高阻范文10篇

时间:2023-03-13 18:51:31

高阻范文篇1

关键词:故障分量,差动保护,变压器保护,闸间短路,高阻接地故障

0引言

比率差动保护因能可靠检出区内故障,很好的躲避穿越性电流被广泛的应用于电力系统保护中,在变压器的保护中的应用更是由来已久。但由于受到负荷电流的干扰,制动电流不能很好的反映故障电流的大小,被负荷电流所淹没,使得对轻微故障的检测灵敏度过低。故障分量的比率差动保护,由于减去了负荷分量的影响,对轻微故障的检测具有很高的的灵敏度,大型变压器容量很大,满负荷运行时,低压侧的等效电阻非常小,往往只有1欧左右(如容量为150MVA,低压侧为10KV,0.6667欧),传统比率差动保护对低压侧高阻接地故障的灵敏的不够,故障分量的比率差动保护却能很好地检出故障,因而因该在大型变压器保护中得到了广泛的应用。

变压器在额定负荷运行的时候,发生轻微匝间短路故障时(2%匝短路),传统的比率差动保护往往没有足够的灵敏度检出故障。虽然差流大于了启动电流门槛值,由于制动电流加上了变压器的一倍负荷电流,要检出此类故障,比率制动系数(K值)将整得很低,会减弱比率差动保护抗CT饱和的能力,区外故障时很容易误动作,因此,实际的做法往往是降低保护的灵敏度,等待匝间故障进一步发展,差流、制动电流进入动作区内,保护再出口跳闸,这对变压器必将造成严重的损害。传统的比率差动抗CT饱和的能力是很弱的,必须增加额外的补充判据,防止保护误动。

对于故障分量的比率差动,制动电流去掉了负荷电流的干扰,k值(1.7)可以整定的很高,变压器在额定负荷运行的时候,发生轻微匝间短路故障时,保护具有足够的灵敏度检出故障,同时对低压侧区内高阻接地故障的检测灵敏度也提高了很多,由于k值很大,具有足够的抗CT饱和的能力。

本文对故障分量的比率差动的设计思想和特性曲线的参数的选择作相应的理论分析,同时建模验证算法的正确性。

1故障分量的比率差动算法的建立

1.1基本算法

故障分量的比率差动算法为传统的差动保护中的差动电流和制动电流分别减去正常时候的负荷电流而得到。以两圈变压器的纵连差动为例,以流入变压器为正方向,如式(1):

(1)

其中,,

--变压器高、低压侧的故障分量电

--为变压器正常运行时励磁电流

—分别为变压器高压侧低压侧电流和正常时的穿越性负荷电流

K—为比率差动的比率制动系数

从上式中可以看出:

,(2)

故障分量的比率差动电流和传统的比率差动电流相差一倍正常时磁电流,只是制动电流增加了两倍穿越性的负荷电流(略去励磁电流不计)。

1.2故障分量的提取

故障分量的比率差动保护性能的好坏,关键在于故障分量的提取。对于不同的保护设备,故障分量的提取很不相同,考虑到针对变压器这一电力系统中的特殊元件,对故障分量的提取提出了一些具体的要求。首先,应该准确减去负荷电流。其次,在转换性故障和故障重叠的时候不受第一次故障的影响,在第一次故障达到稳态的时侯,第二次故障到来的时候,能快速检测出故障来。

但在具体实现的时候会遇到如下困难:

在故障的发展过程中,故障前负荷电压(电流)在不断的变化,以第一次故障前的电压(电流)为基准,会带来误差.但故障前电压在不断的变化只能引起Δi1正序分量的提取,对Δi2,Δi0分量的提取没有影响,由变压器保护只是使用电器量进行比较,不涉及参数的计算,如阻抗,方向等,精度足够.

由于记录下故障前的电流量作为负荷量,故障中的量和故障前的电流量作差值提取Δih,Δil.但随着故障时间的延长,存在定时误差,故障后的电器量和故障前的电器量的相角差越来越大,Δih,Δil误差也越来越大,使得Δicd值不变(误差被减掉)Δizd值越来越小,所以计算K值随着时间偏移越来越大,只能限制故障分量的比率差动保护的开放时间,否则在区外故障时由于随时间积累的相角差会使保护误动,但开放时仅太短又会使得在发展性故障中不能检出第二次故障,开放时间为100ms~150ms.

2故障分量的比率差动动作参数的选定

2.1启动电流的确定

由于差动电流和传统的比率差动相同,大体应按传统比率差动整定,但也有特殊的要求。

Iqd.min=Kk[Ktx*fwc+ΔU/2+Δfph]Ie(3)

Iqd.min—比率差动启动门槛值

fwc=0.1—考虑一侧电流互感器10%误差曲线的系数

Δfph=0.01—软件相角校正时,由于小CT型号不同引起的偏移

ΔU/2—变压器的调压范围,取为5%,由于改变了变比,所以平衡系数相应变为原来的95%K,应躲开引起的差流值

Kk—可靠系数取1.3

假设由于以上条件,流入装置的高压侧的电流为准确的,误差均来自低压侧,

高低压侧电流为(略去励磁电流)式(4)

(4)

--变压器高、低压侧相电流

--穿越性负荷电流

--比率差动启动电流

(1)传统比率差动:

当产生Iqd.min差流时,一定有Ie+1/2*Iqd.min(Ie为额定电流)制动电流产生,K整定0.4,比率制动曲线过原点,,Ie取5A时,制动电流一定大于拐点电流,落在动作特性曲线的制动区,保护不会误动。

(2)故障分量的比率差动:

当产生Iqd.min差流时,一定有1/2*Iqd.min制动电流产生,所以计算K值(保护感受到的差流和制动电流的比值)为2.,当K值整定为1.7时(以下分析整定原因),比率制动曲线过原点,制动电流小于拐点电流,保护误动。

所以,由于以上原因产生的最大差流时,传统比率差动可以用比率制动曲线躲过,而故障分量的比率差动,则无法区分由于CT误差,有载调压所产生的差流,和由于低压侧三相短路,或变压器空载故障时产生的差流,因为其计算K值均为2。传统比率差动的Iqd.min应按允许的最小差流启动电流整定,故障分量的比率差动的Iqd.min应按允许的最大差流启动电流整定,但如整定太小,将影响检测轻微故障的能力,又考虑到故障分量的比率差动减去了励磁电流的影响,工程实际取0.2~0.5,取0.23。

2.2制动斜率K值的确定.

主要考虑两种极端的情况,使制动特性曲线过原点。

(1)区内故障

1.变压器空载时,发生区内故障,计算K值最小。

当变压器两侧带电源的时,发生区内故障,高低压侧同时感受到方向指向变压器的Δih(高压侧故障分量),Δil(低压侧故障分量),而变压器空载,或低压侧不带电源时,保护只感受到高压侧Δih(高压侧故障分量),所以(5)式成立计算K值,

(5)

--高、低压侧同时带电源时,保护感受到的差流和制动电流

--高压侧带电源,低压侧空载时,保护感受到的差流和制动电流

--计算K值

2.空投和低压侧三相短路等故障类型(低压侧不带电源),计算K值无法区分,都等于2.0,所以整定K值必小于2.0,空投的时候由于差流由励磁支路引起,其二次谐波含量很大,能可靠闭锁,当整定K值小于2.0时,低压侧三相短路时保护能动作,所以故障分量的比率差动保护在低压侧不带电源时发生三相短路故障,灵敏度最低,K值最小。

(2)区外故障

区外故障主要考虑由于CT传变误差引起的差流造成的保护误动作,考虑CT传变误差,带入比率差动动作方程,式(6)成立,

(6)

--分别为穿越性高低压侧的故障分量电流

--分别高低压侧CT传变误差的百分数

当高低压侧CT传变误差,分别为10%和-10%时,差流最大,制动电流最小,保护最容易误动,所以最严重的区外故障,保护发生误动时,比率制动系数K=0.2。K整定为1.6~1.8,满足工程需求。

2.3抗CT饱和的考虑

假定低压侧CT饱和,低压侧只有fl*Δil的电流流入保护装置,由于

|Δih+Δil|>K*0.5*|(Δih-Δil)|

则(6)式变为,各参数的含义如(6)式:

(7)

假设穿越性的故障,,等式左右相等,K为1.7时带入(7)式,fi=0.081。所以,低压侧CT饱和时只要有大于8.11%倍的原方电流能传变倒二次侧,为1.7时故障分量的比率差动不会误动.

3变压器匝间短路、高阻接地建模和算法仿真

3.1匝间短路模型的建立

由于变压器内部匝间短路故障的内部电磁过程非常复杂,要准确模拟非常困难,但我们可以抓住其主要特征,其精度已能满足继电保护的动模的要求。我们关心的只是变压器高低压侧端口电流的变化,对内部复杂电磁过程并不感兴趣,根据黑箱原理,只要我们考察的量,满足一定的精度要求(我们考察的主要是高、低压侧电流,短路匝电流),我们认为模型是成功的。

3.1.1短路匝之间的弧光电阻,电感的模拟

单相变压器的电阻和电感的标压值为:Rbase=548.2456欧,Lbase=1.7451亨

由于短路匝的匝数和变压器线圈绕组匝数相比,很小,选用第三绕组来模拟变压器低压侧的匝间断路时,第三绕组的漏感和漏阻应尽量取的比较小:

漏阻:Rbase*0.001=548.2456*0.001=0.5482欧

漏抗:Lbase*0.001=1.7451*0.001=0.0017亨

弧光电阻,电感:

弧光电阻:0.05欧

弧光电感:0.0001亨

设定为2%的匝间断路:

U2(第二绕组电压)=225.4KV

U3(第三绕组电压,短路匝模拟电压)=4.6KV

3.1.2波形分析

图(1)、(2)为RTDS的实录波形和EMTP建模产生波形的比较,可以看出模型的正确性.

