

光子在引力场中速度变化的问题许多人恐怕不相信也不能理解。一些人认为光子没有静质量,况且光子是一种波,在引力场中的运动规律和宏观物质不同。其实持这种观点的人把光子神话了,弄的不可捉摸了。现在大多数人都接受了“黑洞”的概念,认为当一个星体的引力足够强时甚至连光子也逃脱不了,因而是漆黑的一团。这里实际上指出了光子也会受到引力作用。既然光子也受引力作用,那么它在引力场中的加速与减速自然就可以理解了。稍后我们将看到,引力作用是造成衍射现象的重要因素之一。

5.类星体

一个很明显的事实是:宇宙中离我们越远的星体能量越大,通常类星体离我们的距离都在10亿光年以上,并且远处星体发出的光中能量较大的光子占有很大的成分。有人把这作为支持宇宙大爆炸的依据,认为:若宇宙中物质是均匀分布的话,则在我们银河系或其周围就应该有象类星体这样的高能星体存在。为什么我们在近处发现不了类星体呢?一些人看见远处的星体发出的光中含有大量的X射线或γ射线成分,就推测此类星体存在着目前尚不为我们知道的能量源。这种观点未免有些片面。实际上宇宙中大部分恒星的能量都差不多,能量特别大的和能量特别小的只是极少数,恒星的能量呈中间多、两头少的分布态势。从远处的恒星发出的光,在经过漫长的宇宙空间以后,能量小的光子由于速度衰减率大而停了下来,不被我们观测到;只有X射线和γ射线才能到达地球。所以我们观测到该星体的光子中,X射线和γ射线占有很大的成分,以致于我们误认为这类星体只向外发出X射线和γ射线。实际上这类星体也向外发射可见光和红外线,但是可见光和红外线由于速度衰减到零故我们观测不到。这就导致我们观测到极远处的星体,其颜色通常是蓝色或紫色,事实上可能和该星体的真实颜色相差极大。这说明我们看到的星体的颜色未必就是星体的真实颜色,星体的颜色是由其自身能量状况和离我们的距离决定的,星体离我们的距离越大往往使其颜色中的蓝色和紫色成分增加。另外,我们认为类星体离我们非常远,是因为类星体的红移值很大。也就是说我们没有直接证据表明类星体真的离我们很远。考虑到光子在引力场中的运动,我们知道:当星体的引力足够大时,其发出的光子速度衰减量也较大,因而该星体的光谱也将发生较大的红移。这就是说,引力因素也可以使星系光谱产生红移。倘若星体引力足够大又离我们很近,由于星体红移值较大,往往导致我们认为该星体离我们很远。举例来说,假设有一个引力较大的星体处于银河系的中心,由于该星体引力很强,导致它发出的光子速度衰减量极大,我们在观测其光谱时就会观测到很大的红移值,根据该星体很大的红移值我们就会认为它离我们非常遥远,绝不会想到它就在银河系中心。

如何解释类星体离我们那么远而其发射的X射线和γ射线又是如此强烈呢?只有两种可能。第一,类星体的能量非常大,向外发出的X射线和γ射线非常强;第二,类星体离我们并没有原先认为的那么远,类星体光谱的红移是由类星体的引力造成而并非由距离因素造成的。我们认为两种因素都有。因为如果类星体离我们非常远,那么我们观测到其向外发出的X射线或γ射线就不可能很强;倘若类星体的能量不是很大,它的引力场也不可能很强,不足以使其光谱产生较大的红移。这说明:星系光谱发生红移可能是距离因素造成的,也可能是引力因素造成的,红移值大的星体未必就离我们远。那么,如何区别星体的引力红移和距离红移呢?对观测者而言,由距离因素造成红移的星体发出的光不可能很强,而由引力因素造成红移的星体发出的光往往很强,特别是X射线或γ射线的成分多。类星体的发射光谱和吸收光谱的宽度不同,通常吸收光谱的宽度比发射光谱窄,为什么呢?我们知道,吸收光谱是由于光子经过大气后产生的,这说明类星体周围也存在气体。光子从高温星体内部发出以后,总会有一部分光子没有被气体吸收而直接射向宇宙空间,这些光子形成发射光谱;还有一部分光子在与气体作用后,频率(质量)大的光子损失的能量大,频率(质量)小的光子损失的能量小;光子离开类星体在宇宙空间中运动时,则是频率(质量)大的光子损失的能量小而频率(质量)小的光子损失的能量大,总的看来各种不同频率的光子速度差异减小,所以其光谱红移值也较发射光谱小。实际上类星体的吸收光谱还可能有几种不同的宽度。

6.黑洞与星体引力

最初在人们考虑黑洞时,认为它的引力强到连光子也逃脱不了,因而是漆黑的一团,黑洞是宇宙中物质的坟墓。后来人们认为黑洞可以向外发出X射线和γ射线。同样是光子,能量大的可以逃脱,能量小的逃脱不了,说明(黑洞的)引力对光子的作用是不一样的。事实上我们知道当星体的引力逐渐增强时,总是质量较小的光子逃脱不了,质量较大的光子则可以摆脱星体的引力,并不是所有的光子全部被吸入星体中。所以从这个意义上来说,狭义上的黑洞仅指引力强到可见光不能脱离的星体,即在可见光波段观测不到的星体;广义上的黑洞指引力强到使一部分光子不能脱离的星体,即在某一能量较小的波段观测不到的星体,这里广义上的黑洞甚至可能非常亮,可以被我们肉眼看到,但在红外线波段或能量更小的波段却观测不到。从理论上讲,“黑洞”并不黑,至少它可以向外发射X射线和γ射线或能量更高的光子,完全不向外抛射粒子的黑洞是不存在的。那么宇宙中黑洞存在吗?当然存在了。当星体离我们足够远,以致于该星体发出的红外线速度衰减为零而不被我们观测到时,它就像一个“黑洞”;若星体离我们再远一些,可见光不再为我们观测到,只能观测到X射线和γ射线,这时它就是漆黑的一团,成为名副其实的黑洞;而宇宙中150亿光年以外的星体对我们来说是完全彻底的黑洞,因为我们完全观测不到它们。除了因空间距离造成“黑洞”现象以外,星体的引力也可以造成黑洞现象。黑洞现象并不是我们原先想象的那样:“当星体的引力足够大时,所有的光子都被吸入星体中,整个星体变成黑暗的一团”。当星体的引力逐渐增大时,它对光子的束缚作用也逐渐增强。星体的引力足够大时,红外线光子将摆脱不了星体引力的束缚,而可见光、紫外线则可以摆脱星体引力的束缚;星体的引力再增大时,可见光将摆脱不了星体引力的束缚,而紫外线则可以摆脱星体引力的束缚;若星体的引力再增大,可能只有γ射线放出。应该明确指出:黑洞现象是与星系光谱的红移紧密相连的。若某一星体的光谱不存在红移现象,则它一定不是黑洞;若某一星体的光谱存在红移现象,则它可能是黑洞也可能是距离因素造成的。

总的来说,我们对黑洞的认识经历了三个阶段:第一阶段认为黑洞的引力足够强,所有的光子都不能摆脱黑洞的引力,因而整个星体是黑暗的一团;第二阶段认为黑洞可以向外发出强烈的X射线或γ射线,人们认识到黑洞的引力对不同能量光子的作用不同;第三阶段也就是现在正在探索的阶段。应该明确指出:与黑洞现象紧密联系的因素有两个,引力因素和距离因素。以往我们在考虑黑洞现象时往往只考虑引力因素而忽略了距离因素,这就导致我们认为整个宇宙空间仅有150亿光年,对150亿光年以外的宇宙空间,认为看不见的就是不存在的。

7.恒态宇宙

也许有人会问,既然光子的速度能够降低到零,那么宇宙中会不会堆积越来越多的光子呢?不会的!光子作为物质的一种存在方式,它不是永恒的,在一定条件下光子可以转化为别的物质,也就是说光子是有一定寿命的。任何一个光子不可能永远存在下去,它必将转化为别的物质形式。宇宙中的物质无时无刻不在运动,所以宇宙中不会堆积越来越多的光子。虽然我们目前并不知道光子是如何转化为别的物质的,但我们依然相信整个宇宙是稳定的、恒态的,而局部宇宙则可能是不稳定的,处于演化过程中的。同样的道理,整个宇宙也不会被光子均匀照亮。由于光子在宇宙空间中运动时速度逐渐减小,所以任何星体发出的光只能传播到有限远处。也正因为如此,我们所观测到的宇宙始终是有限的。如果想观测更远的宇宙空间,一个方法是派出宇宙飞船,另一个办法是在宇宙空间中建立许多中转站,在光信号速度未衰减到零以前接受、放大、转播它。理论上讲,只要中转站的数量足够多,我们就可以看见任意远处的宇宙空间。

8.浩瀚宇宙

假设我们能够乘座一艘高速飞行的宇宙飞船遨游太空,在刚离开地球时,我们可以观测到150亿光年的宇宙,离我们越远的星体其红移值也越大,远处的星体放出强烈的X射线或γ射线。随着我们飞行距离的增大,我们会发现银河系的红移值越来越大,并且其颜色逐渐偏蓝,而原先我们观测到呈蓝色或紫色的星体颜色逐渐偏红,最终银河系将消失在我们的视野之外。当我们飞到离银河系150亿光年的地方,我们发现展现在我们面前的宇宙范围仍然有150亿光年;而原先我们认为正在以很大速度分离的星体或膨胀的宇宙空间并没有膨胀。无论我们飞到哪里,始终只能看见150亿光年的宇宙空间,也始终能够看见150亿光年的宇宙空间,宇宙是无限的;并且我们始终是宇宙的“中心”,因为所有的星体看起来所有的星体都好象以我们为中心向外爆炸形成的一样,越远的星系(红移值越大)离开我们的速度也越大。我们认为,宇宙是无始无终的,物质的存在是永恒的,对某一特定的物质形态有其产生和消亡的过程,但整个宇宙不存在产生和消亡的过程,它是自始至终存在并且不会消亡的。同时也应该看到,宇宙是无限的,不会仅仅只有150亿光年的空间。

从上个世纪以来,人们已经探索到了上百亿光年的宇宙空间,然而这只不过是苍海一粟。也许还要几十年甚至上百年人类才能认识到宇宙的无限性,但只要天下有志之士携手合作,这一天定会早日到来。

二、浅谈光的衍射

通常情况下光总是直线传播。但当光线经过足够窄的窄缝时将形成明暗相间的衍射条纹。由于光子不带电,在电磁场中不偏转,所以光子的衍射不是电磁力作用的结果,而是引力子与光子作用产生的。光子与引力子作用不是一个简单的碰撞过程,而是一个极为复杂的过程。在光子与引力子相遇的一瞬间它们形成一个混合体,这就打破了结合前光子内部各部分的平衡,混合体内部存在着排斥力和凝聚力两种作用。若排斥力占主导作用,则混合体将在极短的时间内“裂变”放出引力子;若凝聚力占主导作用,则混合体将形成一个新的光子。那么满足什么条件的混合体(光子)才是稳定的呢?经典电磁理论指出:所有光子的能量均为某个最小能量的整数倍。也即所有光子的质量均为某个最小质量的正整数倍,只有这样的光子才能稳定存在。当然这并不表明能量为某个最小能量的非整数倍的光子就不存在,只不过由于它们极不稳定,在形成后瞬间就“裂变”生成能够稳定存在的光子,目前我们还没有观测到或注意到这类光子罢了。从这里我们可以看出,与原子核一样,所有光子的质量均为某个最小质量的正整数倍,说明光子也有一定的内部结构,某些质量的光子由于极不稳定,在其形成后瞬间就“裂变”生成能够稳定存在的光子,这就造成稳定存在的光子质量的不连续。言归正传,由于引力子质量远远小于光子的质量,所以光子不可能吸收一个引力子形成新的光子(因为这样的光子是不稳定的)。但是若在同一时刻,光子与许多引力子相互作用,而这些引力子质量之和又大于最小光子的质量,光子就有可能吸收质量和等于最小光子质量的引力子数目而形成新的光子。举例来说,若最小光子的质量是引力子质量的10万倍,那么当同一瞬间有15万个引力子作用于光子时,光子只可能吸收10万个引力子,另外5万个引力子不被光子吸收,仅对光子产生微小的冲量。倘若在同一瞬间有9万个引力子作用于光子,那么这9万个引力子都不会被光子吸收,它们仅对光子产生微小的冲量。光子可能吸收的引力子数目只可能是10万的正整数倍。只有光子吸收引力子形成新的光子才能全部吸收引力子的冲量,否则的话,光子仅受到极小的冲量。

现有一个宽度为α的窄缝,绝大多数光子经过窄缝时虽然与许多引力子作用,但大多不会形成新的光子,这样大部分光子仅以极其微小的发散角投射到屏幕上,形成宽度略大于α的中央亮纹。由于衍射条纹是对称分布的,所以我们只讨论一半。拿中央亮纹以上的条纹来说,这些条纹是由缝中心到缝顶部经过的光子偏转形成的。从缝中心到缝顶部经过的光子,若吸收10万个引力子则形成稳定的新光子,而新光子由于全部吸收了引力子的冲量因而向上发生较大的偏移,从而在屏幕上形成宽度为0.5α的第一条亮纹。从缝中心到缝顶部经过的光子,若吸收20万个引力子则它向上的偏移量是第一条亮纹偏移量的两倍,形成第二条亮纹。同样形成第3条、第4条、第5条……第n条亮纹。中央亮纹以下的亮纹也是这样形成的,并且中央亮纹的宽度约为其它亮纹宽度的两倍。由于从缝中心到缝顶部引力逐渐增大,所以与光子作用的引力子数目也可能逐渐增多。假设在离开缝中心向上的极小位移处,在该处最多只可能有10万个引力子与光子发生作用,那么经过该处的光子最多只可能偏移到第一条亮纹处。换句话说它最多只可能对第一条亮纹的形成做贡献,对第2条、第3条、第4条……第n条亮纹都没有贡献。由此在向上某处经过的光子最多只可能吸收20万个引力子,但也可能吸收10万个引力子,故经过该处的光子对第1条、第2条亮纹的形成做出贡献而对第3条至第n条亮纹都没有贡献……;从缝顶部经过的光子可能吸收10万*1、10万*2、10万*3……10万*n个引力子,所以从该处经过的光子对第1条、第2条、第3条至第n条亮纹的形成都有贡献。这样形成的亮纹亮度依次为第一条>第二条>第三条>……>第n条。若缝变窄,则在离开缝中心向上的极小位移处,光子最多可能有20万个引力子,经过该处的光子对第1条、第2条亮纹的形成都有贡献,这样就减小了第1条、第2条亮纹亮度的差异。也就是说,缝越窄条纹亮度越向两边分散,缝越宽条纹亮度越向中央集中。当缝很宽时,条纹亮度几乎全部集中在中央区域,两边的光子数几乎为零。这就是我们看到的光的直线传播现象。由于光子并不是一种波,其偏离直线传播(衍射)现象是由引力子引起的,所以光的衍射现象与缝的宽度无关。物体在阳光下的阴影边缘常常较模糊,这说明光子在经过物体表面时受到引力作用而偏离了直线传播。理论上来说只要光子的运动方向和引力方向不在一条直线上,光子就会偏离原来的运动轨迹,并且引力场越强光子弯曲的程度也越大。星光在经过恒星以后通常会发生弯曲,有时我们甚至能够看到星体后面的其它星体发出的光。

三、论电子结构与原子光谱现象

1.电子发光

原子是如何发光的?要弄清这个问题首先必须明白光子是由原子的哪一部分发出的。我们知道,原子是由原子核和核外的电子组成的,原子核的结合能很大,不可能发出光子,所以光子只可能是电子发出的。在化学反应中伴随着电子的得失,常常有能量(光子)放出,光电效应、激光现象及其它一些实验也证明了光子是由电子发出的,所以可以肯定原子发光其实是电子发出光子。既然电子可以放出光子,那么光子必然是电子的组成部分,或者说电子有一定的内部结构,光子是其组成部分之一;由于光子不带电,说明电子内部电荷的分布是不均匀的,因为如果电子内部电荷是均匀分布的,则光子就应该带电。原子中原子核和电子之间的距离很小,它们之间的静电力很强,因为电子内部电荷分布不均匀,所以在原子核强大的静电力作用下电子内部电荷将重新分布,甚至可能发生裂变,这就为电子放出光子创造了条件。当电子裂变放出光子后,它的各个组成部分结合的更加紧密,在适当的时候可能吸收一个光子,这就为电子吸收光子储存能量创造了条件。而电子正是通过不停地吸收、放出光子来和外界交换能量的。稍后我们将看到,原子正是通过电子不断吸收、放出光子来和外界完成能量交换的。一般来说,电子质量越大其内部各部分结合的越松散,在静电力作用下越容易发生裂变;电子质量越小其内部各部分结合的越紧密,在静电力作用下越不容易发生裂变。与原子核“幻数”相似,总有特定质量的电子的结合力相当大,比其它质量电子的结合力大许多,这些特定质量的电子往往对应于某些稳定的轨道。

有人认为物质发光是由于物质中的原子或分子受到扰动的结果,认为光子是由原子或分子发出的。其实这是一种错误的看法。我们知道,原子是由原子核和核外电子组成的,光子是一种物质实体,或者是由原子核发出的,或者是由电子发出的,除此以外再没有别的选择。说光子是由原子发出的,这是一种不确切的说法。

2.原子核和电子之间的磁力作用

两个相距一定距离的异种点电荷在静电力作用下必然会吸引在一起,因为静电力作用在两点电荷连线上。而原子核和电子不会吸引在一起。这就启示我们在原子核和电子中必然存在一种其它作用力。这个力就是原子核和电子之间的磁力。我们知道,在通以相同方向电流的两条平行导线间会产生磁力作用,在磁力作用下它们将彼此吸引,原子核和电子的相向运动正相当于通以相同方向电流的两条平行导线,在它们之间也将产生磁力作用。静电力的作用总是使电子获得指向原子核的向心速度,而原子核和电子之间的磁力则使电子获得切向速度,并且原子核和电子之间的相对速度越大,它们之间的磁力也越大。当原子核和电子之间彼此相对静止在一定远处时,在静电力和磁力的共同作用下,它们并不会吸引在一起。因为静电力使电子获得向心速度,磁力使电子获得切向速度,电子并不是沿着直线靠近原子核,而是沿着螺旋线靠近原子核。开始时螺旋线的半径为无穷大,电子作直线运动;一旦电子相对原子核的速度不为零,磁力开始起作用,电子的运动轨迹开始发生弯曲;当电子与原子核靠近到一定的距离时,电子和原子核之间的静电力恰好等于电子作圆周运动所需的向心力,此时电子处于平衡状态,螺旋线变成了圆。同样在电子离开原子核时也是沿着螺旋线运动的。在静电力作用下,电子总要尽量靠近原子核,在磁力作用下,电子有远离原子核的离心趋势,正是在这两种力作用下,电子处于稳定的平衡状态中。电子在原子核中处于稳定状态时,它的轨迹是圆。因为当电子的轨迹不是圆时,它总要受到磁力的作用,这个力使电子的切向速度增加、运动轨迹向圆靠近。而电子受磁力作用时它的运动轨迹就要发生变化,就不是稳定的,只有当电子的轨迹是圆时才不受磁力的作用,所以说电子在原子核中的稳定轨迹是圆。太阳系中的行星在太阳引力作用下,其运动轨迹可以是圆或椭圆,但在原子系统中,电子在原子核静电力作用下,其稳定轨迹只可能是圆而不可能是椭圆。

3.基态电子的稳定性

处于基态的电子为什么是稳定的?为什么不会被原子核吸收?人们通常认为:做加速运动的电荷会向外辐射能量.如果电子在原子核中做圆周运动,则它就有加速度,必然会不断地向外辐射电磁波,随着电子能量的减小它将沿着螺旋线落入原子核中,这样整个原子就是不稳定的,然而事实并非如此。于是人们推测电子在原子核中不可能做圆周运动。我们认为以上推断是错误的,电子的确在原子核中做圆周运动,其理由如下:第一,电子辐射电磁波并不是一个只出不进的过程。电子时刻不停地向外辐射能量,也在时刻不停地吸收光子,这是一个动态平衡过程。如果电子吸收的能量大于其辐射的能量则原子的温度升高,如果电子吸收的能量小于其辐射的能量则原子的温度降低,倘若没有外界能量输入,原子总会由于向外辐射能量而降低温度,只要物体的温度在绝对零度以上就会向外辐射电磁波。第二,电子在原子中的质量并非一成不变的。一般而言,电子离核越近质量越小,离核越远质量越大(这一点我们稍后证明)。第三,电子和原子核之间并非只有静电力作用,还存在磁力作用。正因为磁力作用的存在使电子在靠近原子核时切线速度不断增大,从而使其离心力逐渐增大,以致于可以与静电力抗衡维持电子在原子核中的稳定。

这里需要我们证明随着电子离核距离的减小,离心力的增加速度大于静电力的增加速度。设电子稳定时质量为M,速度为V,与原子核相距R,原子核电量为Q,此时静电力F正好等于电子作圆周运动的向心力,

离心力大于静电力,所以此时电子作离心运动,将回到距核R的轨道上。同样当电子受到远离原子核的扰动后,静电力F大于电子作圆周运动的向心力,电子将向原子核运动,最终要回到距核R的轨道上,这里不再证明。

另外我们认为,做加速运动的电荷会向外辐射电磁波这个提法不够确切,应该说做加速运动的自由电荷会向外辐射电磁波,而电子在原子核中做圆周运动时不会向外辐射电磁波。两者有什么区别呢?我们知道,在原子核和电子结合成原子的过程中要向外放出能量,即自由电子要在原子核静电力作用下裂变放出光子才能够成为原子中的电子,原子中的电子和自由电子是有区别的。自由电子的质量大于原子中的电子的质量,自由电子各部分结合得较为松散,受到外界扰动(有加速度)时会向外辐射电磁波;而原子中的电子质量小,各部分结合得较为紧密,受到外界扰动(有加速度)时未必会向外辐射电磁波,只有当外界扰动(加速度)足够大时才会裂变辐射电磁波,所以电子可以在原子中做圆周运动而并不向外辐射电磁波。

4.稳定轨道的形成

对于处于基态的电子来说,每秒会有许多光子与其作用。这些作用有指向原子核的,也有指向核外的。电子在吸收一个或几个光子以后质量增加,形成新的电子。我们先考虑指向核外的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R+Δr,我们知道,一定质量的电子总有与一条特定轨道与之对应,比如电子的质量为M时其轨道半径为R,那么当电子质量为M+Δm时就可能停留在半径为R+Δr的轨道。但这里我们少考虑了一个条件,那就是质量为M+Δm的电子的结合能。我们知道电子在每秒内会受到许多光子的扰动,假设质量为M+Δm的电子运行在半径为R+Δr的轨道上,若它受到一个指向原子核的扰动,离核距离变为R+Δr-r,此时原子核静电力对它的作用增强,若它的结合能小的话则电子立即裂变放出光子重新回到其原来的轨道R上;如果质量为M+Δm的电子内部的结合能非常小,以至于受到微小的扰动时立即裂变放出光子,那么它在半径为R+Δr的轨道上停留的时间也趋近于零,换句话说半径为R+Δr的轨道根本不存在;如果质量为M+Δm的电子内部的结合能非常大,以致于受到很大的扰动时它才裂变放出光子,那么电子就能够在半径为R+Δr的轨道上停留一段时间,这段时间就是原子的平均寿命。假设有一群电子处于同一激发态,由于每个电子受到的扰动情况不一样,有的电子受到的扰动大有的电子受到的扰动小,而只有电子受到足够大的扰动并运动到离核足够近的地方才会裂变放出光子,所以电子裂变回到基态的时间也不一样。处于同一激发态的原子的平均寿命和两个因素有关:一是电子的结合能,二是电子受到的扰动。电子内部的结合能与原子核“幻数”相似,只有特定质量的电子的结合能才是很大的,所以电子的轨道也是特定的、不连续的,其它质量的电子由于结合能很小,裂变时间极短,所以它们不可能稳定停留在原子中,也形成不了稳定轨道甚至根本就没有轨道。我们再来考虑指向原子核的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R-Δr,此时原子核对电子的静电力增强,电子立即裂变放出质量为Δm的光子,由前面的证明我们知道,此时电子的速度增大,离心力大于静电力,电子最终将停留在半径为R的稳定轨道上。也许有人会怀疑,这样看来电子可能存在的稳定轨道岂不是唯一的了?实际上由于电子在原子核外有几个不同的稳定质量,所以它也有几条稳定轨道,一定的质量总是与某一条特定轨道相对应。从这里我们可以看出,电子在原子核中的稳定轨道往往对应于电子结合能极大的质量,结合能小的质量由于在原子中不稳定因而不会形成稳定轨道。

