刚架范文10篇

时间:2023-03-17 01:20:03

刚架范文篇1

1防火设计

现代工业厂房中,很多是大空间、大跨度、通透的。为了有效的把火灾控制在较小范围内,《建筑设计防火规范》要求在建筑物内划分防火分区,并明文规定了各级防火分区的最大允许面积。钢结构厂房的承重构件一般为钢柱、钢梁,建筑外表面覆以彩色压型钢板。根据《建筑设计防火规范》的规定,其柱、梁的耐火时间均为0.25~0.5小时建筑物的耐火等级仅为四级(耐火等级较低)。以设计中经常遇到的煤预均化堆场为例,其生产类别为丙类,规范要求的最低耐火等级为二级,这样,轻钢结构厂房就达不到要求。解决的方法,可在柱、梁表面喷涂防火隔热涂料,使其耐火时间可达1.52.5小时,这样,建筑物的耐火等级可按二级考虑,满足规范要求。但应注意,在结构计算时考虑防火涂层的重量。

2设计有关规则

1)刚架设计首先是材料的选择,目前比较常用的钢材是Q235钢和Q345钢。当强度起控制作用时,可选择Q345钢,刚度控制时,宜使用Q235钢。

2)刚架一般按弹性理论设计,而等截面的实腹式刚架亦可采用塑性设计。但对结构进行塑性设计的内力分析时,采用简单塑性理论,应同时满足下列三个基本条件,并遵循《钢结构设计规范)(GB50017-2003)的有关规定。①平衡条件:任何隔离体上的内力和外力应相互平衡,按不同的荷载组合求出内力,再取其中最大者进行设计;②全塑性弯矩条件:以截面的全塑性弯矩(Mp=Wp•fp)作为极限弯矩,在等截面构件内,沿构件全长所有截面内的弯矩M<Mp;③形成机构条件:使结构整体或一部分形成机构。

3)设计人员在进行刚架构件截面试算时,当预估的截面不满足,需加大截面时,应该分情况区别对待。①强度不满足:工字型截面受弯构件中.腹板以受剪为主,翼缘以受弯为主。若强度不满足,通常采用加大组成截面的板件厚度或采用加大腹板的高度两种方法。其中若仅采用加大组成截面的板件厚度的方法,抗弯能力不满足可加大翼缘厚度,抗剪能力不满足可加大腹板厚度。如采用增大腹板高度的方法可使翼缘的抗弯能力发挥更为充分。若在增大腹板高度的同时厚度也相应增加。则腹板耗钢量过多,不经济。因而不过多增大腹板厚度而充分利用板件屈曲后的强度是比较合理的。需要提出的一点是,当工字型截面构件腹板受弯及受压板幅利用屈曲后强度时,应按有效宽度计算截面特性;②变形超限:通常不应加大板件厚度,而应考虑加大截面的高度,否则,会很不经济的。

3刚架梁、柱连接节点形式比较

刚架梁柱连接节点应具有足够的强度和刚度.以及适当的变形能力,同时要求构造简单,加工、制作、安装方便。

3.1刚架节点的形式及特点刚架梁柱不加腋的矩形节点。转角处应力集中高,刚度小,转动能力大,构造简单:刚架梁柱加腋的矩形节点,加腋高度一般不超过梁高的1/2’冈0度较大,转动能力小,施工并不麻烦,但不太美观。

3.2梁柱刚性连接方式及特点端板平放,对边柱来说可减少连接处的剪力,受力情况有利,连接刚度较好,构造简单、易于施工,适用于厂房高跨比较小,竖向荷载起控制作用时:对中柱来说受力合理,构造简单,节省螺栓.施工方便。端板竖放,连接处剪力较大、使用螺栓最多,连接刚度较差,施工亦不方便;对中柱来说构造复杂,所需螺栓多,施工困难。端板斜放,对边柱来说适用于节点弯矩较大时,连接刚度最好,构造复杂。施工不方便。需要注意的是,由于多种因素的影响,各种端板连接仍不能达到理想的刚性连接。因此当假设按刚接计算时,横梁的挠度和柱顶水平位移宜乘以较大系数,建议取1.15。另外,平齐式端板连接刚度较小,应限制使用,一般采用外伸式端板。为改善外伸式端板受拉螺栓的受力情况,端板外伸部分宜予以加筋。当条件许可时,在柱节点域内宜设置斜加劲筋,端板连接时,螺栓布置宜对称、较均匀.在翼缘附近的螺栓不宜太密.中部亦不宜过疏。