(1)RTDS的A相电流波形(变压器不带负荷空载合闸,A相匝间断路2%)

figure1.ThecurrentwaveofphaseArecordedfromRTDSequipment(switching-onofanunloadedpowertransformer,2percentoftheturnsshortedat2.5s)

(2)EMTP的A相电流输出波形(变压器不带负荷空载合闸,A相匝间断路2%)

figure2.ThecurrentwaveofphaseAproducedbyEMTP(switching-onofanunloadedpowertransformer,2percentoftheturnsshortedat2.5s)

图(1)、(2)变化趋势来看是一致的

实际变压器2%匝短路的时侯,IA(A相电流)=1.6Ie.Ik(短路匝电流)=60Ie,而EMTP输出波形为IA=1.6156Ie,Ik=35Ie,由于算法的输入为相电流作差值,相电流和短路匝的电流的结果基本满足要求。

3.2算法仿真

两种算法Iqd.min=90A比率制动曲线过原点,折算到一次测的电流。

(3)高压侧A相电流波形(变压器满负荷运行时,在2.5s时发生低压侧A相2%的匝间断路,以下相同)

figure3.Thecurrentwaveofhigh-voltagesideofphaseA(2percentofturnsinthelow-voltagewindingoftransformershortedat2.5swithfullload,thesameasfollows)

(4)低压侧A相电流波形

figure4.Thecurrentwaveoflow-voltagesideofphaseA

(5)短路匝内的电流波形(折算到原方后,原方电流的倍数)

figure5.Thecurrentwaveintheshortedturns(transformedintounitvalue)

以下为调整K值的大小,两种算法的动作行为。

(6)K=0.3,比率差动特性(左边的为故障分量的比率差动,右边为传统比率差动,以下相同)

figure6.K=0.3,thepercentagedifferentialcharacteristic(theoneleftissuperimposeddifferentialcurrentsalgorithm;therightconventionalalgorithm,thesameasfollows)

K=0.3,两种保护均能可靠动作,但实际运行的时侯,传统比率差动的制动系数很难整定的这么低,区外故障容易误动,抗CT饱和能力越很弱。

(7)K=0.4,比率差动特性

figure7.K=0.3,thepercentagedifferentialcharacteristic

K=0.4,传统比率差动已到了动作区的边界,几乎检测不出如此轻微的故障,这一点也同我们的动模试验相吻合。

(8)K=1.7,比率差动特性

figure8.K=0.3,thepercentagedifferentialcharacteristic

从中可一看出故障分量的比率差动的高灵敏性和可靠性的结合。即能检出轻微故障,又有足够的抗CT饱和能力。

以下为,在2.5s发生低压侧A相1%的匝间断路时,两种算法的动作行为。

(9)K=0.25,比率差动特性(在2.5s发生低压侧A相1%的匝间断路)

figure9.K=0.3,thepercentagedifferentialcharacteristic(1percentofturnsshortedinlow-voltagesideofphaseAat2.5s)

传统比率差动对1%的匝间断路已失去了灵敏度,故障分量的比率差动同样能灵敏反映

(10)K=1.7,比率差动特性(在2.5s发生低压侧A相1%的匝间断路)

figure10.K=0.3,thepercentagedifferentialcharacteristic(1percentofturnsshortedinlow-voltagesideofphaseAat2.5s)

故障分量的比率差动在如此高的k值的情况下同样能检出1%的轻微故障

以下为低压侧区内AB相跨接20欧电阻在2.5s时短路故障,负荷侧为纯电阻负荷1.9206欧.时,两种算法的动作行为的仿真

(11)变压器端口的波形,左边为高压侧A,B,C相电流,右边为低压侧A,B,C三相电流。(AB相跨接20欧电阻在2.5s时短路故障)

figure11.Thecurrentwaveoftransformerterminals,theleftarethecurrentsofhigh-voltagesideofphaseofA,B,Crespectively,therightlow-voltageside。(thefaultof20ohmresistancecrossphaseAandBat2.5s)

从图(11)可以看出相电流几乎没有突变,对算法的考验更加严酷。

(12)K=1.7,比率差动特性(AB相跨接20欧电阻在2.5s时短路故障)

figure12.K=0.3,thepercentagedifferentialcharacteristic(thefaultof20ohmresistancecrossphaseAandBat2.5s)

对高阻接地故障分量的比率差动,相比传统比率差动也有不可比拟的优势。

4结论

本文对故障分量的比率差动保护相对于传统的在检测变压器匝间短路和低压侧高阻接地短路的灵敏方面作了分析。对故障分量的比率差动的动作特性参数作了分析计算,并对抗CT饱和的能力方面作了一些分析。在这基础上,提出了算法的实现,用EMTP建立了匝间短路和高阻接地的仿真模型,对两种算法的动作行为进行了仿真,验证了所选的制动系数K,和对故障分量的比率差动保护优越性的分析。

ResearchontheDetectionofturn-to-turnandHigh-Impedance-GroundedFaultofTransformerBasedonSuperimposedDifferentialCurrents

Abstract:Themethodofrealizingthetransformerprotectionbasedonsuperimposeddifferentialcurrentshasbeenpresentedandanalyzed.Thecompareofsensitivitydetectingturn-to-turnandhigh-impedancegroundfaultsbetweentraditionaldifferentialrelayanddifferentialrelaybasedonsuperimposeddifferentialcurrentshasbeenmade.Thesensitivityofoperationhasbeencomparedalso.Thedynamicmodelofturn-to-turnandhigh-impedance-groundedfaultoftransformerhasbeenestablished.Basedonthisdynamicmodeloftransformer,manysimulationworkshavebeenmadewiththisalgorithmandprovedsufficientlythegreateradvantagethanthetraditionalalgorithm.

Keywords:superimposeddifferentialcurrents;differentialprotection;transformerprotection;windsshortcircuit;high-impedance-groundedfault

参考文献

1B.Groar,D.Dolinar,Integrateddigitalpowertransformerprotection,IEEProc-Gener,T.ransm,Distrib,Vol,141,No.4,July1994

高阻范文篇2

Keywords:highimpedancedifferentialprotectionratioerror

论文关键词:高阻抗差动保护匝数比

论文摘要:本文阐述了大型电动机高阻抗差动保护原理及整定原则和整定实例。分析了CT匝数比误差对高阻抗差动保护的影响,并介绍了匝数比误差的测量方法。

1概述

高阻抗差动保护的主要优点:1、区外故障CT饱和时不易产生误动作。2、区内故障有较高的灵敏度。它主要作为母线、变压器、发电机、电动机等设备的主保护,在国外应用已十分广泛。高阻抗差动保护有其特殊性,要保证该保护的可靠性,应从CT选型、匹配、现场测试、保护整定等多方面共同努力。现在我国应制定高阻抗差动保护和相应CT的标准,结合现场实际情况编制相应的检验规程,使高阻抗差动保护更好的服务于电网,保证电网安全。

2高阻抗差动保护原理及定值整定原则

2.1高阻抗差动保护的动作原理:

(1)正常运行时:原理图见图1,∵I1=I2∴ij=i1-i2=0.因此,继电器两端电压:Uab=ij×Rj=0.Rj-继电器内部阻抗。

电流不流经继电器线圈,也不会产生电压,所以继电器不动作。

(2)电动机启动时:原理图见图2,由于电动机启动电流较大,是额定电流的6~8倍且含有较大的非周期分量。当TA1与TA2特性存在差异或剩磁不同,如有一个CT先饱和。假设TA2先饱和,TA2的励磁阻抗减小,二次电流i2减小。由于ij=i1-i2导致ij上升,继电器两端电压Uab上升。这样又进一步使TA2饱和,直至TA2完全饱和时,TA2的励磁阻抗几乎为零。继电器输入端仅承受i1在TA2的二次漏阻抗Z02和连接电缆电阻Rw产生的压降。

为了保证保护较高的灵敏度及可靠性,就应使Uab减少,也就是要求CT二次漏阻抗降低。这种情况下,继电器的整定值应大于Uab,才能保证继电器不误动。

(3)发生区内故障:原理图见图3,i1=Id/n(n-TA1电流互感器匝数比)ij=i1-ie≈i1Uab=ij×Rj≈i1Rj此时,电流流入继电器线圈、产生电压,检测出故障,继电器动作。由于TA1二次电流i1可分为流向CT励磁阻抗Zm的电流ie和流向继电器的电流ij。因此,励磁阻抗Zm越大,越能检测出更小的故障电流,保护的灵敏度就越高。

2.2高阻抗差动保护的整定原则及实例

(1)整定原则:

a)、保证当一侧CT完全饱和时,保护不误动。

式中:U-继电器整定值;US-保证不误动的电压值;IKMAX-启动电流值;

b)、保证在区内故障时,CT能提供足够的动作电压:

Uk≥2US(3)

式中:Uk-CT的额定拐点电压。

CT的额定拐点电压也称饱和起始电压:此电压为额定频率下的正弦电压加于被测CT二次绕组两端,一次绕组开路,测量励磁电流,当电压每增加10%时,励磁电流的增加不能超过50%。

c)、校验差动保护的灵敏度:在最小运行方式下,电动机机端两相短路时,灵敏系数应大于等于2。

式中Iprim-保证继电器可靠动作的一次电流;n、Us-同前所述;m-构成差动保护每相CT数目;Ie-在Us作用下的CT励磁电流;Iu-在Us作用下的保护电阻器的电流;Rs-继电器的内阻抗。

(2)、整定实例:

电动机参数:P=7460KW;Ir=816A。CT参数:匝数比n=600;Rin=1.774Ω;Uk=170V。

CT二次侧电缆参数:现场实测Rm=4.21Ω。

差动继电器(ABB-SPAE010)参数:整定范围0.4-1.2Un;Un=50、100、200可选;Rs=6K。

计算Us:US=IKMAX(Rin+Rm)/n=10Ir(Rin+Rm)/n=10×816(1.774+4.21)/600=81.38V

选取Us=82V

校验Uk:∵Uk=170V∴Us在85V以下即可满足要求。

确定继电器定值:选取Un=100;整定点为0.82;实际定值为82V。

校验灵敏度:通过查CT及保护电阻器的伏安特性曲线可得在82V电压下的电流:Ie=0.03AIu=0.006AIprim=n(Us/Rs+mIe+Iu)=600(82/6000+2×0.03+0.006)=47.8A。

由此可见,高阻抗差动保护的灵敏度相当高,这也是该保护的主要优点之一。

3高阻抗差动保护的应用

3.1高阻抗差动保护在应用中除了应注意:

(1)、CT极性及接线应正确;(2)、二次接线端子不应松动;(3)、不应误整定;(4)、CT回路应一点接地等。还应注意:(1)、CT二次应专用;(2)、高阻抗差动保护所用CT是一种特别的保护用CT。为了避免继电器的误动作,对CT有三个要求:励磁阻抗高、二次漏抗低和匝数比误差小。高阻抗差动保护用的CT设计要点是:依据拐点电压及拐点电压下的励磁电流来确定铁芯尺寸。对于高阻抗差动保护用CT的特性匹配至关重要,在实际选用时应采用同一厂家,同一批产品中特性相近、匝数比相同的CT。

3.2下面主要探讨CT匝数比误差对高阻抗差动保护的影响

(1)匝数比n为二次绕组的匝数与一次绕组匝数的比值。匝数比的误差εt定义如下:

εt=(n-Kn)/Kn(6)

式中,Kn-标称电流比。

国外标准中规定此种CT的匝数比误差为±0.25%。

(2)匝数比误差要小:

当电动机启动时(见图2),电流互感器TA2未饱和,CT的二次电流接近于匝数比换算得来的数值,这是由于TA2未饱和时励磁阻抗较高的原因。一般情况下高阻抗差动保护用CT励磁阻抗为几十千欧姆的数量级。如果匝数比的分散性很大,TA1和TA2的二次电流i1和i2不能互相抵消,该差值电流ij流经继电器线圈,即成为产生误动作的原因。

(3)、匝数比误差规定为±0.25%,对于不同匝数比CT不尽合理。匝数较大CT容易满足该规定并且能保证保护不发生误动作。匝数较小CT即使满足该规定,在电动机启动时的差电压也较大,足以造成保护误动作。