5.电子结构与不同跃迁轨道

对于处于同一激发态的一群电子而言,设电子的质量为M+Δm,它们可能会有不同的跃迁轨道,放出的光子的能量(质量)也不同,但总是跃迁到离核近的电子放出的光子的能量(质量)大。电子从激发态回到基态的过程并不是先放出光子再回到基态,而是先回到比基态更近的地方放出光子然后才回到基态。当电子回到离核R-Δr处时,在静电力作用下电子裂变放出质量为Δm的光子,此时离心力大于静电力,电子将回到半径为R的稳定轨道上。那么电子为什么会有多条跃迁轨道呢?这说明处于同一激发态的电子内部结构(结合力)不同,有的结合力大,有的结合力小,结合力小的光子在离核较远的地方裂变,放出的光子能量也较小;结合力大的光子在离核较近的地方裂变,放出的光子能量也较大,电子的跃迁方式是由其内部结构决定的。同一质量的电子可能有多种裂变方式,再次向我们说明电子具有内部结构,在考虑原子光谱时一定要考虑电子的内部结构。处于激发态的电子在向基态跃迁时会发出光子;把原子的内层电子打掉以后外层电子会放出光子并向离核更近的轨道跃迁。这些现象启示我们:电子离核越近质量越小,电子离核越远质量越大。从这里也可以看出,电子质量越小其内部结合力越大。因为离核越近电子受到的静电力越大,而电子能够稳定存在说明其内部结合力越大。在同一个原子中,内层电子的质量小于外层电子的质量;同一个电子离核越近质量越小。

人们发射的人造卫星可以设定轨道,其轨道变化可以是连续的,但对原子核中的电子来说,其轨道变化则是不连续的。怎样理解这一点呢?让我们做一个假想实验。把两个带异种电荷的点电荷放置在一定远处,并且假定它们之间除了静电力以外不在受到其它力的作用,则最终它们将互相吸引在一起。无论怎样改变这两个电荷的质量、电量,结果都是相同的。这说明:用宏观电荷不可能模拟原子核和电子之间的作用力。说到这里,好事者马上就会解释,因为宏观电荷物质波的波长极短而电子物质波的波长较大,所以用宏观电荷不可能模拟原子核和电子之间的作用力。换一个角度来说,宏观物质和微观物质是有区别的,用宏观物质不能模拟微观物质。但区别究竟在哪里?一个是宏观物质而另一个是微观物质,这个解释近乎无聊了。还是让我们来仔细分析为什么用宏观电荷不可能模拟原子核和电子之间的作用力。我们知道,在静电力作用下,电子和原子核开始时相向运动,而后在磁力作用下沿着螺旋线相互靠近,正是由于原子核和电子之间的磁力使电子获得了绕原子核运动的切向加速度,并使整个原子处于稳定状态。那么,两个宏观点电荷之间的运动轨迹为什么是一条直线呢?这是因为宏观电荷的荷质比远远小于原子核和电子的荷质比,在静电力作用下宏观点电荷获得的最终速度也小得可怜,因此宏观点电荷之间因相对运动而产生的磁力也微乎其微,近似于零。所以宏观点电荷在静电力作用下表现为相向运动,其运动轨迹接近直线。从这里我们可以得出这样一个结论:虽然静电力作用在两个电荷的连心线上,但是仅在静电力作用下,电荷的运动轨迹不一定就是直线,两个电荷的荷质比越小,其运动轨迹越接近直线,反之则越接近曲线。那么,如果宏观点电荷的荷质比足够大甚至可以与原子核或电子相比时,是否可以用宏观点电荷模拟原子核和电子相之间的作用呢?也不能!如果宏观点电荷的荷质比足够大,甚至可以与原子核或电子相比,那么这样的两个异种电荷在静电力作用下会沿着螺旋线相互接近,最终会处于稳定状态,但由于宏观点电荷的质量不会发生变化,因此最多只能形成一条稳定轨道,而不可能象电子那样在原子核中有多条稳定轨道。

在多电子原子中,各电子间有什么主要区别呢?有人认为离核越近的电子能量越低,越不容易失去;离核越远电子能量越高越容易失去,但这还不是最主要的区别。多电子原子中各电子间最主要的区别在于它们的质量不同。离核越近的电子质量越小,离核越远的电子质量越大,同一个原子中没有两个质量相同的电子存在。在氢原子中也是电子离核越近质量越小,离核越远质量越大。

6.原子的吸收光谱和明线光谱

在原子的吸收光谱中,只有特定能量的光子才被电子吸收;在原子的明线光谱中,同样也只能发出特定能量的光子。于是人们认为电子只能吸收或发出特定能量的光子。我们知道,只要物体的温度在绝对零度以上,就会向外发射电磁波,物质的发射光谱是连续光谱。那么其它能量的光子是由哪一部分发出又是如何发出的呢?显然还是由电子发出的,因为原子核不可能发出光子。当我们用电子束轰击汞原子蒸汽时,可以发现当电子的能量为某些特定值时,汞原子强烈地吸收其能量;对于其它能量的电子汞原子只吸收其一部分能量。汞原子只吸收电子束的能量实际是汞原子中的电子吸收电子束的能量。可见,原子中的电子可以吸收各种能量(质量),但对特定的能量(质量)吸收能力十分强。在原子的吸收光谱中,电子可以吸收各种能量的光子,只不过大部分光子被电子吸收后与电子的结合能并不大,受到微小的扰动后立即放出光子,由于该过程极短,所以当连续光通过原子蒸汽时,大部分光子被吸收后又很快放出,看起来似乎没有与原子作用,只有极少数具有特定能量的光子与电子的结合力极大,这类光子被吸收后要保持一段时间才可能放出,故吸收光谱会出现几条暗线。至于原子的明线光谱,与其说是明线光谱还不如说原子的发射光谱中有几条线特别亮。这是因为处于激发态的电子比别的能量状态的电子稳定,停留的时间较长,所以在一群原子中处于激发态的电子数目总比别的状态的电子数目多,因而它们发出的光也更亮一些。事实上原子的发射光谱不仅仅是明线光谱,明线光谱只是原子发射光谱中极个别的具有代表性的光子,原子几乎可以发出小于一定能量的任何光子。电子在原子中时刻不停地吸收各种能量的光子,由于电子与绝大部分光子的结合力都不大,所以电子也在时刻不停地放出各种能量的光子,因此物质的发射光谱往往是连续光谱。

许多人都认为原子只能吸收特定能量的光子,原子也只能放出几种特定能量的光子,因为他们看到原子的吸收光谱中仅有几条特定频率的暗线,而子的发射光谱也仅仅是几条特定频率的明线而已。其实这种看法是错误的。我们不妨这样分析,若原子只能吸收特定能量的光子,则只有特定能量的几种光子对物体具有明显的热效应,并且每种物质的敏感光子不同。实际上并非如此。我们知道,红外线具有显著的热效应,对任何物质都是如此。此外,物质的发射光谱是连续光谱,这也说明原子或分子的吸收(或发射)出的光子是广谱性的。为了充分理解这个问题,需要作进一步的说明。现代物理学指出:氢原子吸收的光子能量只能是13.6/n*n电子伏(这里n取自然数),也就是13.6、3.4、1.5……电子伏,并且认为对于10电子伏、3电子伏这样的其它能量的光子不会被电子吸收。我们认为:电子吸收的光子能量是连续的,对于10电子伏、3电子伏这样的其它能量的光子同样会被电子吸收,只不过电子吸收这些光子后,电子和光子的结合能不够大形不成稳定的轨道,所以电子又很快放出该光子,由于作用时间极短,以致于我们误认为电子没有吸收光子。换一个角度来考虑,当大量的原子吸收了能量连续的光子时,由于大部分电子与光子的结合力都不大,所以这些电子在极短的时间内(设为t)就会裂变放出光子,而能量为13.6、3.4、1.5……电子伏的光子与电子的结合力很大,所以电子裂变放出光子的时间也很长,如果这个时间是100t,则电子放出相应的光子也比其它光子亮100倍;如果这个时间是1000t,则电子放出相应的光子也比其它光子亮1000倍……,这样,在原子的明线光谱中自然就形成几条特殊的亮线了。由此我们得出一个结论:在原子的发射光谱中,任意一条谱线的亮度与处于相应激发态的原子的平均寿命成正比,原子的平均寿命越长,谱线的亮度越大;原子的平均寿命越短,线的亮度越小。当然这有个前提,那就是被原子吸收的连续光谱中各种能量的光子是平均分布的。

7.热现象的本质

由于电子时刻不停地受到光子的扰动,不断地吸收各种能量的光子,也不停地放出各种能量的光子,所以电子在原子核中并不是处于稳定状态,它的运动轨迹也不是正圆。一般来说,温度越高,电子受到的扰动越大,其运动轨迹偏离圆形的趋势越明显;温度越低,电子受到的扰动越小,电子的运动轨迹越接近圆(只有在绝对零度时,电子的运动轨迹才可能是正圆)。从这个意义上来说,原子模型可以看作是卢瑟福的行星模型和电子云模型的结合:温度越高,原子模型越接近行星模型;温度越低,原子模型越接近电子云模型(但在某一瞬间,电子在原子核中有确切的位置)。温度的高低反映了电子偏离稳定轨道程度的大小,单个原子(分子)也有温度。电子偏离圆形轨道的程度越大,表明该原子的温度越高,电子裂变后放出的能量也越大。所以温度升高时物体发出的电磁辐射向短波方向移动。对于温度一定的物体来说,它内部包含了大量的原子,这些原子中的电子由于受到的扰动大小不同,它们裂变放出光子的质量也不同,但大致满足正态分布,即发出的光子中能量特别大的和能量特别小的都是极少数。由前面的论述我们知道,电子在原子核中的能量大小并非定值:电子离核越远电势能越大,离核越近电势能越小。与宏观电荷一样,电子的电势能是其与原子核距离的函数,电子和原子核间的作用力服从库仑定律。温度越高,电子离核越远,电势能也越大,因而也越容易失去;温度越低,电子离核越近,电势能也越小,也越不容易失去。

什么是热现象呢?这似乎是不是问题的问题。人们通常认为:热现象是大量分子无规则运动的反映,温度越高分子的平均速率越大,温度越低分子的平均速率越小。果真如此吗?我们知道,太阳时刻不停地向外抛射高能粒子,这些粒子的速度接近光速,宇宙中其它恒星也在不停地向外抛射高能粒子,所以在宇宙空间任何地方,都有许多高能粒子正在做杂乱无章的运动,这些粒子的速度通常都接近光速或亚光速。这样看来宇宙空间的温度应该很高(至少比恒星内部高),宇宙空间应该是很明亮的。但事实上,宇宙空间是漆黑的一团,温度只超过绝对零度一点。这说明粒子运动速度大未必温度就很高,物体的温度不是由组成它的原子(分子)的平均运动速度决定的。温度升高,原子(分子)的平均速度增大。但反过来,原子(分子)的平均速度增大并不意味着温度升高。我们知道,只要物体的温度在绝对零度以上就会向外辐射电磁波,而物质向外辐射电磁波的原因是电子受到扰动后在静电力作用下放出光子,并且光子受到的扰动越大放出的光子能量也越大,相应的物体的温度也越高。从这个意义上来说,原子是储存热量的最小单位,单个原子也有温度,因为它可以储存热能。但单个的带电粒子如质子、电子在不受外界任何扰动时,即便速度再大也不会向外界释放能量,因此它们都不能储存热能,因而也没有温度。应该看到,原子(分子)的高速运动所具有的能量仅仅是动能而不是热能,和宏观物体一样,速度大未必温度高。宏观物体的速度与其温度无关,原子(分子)也是如此。一个原子(分子)的速度比其它原子(分子)的速度大,只能说明它的动能大,储存的热能未必就多。热能仅储存于原子核和电子形成的原子体系中,两者中缺少任何一个都不能储存热能。在日常生活中我们用红外线(微波)加热而不用紫外线,紫外线的热效应远远小于红外线(微波)。这是因为红外线(微波)光子的质量小,和原子中电子的结合力大(包括内层电子),而紫外线和原子中电子的结合力小(它几乎不与内层电子作用),所以红外线往往容易被物体吸收,其热效应当然比紫外线强。

再进一步考虑,什么是热现象呢?热现象和温度之间有什么关系呢?我们认为:对一个物体而言,倘若它储存了热能它就有温度,并且它储存的热能越多它的温度就越高,反之则温度越低;倘若物体没有储存热能则它就没有温度或者说它的温度是绝对零度;倘若物体不能储存热能,则用温度来衡量该物体是没有意义的。我们知道,原子是储存热能的最基本单位,原子的热能实际上是储存在电子中的。单独的原子核、单独的电子都不能储存热能,所以单独的原子核、单独的电子都没有温度。同样的道理,光子也不能储存热能,它仅仅是热能的载体,因为单独的原子可以储存热能,所以单独的原子有温度,但由于单独的光子不能储存热能,所以单独的光子没有温度,不同能量的光子之间只有能量的差异而没有温度的差异,用温度来衡量光子是毫无意义的。倘若光子也有温度,则在太阳系中离太阳越近的空间温度就应该越高,离太阳越远的空间温度就应该越低,事实上完全不是这么回事。

光子范文篇5

当人们用望远镜观测银河系以外的星系时,可以发现绝大多数星系光谱都存在红移或蓝移现象,并且越远的星系其光谱红移值越大。根据多普勒效应:星系光谱存在红移说明星系正离我们远去,星系光谱存在蓝移说明星系正向着我们运动。需要指出的是越远的星系红移值也越大,看起来所有的星系都好象以银河系为中心向外爆炸形成的一样,越远的星系离开我们的速度也越大。鉴于此有人提出宇宙大爆炸假说:认为宇宙是由150亿年前发生的一次大爆炸形成的,人类居住的银河系则是宇宙的中心。可是人们在观测银河系和河外星系时,却并没有发现银河系有什么特别之处。有人据此怀疑宇宙大爆炸假说;也有人从星系的演化推算出宇宙的年龄大于150亿年;还有人认为若宇宙大爆炸假说是正确的,那么宇宙辐射在各个方向上就会表现出各向异性;更有人担心宇宙的膨胀没有尽头,遂认为宇宙的膨胀和收缩是交替进行的……。但不管怎样,大部分人还是相信“眼见为实”,由星系光谱的红移现象承认了宇宙大爆炸假说。更有人把红移现象与宇宙背景辐射和宇宙元素丰度并作宇宙大爆炸假说的三大支柱。那么宇宙是否发生过爆炸并仍在向外扩张,年龄是否只有150亿年呢?非也!

1.星系光谱红移原因

20世纪初,当人们用望远镜观测银河系以外的星系时,发现绝大多数星系光谱都有红移现象,并且越远的星系其光谱红移值越大。有人认为星系光谱红移是因为星系正在离我们远去,从而得出这样的结论:所有的星系都是以我们银河系为中心向外爆炸后形成的,越远的星系离开我们的速度也越大;宇宙中所有的星系都在彼此分离,并且越远的星系相互分离的速度越大。值得一提的是,我们银河系正处在爆炸中心,足以值得我们自豪的是:银河系是宇宙中独一无二的星系—因为它是宇宙的中心。更让我们惊奇的是,银河系自身也在不断运动着,然而无论它运动到哪里,它始终是银河系的中心。我们解释不了银河系为什么是宇宙的中心,因为银河系也和其它星系一样,并沒有什么特别之处。有人以为,银河系处于宇宙的中心是一个巧合,虽然银河系从上个世纪至今一直在不断运动,但它走过的距离和整个宇宙空间的尺寸比起来是微不足道的,所以银河系目前仍然处在宇宙的中心,这种看法未免有些牵强。因为人们在观测近处的星系时,发现近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系正在以某一个中心为起点向外膨胀。因此“银河中心说”颇值得怀疑。还有的人虽然承认宇宙大爆炸假说,但不承认“银河中心说”,他们不认为银河系是宇宙的中心。这种观点同样也是站不住脚的。我们可以这样分析:如果宇宙大爆炸假说是正确的,那么宇宙中所有的星系必定在以某一个中心为起点向外膨胀,星系之间彼此互相分离。目前我们观测到近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系在以某一个中心为起点向外膨胀。倘若我们不是在宇宙的中心而是处于偏离宇宙中心的任一点处,因为在我们周围的星系都没有相互分离的趋势,也没有以某一个中心为起点向外膨胀,这样一来,倘若宇宙中任一点处的星系都没有相互分离的趋势,那么整个宇宙也不可能在膨胀,即宇宙大爆炸假说是错误的。

前事不忘,后事之师。人类文明发展到今天,“地心说”和“日心说”都被证明是为科学,难道我们还要重蹈覆辙提出“银河中心说”吗?愚以为,我们应当承认这样一个假设,那就是:银河系按目前的速度运动下去,100万年,100亿年以后,我们仍然会发现自己处在宇宙的“中心”,无论我们处在宇宙的任何地方,中心也好,边缘也好,我们都会发现宇宙中越远的星系光谱红移值也越大,就好象我们处在宇宙的“中心”一样。事实上,这个“中心”是光子在宇宙空间中的传播特性引起我们视觉上的错误,“眼见”未必“为实”,我们不能过分相信“眼见”的东西。

红移现象是否由观测者自身的运动引起的呢?不是的!如果红移现象是由观测者自身的运动引起的,那么我们将观测到与我们相向运动的星系光谱将发生蓝移而与我们相背运动的星系光谱将发生红移,然而事实并非如此。再者,虽然我们“坐地日行八万里”,但这个速度和光速比起来实在算不了什么,不至于影响观测结果。换句话说,我们在观测星系红移值时,观测者自身运动速度的影响可以忽略不计。红移现象说明光子与观察者之间的相对速度变小了。产生这种情况有两种可能:第一是星系正离我们远去,第二是光子在穿越宇宙空间时速度变小了。这两种情况都可能导致星系光谱红移。我们认为导致星系光谱红移的原因是后者。光子在穿越宇宙空间时会与各种粒子(比如引力子)相互作用从而使其速度逐渐减小。当然单个粒子与光子作用时间极短,引起光子速度的改变量也是极其微小的,以致于我们观测不到。随着光子穿越宇宙空间距离的增大,与光子作用的粒子数目也逐渐增多,光子速度的减小量也越明显。可以推测:光子在穿越一定的宇宙空间距离后速度将减小到零。由于光子速度为零故相对我们的能量也为零,这样的光子当然不会被我们观测到。可见用光学法观测宇宙空间尺度时有一个极限:150亿光年(也有人认为是200亿光年)。在这个尺度以外的星系发出的光子由于在没有到达地球时速度已经降低到零,所以这样的星系不可能被我们观测到,至少目前还没有办法观测到。也有人认为,红移现象是由光子频率减小引起的,即认同第一种可能:认为星系正离我们远去。这种观点听起来很有道理,却经不起分析。我们知道,星系离我们远去时会引起光子频率减小,但各种不同频率光子的频率减小量应该相同,反应在星系光谱上,各种不同频率光子的红移量应该相同。因此,不论星系离我们多远,星系光谱虽然发生红移但不应该变宽,但事实上远处星系光谱却被拉宽了(星系光谱不会变宽是指星系光谱中任意两条谱线的距离恒定,虽然它们都发生了红移,但它们移动的距离相等,因此各谱线之间的距离不变)。而且能量越小的光子红移值越大,能量越大的光子红移值越小。不同频率光子的频率减小量不同,说明红移现象不是由光子频率减小引起的。即第一种可能站不住脚。假设宇宙中所有的星系都是静止的,宇宙空间中的物质是均匀分布的,那么光子穿越宇宙空间时的速度衰减量仅与其通过的空间距离有关。光子穿越的宇宙空间越长,其速度衰减量也越大。这样星系光谱的红移值仅与其离我们的距离有关,离我们越远的星系红移值也越大,就好象越远的星系正在以越快的速度离开我们一样。这也正是哈勃定律所揭示的:星系远离银河系的速度ν与距离成正比,ν=H*D,其中H为哈勃常数。实际上宇宙中各星系都在不断运动着,宇宙空间中的物质也并非均匀分布的,造成星系光谱红移的原因也很多,所以光谱的实际红移值要考虑许多情况。

2.谱线红移与光子速度衰减

光子与宇宙空间中的粒子是如何作用的呢?可以设想,宇宙空间中存在许多比光子质量小得多的粒子(比如引力子)。由于光子在与粒子作用后仍然是光子,可以认为光子仅与粒子发生了弹性碰撞。既然是弹性碰撞,我们知道,二者质量越接近光子损失的能量越大。由于光子的质量远远大于引力子的质量,所以在不同频率(质量)的光子中,频率(质量)较小的光子损失的能量较大。于是经过同一段宇宙空间以后,在不同频率(质量)的光子中,频率(质量)较大的光子损失的能量较少,频率(质量)较小的光子损失的能量较大,例如红光损失的能量比紫光损失的能量多。由于不同频率(质量)的光子在宇宙空间运动时都损失了能量,这样整个星系的光谱将向红端移动,但由于红光损失的能量多向红端移动的距离大,而紫光损失的能量少向红端移动的距离小,于是整个光谱被“拉宽”了。如果不同频率(质量)光子的能量损失率相同,虽然它们都产生红移,但是它们红移的距离相等,这样星系光谱虽存在红移但不会被“拉宽”,星系光谱存在红移而且被“拉宽”说明两点:第一光子在穿越宇宙空间时速度会衰减,第二不同频率(质量)的光子速度衰减率不同。显然,由于不同频率(质量)光子的能量损失率不同,各种光子的速度衰减量差异将随着空间距离的增加而增大,这样星系光谱被“拉宽”的程度与其离我们的距离有关,离我们越远的星系其光谱被拉宽的程度也越大。另外,星系光谱被拉宽时还有一个特点,那就是能量大的光子被拉宽的程度小,能量小的光子被拉宽的程度大。也就是说,越靠近红端光谱被拉宽的程度越大,越靠近紫端光谱被拉宽的程度越小。考虑到星系引力场的影响,实际情况还要复杂一些。

上面我们谈到光子在宇宙空间运动时速度会逐渐减小,这和人们熟悉的“真空中光速不变”的看法相矛盾。实际上宇宙空间并非真空,即使宇宙空间是绝对真空它还存在引力场。换句话说,光子在真空中速度变不变的问题,实际上是光子受不受引力作用的问题。如果光子不受引力作用,那么真空中光速不变,但这样一来不论星体的引力再强,对光子都没有影响,从而宇宙中也不可能产生“黑洞”了,而现在的黑洞理论基础将不复存在;假如光子受引力作用,则就不应该有“真空中光速不变”的结论。有人对此这样解释:宇宙空间中各星体的引力分布在不同的方向上,它们的作用力相互抵消,因此光子在宇宙空间中的速度不变。这种解释也是站不住脚的。我们知道在太阳系内,引力的方向是指向太阳的;在银河系里引力的方向是指向银河系中心的,所以局部的宇宙空间引力总是有一定的方向的。我们认为光子作为一种物质实体,它的速度并非一成不变的。无论在真空中还是在介质中,它的运动速度都会越来越小。所以,光速不变只是一个神话,光年也不能作为距离单位,因为光子在前一年中走过的路程总比后一年中走过的路程长。

3.光子在引力场中的运动

星光在通过太阳附近时会受到太阳引力的作用而发生弯曲,说明光子也会受到引力的作用。其实光子也有质量,当然会受到引力作用了。通常我们认为:引力场中物质的加速度仅与引力场的强弱有关,而与物质的质量无关。如在地球表面不管是1吨的物体还是1千克的物体,其每秒获得的速度增量都是9.8米/秒。但引力场中光子的加速度与其质量有关:质量越小的光子加速度越大,质量越大的光子加速度越小。既然光子也受引力作用,那么很自然,光子在离开引力场时必然会被减速,在进入引力场时必然会被加速,在垂直于引力方向(或其它方向)运动时受引力影响其运动轨迹也会发生变化。既然光子在离开引力场时会被减速,而且质量越小的光子速度衰减量也越大,那么星体发出的不同频率的光子就有不同的速度。一般而言,星体引力越强,其发出的光速度也越小;当星体引力足够强时甚至可能使一部分光子摆脱不了星体引力的束缚,产生黑洞现象。对同一星体而言,在它发出的光中,质量大的光子速度大,到达地球的时间也越早;质量小的光子速度小,到达地球的时间也越晚。我们通常认为不同频率的光同时到达地球,这其实是错误的。关于这一点我们可以用实验来证实。当星体发生爆发或其它异常时,总是能量较大的X射线或γ射线先被我们观测到,其次才是可见光,然后才是红外线。虽然理论上如此,但在实际观测中总有这样或那样的因素及别的解释使大部分人不相信这一点。如果条件允许的话,我们可以用一个实验来证实我们的观点。在离我们很远的宇宙飞船上以两种不同能量的光子同时发出一种信号,这两种光子的能量差异越大它们到达地球的时间差异也越大。实际上考虑到不同能量的光子在同一介质中的传播速度不同,我们应该想到不同频率的光子在真空中的传播速度也不相同。由于光子在穿越宇宙空间时速度逐渐减小,并且质量小的光子速度衰减得快,可以想象,在经过一段相当长的距离以后,质量小的光子速度已经衰减到零而质量大的光子速度不为零,这样我们就只能观测到质量大的光子。若星体离我们更远一些,则我们只能观测到质量更大的光子……,随着空间距离的增大,最终我们将看不到远处星体发出的光,这个距离就是我们现在认为的宇宙极限--150亿光年。人们在观测宇宙时总有一个错误想法:由于真空中光速不变,所以不管离我们多远的星系,只要足够亮就可以被我们发现。事实上宇宙空间并非真空,光子在其中穿行时速度会逐渐减小,所以任何星系发出的光只能传播一定的距离,也正因为如此,不管我们在宇宙中任何地方,始终只能看到有限的宇宙空间。换句话说,目前我们能够观测到的宇宙空间的尺度实际上是光子在宇宙空间中传播的最远距离。

4.光子在宇宙空间中的运动

实际上光子在宇宙空间运动时并不总是做减速运动。在光子离开星体时它要挣脱引力的束缚而作减速运动,当它脱离星体的引力场在空间自由运动时,也作减速运动;如果它进入另一个星体的引力场向着该星体运动时,就会在该星体的引力作用下作加速运动。光子就这样减速--加速--减速--加速……不停地穿越宇宙空间,直到其速度为零。倘若星体离我们很近而引力又很小,从该星体发出的光速度衰减量不大,但进入银河系时光子的速度增加量有可能很大,当光子的速度增加量大于其速度衰减量,或者说大于刚离开星体表面时的速度,在我们看来该星体光谱就发生了蓝移。忽略距离因素,由于星体自身在不断运动,这样它相对银河系引力场的强弱也可能发生变化,所以其光谱也可能有规律的发生红移或蓝移。通常情况下,宇宙空间对光子的减速作用总大于加速作用,所以星系的光谱以红移的居多。

光子在引力场中速度变化的问题许多人恐怕不相信也不能理解。一些人认为光子没有静质量,况且光子是一种波,在引力场中的运动规律和宏观物质不同。其实持这种观点的人把光子神话了,弄的不可捉摸了。现在大多数人都接受了“黑洞”的概念,认为当一个星体的引力足够强时甚至连光子也逃脱不了,因而是漆黑的一团。这里实际上指出了光子也会受到引力作用。既然光子也受引力作用,那么它在引力场中的加速与减速自然就可以理解了。稍后我们将看到,引力作用是造成衍射现象的重要因素之一。

5.类星体

一个很明显的事实是:宇宙中离我们越远的星体能量越大,通常类星体离我们的距离都在10亿光年以上,并且远处星体发出的光中能量较大的光子占有很大的成分。有人把这作为支持宇宙大爆炸的依据,认为:若宇宙中物质是均匀分布的话,则在我们银河系或其周围就应该有象类星体这样的高能星体存在。为什么我们在近处发现不了类星体呢?一些人看见远处的星体发出的光中含有大量的X射线或γ射线成分,就推测此类星体存在着目前尚不为我们知道的能量源。这种观点未免有些片面。实际上宇宙中大部分恒星的能量都差不多,能量特别大的和能量特别小的只是极少数,恒星的能量呈中间多、两头少的分布态势。从远处的恒星发出的光,在经过漫长的宇宙空间以后,能量小的光子由于速度衰减率大而停了下来,不被我们观测到;只有X射线和γ射线才能到达地球。所以我们观测到该星体的光子中,X射线和γ射线占有很大的成分,以致于我们误认为这类星体只向外发出X射线和γ射线。实际上这类星体也向外发射可见光和红外线,但是可见光和红外线由于速度衰减到零故我们观测不到。这就导致我们观测到极远处的星体,其颜色通常是蓝色或紫色,事实上可能和该星体的真实颜色相差极大。这说明我们看到的星体的颜色未必就是星体的真实颜色,星体的颜色是由其自身能量状况和离我们的距离决定的,星体离我们的距离越大往往使其颜色中的蓝色和紫色成分增加。另外,我们认为类星体离我们非常远,是因为类星体的红移值很大。也就是说我们没有直接证据表明类星体真的离我们很远。考虑到光子在引力场中的运动,我们知道:当星体的引力足够大时,其发出的光子速度衰减量也较大,因而该星体的光谱也将发生较大的红移。这就是说,引力因素也可以使星系光谱产生红移。倘若星体引力足够大又离我们很近,由于星体红移值较大,往往导致我们认为该星体离我们很远。举例来说,假设有一个引力较大的星体处于银河系的中心,由于该星体引力很强,导致它发出的光子速度衰减量极大,我们在观测其光谱时就会观测到很大的红移值,根据该星体很大的红移值我们就会认为它离我们非常遥远,绝不会想到它就在银河系中心。

如何解释类星体离我们那么远而其发射的X射线和γ射线又是如此强烈呢?只有两种可能。第一,类星体的能量非常大,向外发出的X射线和γ射线非常强;第二,类星体离我们并没有原先认为的那么远,类星体光谱的红移是由类星体的引力造成而并非由距离因素造成的。我们认为两种因素都有。因为如果类星体离我们非常远,那么我们观测到其向外发出的X射线或γ射线就不可能很强;倘若类星体的能量不是很大,它的引力场也不可能很强,不足以使其光谱产生较大的红移。这说明:星系光谱发生红移可能是距离因素造成的,也可能是引力因素造成的,红移值大的星体未必就离我们远。那么,如何区别星体的引力红移和距离红移呢?对观测者而言,由距离因素造成红移的星体发出的光不可能很强,而由引力因素造成红移的星体发出的光往往很强,特别是X射线或γ射线的成分多。类星体的发射光谱和吸收光谱的宽度不同,通常吸收光谱的宽度比发射光谱窄,为什么呢?我们知道,吸收光谱是由于光子经过大气后产生的,这说明类星体周围也存在气体。光子从高温星体内部发出以后,总会有一部分光子没有被气体吸收而直接射向宇宙空间,这些光子形成发射光谱;还有一部分光子在与气体作用后,频率(质量)大的光子损失的能量大,频率(质量)小的光子损失的能量小;光子离开类星体在宇宙空间中运动时,则是频率(质量)大的光子损失的能量小而频率(质量)小的光子损失的能量大,总的看来各种不同频率的光子速度差异减小,所以其光谱红移值也较发射光谱小。实际上类星体的吸收光谱还可能有几种不同的宽度。

6.黑洞与星体引力

最初在人们考虑黑洞时,认为它的引力强到连光子也逃脱不了,因而是漆黑的一团,黑洞是宇宙中物质的坟墓。后来人们认为黑洞可以向外发出X射线和γ射线。同样是光子,能量大的可以逃脱,能量小的逃脱不了,说明(黑洞的)引力对光子的作用是不一样的。事实上我们知道当星体的引力逐渐增强时,总是质量较小的光子逃脱不了,质量较大的光子则可以摆脱星体的引力,并不是所有的光子全部被吸入星体中。所以从这个意义上来说,狭义上的黑洞仅指引力强到可见光不能脱离的星体,即在可见光波段观测不到的星体;广义上的黑洞指引力强到使一部分光子不能脱离的星体,即在某一能量较小的波段观测不到的星体,这里广义上的黑洞甚至可能非常亮,可以被我们肉眼看到,但在红外线波段或能量更小的波段却观测不到。从理论上讲,“黑洞”并不黑,至少它可以向外发射X射线和γ射线或能量更高的光子,完全不向外抛射粒子的黑洞是不存在的。那么宇宙中黑洞存在吗?当然存在了。当星体离我们足够远,以致于该星体发出的红外线速度衰减为零而不被我们观测到时,它就像一个“黑洞”;若星体离我们再远一些,可见光不再为我们观测到,只能观测到X射线和γ射线,这时它就是漆黑的一团,成为名副其实的黑洞;而宇宙中150亿光年以外的星体对我们来说是完全彻底的黑洞,因为我们完全观测不到它们。除了因空间距离造成“黑洞”现象以外,星体的引力也可以造成黑洞现象。黑洞现象并不是我们原先想象的那样:“当星体的引力足够大时,所有的光子都被吸入星体中,整个星体变成黑暗的一团”。当星体的引力逐渐增大时,它对光子的束缚作用也逐渐增强。星体的引力足够大时,红外线光子将摆脱不了星体引力的束缚,而可见光、紫外线则可以摆脱星体引力的束缚;星体的引力再增大时,可见光将摆脱不了星体引力的束缚,而紫外线则可以摆脱星体引力的束缚;若星体的引力再增大,可能只有γ射线放出。应该明确指出:黑洞现象是与星系光谱的红移紧密相连的。若某一星体的光谱不存在红移现象,则它一定不是黑洞;若某一星体的光谱存在红移现象,则它可能是黑洞也可能是距离因素造成的。

总的来说,我们对黑洞的认识经历了三个阶段:第一阶段认为黑洞的引力足够强,所有的光子都不能摆脱黑洞的引力,因而整个星体是黑暗的一团;第二阶段认为黑洞可以向外发出强烈的X射线或γ射线,人们认识到黑洞的引力对不同能量光子的作用不同;第三阶段也就是现在正在探索的阶段。应该明确指出:与黑洞现象紧密联系的因素有两个,引力因素和距离因素。以往我们在考虑黑洞现象时往往只考虑引力因素而忽略了距离因素,这就导致我们认为整个宇宙空间仅有150亿光年,对150亿光年以外的宇宙空间,认为看不见的就是不存在的。

7.恒态宇宙

也许有人会问,既然光子的速度能够降低到零,那么宇宙中会不会堆积越来越多的光子呢?不会的!光子作为物质的一种存在方式,它不是永恒的,在一定条件下光子可以转化为别的物质,也就是说光子是有一定寿命的。任何一个光子不可能永远存在下去,它必将转化为别的物质形式。宇宙中的物质无时无刻不在运动,所以宇宙中不会堆积越来越多的光子。虽然我们目前并不知道光子是如何转化为别的物质的,但我们依然相信整个宇宙是稳定的、恒态的,而局部宇宙则可能是不稳定的,处于演化过程中的。同样的道理,整个宇宙也不会被光子均匀照亮。由于光子在宇宙空间中运动时速度逐渐减小,所以任何星体发出的光只能传播到有限远处。也正因为如此,我们所观测到的宇宙始终是有限的。如果想观测更远的宇宙空间,一个方法是派出宇宙飞船,另一个办法是在宇宙空间中建立许多中转站,在光信号速度未衰减到零以前接受、放大、转播它。理论上讲,只要中转站的数量足够多,我们就可以看见任意远处的宇宙空间。

8.浩瀚宇宙

假设我们能够乘座一艘高速飞行的宇宙飞船遨游太空,在刚离开地球时,我们可以观测到150亿光年的宇宙,离我们越远的星体其红移值也越大,远处的星体放出强烈的X射线或γ射线。随着我们飞行距离的增大,我们会发现银河系的红移值越来越大,并且其颜色逐渐偏蓝,而原先我们观测到呈蓝色或紫色的星体颜色逐渐偏红,最终银河系将消失在我们的视野之外。当我们飞到离银河系150亿光年的地方,我们发现展现在我们面前的宇宙范围仍然有150亿光年;而原先我们认为正在以很大速度分离的星体或膨胀的宇宙空间并没有膨胀。无论我们飞到哪里,始终只能看见150亿光年的宇宙空间,也始终能够看见150亿光年的宇宙空间,宇宙是无限的;并且我们始终是宇宙的“中心”,因为所有的星体看起来所有的星体都好象以我们为中心向外爆炸形成的一样,越远的星系(红移值越大)离开我们的速度也越大。我们认为,宇宙是无始无终的,物质的存在是永恒的,对某一特定的物质形态有其产生和消亡的过程,但整个宇宙不存在产生和消亡的过程,它是自始至终存在并且不会消亡的。同时也应该看到,宇宙是无限的,不会仅仅只有150亿光年的空间。

从上个世纪以来,人们已经探索到了上百亿光年的宇宙空间,然而这只不过是苍海一粟。也许还要几十年甚至上百年人类才能认识到宇宙的无限性,但只要天下有志之士携手合作,这一天定会早日到来。

二、浅谈光的衍射

通常情况下光总是直线传播。但当光线经过足够窄的窄缝时将形成明暗相间的衍射条纹。由于光子不带电,在电磁场中不偏转,所以光子的衍射不是电磁力作用的结果,而是引力子与光子作用产生的。光子与引力子作用不是一个简单的碰撞过程,而是一个极为复杂的过程。在光子与引力子相遇的一瞬间它们形成一个混合体,这就打破了结合前光子内部各部分的平衡,混合体内部存在着排斥力和凝聚力两种作用。若排斥力占主导作用,则混合体将在极短的时间内“裂变”放出引力子;若凝聚力占主导作用,则混合体将形成一个新的光子。那么满足什么条件的混合体(光子)才是稳定的呢?经典电磁理论指出:所有光子的能量均为某个最小能量的整数倍。也即所有光子的质量均为某个最小质量的正整数倍,只有这样的光子才能稳定存在。当然这并不表明能量为某个最小能量的非整数倍的光子就不存在,只不过由于它们极不稳定,在形成后瞬间就“裂变”生成能够稳定存在的光子,目前我们还没有观测到或注意到这类光子罢了。从这里我们可以看出,与原子核一样,所有光子的质量均为某个最小质量的正整数倍,说明光子也有一定的内部结构,某些质量的光子由于极不稳定,在其形成后瞬间就“裂变”生成能够稳定存在的光子,这就造成稳定存在的光子质量的不连续。言归正传,由于引力子质量远远小于光子的质量,所以光子不可能吸收一个引力子形成新的光子(因为这样的光子是不稳定的)。但是若在同一时刻,光子与许多引力子相互作用,而这些引力子质量之和又大于最小光子的质量,光子就有可能吸收质量和等于最小光子质量的引力子数目而形成新的光子。举例来说,若最小光子的质量是引力子质量的10万倍,那么当同一瞬间有15万个引力子作用于光子时,光子只可能吸收10万个引力子,另外5万个引力子不被光子吸收,仅对光子产生微小的冲量。倘若在同一瞬间有9万个引力子作用于光子,那么这9万个引力子都不会被光子吸收,它们仅对光子产生微小的冲量。光子可能吸收的引力子数目只可能是10万的正整数倍。只有光子吸收引力子形成新的光子才能全部吸收引力子的冲量,否则的话,光子仅受到极小的冲量。

现有一个宽度为α的窄缝,绝大多数光子经过窄缝时虽然与许多引力子作用,但大多不会形成新的光子,这样大部分光子仅以极其微小的发散角投射到屏幕上,形成宽度略大于α的中央亮纹。由于衍射条纹是对称分布的,所以我们只讨论一半。拿中央亮纹以上的条纹来说,这些条纹是由缝中心到缝顶部经过的光子偏转形成的。从缝中心到缝顶部经过的光子,若吸收10万个引力子则形成稳定的新光子,而新光子由于全部吸收了引力子的冲量因而向上发生较大的偏移,从而在屏幕上形成宽度为0.5α的第一条亮纹。从缝中心到缝顶部经过的光子,若吸收20万个引力子则它向上的偏移量是第一条亮纹偏移量的两倍,形成第二条亮纹。同样形成第3条、第4条、第5条……第n条亮纹。中央亮纹以下的亮纹也是这样形成的,并且中央亮纹的宽度约为其它亮纹宽度的两倍。由于从缝中心到缝顶部引力逐渐增大,所以与光子作用的引力子数目也可能逐渐增多。假设在离开缝中心向上的极小位移处,在该处最多只可能有10万个引力子与光子发生作用,那么经过该处的光子最多只可能偏移到第一条亮纹处。换句话说它最多只可能对第一条亮纹的形成做贡献,对第2条、第3条、第4条……第n条亮纹都没有贡献。由此在向上某处经过的光子最多只可能吸收20万个引力子,但也可能吸收10万个引力子,故经过该处的光子对第1条、第2条亮纹的形成做出贡献而对第3条至第n条亮纹都没有贡献……;从缝顶部经过的光子可能吸收10万*1、10万*2、10万*3……10万*n个引力子,所以从该处经过的光子对第1条、第2条、第3条至第n条亮纹的形成都有贡献。这样形成的亮纹亮度依次为第一条>第二条>第三条>……>第n条。若缝变窄,则在离开缝中心向上的极小位移处,光子最多可能有20万个引力子,经过该处的光子对第1条、第2条亮纹的形成都有贡献,这样就减小了第1条、第2条亮纹亮度的差异。也就是说,缝越窄条纹亮度越向两边分散,缝越宽条纹亮度越向中央集中。当缝很宽时,条纹亮度几乎全部集中在中央区域,两边的光子数几乎为零。这就是我们看到的光的直线传播现象。由于光子并不是一种波,其偏离直线传播(衍射)现象是由引力子引起的,所以光的衍射现象与缝的宽度无关。物体在阳光下的阴影边缘常常较模糊,这说明光子在经过物体表面时受到引力作用而偏离了直线传播。理论上来说只要光子的运动方向和引力方向不在一条直线上,光子就会偏离原来的运动轨迹,并且引力场越强光子弯曲的程度也越大。星光在经过恒星以后通常会发生弯曲,有时我们甚至能够看到星体后面的其它星体发出的光。

三、论电子结构与原子光谱现象

1.电子发光

原子是如何发光的?要弄清这个问题首先必须明白光子是由原子的哪一部分发出的。我们知道,原子是由原子核和核外的电子组成的,原子核的结合能很大,不可能发出光子,所以光子只可能是电子发出的。在化学反应中伴随着电子的得失,常常有能量(光子)放出,光电效应、激光现象及其它一些实验也证明了光子是由电子发出的,所以可以肯定原子发光其实是电子发出光子。既然电子可以放出光子,那么光子必然是电子的组成部分,或者说电子有一定的内部结构,光子是其组成部分之一;由于光子不带电,说明电子内部电荷的分布是不均匀的,因为如果电子内部电荷是均匀分布的,则光子就应该带电。原子中原子核和电子之间的距离很小,它们之间的静电力很强,因为电子内部电荷分布不均匀,所以在原子核强大的静电力作用下电子内部电荷将重新分布,甚至可能发生裂变,这就为电子放出光子创造了条件。当电子裂变放出光子后,它的各个组成部分结合的更加紧密,在适当的时候可能吸收一个光子,这就为电子吸收光子储存能量创造了条件。而电子正是通过不停地吸收、放出光子来和外界交换能量的。稍后我们将看到,原子正是通过电子不断吸收、放出光子来和外界完成能量交换的。一般来说,电子质量越大其内部各部分结合的越松散,在静电力作用下越容易发生裂变;电子质量越小其内部各部分结合的越紧密,在静电力作用下越不容易发生裂变。与原子核“幻数”相似,总有特定质量的电子的结合力相当大,比其它质量电子的结合力大许多,这些特定质量的电子往往对应于某些稳定的轨道。

有人认为物质发光是由于物质中的原子或分子受到扰动的结果,认为光子是由原子或分子发出的。其实这是一种错误的看法。我们知道,原子是由原子核和核外电子组成的,光子是一种物质实体,或者是由原子核发出的,或者是由电子发出的,除此以外再没有别的选择。说光子是由原子发出的,这是一种不确切的说法。

2.原子核和电子之间的磁力作用

两个相距一定距离的异种点电荷在静电力作用下必然会吸引在一起,因为静电力作用在两点电荷连线上。而原子核和电子不会吸引在一起。这就启示我们在原子核和电子中必然存在一种其它作用力。这个力就是原子核和电子之间的磁力。我们知道,在通以相同方向电流的两条平行导线间会产生磁力作用,在磁力作用下它们将彼此吸引,原子核和电子的相向运动正相当于通以相同方向电流的两条平行导线,在它们之间也将产生磁力作用。静电力的作用总是使电子获得指向原子核的向心速度,而原子核和电子之间的磁力则使电子获得切向速度,并且原子核和电子之间的相对速度越大,它们之间的磁力也越大。当原子核和电子之间彼此相对静止在一定远处时,在静电力和磁力的共同作用下,它们并不会吸引在一起。因为静电力使电子获得向心速度,磁力使电子获得切向速度,电子并不是沿着直线靠近原子核,而是沿着螺旋线靠近原子核。开始时螺旋线的半径为无穷大,电子作直线运动;一旦电子相对原子核的速度不为零,磁力开始起作用,电子的运动轨迹开始发生弯曲;当电子与原子核靠近到一定的距离时,电子和原子核之间的静电力恰好等于电子作圆周运动所需的向心力,此时电子处于平衡状态,螺旋线变成了圆。同样在电子离开原子核时也是沿着螺旋线运动的。在静电力作用下,电子总要尽量靠近原子核,在磁力作用下,电子有远离原子核的离心趋势,正是在这两种力作用下,电子处于稳定的平衡状态中。电子在原子核中处于稳定状态时,它的轨迹是圆。因为当电子的轨迹不是圆时,它总要受到磁力的作用,这个力使电子的切向速度增加、运动轨迹向圆靠近。而电子受磁力作用时它的运动轨迹就要发生变化,就不是稳定的,只有当电子的轨迹是圆时才不受磁力的作用,所以说电子在原子核中的稳定轨迹是圆。太阳系中的行星在太阳引力作用下,其运动轨迹可以是圆或椭圆,但在原子系统中,电子在原子核静电力作用下,其稳定轨迹只可能是圆而不可能是椭圆。

3.基态电子的稳定性

处于基态的电子为什么是稳定的?为什么不会被原子核吸收?人们通常认为:做加速运动的电荷会向外辐射能量.如果电子在原子核中做圆周运动,则它就有加速度,必然会不断地向外辐射电磁波,随着电子能量的减小它将沿着螺旋线落入原子核中,这样整个原子就是不稳定的,然而事实并非如此。于是人们推测电子在原子核中不可能做圆周运动。我们认为以上推断是错误的,电子的确在原子核中做圆周运动,其理由如下:第一,电子辐射电磁波并不是一个只出不进的过程。电子时刻不停地向外辐射能量,也在时刻不停地吸收光子,这是一个动态平衡过程。如果电子吸收的能量大于其辐射的能量则原子的温度升高,如果电子吸收的能量小于其辐射的能量则原子的温度降低,倘若没有外界能量输入,原子总会由于向外辐射能量而降低温度,只要物体的温度在绝对零度以上就会向外辐射电磁波。第二,电子在原子中的质量并非一成不变的。一般而言,电子离核越近质量越小,离核越远质量越大(这一点我们稍后证明)。第三,电子和原子核之间并非只有静电力作用,还存在磁力作用。正因为磁力作用的存在使电子在靠近原子核时切线速度不断增大,从而使其离心力逐渐增大,以致于可以与静电力抗衡维持电子在原子核中的稳定。

这里需要我们证明随着电子离核距离的减小,离心力的增加速度大于静电力的增加速度。设电子稳定时质量为M,速度为V,与原子核相距R,原子核电量为Q,此时静电力F正好等于电子作圆周运动的向心力,

离心力大于静电力,所以此时电子作离心运动,将回到距核R的轨道上。同样当电子受到远离原子核的扰动后,静电力F大于电子作圆周运动的向心力,电子将向原子核运动,最终要回到距核R的轨道上,这里不再证明。

另外我们认为,做加速运动的电荷会向外辐射电磁波这个提法不够确切,应该说做加速运动的自由电荷会向外辐射电磁波,而电子在原子核中做圆周运动时不会向外辐射电磁波。两者有什么区别呢?我们知道,在原子核和电子结合成原子的过程中要向外放出能量,即自由电子要在原子核静电力作用下裂变放出光子才能够成为原子中的电子,原子中的电子和自由电子是有区别的。自由电子的质量大于原子中的电子的质量,自由电子各部分结合得较为松散,受到外界扰动(有加速度)时会向外辐射电磁波;而原子中的电子质量小,各部分结合得较为紧密,受到外界扰动(有加速度)时未必会向外辐射电磁波,只有当外界扰动(加速度)足够大时才会裂变辐射电磁波,所以电子可以在原子中做圆周运动而并不向外辐射电磁波。

4.稳定轨道的形成

对于处于基态的电子来说,每秒会有许多光子与其作用。这些作用有指向原子核的,也有指向核外的。电子在吸收一个或几个光子以后质量增加,形成新的电子。我们先考虑指向核外的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R+Δr,我们知道,一定质量的电子总有与一条特定轨道与之对应,比如电子的质量为M时其轨道半径为R,那么当电子质量为M+Δm时就可能停留在半径为R+Δr的轨道。但这里我们少考虑了一个条件,那就是质量为M+Δm的电子的结合能。我们知道电子在每秒内会受到许多光子的扰动,假设质量为M+Δm的电子运行在半径为R+Δr的轨道上,若它受到一个指向原子核的扰动,离核距离变为R+Δr-r,此时原子核静电力对它的作用增强,若它的结合能小的话则电子立即裂变放出光子重新回到其原来的轨道R上;如果质量为M+Δm的电子内部的结合能非常小,以至于受到微小的扰动时立即裂变放出光子,那么它在半径为R+Δr的轨道上停留的时间也趋近于零,换句话说半径为R+Δr的轨道根本不存在;如果质量为M+Δm的电子内部的结合能非常大,以致于受到很大的扰动时它才裂变放出光子,那么电子就能够在半径为R+Δr的轨道上停留一段时间,这段时间就是原子的平均寿命。假设有一群电子处于同一激发态,由于每个电子受到的扰动情况不一样,有的电子受到的扰动大有的电子受到的扰动小,而只有电子受到足够大的扰动并运动到离核足够近的地方才会裂变放出光子,所以电子裂变回到基态的时间也不一样。处于同一激发态的原子的平均寿命和两个因素有关:一是电子的结合能,二是电子受到的扰动。电子内部的结合能与原子核“幻数”相似,只有特定质量的电子的结合能才是很大的,所以电子的轨道也是特定的、不连续的,其它质量的电子由于结合能很小,裂变时间极短,所以它们不可能稳定停留在原子中,也形成不了稳定轨道甚至根本就没有轨道。我们再来考虑指向原子核的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R-Δr,此时原子核对电子的静电力增强,电子立即裂变放出质量为Δm的光子,由前面的证明我们知道,此时电子的速度增大,离心力大于静电力,电子最终将停留在半径为R的稳定轨道上。也许有人会怀疑,这样看来电子可能存在的稳定轨道岂不是唯一的了?实际上由于电子在原子核外有几个不同的稳定质量,所以它也有几条稳定轨道,一定的质量总是与某一条特定轨道相对应。从这里我们可以看出,电子在原子核中的稳定轨道往往对应于电子结合能极大的质量,结合能小的质量由于在原子中不稳定因而不会形成稳定轨道。