下面列举两个例子:

a).两侧CT匝数比均满足±0.25%。假设:n1=3609(正误差);n2=3591(负误差)。

匝数比误差产生的不平衡电流:ij=(10×3600/3591-10×3600/3609)=0.05A

继电器两端不平衡电压:Uj=ij×Rs=0.05×6000=300V

Uj大于继电器整定值,保护在这种情况下将不可避免的发生误动作。

b).两侧CT匝数比相对误差满足±0.25。假设:n1=3609;n2=3600。

匝数比误差产生的不平衡电流:

ij=(10×3600/3600-10×3600/3609)=0.025A

继电器两端不平衡电压:Uj=ij×Rs=0.025×6000=150V

Uj小于继电器整定值,可满足工程要求。

例2:所有参数与整定计算实例相同。

a).两侧CT匝数比均满足±0.25%。

设:n1=601(正误差);n2=599(负误差)。

匝数比误差产生的不平衡电流:

Uj远大于继电器整定值(82V),保护将发生误动作。

b).两侧CT匝数比相对误差满足±0.25%,假设:n1=601n2=600

匝数比误差产生的不平衡电流:

Uj=ij×Rs=0.0226×6000=135V

Uj仍大于继电器整定值,保护将发生误动作。

通过上述两例足以说明对于高阻抗差动保护CT选择的苛刻条件,选择时应遵守CT匝数比误差相近的原则。建议在整定原则中增加继电器整定电压应大于由于匝数比误差产生的差电压,以保证高阻抗差动保护的可靠性。

3.3匝数比误差的测量

测量的方法有两种:

第一种:在CT二次侧短路状态下,测量流经额定一次电流i1时的比值差f1,设此时励磁电流为i0,则f1=-εt-i0/i1

二次回路连接与二次绕组阻抗相等的负荷,在额定一次电流的1/2电流下测量比值差f2,这时仍设励磁电流为i0,则f2=-εt-2i0/i1

匝数比误差为:εt=f2-2f1

第二种方法:在测量CT伏安特性的同时测量一次绕组的电压。

高阻范文篇3

关键词:垂直接地极接地电阻接地系统接触电压跨步电压季节因素

发变电站良好的接地是电力系统安全运行的根本保证。随着电力系统电压等级的不断提高和系统容量的不断增大,接地故障电流和发变电站接地网的面积也不断增大,生产运行部门对于降低地网接地电阻、接触电压和跨步电压,保障电力系统安全、可靠运行的呼声越来越高。要确保人身和设备的安全,维护电力系统的可靠运行,需要改变仅强调降低接地电阻的传统观念,树立主要考虑地面接触电压和跨步电压所带来的危害这一新概念。

在土壤电阻率较低,接地网面积限制相对宽松的地区,降低接地电阻、接触电压及跨步电压并不是特别困难。但是,许多山区或周边环境比较恶劣的变电站所处位置的土壤电阻率比较大;某些建在城市中的变电站接地系统设计则受到面积限制。如何在这些土壤电阻率高、接地网水平扩张裕度有限的地区,使变电站地网设计能够确保设备及人身安全则是许多人都关心的问题。针对工程实际中的具体问题,把设计思路仅仅局限于水平地网显然是不合适的,将接地系统向纵深方向发展是设计的必然思路。实践也证明,增设垂直接地极对于降低地网接地电阻、接触电压和跨步电压是一种行之有效的方法。

本文的目的是采用数值计算方法系统分析垂直接地极对接地系统电气性能的影响,分析采用从加拿大引进的CDEGS软件包。垂直接地极降低接地电阻的作用以均匀土壤为例,讨论垂直极对于降低地网接地电阻的作用。假设水平地网面积为150m×150m,网格间距取15m,土壤电阻率为200Ω.m,水平导体半径r1=0.011m,垂直极长度L=50m。先分析在已有水平地网基础上增设垂直极,考虑垂直极根数N变化对接地电阻R的影响。

为了减小水平地网对垂直接地极的屏蔽作用,垂直接地极一般布置在水平地网的,与接地导体相连。其中虚线为垂直极计算半径r2取3.5m时的接地电阻,用于模拟采用爆破接地技术施工的垂直接地极,实线为垂直接地极的半径r2取0.025m时的接地电阻,用于模拟常规尺寸的普通垂直接地极。

垂直极根数变化对地网接地电阻的影响:其它条件不变,接地系统的接地电阻R随垂直极根数N的增加而降低,当布置的垂直接地极根数达到一定数量时,接地电阻R的减小趋于饱和,其主要原因是垂直接地极间距减小后,相互之间屏蔽作用增强的缘故。另外,垂直极显然对水平网散流有抑制作用。即添加垂直极后接地系统总的接地电阻并不是垂直极与水平网的接地电阻的简单并联,而是存在一个屏蔽系数,垂直极的根数越多,屏蔽系数越大。垂直极半径取3.5m时的降阻效果明显比半径取0.025m时要强。

垂直极半径取3.5m是考虑到爆破制裂之后的效果。因此可以看出,采用爆破接地技术对垂直接地极进行施工,增大垂直接地极的半径,能更有效地降低接地系统的接地电阻。垂直极对接触电压和跨步电压的影响。增设垂直极对于降低地表面的最大接触电压和跨步电压也具有较大的影响。水平网同上节讨论的情况相同,垂直极计算半径取0.025m。

增设垂直接地极对于降低接触电压和跨步电压具有非常显著的作用,当垂直极为12根时,接触电压就可降低约40%;当垂直极为32根时,接触电压可降低63.49%。而降低接触电压正是电力系统接地安全设计的主要目标之一。

增设垂直极对于降低接触电压的原因主要有两点:一是垂直极的引入,降低了地电位升(GPR),而接触电压及跨步电压均与GPR有着直接的关系。二是因为增设垂直极后,大部分故障电流通过垂直极流入大地,相应减少了水平导体的散流量,因此地表面的水平方向电流密度大大减少,造成水平方向电场强度大大降低。

例如在垂直极为12根时,水平网流散的电流为25%左右,而垂直极流散的电流大约为75%。而在土壤不均匀,特别是上层土壤电阻率明显大于下层土壤电阻率时,这一趋势更加明显,垂直极中流散的电流可达到总电流的90%。因此在地面上引起的接触电压和跨步电压也会相应有较大幅度的降低。

垂直极对消除季节因素影响的作用一般情况下,多孔含水岩石的电阻率可由以下经验公式[4]求得:ρ=ρ0f-mS-n,(1)式中:ρ0为填充于岩石孔隙中水的电阻率;f为孔隙度(孔隙体积与总体积的比值);S为填充了水的孔隙空间与总孔隙空间的比值;约有30%以上的孔隙空间为水填满时,n值接近于2;m值取决于岩石的固化程度或地质年代,对松散的沉积岩m为1.3左右,对良好固结的古生代沉积岩m为1.95左右。

由上可以看出岩石的电阻率主要取决于它的含水量和水的电阻率。由于土壤的导电具有离子导电性能,因此其电阻率通常是随着温度的降低而增加。与沙混合的粘土含水量15%时,在0℃以上电阻率变化较缓,0℃时电阻率有一突变过程,而温度在0℃以下时电阻率随温度的下降而急剧上升。随着季节的变化,土壤温度与土壤中的水分含量都将有很大的变化,因此在常规地网设计中,考虑到变电站所处的纬度及周边环境不同,对于接地电阻都要乘一季节系数,视水平接地体埋深不同,取值不同。

在水平地网基础上添加长垂直接地体以后,季节变化对于接地电阻的影响明显减小。这主要是因为季节变化影响的土壤范围在地表附近,对于深层几乎没有影响。基于以上考虑,以下面的模拟分析来探讨垂直接地极对于降低季节系数的作用。假设地网面积为150m×150m,网格间距为15m,土壤电阻率ρ2=200Ω.m,水平导体半径r1=0.011m,埋深为0.8m;垂直极长度L=50m,半径r2=0.02m。假设表层由于冬季冰冻作用导致电阻率增加的土壤深度h为1.0m,当其电阻率随季节变化时,接地电阻随季节变化的曲线如图4所示,其中实线是没有垂直接地极时的接地电阻,虚线是增设8根半径为r2=0.025m的垂直极后的接地电阻,点线是增设8根半径r2=3.5m的垂直极后的接地电阻。

没有垂直接地极的接地电阻R1随着上层土壤电阻率的增大而增大。取上层土壤电阻率为50~800Ω.m这一常见范围,仅仅表层1m深土壤的电阻率的变化就可以导致接地电阻从0.55Ω增加到0.8Ω,增幅达45%。而当增设8根深度为50m的垂直接地极以后,如上节讨论结果,由于相当一部分故障电流经由垂直极流入大地,因此,接地系统接地电阻受上层土壤电阻率变化的影响将会显著变小。采用半径为0.025m的钢管,接地电阻在同样的土壤电阻率变化情况下,仅从0.5Ω增大到0.575Ω。尤其是采用爆破接地技术进行垂直接地极的施工后(计算半径取3.5m),接地电阻基本上不受季节变化因素的影响,从而大大提高了接地系统的安全性。

上面讨论的是下层土壤电阻率固定为200Ω.m时的情况,当下层电阻率与上层电阻率的比值不同时,情况会有所不同。一个基本的原则是:上层电阻率变化对于整个接地电阻变化的影响取决于水平网与垂直接地极之间的泄漏电流分配情况。当下层电阻率相对较大,泄漏电流分配比例较小,季节系数就较大;反之,季节系数就较小。

结论:

1)将接地系统向纵深方向发展是提高高土壤电阻率地区及城区地网安全性的重要措施。

2)增加垂直接地极能有效地降低发变电站接地系统的接地电阻,但在有限面积的接地网上布置过多的垂直接地极时,降阻效果将趋于饱和。

高阻范文篇4

关键词:忆阻器;电子信息;教学

1忆阻器概念的提出

忆阻器是近年来提出的继电阻、电感及电容之后的第四种基本电路元件,用于表示磁通与电荷之间的关系,具有电阻的量纲。与电阻不同之处在于其阻值由流经它的电荷确定,从而具有记忆电荷的作用。1971年,忆阻器理论的奠基人、美国加州大学蔡绍棠教授(LeonChua)在研究电荷、电流、电压和磁通四者之间的关系时(图1),依据电路基本组合完备性和物理对称性原理,提出在电阻、电容和电感之外,应该还存在一个代表电荷和磁通之间关系的元件(缺失的元件)。借助该元件,电阻会随着通过的电流量而改变;当电流停止时,该电阻仍旧会停留在当前值。忆阻器的概念提出后,科学家一直在寻找能够实现忆阻器功能的材料。