5.电子结构与不同跃迁轨道

对于处于同一激发态的一群电子而言,设电子的质量为M+Δm,它们可能会有不同的跃迁轨道,放出的光子的能量(质量)也不同,但总是跃迁到离核近的电子放出的光子的能量(质量)大。电子从激发态回到基态的过程并不是先放出光子再回到基态,而是先回到比基态更近的地方放出光子然后才回到基态。当电子回到离核R-Δr处时,在静电力作用下电子裂变放出质量为Δm的光子,此时离心力大于静电力,电子将回到半径为R的稳定轨道上。那么电子为什么会有多条跃迁轨道呢?这说明处于同一激发态的电子内部结构(结合力)不同,有的结合力大,有的结合力小,结合力小的光子在离核较远的地方裂变,放出的光子能量也较小;结合力大的光子在离核较近的地方裂变,放出的光子能量也较大,电子的跃迁方式是由其内部结构决定的。同一质量的电子可能有多种裂变方式,再次向我们说明电子具有内部结构,在考虑原子光谱时一定要考虑电子的内部结构。处于激发态的电子在向基态跃迁时会发出光子;把原子的内层电子打掉以后外层电子会放出光子并向离核更近的轨道跃迁。这些现象启示我们:电子离核越近质量越小,电子离核越远质量越大。从这里也可以看出,电子质量越小其内部结合力越大。因为离核越近电子受到的静电力越大,而电子能够稳定存在说明其内部结合力越大。在同一个原子中,内层电子的质量小于外层电子的质量;同一个电子离核越近质量越小。

人们发射的人造卫星可以设定轨道,其轨道变化可以是连续的,但对原子核中的电子来说,其轨道变化则是不连续的。怎样理解这一点呢?让我们做一个假想实验。把两个带异种电荷的点电荷放置在一定远处,并且假定它们之间除了静电力以外不在受到其它力的作用,则最终它们将互相吸引在一起。无论怎样改变这两个电荷的质量、电量,结果都是相同的。这说明:用宏观电荷不可能模拟原子核和电子之间的作用力。说到这里,好事者马上就会解释,因为宏观电荷物质波的波长极短而电子物质波的波长较大,所以用宏观电荷不可能模拟原子核和电子之间的作用力。换一个角度来说,宏观物质和微观物质是有区别的,用宏观物质不能模拟微观物质。但区别究竟在哪里?一个是宏观物质而另一个是微观物质,这个解释近乎无聊了。还是让我们来仔细分析为什么用宏观电荷不可能模拟原子核和电子之间的作用力。我们知道,在静电力作用下,电子和原子核开始时相向运动,而后在磁力作用下沿着螺旋线相互靠近,正是由于原子核和电子之间的磁力使电子获得了绕原子核运动的切向加速度,并使整个原子处于稳定状态。那么,两个宏观点电荷之间的运动轨迹为什么是一条直线呢?这是因为宏观电荷的荷质比远远小于原子核和电子的荷质比,在静电力作用下宏观点电荷获得的最终速度也小得可怜,因此宏观点电荷之间因相对运动而产生的磁力也微乎其微,近似于零。所以宏观点电荷在静电力作用下表现为相向运动,其运动轨迹接近直线。从这里我们可以得出这样一个结论:虽然静电力作用在两个电荷的连心线上,但是仅在静电力作用下,电荷的运动轨迹不一定就是直线,两个电荷的荷质比越小,其运动轨迹越接近直线,反之则越接近曲线。那么,如果宏观点电荷的荷质比足够大甚至可以与原子核或电子相比时,是否可以用宏观点电荷模拟原子核和电子相之间的作用呢?也不能!如果宏观点电荷的荷质比足够大,甚至可以与原子核或电子相比,那么这样的两个异种电荷在静电力作用下会沿着螺旋线相互接近,最终会处于稳定状态,但由于宏观点电荷的质量不会发生变化,因此最多只能形成一条稳定轨道,而不可能象电子那样在原子核中有多条稳定轨道。

在多电子原子中,各电子间有什么主要区别呢?有人认为离核越近的电子能量越低,越不容易失去;离核越远电子能量越高越容易失去,但这还不是最主要的区别。多电子原子中各电子间最主要的区别在于它们的质量不同。离核越近的电子质量越小,离核越远的电子质量越大,同一个原子中没有两个质量相同的电子存在。在氢原子中也是电子离核越近质量越小,离核越远质量越大。

6.原子的吸收光谱和明线光谱

在原子的吸收光谱中,只有特定能量的光子才被电子吸收;在原子的明线光谱中,同样也只能发出特定能量的光子。于是人们认为电子只能吸收或发出特定能量的光子。我们知道,只要物体的温度在绝对零度以上,就会向外发射电磁波,物质的发射光谱是连续光谱。那么其它能量的光子是由哪一部分发出又是如何发出的呢?显然还是由电子发出的,因为原子核不可能发出光子。当我们用电子束轰击汞原子蒸汽时,可以发现当电子的能量为某些特定值时,汞原子强烈地吸收其能量;对于其它能量的电子汞原子只吸收其一部分能量。汞原子只吸收电子束的能量实际是汞原子中的电子吸收电子束的能量。可见,原子中的电子可以吸收各种能量(质量),但对特定的能量(质量)吸收能力十分强。在原子的吸收光谱中,电子可以吸收各种能量的光子,只不过大部分光子被电子吸收后与电子的结合能并不大,受到微小的扰动后立即放出光子,由于该过程极短,所以当连续光通过原子蒸汽时,大部分光子被吸收后又很快放出,看起来似乎没有与原子作用,只有极少数具有特定能量的光子与电子的结合力极大,这类光子被吸收后要保持一段时间才可能放出,故吸收光谱会出现几条暗线。至于原子的明线光谱,与其说是明线光谱还不如说原子的发射光谱中有几条线特别亮。这是因为处于激发态的电子比别的能量状态的电子稳定,停留的时间较长,所以在一群原子中处于激发态的电子数目总比别的状态的电子数目多,因而它们发出的光也更亮一些。事实上原子的发射光谱不仅仅是明线光谱,明线光谱只是原子发射光谱中极个别的具有代表性的光子,原子几乎可以发出小于一定能量的任何光子。电子在原子中时刻不停地吸收各种能量的光子,由于电子与绝大部分光子的结合力都不大,所以电子也在时刻不停地放出各种能量的光子,因此物质的发射光谱往往是连续光谱。

许多人都认为原子只能吸收特定能量的光子,原子也只能放出几种特定能量的光子,因为他们看到原子的吸收光谱中仅有几条特定频率的暗线,而子的发射光谱也仅仅是几条特定频率的明线而已。其实这种看法是错误的。我们不妨这样分析,若原子只能吸收特定能量的光子,则只有特定能量的几种光子对物体具有明显的热效应,并且每种物质的敏感光子不同。实际上并非如此。我们知道,红外线具有显著的热效应,对任何物质都是如此。此外,物质的发射光谱是连续光谱,这也说明原子或分子的吸收(或发射)出的光子是广谱性的。为了充分理解这个问题,需要作进一步的说明。现代物理学指出:氢原子吸收的光子能量只能是13.6/n*n电子伏(这里n取自然数),也就是13.6、3.4、1.5……电子伏,并且认为对于10电子伏、3电子伏这样的其它能量的光子不会被电子吸收。我们认为:电子吸收的光子能量是连续的,对于10电子伏、3电子伏这样的其它能量的光子同样会被电子吸收,只不过电子吸收这些光子后,电子和光子的结合能不够大形不成稳定的轨道,所以电子又很快放出该光子,由于作用时间极短,以致于我们误认为电子没有吸收光子。换一个角度来考虑,当大量的原子吸收了能量连续的光子时,由于大部分电子与光子的结合力都不大,所以这些电子在极短的时间内(设为t)就会裂变放出光子,而能量为13.6、3.4、1.5……电子伏的光子与电子的结合力很大,所以电子裂变放出光子的时间也很长,如果这个时间是100t,则电子放出相应的光子也比其它光子亮100倍;如果这个时间是1000t,则电子放出相应的光子也比其它光子亮1000倍……,这样,在原子的明线光谱中自然就形成几条特殊的亮线了。由此我们得出一个结论:在原子的发射光谱中,任意一条谱线的亮度与处于相应激发态的原子的平均寿命成正比,原子的平均寿命越长,谱线的亮度越大;原子的平均寿命越短,线的亮度越小。当然这有个前提,那就是被原子吸收的连续光谱中各种能量的光子是平均分布的。

7.热现象的本质

由于电子时刻不停地受到光子的扰动,不断地吸收各种能量的光子,也不停地放出各种能量的光子,所以电子在原子核中并不是处于稳定状态,它的运动轨迹也不是正圆。一般来说,温度越高,电子受到的扰动越大,其运动轨迹偏离圆形的趋势越明显;温度越低,电子受到的扰动越小,电子的运动轨迹越接近圆(只有在绝对零度时,电子的运动轨迹才可能是正圆)。从这个意义上来说,原子模型可以看作是卢瑟福的行星模型和电子云模型的结合:温度越高,原子模型越接近行星模型;温度越低,原子模型越接近电子云模型(但在某一瞬间,电子在原子核中有确切的位置)。温度的高低反映了电子偏离稳定轨道程度的大小,单个原子(分子)也有温度。电子偏离圆形轨道的程度越大,表明该原子的温度越高,电子裂变后放出的能量也越大。所以温度升高时物体发出的电磁辐射向短波方向移动。对于温度一定的物体来说,它内部包含了大量的原子,这些原子中的电子由于受到的扰动大小不同,它们裂变放出光子的质量也不同,但大致满足正态分布,即发出的光子中能量特别大的和能量特别小的都是极少数。由前面的论述我们知道,电子在原子核中的能量大小并非定值:电子离核越远电势能越大,离核越近电势能越小。与宏观电荷一样,电子的电势能是其与原子核距离的函数,电子和原子核间的作用力服从库仑定律。温度越高,电子离核越远,电势能也越大,因而也越容易失去;温度越低,电子离核越近,电势能也越小,也越不容易失去。

什么是热现象呢?这似乎是不是问题的问题。人们通常认为:热现象是大量分子无规则运动的反映,温度越高分子的平均速率越大,温度越低分子的平均速率越小。果真如此吗?我们知道,太阳时刻不停地向外抛射高能粒子,这些粒子的速度接近光速,宇宙中其它恒星也在不停地向外抛射高能粒子,所以在宇宙空间任何地方,都有许多高能粒子正在做杂乱无章的运动,这些粒子的速度通常都接近光速或亚光速。这样看来宇宙空间的温度应该很高(至少比恒星内部高),宇宙空间应该是很明亮的。但事实上,宇宙空间是漆黑的一团,温度只超过绝对零度一点。这说明粒子运动速度大未必温度就很高,物体的温度不是由组成它的原子(分子)的平均运动速度决定的。温度升高,原子(分子)的平均速度增大。但反过来,原子(分子)的平均速度增大并不意味着温度升高。我们知道,只要物体的温度在绝对零度以上就会向外辐射电磁波,而物质向外辐射电磁波的原因是电子受到扰动后在静电力作用下放出光子,并且光子受到的扰动越大放出的光子能量也越大,相应的物体的温度也越高。从这个意义上来说,原子是储存热量的最小单位,单个原子也有温度,因为它可以储存热能。但单个的带电粒子如质子、电子在不受外界任何扰动时,即便速度再大也不会向外界释放能量,因此它们都不能储存热能,因而也没有温度。应该看到,原子(分子)的高速运动所具有的能量仅仅是动能而不是热能,和宏观物体一样,速度大未必温度高。宏观物体的速度与其温度无关,原子(分子)也是如此。一个原子(分子)的速度比其它原子(分子)的速度大,只能说明它的动能大,储存的热能未必就多。热能仅储存于原子核和电子形成的原子体系中,两者中缺少任何一个都不能储存热能。在日常生活中我们用红外线(微波)加热而不用紫外线,紫外线的热效应远远小于红外线(微波)。这是因为红外线(微波)光子的质量小,和原子中电子的结合力大(包括内层电子),而紫外线和原子中电子的结合力小(它几乎不与内层电子作用),所以红外线往往容易被物体吸收,其热效应当然比紫外线强。

再进一步考虑,什么是热现象呢?热现象和温度之间有什么关系呢?我们认为:对一个物体而言,倘若它储存了热能它就有温度,并且它储存的热能越多它的温度就越高,反之则温度越低;倘若物体没有储存热能则它就没有温度或者说它的温度是绝对零度;倘若物体不能储存热能,则用温度来衡量该物体是没有意义的。我们知道,原子是储存热能的最基本单位,原子的热能实际上是储存在电子中的。单独的原子核、单独的电子都不能储存热能,所以单独的原子核、单独的电子都没有温度。同样的道理,光子也不能储存热能,它仅仅是热能的载体,因为单独的原子可以储存热能,所以单独的原子有温度,但由于单独的光子不能储存热能,所以单独的光子没有温度,不同能量的光子之间只有能量的差异而没有温度的差异,用温度来衡量光子是毫无意义的。倘若光子也有温度,则在太阳系中离太阳越近的空间温度就应该越高,离太阳越远的空间温度就应该越低,事实上完全不是这么回事。

光子范文篇6

当人们用望远镜观测银河系以外的星系时,可以发现绝大多数星系光谱都存在红移或蓝移现象,并且越远的星系其光谱红移值越大。根据多普勒效应:星系光谱存在红移说明星系正离我们远去,星系光谱存在蓝移说明星系正向着我们运动。需要指出的是越远的星系红移值也越大,看起来所有的星系都好象以银河系为中心向外爆炸形成的一样,越远的星系离开我们的速度也越大。鉴于此有人提出宇宙大爆炸假说:认为宇宙是由150亿年前发生的一次大爆炸形成的,人类居住的银河系则是宇宙的中心。可是人们在观测银河系和河外星系时,却并没有发现银河系有什么特别之处。有人据此怀疑宇宙大爆炸假说;也有人从星系的演化推算出宇宙的年龄大于150亿年;还有人认为若宇宙大爆炸假说是正确的,那么宇宙辐射在各个方向上就会表现出各向异性;更有人担心宇宙的膨胀没有尽头,遂认为宇宙的膨胀和收缩是交替进行的……。但不管怎样,大部分人还是相信“眼见为实”,由星系光谱的红移现象承认了宇宙大爆炸假说。更有人把红移现象与宇宙背景辐射和宇宙元素丰度并作宇宙大爆炸假说的三大支柱。那么宇宙是否发生过爆炸并仍在向外扩张,年龄是否只有150亿年呢?非也!

1.星系光谱红移原因

20世纪初,当人们用望远镜观测银河系以外的星系时,发现绝大多数星系光谱都有红移现象,并且越远的星系其光谱红移值越大。有人认为星系光谱红移是因为星系正在离我们远去,从而得出这样的结论:所有的星系都是以我们银河系为中心向外爆炸后形成的,越远的星系离开我们的速度也越大;宇宙中所有的星系都在彼此分离,并且越远的星系相互分离的速度越大。值得一提的是,我们银河系正处在爆炸中心,足以值得我们自豪的是:银河系是宇宙中独一无二的星系—因为它是宇宙的中心。更让我们惊奇的是,银河系自身也在不断运动着,然而无论它运动到哪里,它始终是银河系的中心。我们解释不了银河系为什么是宇宙的中心,因为银河系也和其它星系一样,并沒有什么特别之处。有人以为,银河系处于宇宙的中心是一个巧合,虽然银河系从上个世纪至今一直在不断运动,但它走过的距离和整个宇宙空间的尺寸比起来是微不足道的,所以银河系目前仍然处在宇宙的中心,这种看法未免有些牵强。因为人们在观测近处的星系时,发现近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系正在以某一个中心为起点向外膨胀。因此“银河中心说”颇值得怀疑。还有的人虽然承认宇宙大爆炸假说,但不承认“银河中心说”,他们不认为银河系是宇宙的中心。这种观点同样也是站不住脚的。我们可以这样分析:如果宇宙大爆炸假说是正确的,那么宇宙中所有的星系必定在以某一个中心为起点向外膨胀,星系之间彼此互相分离。目前我们观测到近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系在以某一个中心为起点向外膨胀。倘若我们不是在宇宙的中心而是处于偏离宇宙中心的任一点处,因为在我们周围的星系都没有相互分离的趋势,也没有以某一个中心为起点向外膨胀,这样一来,倘若宇宙中任一点处的星系都没有相互分离的趋势,那么整个宇宙也不可能在膨胀,即宇宙大爆炸假说是错误的。

前事不忘,后事之师。人类文明发展到今天,“地心说”和“日心说”都被证明是为科学,难道我们还要重蹈覆辙提出“银河中心说”吗?愚以为,我们应当承认这样一个假设,那就是:银河系按目前的速度运动下去,100万年,100亿年以后,我们仍然会发现自己处在宇宙的“中心”,无论我们处在宇宙的任何地方,中心也好,边缘也好,我们都会发现宇宙中越远的星系光谱红移值也越大,就好象我们处在宇宙的“中心”一样。事实上,这个“中心”是光子在宇宙空间中的传播特性引起我们视觉上的错误,“眼见”未必“为实”,我们不能过分相信“眼见”的东西。

红移现象是否由观测者自身的运动引起的呢?不是的!如果红移现象是由观测者自身的运动引起的,那么我们将观测到与我们相向运动的星系光谱将发生蓝移而与我们相背运动的星系光谱将发生红移,然而事实并非如此。再者,虽然我们“坐地日行八万里”,但这个速度和光速比起来实在算不了什么,不至于影响观测结果。换句话说,我们在观测星系红移值时,观测者自身运动速度的影响可以忽略不计。红移现象说明光子与观察者之间的相对速度变小了。产生这种情况有两种可能:第一是星系正离我们远去,第二是光子在穿越宇宙空间时速度变小了。这两种情况都可能导致星系光谱红移。我们认为导致星系光谱红移的原因是后者。光子在穿越宇宙空间时会与各种粒子(比如引力子)相互作用从而使其速度逐渐减小。当然单个粒子与光子作用时间极短,引起光子速度的改变量也是极其微小的,以致于我们观测不到。随着光子穿越宇宙空间距离的增大,与光子作用的粒子数目也逐渐增多,光子速度的减小量也越明显。可以推测:光子在穿越一定的宇宙空间距离后速度将减小到零。由于光子速度为零故相对我们的能量也为零,这样的光子当然不会被我们观测到。可见用光学法观测宇宙空间尺度时有一个极限:150亿光年(也有人认为是200亿光年)。在这个尺度以外的星系发出的光子由于在没有到达地球时速度已经降低到零,所以这样的星系不可能被我们观测到,至少目前还没有办法观测到。也有人认为,红移现象是由光子频率减小引起的,即认同第一种可能:认为星系正离我们远去。这种观点听起来很有道理,却经不起分析。我们知道,星系离我们远去时会引起光子频率减小,但各种不同频率光子的频率减小量应该相同,反应在星系光谱上,各种不同频率光子的红移量应该相同。因此,不论星系离我们多远,星系光谱虽然发生红移但不应该变宽,但事实上远处星系光谱却被拉宽了(星系光谱不会变宽是指星系光谱中任意两条谱线的距离恒定,虽然它们都发生了红移,但它们移动的距离相等,因此各谱线之间的距离不变)。而且能量越小的光子红移值越大,能量越大的光子红移值越小。不同频率光子的频率减小量不同,说明红移现象不是由光子频率减小引起的。即第一种可能站不住脚。假设宇宙中所有的星系都是静止的,宇宙空间中的物质是均匀分布的,那么光子穿越宇宙空间时的速度衰减量仅与其通过的空间距离有关。光子穿越的宇宙空间越长,其速度衰减量也越大。这样星系光谱的红移值仅与其离我们的距离有关,离我们越远的星系红移值也越大,就好象越远的星系正在以越快的速度离?颐且谎U庖舱枪伤沂镜模盒窍翟独胍酉档乃俣圈陀刖嗬氤烧龋?H*D,其中H为哈勃常数。实际上宇宙中各星系都在不断运动着,宇宙空间中的物质也并非均匀分布的,造成星系光谱红移的原因也很多,所以光谱的实际红移值要考虑许多情况。

2.谱线红移与光子速度衰减

光子与宇宙空间中的粒子是如何作用的呢?可以设想,宇宙空间中存在许多比光子质量小得多的粒子(比如引力子)。由于光子在与粒子作用后仍然是光子,可以认为光子仅与粒子发生了弹性碰撞。既然是弹性碰撞,我们知道,二者质量越接近光子损失的能量越大。由于光子的质量远远大于引力子的质量,所以在不同频率(质量)的光子中,频率(质量)较小的光子损失的能量较大。于是经过同一段宇宙空间以后,在不同频率(质量)的光子中,频率(质量)较大的光子损失的能量较少,频率(质量)较小的光子损失的能量较大,例如红光损失的能量比紫光损失的能量多。由于不同频率(质量)的光子在宇宙空间运动时都损失了能量,这样整个星系的光谱将向红端移动,但由于红光损失的能量多向红端移动的距离大,而紫光损失的能量少向红端移动的距离小,于是整个光谱被“拉宽”了。如果不同频率(质量)光子的能量损失率相同,虽然它们都产生红移,但是它们红移的距离相等,这样星系光谱虽存在红移但不会被“拉宽”,星系光谱存在红移而且被“拉宽”说明两点:第一光子在穿越宇宙空间时速度会衰减,第二不同频率(质量)的光子速度衰减率不同。显然,由于不同频率(质量)光子的能量损失率不同,各种光子的速度衰减量差异将随着空间距离的增加而增大,这样星系光谱被“拉宽”的程度与其离我们的距离有关,离我们越远的星系其光谱被拉宽的程度也越大。另外,星系光谱被拉宽时还有一个特点,那就是能量大的光子被拉宽的程度小,能量小的光子被拉宽的程度大。也就是说,越靠近红端光谱被拉宽的程度越大,越靠近紫端光谱被拉宽的程度越小。考虑到星系引力场的影响,实际情况还要复杂一些。

上面我们谈到光子在宇宙空间运动时速度会逐渐减小,这和人们熟悉的“真空中光速不变”的看法相矛盾。实际上宇宙空间并非真空,即使宇宙空间是绝对真空它还存在引力场。换句话说,光子在真空中速度变不变的问题,实际上是光子受不受引力作用的问题。如果光子不受引力作用,那么真空中光速不变,但这样一来不论星体的引力再强,对光子都没有影响,从而宇宙中也不可能产生“黑洞”了,而现在的黑洞理论基础将不复存在;假如光子受引力作用,则就不应该有“真空中光速不变”的结论。有人对此这样解释:宇宙空间中各星体的引力分布在不同的方向上,它们的作用力相互抵消,因此光子在宇宙空间中的速度不变。这种解释也是站不住脚的。我们知道在太阳系内,引力的方向是指向太阳的;在银河系里引力的方向是指向银河系中心的,所以局部的宇宙空间引力总是有一定的方向的。我们认为光子作为一种物质实体,它的速度并非一成不变的。无论在真空中还是在介质中,它的运动速度都会越来越小。所以,光速不变只是一个神话,光年也不能作为距离单位,因为光子在前一年中走过的路程总比后一年中走过的路程长。

3.光子在引力场中的运动

星光在通过太阳附近时会受到太阳引力的作用而发生弯曲,说明光子也会受到引力的作用。其实光子也有质量,当然会受到引力作用了。通常我们认为:引力场中物质的加速度仅与引力场的强弱有关,而与物质的质量无关。如在地球表面不管是1吨的物体还是1千克的物体,其每秒获得的速度增量都是9.8米/秒。但引力场中光子的加速度与其质量有关:质量越小的光子加速度越大,质量越大的光子加速度越小。既然光子也受引力作用,那么很自然,光子在离开引力场时必然会被减速,在进入引力场时必然会被加速,在垂直于引力方向(或其它方向)运动时受引力影响其运动轨迹也会发生变化。既然光子在离开引力场时会被减速,而且质量越小的光子速度衰减量也越大,那么星体发出的不同频率的光子就有不同的速度。一般而言,星体引力越强,其发出的光速度也越小;当星体引力足够强时甚至可能使一部分光子摆脱不了星体引力的束缚,产生黑洞现象。对同一星体而言,在它发出的光中,质量大的光子速度大,到达地球的时间也越早;质量小的光子速度小,到达地球的时间也越晚。我们通常认为不同频率的光同时到达地球,这其实是错误的。关于这一点我们可以用实验来证实。当星体发生爆发或其它异常时,总是能量较大的X射线或γ射线先被我?枪鄄獾剑浯尾攀强杉猓缓蟛攀呛焱庀摺K淙焕砺凵先绱耍谑导使鄄庵凶苡姓庋蚰茄囊蛩丶氨鸬慕馐褪勾蟛糠秩瞬幌嘈耪庖坏恪H绻跫市淼幕埃颐强梢杂靡桓鍪笛槔粗な滴颐堑墓鄣恪T诶胛颐呛茉兜挠钪娣纱弦粤街植煌芰康墓庾油狈⒊鲆恢中藕牛饬街止庾拥哪芰坎钜煸酱笏堑酱锏厍虻氖奔洳钜煲苍酱蟆J导噬峡悸堑讲煌芰康墓庾釉谕唤橹手械拇ニ俣炔煌颐怯Ω孟氲讲煌德实墓庾釉谡婵罩械拇ニ俣纫膊幌嗤S捎诠庾釉诖┰接钪婵占涫彼俣戎鸾ゼ跣。⑶抑柿啃〉墓庾铀俣人ゼ醯每欤梢韵胂螅诰欢蜗嗟背さ木嗬胍院螅柿啃〉墓庾铀俣纫丫ゼ醯搅愣柿看蟮墓庾铀俣炔晃悖庋颐蔷椭荒芄鄄獾街柿看蟮墓庾印H粜翘謇胛颐歉兑恍蛭颐侵荒芄鄄獾街柿扛蟮墓庾印孀趴占渚嗬氲脑龃螅钪瘴颐墙床坏皆洞π翘宸⒊龅墓猓飧鼍嗬刖褪俏颐窍衷谌衔挠钪婕?-150亿光年。人们在观测宇宙时总有一个错误想法:由于真空中光速不变,所以不管离我们多远的星系,只要足够亮就可以被我们发现。事实上宇宙空间并非真空,光子在其中穿行时速度会逐渐减小,所以任何星系发出的光只能传播一定的距离,也正因为如此,不管我们在宇宙中任何地方,始终只能看到有限的宇宙?占洹;痪浠八担壳拔颐悄芄还鄄獾降挠钪婵占涞某叨仁导噬鲜枪庾釉谟钪婵占渲写サ淖钤毒嗬搿?BR>4.光子在宇宙空间中的运动

实际上光子在宇宙空间运动时并不总是做减速运动。在光子离开星体时它要挣脱引力的束缚而作减速运动,当它脱离星体的引力场在空间自由运动时,也作减速运动;如果它进入另一个星体的引力场向着该星体运动时,就会在该星体的引力作用下作加速运动。光子就这样减速--加速--减速--加速……不停地穿越宇宙空间,直到其速度为零。倘若星体离我们很近而引力又很小,从该星体发出的光速度衰减量不大,但进入银河系时光子的速度增加量有可能很大,当光子的速度增加量大于其速度衰减量,或者说大于刚离开星体表面时的速度,在我们看来该星体光谱就发生了蓝移。忽略距离因素,由于星体自身在不断运动,这样它相对银河系引力场的强弱也可能发生变化,所以其光谱也可能有规律的发生红移或蓝移。通常情况下,宇宙空间对光子的减速作用总大于加速作用,所以星系的光谱以红移的居多。

光子在引力场中速度变化的问题许多人恐怕不相信也不能理解。一些人认为光子没有静质量,况且光子是一种波,在引力场中的运动规律和宏观物质不同。其实持这种观点的人把光子神话了,弄的不可捉摸了。现在大多数人都接受了“黑洞”的概念,认为当一个星体的引力足够强时甚至连光子也逃脱不了,因而是漆黑的一团。这里实际上指出了光子也会受到引力作用。既然光子也受引力作用,那么它在引力场中的加速与减速自然就可以理解了。稍后我们将看到,引力作用是造成衍射现象的重要因素之一。

5.类星体

一个很明显的事实是:宇宙中离我们越远的星体能量越大,通常类星体离我们的距离都在10亿光年以上,并且远处星体发出的光中能量较大的光子占有很大的成分。有人把这作为支持宇宙大爆炸的依据,认为:若宇宙中物质是均匀分布的话,则在我们银河系或其周围就应该有象类星体这样的高能星体存在。为什么我们在近处发现不了类星体呢?一些人看见远处的星体发出的光中含有大量的X射线或γ射线成分,就推测此类星体存在着目前尚不为我们知道的能量源。这种观点未免有些片面。实际上宇宙中大部分恒星的能量都差不多,能量特别大的和能量特别小的只是极少数,恒星的能量呈中间多、两头少的分布态势。从远处的恒星发出的光,在经过漫长的宇宙空间以后,能量小的光子由于速度衰减率大而停了下来,不被我们观测到;只有X射线和γ射线才能到达地球。所以我们观测到该星体的光子中,X射线和γ射线占有很大的成分,以致于我们误认为这类星体只向外发出X射线和γ射线。实际上这类星体也向外发射可见光和红外线,但是可见光和红外线由于速度衰减到零故我们观测不到。这就导致我们观测到极远处的星体,其颜色通常是蓝色或紫色,事实上可能和该星体的真实颜色相差极大。这说明我们看到的星体的颜色未必就是星体的真实颜色,星体的颜色是由其自身能量状况和离我们的距离决定的,星体离我们的距离越大往往使其颜色中的蓝色和紫色成分增加。另外,我们认为类星体离我们非常远,是因为类星体的红移值很大。也就是说我们没有直接证据表明类星体真的离我们很远。考虑到光子在引力场中的运动,我们知道:当星体的引力足够大时,其发出的光子速度衰减量也较大,因而该星体的光谱也将发生较大的红移。这就是说,引力因素也可以使星系光谱产生红移。倘若星体引力足够大又离我们很近,由于星体红移值较大,往往导致我们认为该星体离我们很远。举例来说,假设有一个引力较大的星体处于银河系的中心,由于该星体引力很强,导致它发出的光子速度衰减量极大,我们在观测其光谱时就会观测到很大的红移值,根据该星体很大的红移值我们就会认为它离我们非常遥远,绝不会想到它就在银河系中心。

如何解释类星体离我们那么远而其发射的X射线和γ射线又是如此强烈呢?只有两种可能。第一,类星体的能量非常大,向外发出的X射线和γ射线非常强;第二,类星体离我们并没有原先认为的那么远,类星体光谱的红移是由类星体的引力造成而并非由距离因素造成的。我们认为两种因素都有。因为如果类星体离我们非常远,那么我们观测到其向外发出的X射线或γ射线就不可能很强;倘若类星体的能量不是很大,它的引力场也不可能很强,不足以使其光谱产生较大的红移。这说明:星系光谱发生红移可能是距离因素造成的,也可能是引力因素造成的,红移值大的星体未必就离我们远。那么,如何区别星体的引力红移和距离红移呢?对观测者而言,由距离因素造成红移的星体发出的光不可能很强,而由引力因素造成红移的星体发出的光往往很强,特别是X射线或γ射线的成分多。类星体的发射光谱和吸收光谱的宽度不同,通常吸收光谱的宽度比发射光谱窄,为什么呢?我们知道,吸收光谱是由于光子经过大气后产生的,这说明类星体周围也存在气体。光子从高温星体内部发出以后,总会有一部分光子没有被气体吸收而直接射向宇宙空间,这些光子形成发射光谱;还有一部分光子在与气体作用后,频率(质量)大的光子损失的能量大,频率(质量)小的光子损失的能量小;光子离开类星体在宇宙空间中运动时,则是频率(质量)大的光子损失的能量小而频率(质量)小的光子损失的能量大,总的看来各种不同频率的光子速度差异减小,所以其光谱红移值也较发射光谱小。实际上类星体的吸收光谱还可能有几种不同的宽度。

6.黑洞与星体引力

最初在人们考虑黑洞时,认为它的引力强到连光子也逃脱不了,因而是漆黑的一团,黑洞是宇宙中物质的坟墓。后来人们认为黑洞可以向外发出X射线和γ射线。同样是光子,能量大的可以逃脱,能量小的逃脱不了,说明(黑洞的)引力对光子的作用是不一样的。事实上我们知道当星体的引力逐渐增强时,总是质量较小的光子逃脱不了,质量较大的光子则可以摆脱星体的引力,并不是所有的光子全部被吸入星体中。所以从这个意义上来说,狭义上的黑洞仅指引力强到可见光不能脱离的星体,即在可见光波段观测不到的星体;广义上的黑洞指引力强到使一部分光子不能脱离的星体,即在某一能量较小的波段观测不到的星体,这里广义上的黑洞甚至可能非常亮,可以被我们肉眼看到,但在红外线波段或能量更小的波段却观测不到。从理论上讲,“黑洞”并不黑,至少它可以向外发射X射线和γ射线或能量更高的光子,完全不向外抛射粒子的黑洞是不存在的。那么宇宙中黑洞存在吗?当然存在了。当星体离我们足够远,以致于该星体发出的红外线速度衰减为零而不被我们观测到时,它就像一个“黑洞”;若星体离我们再远一些,可见光不再为我们观测到,只能观测到X射线和γ射线,这时它就是漆黑的一团,成为名副其实的黑洞;而宇宙中150亿光年以外的星体对我们来说是完全彻底的黑洞,因为我们完全观测不到它们。除了因空间距离造成“黑洞”现象以外,星体的引力也可以造成黑洞现象。黑洞现象并不是我们原先想象的那样:“当星体的引力足够大时,所有的光子都被吸入星体中,整个星体变成黑暗的一团”。当星体的引力逐渐增大时,它对光子的束缚作用也逐渐增强。星体的引力足够大时,红外线光子将摆脱不了星体引力的束缚,而可见光、紫外线则可以摆脱星体引力的束缚;星体的引力再增大时,可见光将摆脱不了星体引力的束缚,而紫外线则可以摆脱星体引力的束缚;若星体的引力再增大,可能只有γ射线放出。应该明确指出:黑洞现象是与星系光谱的红移紧密相连的。若某一星体的光谱不存在红移现象,则它一定不是黑洞;若某一星体的光谱存在红移现象,则它可能是黑洞也可能是距离因素造成的。

总的来说,我们对黑洞的认识经历了三个阶段:第一阶段认为黑洞的引力足够强,所有的光子都不能摆脱黑洞的引力,因而整个星体是黑暗的一团;第二阶段认为黑洞可以向外发出强烈的X射线或γ射线,人们认识到黑洞的引力对不同能量光子的作用不同;第三阶段也就是现在正在探索的阶段。应该明确指出:与黑洞现象紧密联系的因素有两个,引力因素和距离因素。以往我们在考虑黑洞现象时往往只考虑引力因素而忽略了距离因素,这就导致我们认为整个宇宙空间仅有150亿光年,对150亿光年以外的宇宙空间,认为看不见的就是不存在的。

7.恒态宇宙

也许有人会问,既然光子的速度能够降低到零,那么宇宙中会不会堆积越来越多的光子呢?不会的!光子作为物质的一种存在方式,它不是永恒的,在一定条件下光子可以转化为别的物质,也就是说光子是有一定寿命的。任何一个光子不可能永远存在下去,它必将转化为别的物质形式。宇宙中的物质无时无刻不在运动,所以宇宙中不会堆积越来越多的光子。虽然我们目前并不知道光子是如何转化为别的物质的,但我们依然相信整个宇宙是稳定的、恒态的,而局部宇宙则可能是不稳定的,处于演化过程中的。同样的道理,整个宇宙也不会被光子均匀照亮。由于光子在宇宙空间中运动时速度逐渐减小,所以任何星体发出的光只能传播到有限远处。也正因为如此,我们所观测到的宇宙始终是有限的。如果想观测更远的宇宙空间,一个方法是派出宇宙飞船,另一个办法是在宇宙空间中建立许多中转站,在光信号速度未衰减到零以前接受、放大、转播它。理论上讲,只要中转站的数量足够多,我们就可以看见任意远处的宇宙空间。

8.浩瀚宇宙

假设我们能够乘座一艘高速飞行的宇宙飞船遨游太空,在刚离开地球时,我们可以观测到150亿光年的宇宙,离我们越远的星体其红移值也越大,远处的星体放出强烈的X射线或γ射线。随着我们飞行距离的增大,我们会发现银河系的红移值越来越大,并且其颜色逐渐偏蓝,而原先我们观测到呈蓝色或紫色的星体颜色逐渐偏红,最终银河系将消失在我们的视野之外。当我们飞到离银河系150亿光年的地方,我们发现展现在我们面前的宇宙范围仍然有150亿光年;而原先我们认为正在以很大速度分离的星体或膨胀的宇宙空间并没有膨胀。无论我们飞到哪里,始终只能看见150亿光年的宇宙空间,也始终能够看见150亿光年的宇宙空间,宇宙是无限的;并且我们始终是宇宙的“中心”,因为所有的星体看起来所有的星体都好象以我们为中心向外爆炸形成的一样,越远的星系(红移值越大)离开我们的速度也越大。我们认为,宇宙是无始无终的,物质的存在是永恒的,对某一特定的物质形态有其产生和消亡的过程,但整个宇宙不存在产生和消亡的过程,它是自始至终存在并且不会消亡的。同时也应该看到,宇宙是无限的,不会仅仅只有150亿光年的空间。

从上个世纪以来,人们已经探索到了上百亿光年的宇宙空间,然而这只不过是苍海一粟。也许还要几十年甚至上百年人类才能认识到宇宙的无限性,但只要天下有志之士携手合作,这一天定会早日到来。

二、浅谈光的衍射

通常情况下光总是直线传播。但当光线经过足够窄的窄缝时将形成明暗相间的衍射条纹。由于光子不带电,在电磁场中不偏转,所以光子的衍射不是电磁力作用的结果,而是引力子与光子作用产生的。光子与引力子作用不是一个简单的碰撞过程,而是一个极为复杂的过程。在光子与引力子相遇的一瞬间它们形成一个混合体,这就打破了结合前光子内部各部分的平衡,混合体内部存在着排斥力和凝聚力两种作用。若排斥力占主导作用,则混合体将在极短的时间内“裂变”放出引力子;若凝聚力占主导作用,则混合体将形成一个新的光子。那么满足什么条件的混合体(光子)才是稳定的呢?经典电磁理论指出:所有光子的能量均为某个最小能量的整数倍。也即所有光子的质量均为某个最小质量的正整数倍,只有这样的光子才能稳定存在。当然这并不表明能量为某个最小能量的非整数倍的光子就不存在,只不过由于它们极不稳定,在形成后瞬间就“裂变”生成能够稳定存在的光子,目前我们还没有观测到或注意到这类光子罢了。从这里我们可以看出,与原子核一样,所有光子的质量均为某个最小质量的正整数倍,说明光子也有一定的内部结构,某些质量的光子由于极不稳定,在其形成后瞬间就“裂变”生成能够稳定存在的光子,这就造成稳定存在的光子质量的不连续。言归正传,由于引力子质量远远小于光子的质量,所以光子不可能吸收一个引力子形成新的光子(因为这样的光子是不稳定的)。但是若在同一时刻,光子与许多引力子相互作用,而这些引力子质量之和又大于最小光子的质量,光子就有可能吸收质量和等于最小光子质量的引力子数目而形成新的光子。举例来说,若最小光子的质量是引力子质量的10万倍,那么当同一瞬间有15万个引力子作用于光子时,光子只可能吸收10万个引力子,另外5万个引力子不被光子吸收,仅对光子产生微小的冲量。倘若在同一瞬间有9万个引力子作用于光子,那么这9万个引力子都不会被光子吸收,它们仅对光子产生微小的冲量。光子可能吸收的引力子数目只可能是10万的正整数倍。只有光子吸收引力子形成新的光子才能全部吸收引力子的冲量,否则的话,光子仅受到极小的冲量。

现有一个宽度为α的窄缝,绝大多数光子经过窄缝时虽然与许多引力子作用,但大多不会形成新的光子,这样大部分光子仅以极其微小的发散角投射到屏幕上,形成宽度略大于α的中央亮纹。由于衍射条纹是对称分布的,所以我们只讨论一半。拿中央亮纹以上的条纹来说,这些条纹是由缝中心到缝顶部经过的光子偏转形成的。从缝中心到缝顶部经过的光子,若吸收10万个引力子则形成稳定的新光子,而新光子由于全部吸收了引力子的冲量因而向上发生较大的偏移,从而在屏幕上形成宽度为0.5α的第一条亮纹。从缝中心到缝顶部经过的光子,若吸收20万个引力子则它向上的偏移量是第一条亮纹偏移量的两倍,形成第二条亮纹。同样形成第3条、第4条、第5条……第n条亮纹。中央亮纹以下的亮纹也是这样形成的,并且中央亮纹的宽度约为其它亮纹宽度的两倍。由于从缝中心到缝顶部引力逐渐增大,所以与光子作用的引力子数目也可能逐渐增多。假设在离开缝中心向上的极小位移处,在该处最多只可能有10万个引力子与光子发生作用,那么经过该处的光子最多只可能偏移到第一条亮纹处。换句话说它最多只可能对第一条亮纹的形成做贡献,对第2条、第3条、第4条……第n条亮纹都没有贡献。由此在向上某处经过的光子最多只可能吸收20万个?ψ樱部赡芪?0万个引力子,故经过该处的光子对第1条、第2条亮纹的形成做出贡献而对第3条至第n条亮纹都没有贡献……;从缝顶部经过的光子可能吸收10万*1、10万*2、10万*3……10万*n个引力子,所以从该处经过的光子对第1条、第2条、第3条至第n条亮纹的形成都有贡献。这样形成的亮纹亮度依次为第一条>第二条>第三条>……>第n条。若缝变窄,则在离开缝中心向上的极小位移处,光子最多可能有20万个引力子,经过该处的光子对第1条、第2条亮纹的形成都有贡献,这样就减小了第1条、第2条亮纹亮度的差异。也就是说,缝越窄条纹亮度越向两边分散,缝越宽条纹亮度越向中央集中。当缝很宽时,条纹亮度几乎全部集中在中央区域,两边的光子数几乎为零。这就是我们看到的光的直线传播现象。由于光子并不是一种波,其偏离直线传播(衍射)现象是由引力子引起的,所以光的衍射现象与缝的宽度无关。物体在阳光下的阴影边缘常常较模糊,这说明光子在经过物体表面时受到引力作用而偏离了直线传播。理论上来说只要光子的运动方向和引力方向不在一条直线上,光子就会偏离原来的运动轨迹,并且引力场越强光子弯曲的程度也越大。星光在经过恒星以后通常会发生弯曲,有时我们甚至能够看到星体后面的其它星体?⒊龅墓狻?BR>三、论电子结构与原子光谱现象

1.电子发光

原子是如何发光的?要弄清这个问题首先必须明白光子是由原子的哪一部分发出的。我们知道,原子是由原子核和核外的电子组成的,原子核的结合能很大,不可能发出光子,所以光子只可能是电子发出的。在化学反应中伴随着电子的得失,常常有能量(光子)放出,光电效应、激光现象及其它一些实验也证明了光子是由电子发出的,所以可以肯定原子发光其实是电子发出光子。既然电子可以放出光子,那么光子必然是电子的组成部分,或者说电子有一定的内部结构,光子是其组成部分之一;由于光子不带电,说明电子内部电荷的分布是不均匀的,因为如果电子内部电荷是均匀分布的,则光子就应该带电。原子中原子核和电子之间的距离很小,它们之间的静电力很强,因为电子内部电荷分布不均匀,所以在原子核强大的静电力作用下电子内部电荷将重新分布,甚至可能发生裂变,这就为电子放出光子创造了条件。当电子裂变放出光子后,它的各个组成部分结合的更加紧密,在适当的时候可能吸收一个光子,这就为电子吸收光子储存能量创造了条件。而电子正是通过不停地吸收、放出光子来和外界交换能量的。稍后我们将看到,原子正是通过电子不断吸收、放出光子来和外界完成能量交换的。一般来说,电子质量越大其内部各部分结合的越松散,在静电力作用下越容易发生裂变;电子质量越小其内部各部分结合的越紧密,在静电力作用下越不容易发生裂变。与原子核“幻数”相似,总有特定质量的电子的结合力相当大,比其它质量电子的结合力大许多,这些特定质量的电子往往对应于某些稳定的轨道。

有人认为物质发光是由于物质中的原子或分子受到扰动的结果,认为光子是由原子或分子发出的。其实这是一种错误的看法。我们知道,原子是由原子核和核外电子组成的,光子是一种物质实体,或者是由原子核发出的,或者是由电子发出的,除此以外再没有别的选择。说光子是由原子发出的,这是一种不确切的说法。

2.原子核和电子之间的磁力作用

两个相距一定距离的异种点电荷在静电力作用下必然会吸引在一起,因为静电力作用在两点电荷连线上。而原子核和电子不会吸引在一起。这就启示我们在原子核和电子中必然存在一种其它作用力。这个力就是原子核和电子之间的磁力。我们知道,在通以相同方向电流的两条平行导线间会产生磁力作用,在磁力作用下它们将彼此吸引,原子核和电子的相向运动正相当于通以相同方向电流的两条平行导线,在它们之间也将产生磁力作用。静电力的作用总是使电子获得指向原子核的向心速度,而原子核和电子之间的磁力则使电子获得切向速度,并且原子核和电子之间的相对速度越大,它们之间的磁力也越大。当原子核和电子之间彼此相对静止在一定远处时,在静电力和磁力的共同作用下,它们并不会吸引在一起。因为静电力使电子获得向心速度,磁力使电子获得切向速度,电子并不是沿着直线靠近原子核,而是沿着螺旋线靠近原子核。开始时螺旋线的半径为无穷大,电子作直线运动;一旦电子相对原子核的速度不为零,磁力开始起作用,电子的运动轨迹开始发生弯曲;当电子与原子核靠近到一定的距离时,电子和原子核之间的静电力恰好等于电子作圆周运动所需的向心力,此时电子处于平衡状态,螺旋线变成了圆。同样在电子离开原子核时也是沿着螺旋线运动的。在静电力作用下,电子总要尽量靠近原子核,在磁力作用下,电子有远离原子核的离心趋势,正是在这两种力作用下,电子处于稳定的平衡状态中。电子在原子核中处于稳定状态时,它的轨迹是圆。因为当电子的轨迹不是圆时,它总要受到磁力的作用,这个力使电子的切向速度增加、运动轨迹向圆靠近。而电子受磁力作用时它的运动轨迹就要发生变化,就不是稳定的,只有当电子的轨迹是圆时才不受磁力的作用,所以说电子在原子核中的稳定轨迹是圆。太阳系中的行星在太阳引力作用下,其运动轨迹可以是圆或椭圆,但在原子系统中,电子在原子核静电力作用下,其稳定轨迹只可能是圆而不可能是椭圆。

3.基态电子的稳定性

处于基态的电子为什么是稳定的?为什么不会被原子核吸收?人们通常认为:做加速运动的电荷会向外辐射能量.如果电子在原子核中做圆周运动,则它就有加速度,必然会不断地向外辐射电磁波,随着电子能量的减小它将沿着螺旋线落入原子核中,这样整个原子就是不稳定的,然而事实并非如此。于是人们推测电子在原子核中不可能做圆周运动。我们认为以上推断是错误的,电子的确在原子核中做圆周运动,其理由如下:第一,电子辐射电磁波并不是一个只出不进的过程。电子时刻不停地向外辐射能量,也在时刻不停地吸收光子,这是一个动态平衡过程。如果电子吸收的能量大于其辐射的能量则原子的温度升高,如果电子吸收的能量小于其辐射的能量则原子的温度降低,倘若没有外界能量输入,原子总会由于向外辐射能量而降低温度,只要物体的温度在绝对零度以上就会向外辐射电磁波。第二,电子在原子中的质量并非一成不变的。一般而言,电子离核越近质量越小,离核越远质量越大(这一点我们稍后证明)。第三,电子和原子核之间并非只有静电力作用,还存在磁力作用。正因为磁力作用的存在使电子在靠近原子核时切线速度不断增大,从而使其离心力逐渐增大,以致于可以与静电力抗衡维持电子在原子核中的稳定。

这里需要我们证明随着电子离核距离的减小,离心力的增加速度大于静电力的增加速度。设电子稳定时质量为M,速度为V,与原子核相距R,原子核电量为Q,此时静电力F正好等于电子作圆周运动的向心力,

离心力大于静电力,所以此时电子作离心运动,将回到距核R的轨道上。同样当电子受到远离原子核的扰动后,静电力F大于电子作圆周运动的向心力,电子将向原子核运动,最终要回到距核R的轨道上,这里不再证明。

另外我们认为,做加速运动的电荷会向外辐射电磁波这个提法不够确切,应该说做加速运动的自由电荷会向外辐射电磁波,而电子在原子核中做圆周运动时不会向外辐射电磁波。两者有什么区别呢?我们知道,在原子核和电子结合成原子的过程中要向外放出能量,即自由电子要在原子核静电力作用下裂变放出光子才能够成为原子中的电子,原子中的电子和自由电子是有区别的。自由电子的质量大于原子中的电子的质量,自由电子各部分结合得较为松散,受到外界扰动(有加速度)时会向外辐射电磁波;而原子中的电子质量小,各部分结合得较为紧密,受到外界扰动(有加速度)时未必会向外辐射电磁波,只有当外界扰动(加速度)足够大时才会裂变辐射电磁波,所以电子可以在原子中做圆周运动而并不向外辐射电磁波。