2忆阻器元件的发现

2008年,惠普实验室的研究团队在研究二氧化钛的电阻特性时,首次在实验上证实忆阻器的存在。忆阻器具有尺寸小、能耗低的优点,并能够高效地储存和处理信息,引起了科技界的研究热潮。此外,忆阻器是物理上实现人工神经网络突触的最好方式,可以模拟经验学习和记忆等多种生物复杂功能。由于忆阻的非线性性质,可以产生混沌电路,从而在保密通信中也有很多应用。近年来,制备忆阻器的材料正在多样化发展,氧化物、氮化物、固体电解质,有机聚合物等材料均可实现忆阻器性能。目前,忆阻器的研究已成为材料、物理、生物、电子等领域的前沿和热点,并呈现多学科交叉融合的特征。

3电子信息类专业课程与忆阻器的关联

电子信息类专业涵盖电子、信息、通信、控制、计算机等领域,基础知识面宽、应用广泛。专业课程中的《电路分析》、《大学物理》和《电磁场与电磁波》等均与电路、电场和磁场相关。其中《电路分析》使学生掌握电路理论的基本概念、基本定理和基本分析计算方法,在给定电路模型的情况下计算电路中各部分的电流或电压。电路模型包括电路的拓扑结构、无源元件电阻、储能元件电容及电感等。《大学物理》中的电磁学部分和《电磁场与电磁波》则重点讲授电荷、电场和磁场的基本规律及其相互之间的关系。上述三门课程中,电路的基本要素如电压、电流、电阻、电容、电感等,电场的基本单元电荷和磁场的基本量磁通,都是课程的基础知识,需要学生重点掌握的。电路、电场、磁场各个基本量之间的关系都由简单的数学公式表达,也是课程考核的必然要求。忆阻器正是基于电荷、电流、电压、磁通四者之间的关系,考虑到物理对称性而提出的。四者之间理应存在六个组合关系式,但是当时仅有五个关系式存在并被广泛应用,也就是电子信息类专业课程中的基础关系式,唯有磁通和电荷之间没有建立关系式。忆阻器则代表着磁通和电荷之间的关系,完善了四者之间的第六个关系式。但是跟很多新的理论一样,由于缺少实验上的验证,忆阻器概念在提出后很长一段时间,并未受到研究者的关注。随着半导体制备技术的进步,忆阻器一经实现,便得到迅速发展。

4课程教学中存在的问题

忆阻器概念的提出是突破性的科研成果,它完善了电路理论,开拓了研究人工智能的新模式。忆阻器领域具有重要的科研价值,但对于高等教育而言,教师和学生有必要在忆阻器的发展历程中,审视自己的角色,查找“教”与“学”中存在的问题:为什么不是我们提出“忆阻器”这个概念?作为电子信息类专业的教师,研读教材并把握课程的目标体系,了解课程发展脉络,做到居高临下、高屋建瓴,再灵活应用教学方法,调动学生的学习兴趣,即可将专业知识完美呈现给学生,使学生掌握课程大纲规定的教学内容,从而在课程考核中得到较好的成绩。以电荷、电流、电压、磁通四者的关系为例,教师可以采用多种教学方法,将教材中存在的五个关系式以理论和实验的形式教授给学生。特别是《电磁场与电磁波》课程,围绕电荷、电场、电流、磁场的相互关系,建立静态和交变的电磁方程组,但方程组中缺少电荷和磁场的关系式。另外,教材中特别提到电场与磁场中各个物理量的对应关系,至今没有发现与电荷对应的“磁荷”。因此,该课程具有忆阻器发现的理论基础:物理量之间的关系式和物理对称性关系,但却没有引起教师的重视,与发现“忆阻器”失之交臂,值得专业教师深思。因此,将专业知识教授给学生,使学生掌握课程大纲规定的内容,只能是教育的初级阶段,更重要的是如何在教学过程中启发学生,发现问题,学以致用,融会贯通。相比于注入式教育,启发式教育在提高学生学习积极性和思维创新能力方面可以起到更大的作用。启发式教学对教师提出了更高的要求。教师在研读教材的基础上,通过梳理课程脉络,结合自己的专业知识,设置情景问题,一步步引导学生在解决问题的过程中获得知识。比如在《电磁场与电磁波》的教学过程中,静态电场和磁场讲述后,设置开放性问题:“如何建立电场和磁场之间的关系”,从而引导学生进入交变电磁场的学习。在有关电场和磁场的基础知识之后,引导学生推导电荷、电场、电流、磁场的相互关系,在强化知识点记忆的基础上,完善知识体系。

5激发学生的探索精神

创新是一个民族进步的灵魂,但提到科技创新,很多学生都觉得遥不可及,事不关己,认为创新是科学家的事情。究其原因就是在专业知识学习中缺乏探索精神。好奇是探索的源泉,好奇之心生而有之,当代大学生不缺乏好奇,但却很少用于专业知识的获取中。因此,在专业课程教学中,激发学生的求知欲和探索精神,是亟待解决的重要问题。众所周知,教学过程应贯彻教师为主导、学生为主体的思想,促进学生自主学习、学会求知。教师是实现学生自我学习的引导者和促进者,带领学生找到学习的乐趣,使学生在教师创设的开放问题情境中主动探求知识,围绕专业知识调查搜索、加工处理相关信息,从而获得新知识、解决新问题,完成知识的更新和跃变。教师的角色至关重要,不单单承载知识的简单传递,更重要的是引导学生释放探求真知的潜能,这对教师提出了更高要求。教师需要在教材、教法上下功夫,既要涵盖课程大纲要求的专业知识点,寻找适合学生探讨的话题,又要把握课堂节奏,有效控制话题延伸,落实学生获取知识的程度。对于学生关心的课程考核,制定鼓励学生探索精神的考核方式,采用问题论述、课程设计、中期论文等多种方式相结合,不再以单纯的试题和参考答案约束学生的思维能力,摒弃以分数论成败的传统观念,杜绝高分低能的现象。偏重理论的课程,重点考察学生对知识的理解能力,以开放性问题为主导;偏重实验的课程,重点考察学生解决实际问题的能力,以课程设计为主导,充分调动学习的主观能动性,在解决问题和设计实践中寻找探索的乐趣,实现专业知识的接替。忆阻器的发现便是科学家对知识的探索、思考和归纳。从理论上看,电子信息类专业的学生对电荷、电流、电压、磁通非常熟悉,也是专业必修的基础知识,教师在讲授过程中也会进行归纳总结,方便学生理顺四者之间的相互关系。假如教师能在教学过程中引导学生关注教科书中唯一尚未建立的电荷和磁通的关系,虽然学生未必能提出新的概念,但相信学生也能在自主学习中提出自己特有的见解。从实验上看,由于材料和器件制备技术的限制,忆阻器概念提出后相当长的一段时间里发展缓慢,但科学家一直在探索,直到2008年惠普公司的研究人员首次做出纳米尺寸的忆阻器件,并使得类脑计算芯片的研究有了突飞猛进的发展。离开探索和思考,创新是不可能成功的,激发和培养探索精神,是衡量学生专业知识获取程度的重要指标。探索精神也是学生学习和工作的必备能力。有的毕业生感慨专业对口工作岗位少,或者自己的工作与大学期间的课程关系不大,从而衍生课程无用论。殊不知,大学期间培养的知识探究精神和解决问题的能力,正是用人单位所希望人才具有的品质。任何课程都不可能解决工作中遇到的所有问题,唯有不断探索和创新,才是解决问题的金钥匙。虽然探索精神主要取决于学生自身的主观培育,但教师的启发和课程考核方式的指引也会起到推动作用。目前忆阻器的研究如火如荼,但由忆阻器组建电路实现新型神经网络系统尚有难度,有待我们发挥探索精神,实现忆阻器的理论和实践创新。

6总结

电子信息类专业课程的设置具备忆阻器概念提出的理论基础,但忆阻器却不是由国内本专业的教师和学生提出的,暴露出专业教学和学习中存在的缺乏创新意识的问题。专业教学应该转变分数至上、重在解题的错误观念,教学过程应以启发式教学为主,改革课程考核方式,着重激发学生的探索精神,适应新时代人才培养的要求。

参考文献:

[1]ChuaLO.Memristor-Themissingcircuitelement[J].IEEETransCircuitTheory,1971,18(5):507-519.

[2]刘东青,程海峰,朱玄,等.忆阻器及其阻变机理研究进展[J].物理学报,2014,63(18):16-24.

[3]冯平,豆兴伟.从忆阻器的发现看在电工理论的应用[J].电气电子教学学报,2012(s1):86-87.

[4]张晨曦,陈艳,仪明东,等.基于忆阻器模拟的突触可塑性的研究进展[J].中国科学:信息科学,2018(2):115-142.

[5]赵正平.纳电子学与神经形态芯片的新进展[J].微纳电子技术,2018(1):73-83.

[6]殷一民,程海峰,刘东青,等.氧化物忆阻器材料及其阻变机理研究进展[J].电子元件与材料,2016,35(9):9-14.

高阻范文篇5

现代水库就是人造湖泊(水容),现代(包括近代)水利工程只是在天然河流上增加了许多人造水容,却没建造过一个人造水阻(偶尔在某些娱乐场所流水池山建造过阶梯状类似的水阻),显然是不平衡不完善的。国外一些现代水利工程发达国家某些专家主张拆除水坝,其深层道理就在于此(可能老外还没意识到)。但其主张过于消极和偏激,积极的办法应当是建造人造水容的同时再相应建造一些人造水阻,达到河流系统的平衡与完善。

如果一位电子专家看到一块电路板上全是电容而没有电阻,一定认为很滑稽可笑。现代水利工程只是在天然河流上增加了许多人造水容不同样滑稽可笑吗?

天然植被其功能实质上讲就是在河流系统的上端长出了无数个小水阻,消耗了微小溪和小溪中以水为载体的太阳能。如果破坏了天然植被,众多小水阻消失,以水为载体的太阳能必然以别的方式消耗掉————冲击土壤,造成水土流失,直到露出石头形成新的石头水阻。

黄土高原土壤很厚,任你n年冲击土壤,造成水土流失,也无法露出石头形成新的石头水阻(当然n万年后黄土高原土壤差不多冲光了也会形成新的石头水阻)其水土流失是必然的,即使原来远古时代黄土高原天然植被(众多小水阻)存在也不会有本质上的改变,水土流失只是比现在轻些,这也为历史专家所证实。

黄土高原要等到n万年后黄土高原土壤差不多冲光了形成新的石头水阻才达到河流系统的平衡,这也太令人绝望了。但既然形成石头水阻可达到河流系统的平衡,那磨我们可以用人工的办法在黄土高原的众多小溪河流上放上人造石头水阻,不也可以实现其河流系统的准平衡与准完善吗?再加上恢复植被(众多小水阻),黄河不就变清了吗(当然不是颜色变清,而是泥沙含量大大减少)?