4.稳定轨道的形成

对于处于基态的电子来说,每秒会有许多光子与其作用。这些作用有指向原子核的,也有指向核外的。电子在吸收一个或几个光子以后质量增加,形成新的电子。我们先考虑指向核外的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R+Δr,我们知道,一定质量的电子总有与一条特定轨道与之对应,比如电子的质量为M时其轨道半径为R,那么当电子质量为M+Δm时就可能停留在半径为R+Δr的轨道。但这里我们少考虑了一个条件,那就是质量为M+Δm的电子的结合能。我们知道电子在每秒内会受到许多光子的扰动,假设质量为M+Δm的电子运行在半径为R+Δr的轨道上,若它受到一个指向原子核的扰动,离核距离变为R+Δr-r,此时原子核静电力对它的作用增强,若它的结合能小的话则电子立即裂变放出光子重新回到其原来的轨道R上;如果质量为M+Δm的电子内部的结合能非常小,以至于受到微小的扰动时立即裂变放出光子,那么它在半径为R+Δr的轨道上停留的时间也趋近于零,换句话说半径为R+Δr的轨道根本不存在;如果质量为M+Δm的电子内部的结合能非常大,以致于受到很大的扰动时它才裂变放出光子,那么电子就能够在半径为R+Δr的轨道上停留一段时间,这段时间就是原子的平均寿命。假设有一群电子处于同一激发态,由于每个电子受到的扰动情况不一样,有的电子受到的扰动大有的电子受到的扰动小,而只有电子受到足够大的扰动并运动到离核足够近的地方才会裂变放出光子,所以电子裂变回到基态的时间也不一样。处于同一激发态的原子的平均寿命和两个因素有关:一是电子的结合能,二是电子受到的扰动。电子内部的结合能与原子核“幻数”相似,只有特定质量的电子的结合能才是很大的,所以电子的轨道也是特定的、不连续的,其它质量的电子由于结合能很小,裂变时间极短,所以它们不可能稳定停留在原子中,也形成不了稳定轨道甚至根本就没有轨道。我们再来考虑指向原子核的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R-Δr,此时原子核对电子的静电力增强,电子立即裂变放出质量为Δm的光子,由前面的证明我们知道,此时电子的速度增大,离心力大于静电力,电子最终将停留在半径为R的稳定轨道上。也许有人会怀疑,这样看来电子可能存在的稳定轨道岂不是唯一的了?实际上由于电子在原子核外有几个不同的稳定质量,所以它也有几条稳定轨道,一定的质量总是与某一条特定轨道相对应。从这里我们可以看出,电子在原子核中的稳定轨道往往对应于电子结合能极大的质量,结合能小的质量由于在原子?胁晃榷ㄒ蚨换嵝纬晌榷ü斓馈?nbsp;

5.电子结构与不同跃迁轨道

对于处于同一激发态的一群电子而言,设电子的质量为M+Δm,它们可能会有不同的跃迁轨道,放出的光子的能量(质量)也不同,但总是跃迁到离核近的电子放出的光子的能量(质量)大。电子从激发态回到基态的过程并不是先放出光子再回到基态,而是先回到比基态更近的地方放出光子然后才回到基态。当电子回到离核R-Δr处时,在静电力作用下电子裂变放出质量为Δm的光子,此时离心力大于静电力,电子将回到半径为R的稳定轨道上。那么电子为什么会有多条跃迁轨道呢?这说明处于同一激发态的电子内部结构(结合力)不同,有的结合力大,有的结合力小,结合力小的光子在离核较远的地方裂变,放出的光子能量也较小;结合力大的光子在离核较近的地方裂变,放出的光子能量也较大,电子的跃迁方式是由其内部结构决定的。同一质量的电子可能有多种裂变方式,再次向我们说明电子具有内部结构,在考虑原子光谱时一定要考虑电子的内部结构。处于激发态的电子在向基态跃迁时会发出光子;把原子的内层电子打掉以后外层电子会放出光子并向离核更近的轨道跃迁。这些现象启示我们:电子离核越近质量越小,电子离核越远质量越大。从这里也可以看出,电子质量越小其内部结合力越大。因为离核越近电子受到的静电力越大,而电子能够稳定存在说明其内部结合力越大。在同一个原子中,内层电子的质量小于外层电子的质量;同一个电子离核越近质量越小。

人们发射的人造卫星可以设定轨道,其轨道变化可以是连续的,但对原子核中的电子来说,其轨道变化则是不连续的。怎样理解这一点呢?让我们做一个假想实验。把两个带异种电荷的点电荷放置在一定远处,并且假定它们之间除了静电力以外不在受到其它力的作用,则最终它们将互相吸引在一起。无论怎样改变这两个电荷的质量、电量,结果都是相同的。这说明:用宏观电荷不可能模拟原子核和电子之间的作用力。说到这里,好事者马上就会解释,因为宏观电荷物质波的波长极短而电子物质波的波长较大,所以用宏观电荷不可能模拟原子核和电子之间的作用力。换一个角度来说,宏观物质和微观物质是有区别的,用宏观物质不能模拟微观物质。但区别究竟在哪里?一个是宏观物质而另一个是微观物质,这个解释近乎无聊了。还是让我们来仔细分析为什么用宏观电荷不可能模拟原子核和电子之间的作用力。我们知道,在静电力作用下,电子和原子核开始时相向运动,而后在磁力作用下沿着螺旋线相互靠近,正是由于原子核和电子之间的磁力使电子获得了绕原子核运动的切向加速度,并使整个原子处于稳定状态。那么,两个宏观点电荷之间的运动轨迹为什么是一条直线呢?这是因为宏观电荷的荷质比远远小于原子核和电子的荷质比,在静电力作用下宏观点电荷获得的最终速度也小得可怜,因此宏观点电荷之间因相对运动而产生的磁力也微乎其微,近似于零。所以宏观点电荷在静电力作用下表现为相向运动,其运动轨迹接近直线。从这里我们可以得出这样一个结论:虽然静电力作用在两个电荷的连心线上,但是仅在静电力作用下,电荷的运动轨迹不一定就是直线,两个电荷的荷质比越小,其运动轨迹越接近直线,反之则越接近曲线。那么,如果宏观点电荷的荷质比足够大甚至可以与原子核或电子相比时,是否可以用宏观点电荷模拟原子核和电子相之间的作用呢?也不能!如果宏观点电荷的荷质比足够大,甚至可以与原子核或电子相比,那么这样的两个异种电荷在静电力作用下会沿着螺旋线相互接近,最终会处于稳定状态,但由于宏观点电荷的质量不会发生变化,因此最多只能形成一条稳定轨道,而不可能象电子那样在原子核中有多条稳定轨道。

在多电子原子中,各电子间有什么主要区别呢?有人认为离核越近的电子能量越低,越不容易失去;离核越远电子能量越高越容易失去,但这还不是最主要的区别。多电子原子中各电子间最主要的区别在于它们的质量不同。离核越近的电子质量越小,离核越远的电子质量越大,同一个原子中没有两个质量相同的电子存在。在氢原子中也是电子离核越近质量越小,离核越远质量越大。

6.原子的吸收光谱和明线光谱

在原子的吸收光谱中,只有特定能量的光子才被电子吸收;在原子的明线光谱中,同样也只能发出特定能量的光子。于是人们认为电子只能吸收或发出特定能量的光子。我们知道,只要物体的温度在绝对零度以上,就会向外发射电磁波,物质的发射光谱是连续光谱。那么其它能量的光子是由哪一部分发出又是如何发出的呢?显然还是由电子发出的,因为原子核不可能发出光子。当我们用电子束轰击汞原子蒸汽时,可以发现当电子的能量为某些特定值时,汞原子强烈地吸收其能量;对于其它能量的电子汞原子只吸收其一部分能量。汞原子只吸收电子束的能量实际是汞原子中的电子吸收电子束的能量。可见,原子中的电子可以吸收各种能量(质量),但对特定的能量(质量)吸收能力十分强。在原子的吸收光谱中,电子可以吸收各种能量的光子,只不过大部分光子被电子吸收后与电子的结合能并不大,受到微小的扰动后立即放出光子,由于该过程极短,所以当连续光通过原子蒸汽时,大部分光子被吸收后又很快放出,看起来似乎没有与原子作用,只有极少数具有特定能量的光子与电子的结合力极大,这类光子被吸收后要保持一段时间才可能放出,故吸收光谱会出现几条暗线。至于原子的明线光谱,与其说是明线光谱还不如说原子的发射光谱中有几条线特别亮。这是因为处于激发态的电子比别的能量状态的电子稳定,停留的时间较长,所以在一群原子中处于激发态的电子数目总比别的状态的电子数目多,因而它们发出的光也更亮一些。事实上原子的发射光谱不仅仅是明线光谱,明线光谱只是原子发射光谱中极个别的具有代表性的光子,原子几乎可以发出小于一定能量的任何光子。电子在原子中时刻不停地吸收各种能量的光子,由于电子与绝大部分光子的结合力都不大,所以电子也在时刻不停地放出各种能量的光子,因此物质的发射光谱往往是连续光谱。

许多人都认为原子只能吸收特定能量的光子,原子也只能放出几种特定能量的光子,因为他们看到原子的吸收光谱中仅有几条特定频率的暗线,而子的发射光谱也仅仅是几条特定频率的明线而已。其实这种看法是错误的。我们不妨这样分析,若原子只能吸收特定能量的光子,则只有特定能量的几种光子对物体具有明显的热效应,并且每种物质的敏感光子不同。实际上并非如此。我们知道,红外线具有显著的热效应,对任何物质都是如此。此外,物质的发射光谱是连续光谱,这也说明原子或分子的吸收(或发射)出的光子是广谱性的。为了充分理解这个问题,需要作进一步的说明。现代物理学指出:氢原子吸收的光子能量只能是13.6/n*n电子伏(这里n取自然数),也就是13.6、3.4、1.5……电子伏,并且认为对于10电子伏、3电子伏这样的其它能量的光子不会被电子吸收。我们认为:电子吸收的光子能量是连续的,对于10电子伏、3电子伏这样的其它能量的光子同样会被电子吸收,只不过电子吸收这些光子后,电子和光子的结合能不够大形不成稳定的轨道,所以电子又很快放出该光子,由于作用时间极短,以致于我们误认为电子没有吸收光子。换一个角度来考虑,当大量的原子吸收了能量连续的光子时,由于大部分电子与光子的结?狭Χ疾淮螅哉庑┑缱釉诩痰氖奔淠冢ㄉ栉猼)就会裂变放出光子,而能量为13.6、3.4、1.5……电子伏的光子与电子的结合力很大,所以电子裂变放出光子的时间也很长,如果这个时间是100t,则电子放出相应的光子也比其它光子亮100倍;如果这个时间是1000t,则电子放出相应的光子也比其它光子亮1000倍……,这样,在原子的明线光谱中自然就形成几条特殊的亮线了。由此我们得出一个结论:在原子的发射光谱中,任意一条谱线的亮度与处于相应激发态的原子的平均寿命成正比,原子的平均寿命越长,谱线的亮度越大;原子的平均寿命越短,线的亮度越小。当然这有个前提,那就是被原子吸收的连续光谱中各种能量的光子是平均分布的。

7.热现象的本质

由于电子时刻不停地受到光子的扰动,不断地吸收各种能量的光子,也不停地放出各种能量的光子,所以电子在原子核中并不是处于稳定状态,它的运动轨迹也不是正圆。一般来说,温度越高,电子受到的扰动越大,其运动轨迹偏离圆形的趋势越明显;温度越低,电子受到的扰动越小,电子的运动轨迹越接近圆(只有在绝对零度时,电子的运动轨迹才可能是正圆)。从这个意义上来说,原子模型可以看作是卢瑟福的行星模型和电子云模型的结合:温度越高,原子模型越接近行星模型;温度越低,原子模型越接近电子云模型(但在某一瞬间,电子在原子核中有确切的位置)。温度的高低反映了电子偏离稳定轨道程度的大小,单个原子(分子)也有温度。电子偏离圆形轨道的程度越大,表明该原子的温度越高,电子裂变后放出的能量也越大。所以温度升高时物体发出的电磁辐射向短波方向移动。对于温度一定的物体来说,它内部包含了大量的原子,这些原子中的电子由于受到的扰动大小不同,它们裂变放出光子的质量也不同,但大致满足正态分布,即发出的光子中能量特别大的和能量特别小的都是极少数。由前面的论述我们知道,电子在原子核中的能量大小并非定值:电子离核越远电势能越大,离核越近电势能越小。与宏观电荷一样,电子的电势能是其与原子核距离的函数,电子和原子核间的作用力服从库仑定律。温度越高,电子离核越远,电势能也越大,因而也越容易失去;温度越低,电子离核越近,电势能也越小,也越不容易失去。

什么是热现象呢?这似乎是不是问题的问题。人们通常认为:热现象是大量分子无规则运动的反映,温度越高分子的平均速率越大,温度越低分子的平均速率越小。果真如此吗?我们知道,太阳时刻不停地向外抛射高能粒子,这些粒子的速度接近光速,宇宙中其它恒星也在不停地向外抛射高能粒子,所以在宇宙空间任何地方,都有许多高能粒子正在做杂乱无章的运动,这些粒子的速度通常都接近光速或亚光速。这样看来宇宙空间的温度应该很高(至少比恒星内部高),宇宙空间应该是很明亮的。但事实上,宇宙空间是漆黑的一团,温度只超过绝对零度一点。这说明粒子运动速度大未必温度就很高,物体的温度不是由组成它的原子(分子)的平均运动速度决定的。温度升高,原子(分子)的平均速度增大。但反过来,原子(分子)的平均速度增大并不意味着温度升高。我们知道,只要物体的温度在绝对零度以上就会向外辐射电磁波,而物质向外辐射电磁波的原因是电子受到扰动后在静电力作用下放出光子,并且光子受到的扰动越大放出的光子能量也越大,相应的物体的温度也越高。从这个意义上来说,原子是储存热量的最小单位,单个原子也有温度,因为它可以储存热能。但单个的带电粒子如质子、电子在不受外界任何扰动时,即便速度再大也不会向外界释放能量,因此它们都不能储存热能,因而也没有温度。应该看到,原子(分子)的高速运动所具有的能量仅仅是动能而不是热能,和宏观物体一样,速度大未必温度高。宏观物体的速度与其温度无关,原子(分子)也是如此。一个原子(分子)的速度比其它原子(分子)的速度大,只能说明它的动能大,储存的热能未必就多。热能仅储存于原子核和电子形成的原子体系中,两者中缺少任何一个都不能储存热能。在日常生活中我们用红外线(微波)加热而不用紫外线,紫外线的热效应远远小于红外线(微波)。这是因为红外线(微波)光子的质量小,和原子中电子的结合力大(包括内层电子),而紫外线和原子中电子的结合力小(它几乎不与内层电子作用),所以红外线往往容易被物体吸收,其热效应当然比紫外线强。

再进一步考虑,什么是热现象呢?热现象和温度之间有什么关系呢?我们认为:对一个物体而言,倘若它储存了热能它就有温度,并且它储存的热能越多它的温度就越高,反之则温度越低;倘若物体没有储存热能则它就没有温度或者说它的温度是绝对零度;倘若物体不能储存热能,则用温度来衡量该物体是没有意义的。我们知道,原子是储存热能的最基本单位,原子的热能实际上是储存在电子中的。单独的原子核、单独的电子都不能储存热能,所以单独的原子核、单独的电子都没有温度。同样的道理,光子也不能储存热能,它仅仅是热能的载体,因为单独的原子可以储存热能,所以单独的原子有温度,但由于单独的光子不能储存热能,所以单独的光子没有温度,不同能量的光子之间只有能量的差异而没有温度的差异,用温度来衡量光子是毫无意义的。倘若光子也有温度,则在太阳系中离太阳越近的空间温度就应该越高,离太阳越远的空间温度就应该越低,事实上完全不是这么回事。

光子范文篇7

当人们用望远镜观测银河系以外的星系时,可以发现绝大多数星系光谱都存在红移或蓝移现象,并且越远的星系其光谱红移值越大。根据多普勒效应:星系光谱存在红移说明星系正离我们远去,星系光谱存在蓝移说明星系正向着我们运动。需要指出的是越远的星系红移值也越大,看起来所有的星系都好象以银河系为中心向外爆炸形成的一样,越远的星系离开我们的速度也越大。鉴于此有人提出宇宙大爆炸假说:认为宇宙是由150亿年前发生的一次大爆炸形成的,人类居住的银河系则是宇宙的中心。可是人们在观测银河系和河外星系时,却并没有发现银河系有什么特别之处。有人据此怀疑宇宙大爆炸假说;也有人从星系的演化推算出宇宙的年龄大于150亿年;还有人认为若宇宙大爆炸假说是正确的,那么宇宙辐射在各个方向上就会表现出各向异性;更有人担心宇宙的膨胀没有尽头,遂认为宇宙的膨胀和收缩是交替进行的……。但不管怎样,大部分人还是相信“眼见为实”,由星系光谱的红移现象承认了宇宙大爆炸假说。更有人把红移现象与宇宙背景辐射和宇宙元素丰度并作宇宙大爆炸假说的三大支柱。那么宇宙是否发生过爆炸并仍在向外扩张,年龄是否只有150亿年呢?非也!

1.星系光谱红移原因

20世纪初,当人们用望远镜观测银河系以外的星系时,发现绝大多数星系光谱都有红移现象,并且越远的星系其光谱红移值越大。有人认为星系光谱红移是因为星系正在离我们远去,从而得出这样的结论:所有的星系都是以我们银河系为中心向外爆炸后形成的,越远的星系离开我们的速度也越大;宇宙中所有的星系都在彼此分离,并且越远的星系相互分离的速度越大。值得一提的是,我们银河系正处在爆炸中心,足以值得我们自豪的是:银河系是宇宙中独一无二的星系—因为它是宇宙的中心。更让我们惊奇的是,银河系自身也在不断运动着,然而无论它运动到哪里,它始终是银河系的中心。我们解释不了银河系为什么是宇宙的中心,因为银河系也和其它星系一样,并沒有什么特别之处。有人以为,银河系处于宇宙的中心是一个巧合,虽然银河系从上个世纪至今一直在不断运动,但它走过的距离和整个宇宙空间的尺寸比起来是微不足道的,所以银河系目前仍然处在宇宙的中心,这种看法未免有些牵强。因为人们在观测近处的星系时,发现近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系正在以某一个中心为起点向外膨胀。因此“银河中心说”颇值得怀疑。还有的人虽然承认宇宙大爆炸假说,但不承认“银河中心说”,他们不认为银河系是宇宙的中心。这种观点同样也是站不住脚的。我们可以这样分析:如果宇宙大爆炸假说是正确的,那么宇宙中所有的星系必定在以某一个中心为起点向外膨胀,星系之间彼此互相分离。目前我们观测到近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系在以某一个中心为起点向外膨胀。倘若我们不是在宇宙的中心而是处于偏离宇宙中心的任一点处,因为在我们周围的星系都没有相互分离的趋势,也没有以某一个中心为起点向外膨胀,这样一来,倘若宇宙中任一点处的星系都没有相互分离的趋势,那么整个宇宙也不可能在膨胀,即宇宙大爆炸假说是错误的。

前事不忘,后事之师。人类文明发展到今天,“地心说”和“日心说”都被证明是为科学,难道我们还要重蹈覆辙提出“银河中心说”吗?愚以为,我们应当承认这样一个假设,那就是:银河系按目前的速度运动下去,100万年,100亿年以后,我们仍然会发现自己处在宇宙的“中心”,无论我们处在宇宙的任何地方,中心也好,边缘也好,我们都会发现宇宙中越远的星系光谱红移值也越大,就好象我们处在宇宙的“中心”一样。事实上,这个“中心”是光子在宇宙空间中的传播特性引起我们视觉上的错误,“眼见”未必“为实”,我们不能过分相信“眼见”的东西。

红移现象是否由观测者自身的运动引起的呢?不是的!如果红移现象是由观测者自身的运动引起的,那么我们将观测到与我们相向运动的星系光谱将发生蓝移而与我们相背运动的星系光谱将发生红移,然而事实并非如此。再者,虽然我们“坐地日行八万里”,但这个速度和光速比起来实在算不了什么,不至于影响观测结果。换句话说,我们在观测星系红移值时,观测者自身运动速度的影响可以忽略不计。红移现象说明光子与观察者之间的相对速度变小了。产生这种情况有两种可能:第一是星系正离我们远去,第二是光子在穿越宇宙空间时速度变小了。这两种情况都可能导致星系光谱红移。我们认为导致星系光谱红移的原因是后者。光子在穿越宇宙空间时会与各种粒子(比如引力子)相互作用从而使其速度逐渐减小。当然单个粒子与光子作用时间极短,引起光子速度的改变量也是极其微小的,以致于我们观测不到。随着光子穿越宇宙空间距离的增大,与光子作用的粒子数目也逐渐增多,光子速度的减小量也越明显。可以推测:光子在穿越一定的宇宙空间距离后速度将减小到零。由于光子速度为零故相对我们的能量也为零,这样的光子当然不会被我们观测到。可见用光学法观测宇宙空间尺度时有一个极限:150亿光年(也有人认为是200亿光年)。在这个尺度以外的星系发出的光子由于在没有到达地球时速度已经降低到零,所以这样的星系不可能被我们观测到,至少目前还没有办法观测到。也有人认为,红移现象是由光子频率减小引起的,即认同第一种可能:认为星系正离我们远去。这种观点听起来很有道理,却经不起分析。我们知道,星系离我们远去时会引起光子频率减小,但各种不同频率光子的频率减小量应该相同,反应在星系光谱上,各种不同频率光子的红移量应该相同。因此,不论星系离我们多远,星系光谱虽然发生红移但不应该变宽,但事实上远处星系光谱却被拉宽了(星系光谱不会变宽是指星系光谱中任意两条谱线的距离恒定,虽然它们都发生了红移,但它们移动的距离相等,因此各谱线之间的距离不变)。而且能量越小的光子红移值越大,能量越大的光子红移值越小。不同频率光子的频率减小量不同,说明红移现象不是由光子频率减小引起的。即第一种可能站不住脚。假设宇宙中所有的星系都是静止的,宇宙空间中的物质是均匀分布的,那么光子穿越宇宙空间时的速度衰减量仅与其通过的空间距离有关。光子穿越的宇宙空间越长,其速度衰减量也越大。这样星系光谱的红移值仅与其离我们的距离有关,离我们越远的星系红移值也越大,就好象越远的星系正在以越快的速度离开我们一样。这也正是哈勃定律所揭示的:星系远离银河系的速度ν与距离成正比,ν=H*D,其中H为哈勃常数。实际上宇宙中各星系都在不断运动着,宇宙空间中的物质也并非均匀分布的,造成星系光谱红移的原因也很多,所以光谱的实际红移值要考虑许多情况。

2.谱线红移与光子速度衰减

光子与宇宙空间中的粒子是如何作用的呢?可以设想,宇宙空间中存在许多比光子质量小得多的粒子(比如引力子)。由于光子在与粒子作用后仍然是光子,可以认为光子仅与粒子发生了弹性碰撞。既然是弹性碰撞,我们知道,二者质量越接近光子损失的能量越大。由于光子的质量远远大于引力子的质量,所以在不同频率(质量)的光子中,频率(质量)较小的光子损失的能量较大。于是经过同一段宇宙空间以后,在不同频率(质量)的光子中,频率(质量)较大的光子损失的能量较少,频率(质量)较小的光子损失的能量较大,例如红光损失的能量比紫光损失的能量多。由于不同频率(质量)的光子在宇宙空间运动时都损失了能量,这样整个星系的光谱将向红端移动,但由于红光损失的能量多向红端移动的距离大,而紫光损失的能量少向红端移动的距离小,于是整个光谱被“拉宽”了。如果不同频率(质量)光子的能量损失率相同,虽然它们都产生红移,但是它们红移的距离相等,这样星系光谱虽存在红移但不会被“拉宽”,星系光谱存在红移而且被“拉宽”说明两点:第一光子在穿越宇宙空间时速度会衰减,第二不同频率(质量)的光子速度衰减率不同。显然,由于不同频率(质量)光子的能量损失率不同,各种光子的速度衰减量差异将随着空间距离的增加而增大,这样星系光谱被“拉宽”的程度与其离我们的距离有关,离我们越远的星系其光谱被拉宽的程度也越大。另外,星系光谱被拉宽时还有一个特点,那就是能量大的光子被拉宽的程度小,能量小的光子被拉宽的程度大。也就是说,越靠近红端光谱被拉宽的程度越大,越靠近紫端光谱被拉宽的程度越小。考虑到星系引力场的影响,实际情况还要复杂一些。

上面我们谈到光子在宇宙空间运动时速度会逐渐减小,这和人们熟悉的“真空中光速不变”的看法相矛盾。实际上宇宙空间并非真空,即使宇宙空间是绝对真空它还存在引力场。换句话说,光子在真空中速度变不变的问题,实际上是光子受不受引力作用的问题。如果光子不受引力作用,那么真空中光速不变,但这样一来不论星体的引力再强,对光子都没有影响,从而宇宙中也不可能产生“黑洞”了,而现在的黑洞理论基础将不复存在;假如光子受引力作用,则就不应该有“真空中光速不变”的结论。有人对此这样解释:宇宙空间中各星体的引力分布在不同的方向上,它们的作用力相互抵消,因此光子在宇宙空间中的速度不变。这种解释也是站不住脚的。我们知道在太阳系内,引力的方向是指向太阳的;在银河系里引力的方向是指向银河系中心的,所以局部的宇宙空间引力总是有一定的方向的。我们认为光子作为一种物质实体,它的速度并非一成不变的。无论在真空中还是在介质中,它的运动速度都会越来越小。所以,光速不变只是一个神话,光年也不能作为距离单位,因为光子在前一年中走过的路程总比后一年中走过的路程长。