说到人造水阻,其实我们的祖先在都江堰水利工程中已经无意地成功使用过——就是竹笼装的卵石,现在被称为“软”建筑,其具有很大的灵活性和可塑性。在可移动的河床中,“硬”建筑终无法保证工程的连接与整体,而竹笼能将分散的若干卵石,组成一个有空隙能渗水的整体;竹笼之间又易于相互牵连重叠,能形成较大的整体而直压水底。竹笼石头大大减轻了水的冲力,消耗水流冲击的能量。再加上竹笼拉力好韧性强,如遇水淘基础时,又可随水曲折下沉,始终紧固河床,不致淘空冲毁或冲走。如:1970年在灌县“两义渡”淘河时,发现原安放的竹笼被洪水冲刷后,竟曲折下沉6.3米而固堤,由此可见竹笼在可移动河床中的特殊功能。(本资料摘自“世界水利史上的丰碑——都江堰”一书第31和32页)

再谈到竹笼,一般认为“软”建筑的致命弱点就是她的短命,更换周期太短,维修困难。因为在当时的条件下,只能使用竹材料(按当时古代人们的观点看遍地都是竹子,可能比垃圾还不如。开荒时还要披荆斩棘,甚至一把火把竹林烧光)编成笼子。但是,现代化学工业制造的如塑料袋塑料绳等废弃后的垃圾长命得简直让环保部门头痛(也想一把火把它烧掉算了,可惜还不能随便烧,否则会造成空气污染)如果用这些长命垃圾编织成现代竹笼,那是再好不过了,就克服了“软”建筑短命的致命弱点。

接着谈谈山洪:山洪是暴雨袭击(以水为载体的太阳能集中释放能量)山区河道造成的,山区天然河道上往往看到一些乱石滩,这正是洪水期间形成的水阻,以消耗以水为载体的太阳能集中释放的能量,达到洪水期间的河流系统能量平衡。如果人为地破坏了乱石滩(比如把它平整变成农田)水阻减少甚至消失,一旦发生洪水时,流经此处的洪水无法消耗掉水流冲击的能量,必将此水流冲击的能量带向下游,携带更大能量的水流必然会更强烈冲击下一段河床及河两岸的地面,造成额外的水土流失。如果下游某地的乱石滩尚未破坏(洪水水阻不变)

但它要承受上游水阻减少甚至消失造成的洪水无法消耗掉的水流冲击的能量,其水阻前水位必然上升,造成该水阻附近的洪水泛滥(就象电路中的几个电阻的前几个或后几个被拆掉用铜丝代替,那磨剩下的电阻必将承受更大的电压而过热);如果某处水阻承受不住过量的

高阻范文篇6

知识目标

1.知道什么是电阻.

2.知道电阻的各种单位及其换算关系.

3.理解决定电阻大小的四个因素.

能力目标

1.能认识到电阻是导体本身的属性.

2.能进行电阻不同单位之间的变换.

3.能根据决定电阻大小因素,判断比较不同导体电阻的大小.

4.初步体会“控制变量法”研究物理问题的思路.

5.培养学生依据物理事实分析,归纳问题的能力.

情感目标

培养学生实事求是的科学态度和刻苦探索的科学精神.

公务员之家,全国公务员共同天地

教学建议

教材分析

本节首先提出一个学生能常见的问题来吸引学生,让学生思考不同的金属都可以导电,而为什么在不同的地方选材却不同.

本节所有的结论都是建立在实验的基础之上,实验引入导体虽然可以导电,但同时对电流有有一定的阻碍作用.然后通过“控制变量法”把影响电阻的因素一一导出.

教法建议

本节宜采用观察、分析、比较、归纳的学习方法.

本节的所有结论都是由实验推导而来,应该增加学生动手机会,以培养学生分析、推理能力,使学生初步领悟“控制变量”的物理研究方法,演示验证分组实验,学生信服,培养思维和操作能力,培养学生分析处理实验数据能力.

导体能够导电,但同时对电流又有阻碍作用,不同的导体对电流的阻碍作用不同,在物理学中用电阻表示导体对电流阻碍作用的大小.不同的导体电阻一般不同,电阻是导体的一种性质,它的大小决定于导体的材料、长度、横截面积和温度,与其两端的电压及其中的电流无关、导体的电阻只有通电的时候才表现出来.

由于决定电阻大小因素很多,在实验研究时,采用了控制变量法,即每一次只让一个因素发生变化,其他因素保持不变,然后再观察相应的电阻的变化.

为了表示导体的电阻跟材料的关系,可用电阻率表示.某种材料制成长,横截面积为的导线在20℃的电阻值叫做这种材料的电阻率.

教学设计方案

导入新课

给学生布置任务:

将一只灯泡、一个演示电流表、一节干电池和一个开关连成电路并读电流表示数.再出示电阻定律演示器,按下述要求重作上述实验

1.用导线代替小灯泡做一次.

2.用导线代替再做一次.

组织学生总结分析,提出问题

教师可引导

上述两次实验,用的都是一节干电池即电压相同,那么两导线中的电流大小为什么不同?(一位学生到前面连接;其他同学审查连接过程,找出操作上的问题)

找其他同学到讲台上完成并记录实验数据,总结现象—电流大小不同

让学生猜想该现象可能由于什么不同造成的.

学生总结:

外部条件都相同,肯定是由于导体本身不同造成的.

教师引导:

提出电阻概念,指出:原来导体虽能导电,但同时对电流也有阻碍作用,物理学中常用“电阻”这个物理量来表示导体对电流的阻碍作用大小.

学生判断分析后,教师指出,不同导体电阻一般不同.教师简述研究电阻有重要意义.在应用中初步理解电阻含义(这里让学生判断只限于电压相同的例子).

导体比如金属导体对电流有阻碍作用,实质是由于定向移动的电子跟金属正离子频繁碰撞而成的.

为了衡量导体对电流阻碍作用大小,就要比较电阻大小,要比较电阻大小就要规定电阻的单位,国际单位制中电阻单位是“欧姆”()还有千欧()、兆欧(),多大的阻碍作用是呢?

如果导体两端电压是,通过的电流是时,这段导体的电阻是.通过举例让学生体会欧姆大小.

学生到课本中找到关于规定的表述文字并读后再让学生根据单位字头号自己说出三个单位核算关系.再让学生观察,,电阻和滑动变阻器.

观察和听老师介绍的这些导体电阻都不同,那么导体电阻与什么相关、由什么因素决定呢?启发学生猜想?

怎样设计实验来验证?

方法指导,介绍控制变量的方法.在学生猜想基础上,根据研究思路分析,用如图所用装置完成下面三组学生实验.

实验1

研究导体电阻跟材料关系.根据前面实验数据直接填入记录表.

说明通过锰铜导线电流大于通过镍铬合金的电流.

结论

学生实验并记录

条件—电压相同

导线

材料

锰铜

镍铬

长度

相同

截面积

相同

电流

电阻

实验2

研究电阻与长度关系记录表

说明

结论

条件—电压相同

导线

材料

相同

长度

1

0.5

截面积

相同

电流

电阻

实验3

研究电阻与粗细的关系.

记录表

说明

结论

条件—电压相同

导线

材料

相同

长度

相同

截面积

电流

电阻

分析说明.导体的电阻由材料、长度、横截面积决定,所以说电阻是导体本身的一种性质

实验4

研究电阻与温度关系.

实验装置图

教师帮助学生分析归纳结论.

导体电阻还与温度有关.学生归纳后,教师小结:一般地温度越高,电阻越大.

板书结论

导体的电阻是导体本身一种性质,它的大小与导体的材料、长度、截面积和温度有关.

由于导体电阻由材料、长度、截面积和温度共同决定,所以要比较两种不同材料电阻的区别,必须取相同长度、截面积、相同温度的导体加以比较,课本上列出了长1米截面积为1毫米在0℃时不同材料的电阻值.

我们前面讲的电阻单位是欧姆,从导体本身性质角度来说就是在温度为0℃时,长106.3厘米截面积为1平方毫米的水银柱所具有的电阻.

学生看P92页表,回答下列问题:

哪些材料导电性能好?

为什么常用铜或铝做材料,而不用便宜的钢铁?

探究活动

【课题】

1.导体电阻的微观机制

2.不同导体电阻差别的微观机制

【组织形式】个人和学习小组

【活动方式】公务员之家,全国公务员共同天地

高阻范文篇7

关键词:热敏电阻,掺金γ-硅热敏电阻,Z-元件,力敏Z-元件,V/F转换器

一、前言

Z-半导体敏感元件﹙简称Z-元件﹚性能奇特,应用电路简单而且规范,使用组态灵活,应用开发潜力大。它包括Z-元件在内仅用两个﹙或3个﹚元器件,就可构成电路最简单的三端传感器,实现多种用途。特别是其中的三端数字传感器,已引起许多用户的关注。

Z-元件现有温、光、磁,以及正在开发中的力敏四个品种,都能以不同的电路组态,分别输出开关、模拟或脉冲频率信号,相应构成不同品种的三端传感器。其中,仅以温敏Z-元件为例,就可以组合出12种电路结构,输出12种波形,实现6种基本应用[3]。再考虑到其它光、磁或力敏Z-元件几个品种,其可供开发的扩展空间将十分可观。为了拓宽Z-元件的应用领域,很有从深度上和广度上进一步研究的价值。

本文在前述温、光、磁敏Z-元件的基础上,结合生产工艺和应用开发实践,在半导体工作机理上和电路应用组态上进行了深入的扩展研究,形成了一些新型的敏感元件。作为其中的部分实例,本文重点介绍了掺金g-硅新型热敏电阻、力敏Z-元件以及新型V/F转换器,供用户分析研究与应用开发参考。这些新型敏感元件都具有体积小、生产工艺简单、成本低、使用方便等特点。

二、掺金g-硅新型热敏电阻

1.概述

用g-硅单晶制造半导体器件是不多见的,特别是用原本制造Z-元件这样的高阻g-硅单晶来制造Z-元件以外的半导体器件,目前尚未见到报导。Z-元件的特殊性能,主要是由掺金高阻g-硅区﹙也就是n-i区﹚的特性所决定的,对掺金高阻g-硅的性能进行深入地研究希望引起半导体器件工作者的高度重视。

本部分从对掺金g-硅的特性深入研究入手,开发出一种新型的热敏元件,即掺金g-硅热敏电阻。介绍了该新型热敏电阻的工作原理、技术特性和应用特点。

2.掺金g-硅热敏电阻的工作机理

“掺金g-硅热敏电阻”简称掺金硅热敏电阻,它是在深入研究Z-元件微观工作机理的基础上,按新的结构和新的生产工艺设计制造的,在温度检测与控制领域提供了一种新型的温敏元件。

为了熟悉并正确使用这种新型温敏元件,必须首先了解它的工作机理。Z-元件是其N区被重掺杂补偿的改性PN结,即在高阻硅材料上形成的PN结,又经过重金属补偿,因而它具有特殊的半导体结构和特殊的伏安特性。图1为Z-元件的正向伏安特性曲线,图2为Z-元件的半导体结构示意图。

由图1可知,Z-元件具有一条“L”型伏安特性[1],该特性可分成三个工作区:M1高阻区,M2负阻区,M3低阻区。其中,高阻的M1区对温度具有较高的灵敏度,自然成为研制掺金g-硅热敏电阻的主要着眼点。

从图2可知,Z-元件的结构依次是:金属电极层—P+欧姆接触区—P型扩散区—P-N结结面—低掺杂高补偿N区,即n-.i区—n+欧姆接触区—金层电极层。可见Z-元件是一种改性PN结,它具有由p+-p-n-.i-n+构成的四层结构,其中核心部位是N型高阻硅区n-.i,特称为掺金g-硅区。掺金g-硅区的建立为掺金g-硅热敏电阻奠定了物理基础。

Z-元件在正偏下的导电机理是基于一种“管道击穿”和“管道雪崩击穿”的模型[2]。Z-元件是一种PN结,对图2所示的Z-元件结构可按P-N结经典理论加以分析,因而在p-n-.i两区中也应存在一个自建电场区。该电场区因在P区很薄,自建电场区主要体现在n-.i区,且几乎占据了全部n-.i型区,这样宽的电场区其场强是很弱的,使得Z-元件呈现了高阻特性。如果给Z-元件施加正向偏压,这时因正向偏压的电场方向同Z-元件内部自建电场方向是相反的,很小的正向偏压便抵消了自建电场。这时按经典的PN结理论分析,本应进入正向导通状态,但由于Z-元件又是一种改性的PN结,其n-.i型区是经重金属掺杂的高补偿区,由于载流子被重金属陷阱所束缚,其电阻值在兆欧量级,其正向电流很小,表现在“L”曲线是线性电阻区即“M1”区。这时,如果存在温度场,由于热激发的作用使重金属陷阱中释放的载流子不断增加,并参与导电,必然具有较高的温度灵敏度。在M1区尚末形成导电管道,如果施加的正向偏压过大,将产生“管道击穿”,甚至“管道雪崩击穿”,将破坏了掺金g-硅新型热敏电阻的热阻特性,这是该热敏电阻的特殊问题。

在这一理论模型的指导下,不难想到,如果将Z-元件的n-.i区单独制造出来,肯定是一个高灵敏度的热敏电阻(由于半导体伴生着光效应,当然也是一个光敏感电阻),由此可构造出掺金g-硅新型热敏电阻的基本结构,如图3所示。由于掺金g-硅新型热敏电阻不存在PN结,其中n-.i层就是掺金g-硅,它并不是Z-元件的n-.i区。测试结果表明,该结构的电特性就是一个热敏电阻。该热敏电阻具有NTC特性,它与现行NTC热敏电阻相比,具有较高的温度灵敏度。

3.掺金g-硅热敏电阻的生产工艺

掺金g-硅热敏电阻的生产工艺流程如图4工艺框图所示。可以看出,该生产工艺过程与Z-元件生产工艺的最大区别,就是不做P区扩散,所以它不是改性PN结,又与现行NTC热敏电阻的生产工艺完全不同,这种掺金g-硅新型热敏电阻使用的特殊材料和特殊工艺决定了它的性能与现行NTC热敏感电阻相比具有很大区别,其性能各有优缺点。

4.掺金g-硅热敏电阻与NTC热敏电阻的性能对比

从上述结构模型和工艺过程分析可知,掺金g-硅层是由金扩入而形成的高补偿的N型半导体,不存在PN结的结区。它的导电机理就是在外电场作用下未被重金属补偿的剩余的施主电子参与导电以及在外部热作用下使金陷阱中的电子又被激活而参与导电,而呈现的电阻特性。由于原材料是高阻g-硅,原本施主浓度就很低,又被陷阱捕获一些,剩余电子也就很少很少。参与导电的电子主要是陷阱中被热激活的电子占绝对份额。也就是说,掺金g-硅热敏电阻在一定的温度下的电阻值,是决定于工艺流程中金扩的浓度。研制实践中也证明了这一理论分析。不同的金扩浓度可以得到几千欧姆到几兆欧姆的电阻值。金扩散成为产品质量与性能控制的关健工序。

我们认为,由于掺金g-硅热敏电阻的导电机理与现行的NTC热敏电阻的导电机理完全不同,所以特性差别很大,也存在各自不同的优缺点。掺金g-硅热敏电阻的优点是:生产工艺简单,成本低,易于大批量生产,阻值范围宽(从几千欧姆到几兆欧姆),灵敏度高,特别是低于室温的低温区段比NTC热敏电阻要高近一个量级。其缺点是:一批产品中电阻值的一致性较差、线性度不如NTC,使用电压有阈值限制,超过阈值时会出现负阻。

掺金g-硅新型热敏电阻与NTC热敏电阻的电阻温度灵敏度特性对比如图5所示。

在不同温度下,温度灵敏度的实测值对比如表1所示。

掺金g-硅热敏电阻是一种新型温敏元件。本文虽作了较详细的工作机理分析,但现在工艺尚未完全成熟,愿与用户合作,共同探讨,通过工艺改进与提高,使这一新型元件早日成熟,推向市场,为用户服务。

三、力敏Z-元件

1.概述“力”参数的检测与控制在国民经济中占有重要地位。力敏元件及其相应的力传感器可直接测力,通过力也可间接检测许多其它物理参数,如重量,压力、气压、差压、流量、位移、速度、加速度、角位移、角速度、角加速度、扭矩、振动等,在机械制造、机器人、工业控制、农业气象、医疗卫生、工程地质、机电一体化产品以及其它国民经济装备领域中,具有广泛的用途。

在力参数的检测与控制领域中,现行的各种力敏元件或力传感器,包括电阻应变片、扩散硅应变片、扩散硅力传感器等,严格说,应称为模拟力传感器。它只能输出模拟信号,输出幅值小,灵敏度低是它的严重不足。这三种力敏元件或力传感器,为了与数字计算机相适应,用户不得不采取附加的数字化方法(即加以放大和A/D转换)才能与数字计算机相连接,使用极其不便,也增加了系统的成本。

Z-元件能以极其简单的电路结构直接输出数字信号,非常适合研制新型数字传感器[1],其中也包括力数字传感器。这种力数字传感器输出的数字信号(包括开关信号和脉冲频率信号),不需A/D转换,就可与计算机直接通讯,为传感器进一步智能化和网络化提供了方便。

我们在深入研究Z-元件工作机理的基础上,初步研制成功力敏Z-元件,但目前尚不成熟,欢迎试用与合作开发这一新器件,实现力检测与控制领域的技术创新。

2.力敏Z-元件的伏安特性

如前所述,力敏Z-元件也是一种其N区被重掺杂补偿的改性PN结。力敏Z-元件的半导体结构如图6(a)所示。按本企业标准电路符号如图6(b)所示,图中“+”号表示PN结P区,即在正偏使用时接电源正极。图6(c)为正向“L”型伏安特性,与其它Z-元件一样该特性也分成三个工作区:M1高阻区,M2负阻区,M3低阻区。描述这个特性有四个特征参数:Vth为阈值电压,Ith为阈值电流,Vf为导通电压,If为导通电流。

M1区动态电阻很大,M3区动态电阻很小(近于零),从M1区到M3区的转换时间很短(微秒级),Z-元件具有两个稳定的工作状态:“高阻态”和“低阻态”,工作的初始状态可按需要设定。若静态工作点设定在M1区,Z-元件处于稳定的高阻状态,作为开关元件在电路中相当于“阻断”。若静态工作点设定在M3区,Z-元件将处于稳定的低阻状态,作为开关元件在电路中相当于“导通”。在正向伏安特性上P点是一个特别值得关注的点,特称为阀值点,其坐标为:P(Vth,Ith)。P点对外部力作用十分敏感,其灵敏度要比伏安特性上其它诸点要高许多。利用这一性质,可通过力作用,促成工作状态的一次性转换或周而复始地转换,就可分别输出开关信号或脉冲频率信号。

3.力敏Z-元件的电路结构

力敏Z-元件的应用电路十分简单,利用其“L”型伏安特性,在力载荷的作用下,很容易获得开关量输出或脉冲频率输出。力敏Z-元件的基本应用电路如图7所示。其中,图7(a)为开关量输出,图7(b)为脉冲频率输出。其输出波形分别如图8和图9所示。

在图7所示的应用电路中,电路的结构特征是:力敏Z-元件与负载电阻相串联,负载电阻RL用于限制工作电流,并取出输出信号。Z-元件应用开发的基本工作原理就在于通过半导体结构内部导电管道的力调变效应,使工作电流发生变化,从而改变Z-元件与负载电阻RL之间的压降分配,获得不同波形的输出信号。

(1)力敏Z-元件的开关量输出

在图7(a)所示的电路中,通过E和RL设定工作点Q,如图6﹙c﹚所示。若工作点选择在M1区时,力敏Z-元件处于小电流的高阻工作状态,输出电压为低电平。由于力敏Z-元件的阈值电压Vth对力载荷F具有很高的灵敏度,当力载荷F增加时,阈值点P向左推移,使Vth减小,当力载荷F增加到某一阈值Fth时,力敏Z-元件上的电压VZ恰好满足状态转换条件[1],即VZ=Vth,力敏Z-元件将从M1区跳变到M3区,处于大电流的低阻工作状态,输出电压为高电平。在RL上可得到从低电平到高电平的上跳变开关量输出,如图8(a)所示。如果在图7(a)所示电路中,把力敏Z-元件与负载电阻RL互换位置,则可得到由高电平到低电平的下跳变开关量输出,如图8(b)所示。无论是上跳变或下跳变开关量输出,VO的跳变幅值均可达到电源电压E的40~50%。

开关量输出的力敏Z-元件可用作力敏开关、力报警器或力控制器。

(2)力敏Z-元件的脉冲频率输出

由于力敏Z-元件的伏安特性随外部激励改变而改变,只要满足状态转换条件,就可实现力敏Z-元件工作状态的转换。如果满足状态转换条件,实现Z-元件工作状态的一次性转换,负载电阻RL上可输出开关信号;同理,如果满足状态转换条件,设法实现力敏Z-元件工作状态的周期性转换,则负载电阻RL上就可输出脉冲频率信号。

脉冲频率输出电路如图7(b)所示。在图7(b)电路中,力敏Z-元件与电容器C并联。由于力敏Z-元件具有负阻效应,且有两个工作状态,当并联以电容后,通过RC充放电作用,构成RC振荡回路,因此在输出端可得到与力载荷成比例变化的脉冲频率信号输出。其输出波形如图9(a)所示。输出频率的大小与E、RL、C取值有关,也与力敏Z-元件的阈值电压Vth值有关。当E、RL、C参数确定后,输出频率仅与Vth有关,而Vth对力作用很敏感,可得到较高的力灵敏度。初步测试结果表明:电容器C选择范围在0.01~1.0mF,负载电阻在5~20kW,较为合适。

同理,若把力敏Z-元件(连同辅助电容器C)与负载电阻RL互换位置,其输出频率仍与力载荷成比例,波形虽为锯齿波,但与图9﹙a﹚完全不同,如图9(b)所示。

4.力敏Z-元件的机械结构与施力方式

高阻范文篇8

接地系统是影响用电系统稳定、安全、可靠运行的一个重要环节,为了用电设备系统稳定的工作,须有一个接地参考点。至于如何接地,采用何种接地方式较好、较正确,人们看法不一,国内有关规程也不够明确和统一,国外用电设备厂商对接地系统的要求也不尽相同,但对用电设备必须可靠接地的认识是统一的。接地系统基本分为两种形式,一是有按需要接地系统的功能而单独设计的各自的专用接地系统,二是将各种功能的接地系统联在一起组成一个公用接地系统。