3.光子在引力场中的运动

星光在通过太阳附近时会受到太阳引力的作用而发生弯曲,说明光子也会受到引力的作用。其实光子也有质量,当然会受到引力作用了。通常我们认为:引力场中物质的加速度仅与引力场的强弱有关,而与物质的质量无关。如在地球表面不管是1吨的物体还是1千克的物体,其每秒获得的速度增量都是9.8米/秒。但引力场中光子的加速度与其质量有关:质量越小的光子加速度越大,质量越大的光子加速度越小。既然光子也受引力作用,那么很自然,光子在离开引力场时必然会被减速,在进入引力场时必然会被加速,在垂直于引力方向(或其它方向)运动时受引力影响其运动轨迹也会发生变化。既然光子在离开引力场时会被减速,而且质量越小的光子速度衰减量也越大,那么星体发出的不同频率的光子就有不同的速度。一般而言,星体引力越强,其发出的光速度也越小;当星体引力足够强时甚至可能使一部分光子摆脱不了星体引力的束缚,产生黑洞现象。对同一星体而言,在它发出的光中,质量大的光子速度大,到达地球的时间也越早;质量小的光子速度小,到达地球的时间也越晚。我们通常认为不同频率的光同时到达地球,这其实是错误的。关于这一点我们可以用实验来证实。当星体发生爆发或其它异常时,总是能量较大的X射线或γ射线先被我们观测到,其次才是可见光,然后才是红外线。虽然理论上如此,但在实际观测中总有这样或那样的因素及别的解释使大部分人不相信这一点。如果条件允许的话,我们可以用一个实验来证实我们的观点。在离我们很远的宇宙飞船上以两种不同能量的光子同时发出一种信号,这两种光子的能量差异越大它们到达地球的时间差异也越大。实际上考虑到不同能量的光子在同一介质中的传播速度不同,我们应该想到不同频率的光子在真空中的传播速度也不相同。由于光子在穿越宇宙空间时速度逐渐减小,并且质量小的光子速度衰减得快,可以想象,在经过一段相当长的距离以后,质量小的光子速度已经衰减到零而质量大的光子速度不为零,这样我们就只能观测到质量大的光子。若星体离我们更远一些,则我们只能观测到质量更大的光子……,随着空间距离的增大,最终我们将看不到远处星体发出的光,这个距离就是我们现在认为的宇宙极限--150亿光年。人们在观测宇宙时总有一个错误想法:由于真空中光速不变,所以不管离我们多远的星系,只要足够亮就可以被我们发现。事实上宇宙空间并非真空,光子在其中穿行时速度会逐渐减小,所以任何星系发出的光只能传播一定的距离,也正因为如此,不管我们在宇宙中任何地方,始终只能看到有限的宇宙空间。换句话说,目前我们能够观测到的宇宙空间的尺度实际上是光子在宇宙空间中传播的最远距离。

4.光子在宇宙空间中的运动

实际上光子在宇宙空间运动时并不总是做减速运动。在光子离开星体时它要挣脱引力的束缚而作减速运动,当它脱离星体的引力场在空间自由运动时,也作减速运动;如果它进入另一个星体的引力场向着该星体运动时,就会在该星体的引力作用下作加速运动。光子就这样减速--加速--减速--加速……不停地穿越宇宙空间,直到其速度为零。倘若星体离我们很近而引力又很小,从该星体发出的光速度衰减量不大,但进入银河系时光子的速度增加量有可能很大,当光子的速度增加量大于其速度衰减量,或者说大于刚离开星体表面时的速度,在我们看来该星体光谱就发生了蓝移。忽略距离因素,由于星体自身在不断运动,这样它相对银河系引力场的强弱也可能发生变化,所以其光谱也可能有规律的发生红移或蓝移。通常情况下,宇宙空间对光子的减速作用总大于加速作用,所以星系的光谱以红移的居多。

光子在引力场中速度变化的问题许多人恐怕不相信也不能理解。一些人认为光子没有静质量,况且光子是一种波,在引力场中的运动规律和宏观物质不同。其实持这种观点的人把光子神话了,弄的不可捉摸了。现在大多数人都接受了“黑洞”的概念,认为当一个星体的引力足够强时甚至连光子也逃脱不了,因而是漆黑的一团。这里实际上指出了光子也会受到引力作用。既然光子也受引力作用,那么它在引力场中的加速与减速自然就可以理解了。稍后我们将看到,引力作用是造成衍射现象的重要因素之一。

5.类星体

一个很明显的事实是:宇宙中离我们越远的星体能量越大,通常类星体离我们的距离都在10亿光年以上,并且远处星体发出的光中能量较大的光子占有很大的成分。有人把这作为支持宇宙大爆炸的依据,认为:若宇宙中物质是均匀分布的话,则在我们银河系或其周围就应该有象类星体这样的高能星体存在。为什么我们在近处发现不了类星体呢?一些人看见远处的星体发出的光中含有大量的X射线或γ射线成分,就推测此类星体存在着目前尚不为我们知道的能量源。这种观点未免有些片面。实际上宇宙中大部分恒星的能量都差不多,能量特别大的和能量特别小的只是极少数,恒星的能量呈中间多、两头少的分布态势。从远处的恒星发出的光,在经过漫长的宇宙空间以后,能量小的光子由于速度衰减率大而停了下来,不被我们观测到;只有X射线和γ射线才能到达地球。所以我们观测到该星体的光子中,X射线和γ射线占有很大的成分,以致于我们误认为这类星体只向外发出X射线和γ射线。实际上这类星体也向外发射可见光和红外线,但是可见光和红外线由于速度衰减到零故我们观测不到。这就导致我们观测到极远处的星体,其颜色通常是蓝色或紫色,事实上可能和该星体的真实颜色相差极大。这说明我们看到的星体的颜色未必就是星体的真实颜色,星体的颜色是由其自身能量状况和离我们的距离决定的,星体离我们的距离越大往往使其颜色中的蓝色和紫色成分增加。另外,我们认为类星体离我们非常远,是因为类星体的红移值很大。也就是说我们没有直接证据表明类星体真的离我们很远。考虑到光子在引力场中的运动,我们知道:当星体的引力足够大时,其发出的光子速度衰减量也较大,因而该星体的光谱也将发生较大的红移。这就是说,引力因素也可以使星系光谱产生红移。倘若星体引力足够大又离我们很近,由于星体红移值较大,往往导致我们认为该星体离我们很远。举例来说,假设有一个引力较大的星体处于银河系的中心,由于该星体引力很强,导致它发出的光子速度衰减量极大,我们在观测其光谱时就会观测到很大的红移值,根据该星体很大的红移值我们就会认为它离我们非常遥远,绝不会想到它就在银河系中心。

如何解释类星体离我们那么远而其发射的X射线和γ射线又是如此强烈呢?只有两种可能。第一,类星体的能量非常大,向外发出的X射线和γ射线非常强;第二,类星体离我们并没有原先认为的那么远,类星体光谱的红移是由类星体的引力造成而并非由距离因素造成的。我们认为两种因素都有。因为如果类星体离我们非常远,那么我们观测到其向外发出的X射线或γ射线就不可能很强;倘若类星体的能量不是很大,它的引力场也不可能很强,不足以使其光谱产生较大的红移。这说明:星系光谱发生红移可能是距离因素造成的,也可能是引力因素造成的,红移值大的星体未必就离我们远。那么,如何区别星体的引力红移和距离红移呢?对观测者而言,由距离因素造成红移的星体发出的光不可能很强,而由引力因素造成红移的星体发出的光往往很强,特别是X射线或γ射线的成分多。类星体的发射光谱和吸收光谱的宽度不同,通常吸收光谱的宽度比发射光谱窄,为什么呢?我们知道,吸收光谱是由于光子经过大气后产生的,这说明类星体周围也存在气体。光子从高温星体内部发出以后,总会有一部分光子没有被气体吸收而直接射向宇宙空间,这些光子形成发射光谱;还有一部分光子在与气体作用后,频率(质量)大的光子损失的能量大,频率(质量)小的光子损失的能量小;光子离开类星体在宇宙空间中运动时,则是频率(质量)大的光子损失的能量小而频率(质量)小的光子损失的能量大,总的看来各种不同频率的光子速度差异减小,所以其光谱红移值也较发射光谱小。实际上类星体的吸收光谱还可能有几种不同的宽度。

6.黑洞与星体引力

最初在人们考虑黑洞时,认为它的引力强到连光子也逃脱不了,因而是漆黑的一团,黑洞是宇宙中物质的坟墓。后来人们认为黑洞可以向外发出X射线和γ射线。同样是光子,能量大的可以逃脱,能量小的逃脱不了,说明(黑洞的)引力对光子的作用是不一样的。事实上我们知道当星体的引力逐渐增强时,总是质量较小的光子逃脱不了,质量较大的光子则可以摆脱星体的引力,并不是所有的光子全部被吸入星体中。所以从这个意义上来说,狭义上的黑洞仅指引力强到可见光不能脱离的星体,即在可见光波段观测不到的星体;广义上的黑洞指引力强到使一部分光子不能脱离的星体,即在某一能量较小的波段观测不到的星体,这里广义上的黑洞甚至可能非常亮,可以被我们肉眼看到,但在红外线波段或能量更小的波段却观测不到。从理论上讲,“黑洞”并不黑,至少它可以向外发射X射线和γ射线或能量更高的光子,完全不向外抛射粒子的黑洞是不存在的。那么宇宙中黑洞存在吗?当然存在了。当星体离我们足够远,以致于该星体发出的红外线速度衰减为零而不被我们观测到时,它就像一个“黑洞”;若星体离我们再远一些,可见光不再为我们观测到,只能观测到X射线和γ射线,这时它就是漆黑的一团,成为名副其实的黑洞;而宇宙中150亿光年以外的星体对我们来说是完全彻底的黑洞,因为我们完全观测不到它们。除了因空间距离造成“黑洞”现象以外,星体的引力也可以造成黑洞现象。黑洞现象并不是我们原先想象的那样:“当星体的引力足够大时,所有的光子都被吸入星体中,整个星体变成黑暗的一团”。当星体的引力逐渐增大时,它对光子的束缚作用也逐渐增强。星体的引力足够大时,红外线光子将摆脱不了星体引力的束缚,而可见光、紫外线则可以摆脱星体引力的束缚;星体的引力再增大时,可见光将摆脱不了星体引力的束缚,而紫外线则可以摆脱星体引力的束缚;若星体的引力再增大,可能只有γ射线放出。应该明确指出:黑洞现象是与星系光谱的红移紧密相连的。若某一星体的光谱不存在红移现象,则它一定不是黑洞;若某一星体的光谱存在红移现象,则它可能是黑洞也可能是距离因素造成的。

总的来说,我们对黑洞的认识经历了三个阶段:第一阶段认为黑洞的引力足够强,所有的光子都不能摆脱黑洞的引力,因而整个星体是黑暗的一团;第二阶段认为黑洞可以向外发出强烈的X射线或γ射线,人们认识到黑洞的引力对不同能量光子的作用不同;第三阶段也就是现在正在探索的阶段。应该明确指出:与黑洞现象紧密联系的因素有两个,引力因素和距离因素。以往我们在考虑黑洞现象时往往只考虑引力因素而忽略了距离因素,这就导致我们认为整个宇宙空间仅有150亿光年,对150亿光年以外的宇宙空间,认为看不见的就是不存在的。

7.恒态宇宙

也许有人会问,既然光子的速度能够降低到零,那么宇宙中会不会堆积越来越多的光子呢?不会的!光子作为物质的一种存在方式,它不是永恒的,在一定条件下光子可以转化为别的物质,也就是说光子是有一定寿命的。任何一个光子不可能永远存在下去,它必将转化为别的物质形式。宇宙中的物质无时无刻不在运动,所以宇宙中不会堆积越来越多的光子。虽然我们目前并不知道光子是如何转化为别的物质的,但我们依然相信整个宇宙是稳定的、恒态的,而局部宇宙则可能是不稳定的,处于演化过程中的。同样的道理,整个宇宙也不会被光子均匀照亮。由于光子在宇宙空间中运动时速度逐渐减小,所以任何星体发出的光只能传播到有限远处。也正因为如此,我们所观测到的宇宙始终是有限的。如果想观测更远的宇宙空间,一个方法是派出宇宙飞船,另一个办法是在宇宙空间中建立许多中转站,在光信号速度未衰减到零以前接受、放大、转播它。理论上讲,只要中转站的数量足够多,我们就可以看见任意远处的宇宙空间。

8.浩瀚宇宙

假设我们能够乘座一艘高速飞行的宇宙飞船遨游太空,在刚离开地球时,我们可以观测到150亿光年的宇宙,离我们越远的星体其红移值也越大,远处的星体放出强烈的X射线或γ射线。随着我们飞行距离的增大,我们会发现银河系的红移值越来越大,并且其颜色逐渐偏蓝,而原先我们观测到呈蓝色或紫色的星体颜色逐渐偏红,最终银河系将消失在我们的视野之外。当我们飞到离银河系150亿光年的地方,我们发现展现在我们面前的宇宙范围仍然有150亿光年;而原先我们认为正在以很大速度分离的星体或膨胀的宇宙空间并没有膨胀。无论我们飞到哪里,始终只能看见150亿光年的宇宙空间,也始终能够看见150亿光年的宇宙空间,宇宙是无限的;并且我们始终是宇宙的“中心”,因为所有的星体看起来所有的星体都好象以我们为中心向外爆炸形成的一样,越远的星系(红移值越大)离开我们的速度也越大。我们认为,宇宙是无始无终的,物质的存在是永恒的,对某一特定的物质形态有其产生和消亡的过程,但整个宇宙不存在产生和消亡的过程,它是自始至终存在并且不会消亡的。同时也应该看到,宇宙是无限的,不会仅仅只有150亿光年的空间。

从上个世纪以来,人们已经探索到了上百亿光年的宇宙空间,然而这只不过是苍海一粟。也许还要几十年甚至上百年人类才能认识到宇宙的无限性,但只要天下有志之士携手合作,这一天定会早日到来。

二、浅谈光的衍射

通常情况下光总是直线传播。但当光线经过足够窄的窄缝时将形成明暗相间的衍射条纹。由于光子不带电,在电磁场中不偏转,所以光子的衍射不是电磁力作用的结果,而是引力子与光子作用产生的。光子与引力子作用不是一个简单的碰撞过程,而是一个极为复杂的过程。在光子与引力子相遇的一瞬间它们形成一个混合体,这就打破了结合前光子内部各部分的平衡,混合体内部存在着排斥力和凝聚力两种作用。若排斥力占主导作用,则混合体将在极短的时间内“裂变”放出引力子;若凝聚力占主导作用,则混合体将形成一个新的光子。那么满足什么条件的混合体(光子)才是稳定的呢?经典电磁理论指出:所有光子的能量均为某个最小能量的整数倍。也即所有光子的质量均为某个最小质量的正整数倍,只有这样的光子才能稳定存在。当然这并不表明能量为某个最小能量的非整数倍的光子就不存在,只不过由于它们极不稳定,在形成后瞬间就“裂变”生成能够稳定存在的光子,目前我们还没有观测到或注意到这类光子罢了。从这里我们可以看出,与原子核一样,所有光子的质量均为某个最小质量的正整数倍,说明光子也有一定的内部结构,某些质量的光子由于极不稳定,在其形成后瞬间就“裂变”生成能够稳定存在的光子,这就造成稳定存在的光子质量的不连续。言归正传,由于引力子质量远远小于光子的质量,所以光子不可能吸收一个引力子形成新的光子(因为这样的光子是不稳定的)。但是若在同一时刻,光子与许多引力子相互作用,而这些引力子质量之和又大于最小光子的质量,光子就有可能吸收质量和等于最小光子质量的引力子数目而形成新的光子。举例来说,若最小光子的质量是引力子质量的10万倍,那么当同一瞬间有15万个引力子作用于光子时,光子只可能吸收10万个引力子,另外5万个引力子不被光子吸收,仅对光子产生微小的冲量。倘若在同一瞬间有9万个引力子作用于光子,那么这9万个引力子都不会被光子吸收,它们仅对光子产生微小的冲量。光子可能吸收的引力子数目只可能是10万的正整数倍。只有光子吸收引力子形成新的光子才能全部吸收引力子的冲量,否则的话,光子仅受到极小的冲量。

现有一个宽度为α的窄缝,绝大多数光子经过窄缝时虽然与许多引力子作用,但大多不会形成新的光子,这样大部分光子仅以极其微小的发散角投射到屏幕上,形成宽度略大于α的中央亮纹。由于衍射条纹是对称分布的,所以我们只讨论一半。拿中央亮纹以上的条纹来说,这些条纹是由缝中心到缝顶部经过的光子偏转形成的。从缝中心到缝顶部经过的光子,若吸收10万个引力子则形成稳定的新光子,而新光子由于全部吸收了引力子的冲量因而向上发生较大的偏移,从而在屏幕上形成宽度为0.5α的第一条亮纹。从缝中心到缝顶部经过的光子,若吸收20万个引力子则它向上的偏移量是第一条亮纹偏移量的两倍,形成第二条亮纹。同样形成第3条、第4条、第5条……第n条亮纹。中央亮纹以下的亮纹也是这样形成的,并且中央亮纹的宽度约为其它亮纹宽度的两倍。由于从缝中心到缝顶部引力逐渐增大,所以与光子作用的引力子数目也可能逐渐增多。假设在离开缝中心向上的极小位移处,在该处最多只可能有10万个引力子与光子发生作用,那么经过该处的光子最多只可能偏移到第一条亮纹处。换句话说它最多只可能对第一条亮纹的形成做贡献,对第2条、第3条、第4条……第n条亮纹都没有贡献。由此在向上某处经过的光子最多只可能吸收20万个引力子,但也可能吸收10万个引力子,故经过该处的光子对第1条、第2条亮纹的形成做出贡献而对第3条至第n条亮纹都没有贡献……;从缝顶部经过的光子可能吸收10万*1、10万*2、10万*3……10万*n个引力子,所以从该处经过的光子对第1条、第2条、第3条至第n条亮纹的形成都有贡献。这样形成的亮纹亮度依次为第一条>第二条>第三条>……>第n条。若缝变窄,则在离开缝中心向上的极小位移处,光子最多可能有20万个引力子,经过该处的光子对第1条、第2条亮纹的形成都有贡献,这样就减小了第1条、第2条亮纹亮度的差异。也就是说,缝越窄条纹亮度越向两边分散,缝越宽条纹亮度越向中央集中。当缝很宽时,条纹亮度几乎全部集中在中央区域,两边的光子数几乎为零。这就是我们看到的光的直线传播现象。由于光子并不是一种波,其偏离直线传播(衍射)现象是由引力子引起的,所以光的衍射现象与缝的宽度无关。物体在阳光下的阴影边缘常常较模糊,这说明光子在经过物体表面时受到引力作用而偏离了直线传播。理论上来说只要光子的运动方向和引力方向不在一条直线上,光子就会偏离原来的运动轨迹,并且引力场越强光子弯曲的程度也越大。星光在经过恒星以后通常会发生弯曲,有时我们甚至能够看到星体后面的其它星体发出的光。

三、论电子结构与原子光谱现象

1.电子发光

原子是如何发光的?要弄清这个问题首先必须明白光子是由原子的哪一部分发出的。我们知道,原子是由原子核和核外的电子组成的,原子核的结合能很大,不可能发出光子,所以光子只可能是电子发出的。在化学反应中伴随着电子的得失,常常有能量(光子)放出,光电效应、激光现象及其它一些实验也证明了光子是由电子发出的,所以可以肯定原子发光其实是电子发出光子。既然电子可以放出光子,那么光子必然是电子的组成部分,或者说电子有一定的内部结构,光子是其组成部分之一;由于光子不带电,说明电子内部电荷的分布是不均匀的,因为如果电子内部电荷是均匀分布的,则光子就应该带电。原子中原子核和电子之间的距离很小,它们之间的静电力很强,因为电子内部电荷分布不均匀,所以在原子核强大的静电力作用下电子内部电荷将重新分布,甚至可能发生裂变,这就为电子放出光子创造了条件。当电子裂变放出光子后,它的各个组成部分结合的更加紧密,在适当的时候可能吸收一个光子,这就为电子吸收光子储存能量创造了条件。而电子正是通过不停地吸收、放出光子来和外界交换能量的。稍后我们将看到,原子正是通过电子不断吸收、放出光子来和外界完成能量交换的。一般来说,电子质量越大其内部各部分结合的越松散,在静电力作用下越容易发生裂变;电子质量越小其内部各部分结合的越紧密,在静电力作用下越不容易发生裂变。与原子核“幻数”相似,总有特定质量的电子的结合力相当大,比其它质量电子的结合力大许多,这些特定质量的电子往往对应于某些稳定的轨道。

有人认为物质发光是由于物质中的原子或分子受到扰动的结果,认为光子是由原子或分子发出的。其实这是一种错误的看法。我们知道,原子是由原子核和核外电子组成的,光子是一种物质实体,或者是由原子核发出的,或者是由电子发出的,除此以外再没有别的选择。说光子是由原子发出的,这是一种不确切的说法。

2.原子核和电子之间的磁力作用

两个相距一定距离的异种点电荷在静电力作用下必然会吸引在一起,因为静电力作用在两点电荷连线上。而原子核和电子不会吸引在一起。这就启示我们在原子核和电子中必然存在一种其它作用力。这个力就是原子核和电子之间的磁力。我们知道,在通以相同方向电流的两条平行导线间会产生磁力作用,在磁力作用下它们将彼此吸引,原子核和电子的相向运动正相当于通以相同方向电流的两条平行导线,在它们之间也将产生磁力作用。静电力的作用总是使电子获得指向原子核的向心速度,而原子核和电子之间的磁力则使电子获得切向速度,并且原子核和电子之间的相对速度越大,它们之间的磁力也越大。当原子核和电子之间彼此相对静止在一定远处时,在静电力和磁力的共同作用下,它们并不会吸引在一起。因为静电力使电子获得向心速度,磁力使电子获得切向速度,电子并不是沿着直线靠近原子核,而是沿着螺旋线靠近原子核。开始时螺旋线的半径为无穷大,电子作直线运动;一旦电子相对原子核的速度不为零,磁力开始起作用,电子的运动轨迹开始发生弯曲;当电子与原子核靠近到一定的距离时,电子和原子核之间的静电力恰好等于电子作圆周运动所需的向心力,此时电子处于平衡状态,螺旋线变成了圆。同样在电子离开原子核时也是沿着螺旋线运动的。在静电力作用下,电子总要尽量靠近原子核,在磁力作用下,电子有远离原子核的离心趋势,正是在这两种力作用下,电子处于稳定的平衡状态中。电子在原子核中处于稳定状态时,它的轨迹是圆。因为当电子的轨迹不是圆时,它总要受到磁力的作用,这个力使电子的切向速度增加、运动轨迹向圆靠近。而电子受磁力作用时它的运动轨迹就要发生变化,就不是稳定的,只有当电子的轨迹是圆时才不受磁力的作用,所以说电子在原子核中的稳定轨迹是圆。太阳系中的行星在太阳引力作用下,其运动轨迹可以是圆或椭圆,但在原子系统中,电子在原子核静电力作用下,其稳定轨迹只可能是圆而不可能是椭圆。

3.基态电子的稳定性

处于基态的电子为什么是稳定的?为什么不会被原子核吸收?人们通常认为:做加速运动的电荷会向外辐射能量.如果电子在原子核中做圆周运动,则它就有加速度,必然会不断地向外辐射电磁波,随着电子能量的减小它将沿着螺旋线落入原子核中,这样整个原子就是不稳定的,然而事实并非如此。于是人们推测电子在原子核中不可能做圆周运动。我们认为以上推断是错误的,电子的确在原子核中做圆周运动,其理由如下:第一,电子辐射电磁波并不是一个只出不进的过程。电子时刻不停地向外辐射能量,也在时刻不停地吸收光子,这是一个动态平衡过程。如果电子吸收的能量大于其辐射的能量则原子的温度升高,如果电子吸收的能量小于其辐射的能量则原子的温度降低,倘若没有外界能量输入,原子总会由于向外辐射能量而降低温度,只要物体的温度在绝对零度以上就会向外辐射电磁波。第二,电子在原子中的质量并非一成不变的。一般而言,电子离核越近质量越小,离核越远质量越大(这一点我们稍后证明)。第三,电子和原子核之间并非只有静电力作用,还存在磁力作用。正因为磁力作用的存在使电子在靠近原子核时切线速度不断增大,从而使其离心力逐渐增大,以致于可以与静电力抗衡维持电子在原子核中的稳定。

这里需要我们证明随着电子离核距离的减小,离心力的增加速度大于静电力的增加速度。设电子稳定时质量为M,速度为V,与原子核相距R,原子核电量为Q,此时静电力F正好等于电子作圆周运动的向心力,

离心力大于静电力,所以此时电子作离心运动,将回到距核R的轨道上。同样当电子受到远离原子核的扰动后,静电力F大于电子作圆周运动的向心力,电子将向原子核运动,最终要回到距核R的轨道上,这里不再证明。

另外我们认为,做加速运动的电荷会向外辐射电磁波这个提法不够确切,应该说做加速运动的自由电荷会向外辐射电磁波,而电子在原子核中做圆周运动时不会向外辐射电磁波。两者有什么区别呢?我们知道,在原子核和电子结合成原子的过程中要向外放出能量,即自由电子要在原子核静电力作用下裂变放出光子才能够成为原子中的电子,原子中的电子和自由电子是有区别的。自由电子的质量大于原子中的电子的质量,自由电子各部分结合得较为松散,受到外界扰动(有加速度)时会向外辐射电磁波;而原子中的电子质量小,各部分结合得较为紧密,受到外界扰动(有加速度)时未必会向外辐射电磁波,只有当外界扰动(加速度)足够大时才会裂变辐射电磁波,所以电子可以在原子中做圆周运动而并不向外辐射电磁波。