2.独立接地系统

将系统的直流地(逻辑地)与交流工作地,安全保护地和防雷地、供电系统地相互独立。为了防止雷击时反击到其它接地系统,还规定了它们相互之间应保持的安全距离。采用独立接地方式的目的,是为了保证相互不干扰,当出现雷电流时,仅经防雷接地点流入大地,使之与其它部分隔离起来。有关规程提到若把直流地(逻辑地)防雷地分离时,其间距离应相距15米左右。在不受环境条件限制的情况下,采用专用接地系统也是可取的方案,因这可避免地线之间相互干扰和反击。

3.共用接地系统

建筑物为钢筋混凝土结构时,钢筋主筋实际上已成为雷电流的下引线,在这种情况下要和防雷、安全、工作三类接地系统分开,实际上遇到较大困难,不同接地之间保持安全距离很难满足,接地线之间还会存在电位差,易引起放电,损害设备和危及人身安全。考虑到独立专用接地系统存在实际困难,现在已趋向于采用防雷、安全、工作三种接地连接在一起的接地方式,称为共用接地系统。在IEC标准和lTU相关的标准中均不提单独接地,国标也倾向推荐共用接地系统。共用接地系统容易均衡建筑物内各部分的电位,降低接触电压和跨步电压,排除在不同金属部件之间产生闪络的可能,接地电阻更小。

在共用接地系统基础上,可以进一步把整个机房设计成一个等电位准“法拉第笼”,图1为建筑物“笼式”结构示意图,建筑物防雷、电力、安全和计算机共用一个接地网,接地下引线利用建筑物主钢筋,钢筋自身上、下连接点应采用搭焊接,上端与楼顶避雷装置、下端与接地网,中间与各层均压网、环形接地母线焊接成电气上连通的“笼式”接地系统。接地电阻一般应小于1Ω,为减少外界电磁干扰,建筑物钢筋、金属构架均应相互焊接形成等电位准“法拉第笼”。这种结构系统,不同层接地母线之间可能还有电位差,应用时仍要注意。

2.1共用接地系统构成

2.1.1接地体(又称接地电极或地网)。接地体是使系统各地线电流汇入大地扩散和均衡电位而设置的与土壤物理结合形成电气接触的金属部件。

联合接地方式的接地体由两部分组成:即利用建筑物基础部分混凝土内的钢筋和围绕建筑物四周敷设的环形接地电极(由垂直和水平电极组成)相互焊接组成的一个整体的接地体。

2.1.2接地引入线。接地体与接地总汇集线之间相连的连接线称为接地引入线。接地引入线应有足够的导流面积,并作防腐蚀处理,以提高使用寿命。

2.1.3接地汇集线。接地汇集线是指在建筑物内分布设置可与各系统接地线相连的一组接地干线的总称。

根据等电位原则,提高接地有效性和减少地线上杂散电流回窜,接地汇集线分为垂直接地总汇集线和水平接地分汇集线两部分。

①垂直接地总汇集线:垂直贯穿于建筑物各层楼的接地用主干线。其一端与接地引入线连通,另一端与建筑物各层钢筋和各层水平接地分汇集线分层相连,形成辐射状结构。垂直接地总汇集线宜安装在建筑物中央部位,也可在建筑物底层安装环形汇集线,并垂直引到各机房的水平接地分汇集线上。

②水平接地分汇集线:分层设置,各通信设备的接地线就近引入到水平接地分汇集线上。

2.1.4接地线。系统内各类需要接地的设备与水平接地分汇集线之间的连线。其截面积应根据可能通过的最大电流确定,并不准使用裸导线布放。

2.2地线反击电压

采用共用接地之后出现的新问题,是出现地线反击电压现象。地线反击是由于雷电流流过低网,使正常情况下处于低电位的接地导体的电位升高,经地线反击到电子设备,使设备出现过电压。地线反击也属传导性干扰,对微电子设备也会造成很大的危害,而这也是造成设备损坏的重要因素,但这一点往往被人们忽视。地线反击和接地系统有着密切关系,接地冲击电阻越小,反击电压也就越低给设备造成的危害也就越小。

雷击大楼后,接地系统的电位升高,使所有与它连接的设备外壳带上了高压。而计算机设备又是经过信号线或电源线引至远端的零电位点。于是升高的外壳电位便在设备的平衡电位纵向绝缘上出现高压,并可能导致绝缘被击穿。为此大楼进线应用金属护套电缆或电力电缆加强绝缘,隔离或分流限幅等方法,均可收到防护的效果。加强绝缘,就是提高界面处直接承受冲击电压的介质的绝缘水平,使其不被过电压击穿。隔离,如在电源进线上,加1∶1的隔离变压器,使用电设备与供电电源没有电气上的连接,相当于将反击电压转移到隔离变压器的初线和机壳之间,从而保护了设备的安全,见图2.信号线侧亦可采用类似措施。分流限幅,其实就是利用纵向保护,当大楼提高了电位之后,启动线路防雷器的纵向保护元件,把冲击电流引到线路上。因地电位的提高,实际上相当于从线路进入极性相反的冲击波,线路上防止雷电冲击波侵入的纵、横向保护,在这种情况也起保护作用。因此不论采用何种接地方式,系统和外界的连线总是应该安装防止纵、横向瞬间过电压的保护设备。采用共用接地后,有可能因设计或施工不合理,在设备之间产生干扰,应该引起注意,并应采取相应措施予于消除。

处于不同接地点的电子设备(不在一幢大楼内的电子设备,很可能就不是一个接地点)。彼此互连时应采取隔离或其他防反击措施。

雷击建筑物或附近地区雷电放电所产生的瞬变电磁场,会在建筑物内信号线路接口处产生瞬态过电压,此过电压大小与布线走向等有关,因此合理布线、屏蔽及接地也是很重要的。

4.接地电阻的组成及降阻

接地在防雷工程中的作用举足轻重,一个良好的接地系统不仅会使雷电流泄放的速度加快,缩短雷电压在建筑各系统停留的时间,而且有利于降低雷电流入地时地电位瞬间升高的幅度。

4.1接地电阻构成

接地装置的接地电阻由以下几部分构成:

4.1.1接地引线电阻,是指由接地体至需接地设备接地母线间引线本身的电阻,其阻值与引线的几何尺寸和材质有关。

4.1.2接地体(水平接地体、垂直接地体)本身的电阻,其阻值与接地体的材质和几何尺寸有关。

4.1.3接地体表面与土壤的接触电阻,其阻值与土壤的性质、颗粒、含水量及土壤与接地体的接触面和接触的紧密程度有关。

4.1.4散流电阻是从接地体开始向远处(20米)扩散电流所经过的路径土壤电阻,决定散流电阻的主要因素是土壤的含水量。

接地电阻虽由四部分构成,但前两部分所占接地电阻的比例较小,起决定作用的是接触电阻和散流电阻。故降低接地电阻应从这两部分开展工作,从接地体的最佳埋设深度、不等长接地体技术及化学降阻剂等方面来讨论降低接触电阻和散流电阻的方法。

垂直接地体的最佳埋设深度,是指能使散流电阻尽可能小,而又易达到的埋设深度。决定垂直接地体最佳深度,应考虑到三维地网的因素,所谓三维地网是指接地体的埋设深度与接地网的等值半径处于同一数量级的接地网(即埋设深度与等值半径之比大于1/10)。在可能的范围内埋设深度应尽可能取最大值,但并不是埋设深度越深越好,如果把垂直接地体近似为半球接地体,其电阻为:

R=ρ/2πr=ρ/2πL

式中、ρ—土壤电阻率;

L—垂直接地体的埋设深度。

从式中可见,R与L成反比,为使R减小,L越大越好,但对上式偏微分:

aR/aL=-ρ/2πL2

可以得出,随着L的增大,降阻率aR/aL与L2成反比下降,就是当增大L到一定程度后,基本上呈饱和状态,降阻率已趋近于零。垂直接地体的最佳埋设深度不是固定的,在设计中应按接地网的等值半径,区域内的地质情况来确定,一般取3.5~1.5米之间为宜。

4.2不等长接地体技术

由于在接地网中各单一接地体埋设的间距,一般仅等于各单一接地体长度的两倍左右,此时电流流入各单一接地体时,受到相互的制约而阻止电流的流散,即等于增加了各单一接地体散流电阻,这种影响电流流散的现象,成为屏蔽作用。如图3所示:由于屏蔽作用,接地体的散流电阻并不等于各单一接地体散流电阻的并联值,此时,接地体组的散流电阻为:

Ra=RL/nη

式中RL—单一接地体的散流电阻;

n—接地体组并联单一接地体的根数;

η—接地体的利用系数,它与接地体的形状和位置有关。

从理论上说,距离接地体20米处为电气上的“地”,即两接地体间距大于40米时,可以认为接地体的利用系数η为1.在接地网的接地体的布置上,是很难作到两个单一接地体相距40米,为解决在设计实践与理论分析中的矛盾,采取不等长接地体技术,能取得良好的效果。不等长接地体技术,即为各垂直接地体的长度各不相等,在接地体的布置上,采取垂直接地体布置为两长一短或一长两短,以使接地体组间的屏蔽作用减小到最小程度。不等长接地体技术,从理论上到实践中应用,都较好地解决了多个单一接地体间的屏蔽作用问题,以提高各单一接地体的利用系数,降低接地体组的散流电阻。

4.3化学降阻剂的应用

化学降阻剂的降阻机理是,在液态下从接地体向外侧土壤渗出,若干分钟固化后起着增大散流电极接触面积的作用,因降阻剂本身是一种良好的导体,将它使用于接地体和土壤之间,一方面能够与金属接地体紧密接触,减小接地体与土壤的接触电阻,形成足够大的电流流通截面。另一方面,它能向周围的土壤渗透,降低土壤的电阻率,在接地体周围形成一个变化的低电阻区域,从而显著扩大接地体的等效直径和有效长度,对降低接触电阻及散流电阻有着明显效果。如JZG—02型长效防腐降阻剂的使用寿命可达20年以上,在其寿命周期内性能稳定,不需要维护保养,仍能具有良好的电解质性能和吸水性,保持其良好的物理化学机理。

接地的设计,要根据UPS装置的技术要求和所处的地区的地理、地质条件,采取不同的措施,以最高的性能价格比来设计其接地,在设计中应采用新技术和新材料。因“接地工程学”是一门多学科的边缘学科,它涉及到地质、电磁场理论、电气测量、应用化学、钻探技术、施工技术等多门学科,故仍需要在今后的工作中去研究,在实践中不断的探索,以确保电源装置的安全可靠运行。

5.接地电阻测量方法

影响接地电阻的因素很多:接地极的大小(长度、粗细)、形状、数量、埋设深度、周围地理环境(如平地、沟渠、坡地是不同的)、土壤湿度、质地等等。为了保证设备的良好接地,利用仪表对接地电阻进行测量是必不可少的,接地电阻的测量方法可分为:电压电流表法;比率计法;电桥法。按具体测量仪器及布极数可分为:手摇式地阻表法;钳形地阻表法;电压电流表法;三极法;四极法。在此主要介绍电压电流表法。

5.1电压电流表法

电压电流表测量接地电阻法见图4.图中的电流辅助极是用来与被测接地电极构成电流回路,电压辅助极是用来测得被测接地电位。采用该方法保证测量准确度的关键在于电流辅助极和电压辅助极的位置要选择适合。如在辅助电流极以前,电压表已有读数,说明存在外来干扰。

按DL475-92《接地装置工频物性参数的测量导则》规定,当大型接地装置如110kV以上变电所接地网,或地网对角线D≥60m需要采用大电流测量,施加电流极上的工频电流应≥30A,以排除干扰减少误差。

5.1.1电压电流三极直线法。电压电流三极直线法是指电流极和电压极沿直线布置,三极是:被测接地体、测量用电压极和电流极,其原理接线如图5所示。一般d13=(4~5)D,d12=(0.5~0.6)d13,D为被测接地装置最大对角线长度,点2可以认为是处于的零点位。根据测量导则(DL475-92),如d13取(4~5)D有困难,而接地装置周围的土壤电阻率又比较均匀时,d13可以取2D,d12取D值。测量步骤如下:

①按图4接线。

②记录初始的电压值V0.

③通电后,记录电流值I1、电压值V1.

④将电压极沿接地体和电流极连接方向前后移动3次,每次移动的距离为d13的5%,记录每次移动后的电流和电压数值,取3次记录的电压和电流值的算术平均值,作为计算接地体的接地电阻的电压和电流值。

5.1.2电压电流三极三角形法。电极如图6所示布置,一般取d13=d12≥2D,夹角θ≈30度(或d23=1/2d12),测量步骤与电压电流三极直线法相同。

5.2手摇式地阻表测量原理

手摇式地阻表是一种较为传统的测量仪表,它的基本原理是采用三点式电压落差法,其测量手段是在被测地线接地极(暂称为X)一侧地上打入两根辅助测试极,要求这两根测试极位于被测地极的同一侧,三者基本在一条直线上,距被测地极较近的一根辅助测试极(称为Y)距离被测地极20米左右,距被测地极较远的一根辅助测试极(称为Z)距离被测地极40米左右。测试时,按要求的转速转动摇把,测试仪通过内部磁电机产生电能,在被测地极X和较远的辅助测试极(称为Z)之间“灌入”电流,此时在被测地极X和辅助地极Y之间可获得一电压,仪表通过测量该电流和电压值,即可计算出被测接地极的地阻。

5.2.1钳形地阻表测量原理。钳形地阻表是一种新颖的测量工具,它方便、快捷,外形酷似钳形电流表,测试时不需辅助测试极,只需往被测地线上一夹,几秒钟即可获得测量结果,极大地方便了地阻测量工作。钳形地阻表还有一个很大的优点是可以对在用设备的地阻进行在线测量,而不需切断设备电源或断开地线。

虽然钳形地阻表测试时使用一定频率的信号以排除干扰,但在被测线缆上有很大电流存在的情况下,测量也会受到干扰,导致结果不准确。所以,按照要求,在使用时应先测线缆上的电流,只有在电流不是非常大时才可进一步测量地阻。有些仪表在测量地阻时自动进行噪声干扰检测,当干扰太大以致测量不能进行时会给出提示。

5.3地阻表测量注意事项

从上面的介绍可以看出,钳形地阻表和手摇式地阻表的测量原理完全不同。手摇式地阻表在使用时,应将接地极与设备断开,以避免设备自身接地体影响测量的准确性,手摇式地阻表可获得较高的精度,而不管是单点接地和多点接地系统;对于钳形地阻表,其最理想的应用是用在分布式多点接地系统中,此时应对接地系统的所用接地极依次进行测量,并记录下测量结果,然后进行对比,对测量结果明显大于其它各点的接地桩,要着重检查,必要时将该地极与设备断开后用手摇式地阻表进行复测,以暴露出不良的接地极。

在单点接地系统中应慎用钳形地阻表,从它的工作原理中可以看出:钳形地阻表测出的电阻值是回路中的总电阻,只有Rx>>1/(1/R1+1/R2+.。。+1/Rn)时,该阻值才近似于我们要测的接地极地阻,而这个条件,在很多情况下,尤其是在单点接地系统中是不满足的。对于已埋设好而尚未与设备连接的开路接地极,其地阻根本不能用该仪表进行测量。钳形地阻表在使用中应注意以下几点:

①注意是否单点接地,被测地线是否已与设备连接,有无可靠的接地回路。开路接地极,不能测量;接地回路不可靠,测量结果不准确(偏高)。

②注意测量位置,选取合适的测量点;选取的测量点不同,测得的结果是不同的,测量有时会遇到无处可夹的情况,在条件允许的情况下,可暂断开原地线连线,临时接入一段可夹持的跳线进行测量。

③注意“噪声”干扰;地线上较大的回路电流对测量会造成干扰,导致测量结果不准确,甚至使测试不能进行,很多仪表在这种情况下会显示出“Noies”或类似符号。

高阻范文篇9

对于材料的选择很重要因为是接地工作的主体。在接地工程中各种金属材料被广泛使用如扁钢、接地体、降阻剂和离子接地系统等。接地体有金属接地体(角钢、铜棒和铜板),这类接地体寿命较短,接地电阻上升快,地网改造频繁,维护费用比较高,但是从传统金属接地极(体)中派生出类特殊结构的接地体,使用效果比较好,一般称为离子或中空接地系统;金属材料如扁钢,也常用铜材替代,主要用于接地环的建设,大多接地工程都选用;另外就是各方面比较认可的非金属接地体,其使用较方便,几乎没有寿命的约束。降阻剂分为物理降阻剂和化学将阻剂,现在接地工程普遍能接受的是物理降阻剂(也称为长效型降阻剂)。物理降阻剂有超过二十年的工程运用历史,经过不断的实践和改进,现在无论是性能还是使用施工工艺都已经是相当成熟的产品了。物理降阻剂属于材料学中的不定性复合材料,根据使用环境形成不同形状的包裹体,可以和接地环或接地体同时运用,包裹在接地环和接地体周围,达到降低接触电阻的作用。因为降阻剂有可扩散成分,所以能改善周边土壤的导电属性。化学降阻剂自从发现有污染水源事故和腐蚀地网的缺陷以后基本不在使用了。现在的较先进降阻剂都有一定的防腐能力,可以加长地网的使用寿命,其防腐原理一般来说有几种:牺牲阳极保护(电化学防护),致密覆盖金属隔绝空气,加入改善界面腐蚀电位的外加剂成分等方法。

2接地系统基本要求

有效接地系统和低电阻接地系统中,变电站电气装置保护接地的接地电阻应符合下列要求:一般情况下,接地装置的接地电阻应符合:R≤2000/I式中:R为考虑到季节变化的最大接地电阻,Q;I为流经接地装置的入地短路电流,A。在式中,采用在接地网内外短路时,经接地装置流入地中的最大短路电流对称分量的最大值。该电流应按5-10年发展后的系统最大运行方式确定,并应考虑系统中各接地中性点间的短路电流分配,以及避雷线中分走的接地短路电流等因素。

3接地装置的施工

3.1设备接地要求

3.1.1接地线敷设。变电站电气中须专门敷设接地线接地的部位有:电机机座或外壳、中性点柜的金属底座和外壳、出线柜、封闭母线的外壳;变压器、发电机,高压并联电抗器中性点所接的消弧线圈、接地电抗器、电阻器或者变压器等的接地端子;110kV及以上的钢筋混凝土构件支架上电气设备的金属外壳;箱式变压器的金属箱体;直接接地的变压器中性点;GIS的接地端子;避雷针、避雷器、避雷线等的接地端子。

高阻范文篇10

1、道路雪阻的成因

造成道路雪阻的主体是雪,形成雪阻的主要原是风。以桦南县冬季的降雪量为例:根据多年的气象资料,一次性降雪最大的厚度为15cm左右,一般地段是不能造成雪阻的。风,俗语说:“有雪就有风”,风雪交加在冬天是随处可见的现象。桦南县冬天火风频率大,尤其西北风偏多。测验表明,风速起动雪粒随气温变化有所不同。严冬的霄粒松散,j级风即可飘动,晚秋、早春结有硬壳的雪则要4—5级风才能刮走。一般的雩阻就是霄流刮到路面并逐渐积累所致。可见风是造成雪阻的主要素。但我们还发现,同样的风,同样的雪,有的路段非常安全,而有的路段接连受害。这里除了与地形、道路走向、建筑物、车辆流量大小有关外,还有一个最值得我们注意的素是树。近年来,城乡道路的绿化,搞的很有起色,这对美化环境生活无疑是有益的。但绿化的方式太单,大多在道路两侧l~5行的平行林带。这种配置,有些地段能发挥阻风固雪作用,但很多地段正好把雪流阊阻存道路中央,造成了绿化好,雪阻大的反常效果。例如佳丹公路五道岗~土龙,桦南~公心集地段,凡是路旁绿化树木整齐的地方,往往就是雪阻最严重之处。反之,无树或少树的地方都比较安全。究竟是林带造成_r雪阻,还是雪阻能被林带所制服,这是一个需要林业r作者要详细探索的问题。

2、道路雪阻的根本防治措施

所谓雪阻的防治措施,按照方法的不同,分为疏导法和固阻法;按措施的不同,分为工程措施和生物措施。程措施是在生物措施未发挥效益前的一种应急措施。如:挡雪墙、挡雪棚等等,见效快,当年施丁当年受益,但需要年年设置,耗费资财。而生物措施是唯一可供我们广泛采用的治本之法。从长远考虑,切实可行。所谓生物措施,实际』二就是一种乔灌结合的林带设置方法。就是利用林带结合地形、风向不同进行合理配置来治理雪阻。

3、关于护路林带的几种配置方式

护路林带的配置方式如果不当,就会把雪流阻在路基之上,造成严重的交通雪阻。由此推想,要是把林带设计到道路的迎风面,那么正好把雪阻滞在道外就是在配置护路林带?时,阻滞雪流当作第一要素加以考虑。

(1劂’于路面高于地面80cm以上的地段,无论其走向是顺风、迎风,一般都不易路面积雪。凶为路基本身就是一堵挡雪墙。这些地段可按常规进行绿化。

(2)对于路面稍高或者相平于地面的地段,在迎风面可刷疏透结构林带进行单行配置,株距4~6m,并注意每年秋季割净树木下部枝条、杂草等。饺其基本失去防风阻雪作用。

(3对于路面低于地面和低哇地段以及丘陵,漫岗的凹部,则应以迎风向设计乔灌草结合的紧密结构林荫好,