4.稳定轨道的形成

对于处于基态的电子来说,每秒会有许多光子与其作用。这些作用有指向原子核的,也有指向核外的。电子在吸收一个或几个光子以后质量增加,形成新的电子。我们先考虑指向核外的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R+Δr,我们知道,一定质量的电子总有与一条特定轨道与之对应,比如电子的质量为M时其轨道半径为R,那么当电子质量为M+Δm时就可能停留在半径为R+Δr的轨道。但这里我们少考虑了一个条件,那就是质量为M+Δm的电子的结合能。我们知道电子在每秒内会受到许多光子的扰动,假设质量为M+Δm的电子运行在半径为R+Δr的轨道上,若它受到一个指向原子核的扰动,离核距离变为R+Δr-r,此时原子核静电力对它的作用增强,若它的结合能小的话则电子立即裂变放出光子重新回到其原来的轨道R上;如果质量为M+Δm的电子内部的结合能非常小,以至于受到微小的扰动时立即裂变放出光子,那么它在半径为R+Δr的轨道上停留的时间也趋近于零,换句话说半径为R+Δr的轨道根本不存在;如果质量为M+Δm的电子内部的结合能非常大,以致于受到很大的扰动时它才裂变放出光子,那么电子就能够在半径为R+Δr的轨道上停留一段时间,这段时间就是原子的平均寿命。假设有一群电子处于同一激发态,由于每个电子受到的扰动情况不一样,有的电子受到的扰动大有的电子受到的扰动小,而只有电子受到足够大的扰动并运动到离核足够近的地方才会裂变放出光子,所以电子裂变回到基态的时间也不一样。处于同一激发态的原子的平均寿命和两个因素有关:一是电子的结合能,二是电子受到的扰动。电子内部的结合能与原子核“幻数”相似,只有特定质量的电子的结合能才是很大的,所以电子的轨道也是特定的、不连续的,其它质量的电子由于结合能很小,裂变时间极短,所以它们不可能稳定停留在原子中,也形成不了稳定轨道甚至根本就没有轨道。我们再来考虑指向原子核的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R-Δr,此时原子核对电子的静电力增强,电子立即裂变放出质量为Δm的光子,由前面的证明我们知道,此时电子的速度增大,离心力大于静电力,电子最终将停留在半径为R的稳定轨道上。也许有人会怀疑,这样看来电子可能存在的稳定轨道岂不是唯一的了?实际上由于电子在原子核外有几个不同的稳定质量,所以它也有几条稳定轨道,一定的质量总是与某一条特定轨道相对应。从这里我们可以看出,电子在原子核中的稳定轨道往往对应于电子结合能极大的质量,结合能小的质量由于在原子中不稳定因而不会形成稳定轨道。

5.电子结构与不同跃迁轨道

对于处于同一激发态的一群电子而言,设电子的质量为M+Δm,它们可能会有不同的跃迁轨道,放出的光子的能量(质量)也不同,但总是跃迁到离核近的电子放出的光子的能量(质量)大。电子从激发态回到基态的过程并不是先放出光子再回到基态,而是先回到比基态更近的地方放出光子然后才回到基态。当电子回到离核R-Δr处时,在静电力作用下电子裂变放出质量为Δm的光子,此时离心力大于静电力,电子将回到半径为R的稳定轨道上。那么电子为什么会有多条跃迁轨道呢?这说明处于同一激发态的电子内部结构(结合力)不同,有的结合力大,有的结合力小,结合力小的光子在离核较远的地方裂变,放出的光子能量也较小;结合力大的光子在离核较近的地方裂变,放出的光子能量也较大,电子的跃迁方式是由其内部结构决定的。同一质量的电子可能有多种裂变方式,再次向我们说明电子具有内部结构,在考虑原子光谱时一定要考虑电子的内部结构。处于激发态的电子在向基态跃迁时会发出光子;把原子的内层电子打掉以后外层电子会放出光子并向离核更近的轨道跃迁。这些现象启示我们:电子离核越近质量越小,电子离核越远质量越大。从这里也可以看出,电子质量越小其内部结合力越大。因为离核越近电子受到的静电力越大,而电子能够稳定存在说明其内部结合力越大。在同一个原子中,内层电子的质量小于外层电子的质量;同一个电子离核越近质量越小。

人们发射的人造卫星可以设定轨道,其轨道变化可以是连续的,但对原子核中的电子来说,其轨道变化则是不连续的。怎样理解这一点呢?让我们做一个假想实验。把两个带异种电荷的点电荷放置在一定远处,并且假定它们之间除了静电力以外不在受到其它力的作用,则最终它们将互相吸引在一起。无论怎样改变这两个电荷的质量、电量,结果都是相同的。这说明:用宏观电荷不可能模拟原子核和电子之间的作用力。说到这里,好事者马上就会解释,因为宏观电荷物质波的波长极短而电子物质波的波长较大,所以用宏观电荷不可能模拟原子核和电子之间的作用力。换一个角度来说,宏观物质和微观物质是有区别的,用宏观物质不能模拟微观物质。但区别究竟在哪里?一个是宏观物质而另一个是微观物质,这个解释近乎无聊了。还是让我们来仔细分析为什么用宏观电荷不可能模拟原子核和电子之间的作用力。我们知道,在静电力作用下,电子和原子核开始时相向运动,而后在磁力作用下沿着螺旋线相互靠近,正是由于原子核和电子之间的磁力使电子获得了绕原子核运动的切向加速度,并使整个原子处于稳定状态。那么,两个宏观点电荷之间的运动轨迹为什么是一条直线呢?这是因为宏观电荷的荷质比远远小于原子核和电子的荷质比,在静电力作用下宏观点电荷获得的最终速度也小得可怜,因此宏观点电荷之间因相对运动而产生的磁力也微乎其微,近似于零。所以宏观点电荷在静电力作用下表现为相向运动,其运动轨迹接近直线。从这里我们可以得出这样一个结论:虽然静电力作用在两个电荷的连心线上,但是仅在静电力作用下,电荷的运动轨迹不一定就是直线,两个电荷的荷质比越小,其运动轨迹越接近直线,反之则越接近曲线。那么,如果宏观点电荷的荷质比足够大甚至可以与原子核或电子相比时,是否可以用宏观点电荷模拟原子核和电子相之间的作用呢?也不能!如果宏观点电荷的荷质比足够大,甚至可以与原子核或电子相比,那么这样的两个异种电荷在静电力作用下会沿着螺旋线相互接近,最终会处于稳定状态,但由于宏观点电荷的质量不会发生变化,因此最多只能形成一条稳定轨道,而不可能象电子那样在原子核中有多条稳定轨道。

在多电子原子中,各电子间有什么主要区别呢?有人认为离核越近的电子能量越低,越不容易失去;离核越远电子能量越高越容易失去,但这还不是最主要的区别。多电子原子中各电子间最主要的区别在于它们的质量不同。离核越近的电子质量越小,离核越远的电子质量越大,同一个原子中没有两个质量相同的电子存在。在氢原子中也是电子离核越近质量越小,离核越远质量越大。

光子范文篇8

假设有一个光源S1,在S1前放置一块屏幕,从S1发出的光(光子)会将整个屏幕均匀的照亮。我们知道,屏幕的亮度是与落在屏幕上面的光子数的多少有关的。严格地说,屏幕的亮度是以垂直于屏幕的光线与屏幕的交点为中心向四周逐渐变暗的。但这种变化决不是几率问题。证明如下:把S1放在一个半径为R1的球的中心,假设S1在单位时间里发射出N个光子,则单位球面积上所接受的光子数等于光子数N除以球的总面积4πR12,如果把球的半径由R1变为R2(R2>R1),则在单位球面积上所接受的光子数就变为N除以4πR22,由于R2大于R1,所以半径为R1的球在单位球面积上接受的光子数大于R2球单位面积上的光子数。这就是为什么屏幕上的亮度是由明到暗逐渐变化的原因。当屏幕距光源的距离很大且屏幕的面积又很小时,就可以近似的认为屏幕上的光子是均匀分布的。

现在把另一个相干光源S2放在靠近S1的地方,情况有了变化。在垂直两个光源的平面上出现了明暗相间的圆环,而在平行两个光源的平面上,则出现了明暗相间的条纹见图一,这就是人们所说的光的干涉条纹。因为干涉现象是波动的最主要特征,所以这也就成了光具有波动性的最有力证据之一。我们知道机械波是振动在媒质中的传播,当有两列相干波源存在时,媒质中任意一点的振动是两列波各自到达这一点时波的叠加。当到达这一点的两列波的相位相同时,则在这一点上的振幅最大,如果两列波的相位相差1800时,则振动的振幅相互抵消,这样就形成了有规则的干涉条纹。经典光学正是套用机械波的方法证明光的干涉条纹的,而传播光的媒质以太已被证明是根本不存在的,这样用机械波的方法证明光的干涉条纹也就显得比较牵强。量子力学在解释干涉条纹时则采用的是几率波的方法,认为亮的地方是光子出现几率多的地方,暗的地方则是光子出现几率少的地方。问题是当只有一个光源时,光子是均匀分布在屏幕上的,而当存在另一个相干光源时,按照量子理论光子就会集中出现在一些地方而不去另一些地方,几率的解释是不能使人心悦诚服地接受的。爱因斯坦曾用上帝不掷骰子来表达他对用几率描述单个粒子行为的厌恶。这就是目前对于光的干涉现象的两种正统解释方法。我们对于光本性的认识是否还存在其它我们没有考虑到的因素,是否还存在其它的证明方法来统一光的波粒二象性即用一种理论解释来解释波动性和粒子性呢?

为了找到这种新的理论,在此我们不得不在现有光量子理论基础上进行一些必要的修正即单个光量子的能量是变化的,光子的能量和质量是相互转化的,转化的频率就是光的频率。频率快光子的能量大质量小,相反,频率慢则光子的能量小质量大,这样光子在空间所走的路程就形成了一条类波的轨迹。在论证光的干涉现象之前,我们先对光源进行定义。单频率点光源---频率单一且所有光子在离开光源时的状态(相位)都相同。单频率点光源具有这样两个特点,其一在距光源某一点的空间位置上,光子的状态不随时间变化。其二光子的状态随距点光源的距离作周期变化。光的波长指的是光子在一个周期的时间内在空间运行的距离。

我们在x轴上设置两个点光源S1和S2,如图一所示。令P为垂直平面上的一点,从P点到S1和S2的光程差PS1-PS2为波长的某个正数倍ml(m=±1,2,3,…)。从S1和S2出发的两列光子,将同相地达到P点,状态相同。再令Q为垂直平面上的另一点,从Q到S1和S2的光程差也为ml。过P和Q点做一条曲线,使得这曲线上所有过XO的垂直平面内的点的轨迹都具有这样的性质,即这条曲线上任意一点到S1和S2的距离之差为常数,根据解析几何我们知道,这曲线是一条双曲线。如果我们设想这一双曲线以直线XO为轴旋转,则它将扫出一个曲面,叫做双曲面。我们看到,在这曲面上的任意一点,来自S1和S2的光子始终都是同相位的(相位差保持不变),光子在曲面上的每一点的状态是一定的,沿曲面上的点的状态是周期变化的。由于光的波长很短,光子沿曲面的这种周期变化是不容易被观测到。

同理,我们令T为垂直平面上的另一点(图中未画出),从T点到S1和S2的光程差TS1-TS2为波长的l/2×(2m+1)倍(m=±1,2,3,…)。从S1和S2出发的两列光子,将以1800的相位差达到T点。再令V为垂直平面上的另一点(图中未画出),从V到S1和S2的光程差也为道长l/2×(2m+1)倍。过T和V做一条曲线使这曲线上任一点到两定点S1和S2的距离之差为常数,这曲线也是一条双曲线,以XO为轴旋转同样将扫出一双曲面。所不同的是来自S1和S2的光子到达这曲面上的任意一点的相位差始终为1800,叠加后的最终状态是一个恒定的值。

图一是在S1到S2的距离为3l,P点的光程差为PS1-PS2=2l(m=2)这一简单情况下画出的。m=1的那条双曲线是垂直平面内光程差为l的那些点的轨迹。光程差为零(m=0)的各点的轨迹是过S1S2中点的一条直线。由它绕XO旋转而成的将是一个平面。图中还画出m=-1和m=-2的双曲线。在这种情况下,这五条曲线绕XO旋转而产生五个曲面,这五个曲面将S1和S2两光源所形成的能量场分成了6个左右对称的无限延伸的能量空间。屏幕上亮线将出现在屏幕与诸双曲面相交的那些曲线的任何所在位置上。如果两点光源间的距离是许多个波长,则将存在许多曲面,在这些曲面上各光子相互加强。因而在平行于两光源连线的屏幕上,将形成许多明暗相间的双曲线(几乎是直线)干涉条纹。而在垂直于两光源连线的屏幕上将形成许多明暗相间的圆形干涉条纹。两条相邻的明条纹之间的关系是光程差相差一个l,暗条纹与相邻明条纹之间相差l/2。干涉条纹从明到暗再到明之间的相位变化是从同相到相差1800相位再到同相。

光子范文篇9

假设有一个光源S1,在S1前放置一块屏幕,从S1发出的光(光子)会将整个屏幕均匀的照亮。我们知道,屏幕的亮度是与落在屏幕上面的光子数的多少有关的。严格地说,屏幕的亮度是以垂直于屏幕的光线与屏幕的交点为中心向四周逐渐变暗的。但这种变化决不是几率问题。证明如下:把S1放在一个半径为R1的球的中心,假设S1在单位时间里发射出N个光子,则单位球面积上所接受的光子数等于光子数N除以球的总面积4πR12,如果把球的半径由R1变为R2(R2>R1),则在单位球面积上所接受的光子数就变为N除以4πR22,由于R2大于R1,所以半径为R1的球在单位球面积上接受的光子数大于R2球单位面积上的光子数。这就是为什么屏幕上的亮度是由明到暗逐渐变化的原因。当屏幕距光源的距离很大且屏幕的面积又很小时,就可以近似的认为屏幕上的光子是均匀分布的。

现在把另一个相干光源S2放在靠近S1的地方,情况有了变化。在垂直两个光源的平面上出现了明暗相间的圆环,而在平行两个光源的平面上,则出现了明暗相间的条纹见图一,这就是人们所说的光的干涉条纹。因为干涉现象是波动的最主要特征,所以这也就成了光具有波动性的最有力证据之一。我们知道机械波是振动在媒质中的传播,当有两列相干波源存在时,媒质中任意一点的振动是两列波各自到达这一点时波的叠加。当到达这一点的两列波的相位相同时,则在这一点上的振幅最大,如果两列波的相位相差1800时,则振动的振幅相互抵消,这样就形成了有规则的干涉条纹。经典光学正是套用机械波的方法证明光的干涉条纹的,而传播光的媒质以太已被证明是根本不存在的,这样用机械波的方法证明光的干涉条纹也就显得比较牵强。量子力学在解释干涉条纹时则采用的是几率波的方法,认为亮的地方是光子出现几率多的地方,暗的地方则是光子出现几率少的地方。问题是当只有一个光源时,光子是均匀分布在屏幕上的,而当存在另一个相干光源时,按照量子理论光子就会集中出现在一些地方而不去另一些地方,几率的解释是不能使人心悦诚服地接受的。爱因斯坦曾用上帝不掷骰子来表达他对用几率描述单个粒子行为的厌恶。这就是目前对于光的干涉现象的两种正统解释方法。我们对于光本性的认识是否还存在其它我们没有考虑到的因素,是否还存在其它的证明方法来统一光的波粒二象性即用一种理论解释来解释波动性和粒子性呢?

为了找到这种新的理论,在此我们不得不在现有光量子理论基础上进行一些必要的修正即单个光量子的能量是变化的,光子的能量和质量是相互转化的,转化的频率就是光的频率。频率快光子的能量大质量小,相反,频率慢则光子的能量小质量大,这样光子在空间所走的路程就形成了一条类波的轨迹。在论证光的干涉现象之前,我们先对光源进行定义。单频率点光源---频率单一且所有光子在离开光源时的状态(相位)都相同。单频率点光源具有这样两个特点,其一在距光源某一点的空间位置上,光子的状态不随时间变化。其二光子的状态随距点光源的距离作周期变化。光的波长指的是光子在一个周期的时间内在空间运行的距离。

我们在x轴上设置两个点光源S1和S2,如图一所示。令P为垂直平面上的一点,从P点到S1和S2的光程差PS1-PS2为波长的某个正数倍ml(m=±1,2,3,…)。从S1和S2出发的两列光子,将同相地达到P点,状态相同。再令Q为垂直平面上的另一点,从Q到S1和S2的光程差也为ml。过P和Q点做一条曲线,使得这曲线上所有过XO的垂直平面内的点的轨迹都具有这样的性质,即这条曲线上任意一点到S1和S2的距离之差为常数,根据解析几何我们知道,这曲线是一条双曲线。如果我们设想这一双曲线以直线XO为轴旋转,则它将扫出一个曲面,叫做双曲面。我们看到,在这曲面上的任意一点,来自S1和S2的光子始终都是同相位的(相位差保持不变),光子在曲面上的每一点的状态是一定的,沿曲面上的点的状态是周期变化的。由于光的波长很短,光子沿曲面的这种周期变化是不容易被观测到。

同理,我们令T为垂直平面上的另一点(图中未画出),从T点到S1和S2的光程差TS1-TS2为波长的l/2×(2m+1)倍(m=±1,2,3,…)。从S1和S2出发的两列光子,将以1800的相位差达到T点。再令V为垂直平面上的另一点(图中未画出),从V到S1和S2的光程差也为道长l/2×(2m+1)倍。过T和V做一条曲线使这曲线上任一点到两定点S1和S2的距离之差为常数,这曲线也是一条双曲线,以XO为轴旋转同样将扫出一双曲面。所不同的是来自S1和S2的光子到达这曲面上的任意一点的相位差始终为1800,叠加后的最终状态是一个恒定的值。

图一是在S1到S2的距离为3l,P点的光程差为PS1-PS2=2l(m=2)这一简单情况下画出的。m=1的那条双曲线是垂直平面内光程差为l的那些点的轨迹。光程差为零(m=0)的各点的轨迹是过S1S2中点的一条直线。由它绕XO旋转而成的将是一个平面。图中还画出m=-1和m=-2的双曲线。在这种情况下,这五条曲线绕XO旋转而产生五个曲面,这五个曲面将S1和S2两光源所形成的能量场分成了6个左右对称的无限延伸的能量空间。屏幕上亮线将出现在屏幕与诸双曲面相交的那些曲线的任何所在位置上。如果两点光源间的距离是许多个波长,则将存在许多曲面,在这些曲面上各光子相互加强。因而在平行于两光源连线的屏幕上,将形成许多明暗相间的双曲线(几乎是直线)干涉条纹。而在垂直于两光源连线的屏幕上将形成许多明暗相间的圆形干涉条纹。两条相邻的明条纹之间的关系是光程差相差一个l,暗条纹与相邻明条纹之间相差l/2。干涉条纹从明到暗再到明之间的相位变化是从同相到相差1800相位再到同相。

光子范文篇10

现在把另一个相干光源S2放在靠近S1的地方,情况有了变化。在垂直两个光源的平面上出现了明暗相间的圆环,而在平行两个光源的平面上,则出现了明暗相间的条纹,这就是人们所说的光的干涉条纹。因为干涉现象是波动的最主要特征,所以这也就成了光具有波动性的最有力证据之一。我们知道机械波是振动在媒质中的传播,当有两列相干波源存在时,媒质中任意一点的振动是两列波各自到达这一点时波的叠加。当到达这一点的两列波的相位相同时,则在这一点上的振幅最大,如果两列波的相位相差1800时,则振动的振幅相互抵消,这样就形成了有规则的干涉条纹。经典光学正是套用机械波的方法证明光的干涉条纹的,而传播光的媒质以太已被证明是根本不存在的,这样用机械波的方法证明光的干涉条纹也就显得比较牵强。

量子力学在解释干涉条纹时则采用的是机率波的方法,认为亮的地方是光子出现机率多的地方,暗的地方则是光子出现机率少的地方。问题是当只有一个光源时,光子是均匀分布在屏幕上的,而当存在另一个相干光源时,按照量子理论光子就会集中出现在一些地方而不去另一些地方,机率的解释是不能使人心悦诚服地接受的。爱因斯坦曾用上帝不掷骰子来表达他对用机率描述单个粒子行为的厌恶。这就是目前对于光的干涉现象的两种正统解释方法。我们对于光本性的认识是否还存在其它我们没有考虑到的因素,是否还存在其它的证明方法来统一光的波粒二象性即用一种理论解释来解释波动性和粒子性呢?

为了找到这种新的理论,在此我们不得不在现有光量子理论基础上进行一些必要的修正即单个光量子的能量是变化的,光子的能量和质量是相互转化的,转化的频率就是光的频率。频率快光子的能量大质量小,相反,频率慢则光子的能量小质量大,这样光子在空间所走的路程就形成了一条类波的轨迹。在论证光的干涉现象之前,我们先对光源进行定义。单频率点光源——频率单一且所有光子在离开光源时的状态(相位)都相同。单频率点光源具有这样两个特点,其一在距光源某一点的空间位置上,光子的状态不随时间变化。其二光子的状态随距点光源的距离作周期变化。光的波长指的是光子在一个周期的时间内在空间运行的距离。

我们在x轴上设置两个点光源S1和S2,令P为垂直平面上的一点,从P点到S1和S2的光程差PS1-PS2为波长的某个正数倍ml(m=±1,2,3,…)。从S1和S2出发的两列光子,将同相地达到P点,状态相同。再令Q为垂直平面上的另一点,从Q到S1和S2的光程差也为ml。过P和Q点做一条曲线,使得这曲线上所有过XO的垂直平面内的点的轨迹都具有这样的性质,即这条曲线上任意一点到S1和S2的距离之差为常数,根据解析几何我们知道,这曲线是一条双曲线。如果我们设想这一双曲线以直线XO为轴旋转,则它将扫出一个曲面,叫做双曲面。我们看到,在这曲面上的任意一点,来自S1和S2的光子始终都是同相位的(相位差保持不变),光子在曲面上的每一点的状态是一定的,沿曲面上的点的状态是周期变化的。由于光的波长很短,光子沿曲面的这种周期变化是不容易被观测到。

同理,我们令T为垂直平面上的另一点,从T点到S1和S2的光程差TS1-TS2为波长的l/2×(2m+1)倍(m=±1,2,3,…)。从S1和S2出发的两列光子,将以1800的相位差达到T点。再令V为垂直平面上的另一点,从V到S1和S2的光程差也为道长l/2×(2m+1)倍。过T和V做一条曲线使这曲线上任一点到两定点S1和S2的距离之差为常数,这曲线也是一条双曲线,以XO为轴旋转同样将扫出一双曲面。所不同的是来自S1和S2的光子到达这曲面上的任意一点的相位差始终为1800,叠加后的最终状态是一个恒定的值。

光程差为零(m=0)的各点的轨迹是过S1S2中点的一条直线。由它绕XO旋转而成的将是一个平面。在这种情况下,这五条曲线绕XO旋转而产生五个曲面,这五个曲面将S1和S2两光源所形成的能量场分成了6个左右对称的无限延伸的能量空间。屏幕上亮线将出现在屏幕与诸双曲面相交的那些曲线的任何所在位置上。如果两点光源间的距离是许多个波长,则将存在许多曲面,在这些曲面上各光子相互加强。因而在平行于两光源连线的屏幕上,将形成许多明暗相间的双曲线(几乎是直线)干涉条纹。而在垂直于两光源连线的屏幕上将形成许多明暗相间的圆形干涉条纹。两条相邻的明条纹之间的关系是光程差相差一个l,暗条纹与相邻明条纹之间相差l/2。干涉条纹从明到暗再到明之间的相位变化是从同相到相差1800相位再到同相。为了检验以上的设想是否正确,这里我结合光的干涉实验和光电效应实验设计了一个简单实验。第一步用光干涉仪产生明暗相间的干涉条纹。第二步将光电管依次放在从明到暗条纹的不同位置上,当然采用的单色光源频率要在临阈频率之上,观察产生光电子动能的大小。如果按照现有光量子理论,光电子的动能应该是不变的,原因是光子的能量只与光的频率有关而与光的亮度无关,干涉后光的频率并没有变化,所以在从明到暗的条纹上,测得的光电子的动能应该是不变的。再从量子理论的观点来分析,明亮的地方光子出现的机率大,暗的地方光子出现的机率小,明暗只是单位面积上光子数不同而已,光子的动能并没有改变,所以结论也是光电子的动能不变。而我的结论则是在从明到暗的干涉条纹上光子数是一样的,产生的光电子的动能是从大到小连续变化的。

如果实验的结果与我所做的推论一致,我们不妨把这一结论推广到一切实物粒子,因为实物粒子也具有波粒二象性,即一切实物粒子自身的能量与质量之间始终处在不停地相互变化中,这也正是量子力学波函数所要描述的微观世界粒子的客观实在图像。