4屋面板及檩条设计

现在不少施工图纸檩条通常是等间距布置,檩条对屋面板是等跨支座。例如跨度15m以上的刚架多为双坡,每坡屋面板在7.5m以上,根据檩条布置,屋面板多按5跨等跨连续梁设计,其结果是屋面板端跨的跨中弯矩比中跨的跨中弯矩大很多,按端跨跨中弯矩选用屋面板,则中跨屋面板不能充分发挥作用。对檩条的荷载又以屋面板第二支座反力为依据.第二支座反力是5跨连续板中反力最大的支座.以此反力设计檩条,此时只有屋面板第二支座的檩条能充分发挥作用,中跨支座檩条承载力富裕很多.不能充分发挥作用。为此建议檩条采用不等跨布置,檩条的布置在屋面板端跨处间距减少而中跨处间距放大,使屋面板的端跨弯矩和中间跨弯矩比较接近,或由于檩条不等跨布置使屋面板支座反力比较接近,这样能充分发挥屋面系统的材料性能,降低造价。檩条设计常出现的一个问题是忽略计算檩条在风吸力作用下的稳定.导致檩条在风吸力作用下很容易失稳破坏,设计时应注意验算檩条截面在风吸力作用下是否满足要求。檩条与刚架斜梁上翼缘连接处需注意的是不应设单板檩托。而应增加加劲肋檩托的作用除固定檩条,防止檩条倾覆外,尚要承受檩条因荷载偏心产生的扭矩。因此檩托应有必要的刚度和承载力,以便对檩条端部提供扭转约束。

刚架范文篇2

某刚架拱桥位于福建省一县进出城口,属国道上桥梁。桥全长59.6m,桥宽21m。上部结构:净跨3.0m钢筋混凝土矮肋板梁+净跨50m钢筋混凝土刚架拱+净跨3.0m钢筋混凝土矮肋板梁,主跨横向布设7片刚架拱片,拱片间距3.2m。桥面铺装连续,两侧桥头各一处简易伸缩缝。桥面系采用矢跨比为1/16、厚6cm的微弯板及现浇混凝土填平层。桥面宽度为3.35m(人行道)+14.3m(车行道)+3.35m(人行道)。下部结构采用钢筋混凝土组合式桥台。为配合道路改造工程,该桥将在桥面上直接加铺10cm沥青路面,同时业主要求该桥改造后能够满足公路-Ⅱ级、人群3.5kN/m2的荷载要求。但是该桥无设计和竣工资料,需要对桥梁进行整体进行详细的现状调查、分析后进行相应的处理。

2桥梁现状调查

2.1主要病害

1)桥面铺装存在大量横向裂缝、纵向裂缝;伸缩缝不平顺;人行道板、栏杆、路缘石多处破损缺失;桥面排水不畅、积水;桥头沉降造成搭板凹陷。

2)跨中拱顶附近存在较多裂缝,大小节点附近弦杆段存在个别裂缝,所检裂缝最大宽度测读值为0.25mm,未超过规范限值;拱肋有露筋锈蚀现象;部分拱肋局部存在孔洞、蜂窝麻面等表观病害。

3)微弯板存在开裂现象,主要集中于跨中附近,所检裂缝最大宽度测读值为0.73mm,超过规范限值;微弯板存在大量露筋锈蚀、裂缝、孔洞病害,严重的微弯板混凝土碎裂,导致桥面塌陷,详照片。

4)横系梁存在较多裂缝,车行道下部横系梁尤为严重,所检裂缝最大宽度测读值为0.72mm,超过规范限值。并有露筋锈蚀、混凝土表面蜂窝麻面、剥落现象。

5)下部结构盖梁受水侵蚀严重,有较多竖向裂缝,所检裂缝最大宽度测读值为0.35mm,超过规范限值。

2.2荷载试验

1)静载试验静载试验按公路-Ⅱ级(考虑10cm沥青铺装层)荷载等级进行,静载试验荷载效率为0.86~1.01;在各工况荷载作用下,控制截面应变校验系数在0.14~0.94之间,满足校验系数小于1.00的要求;所测测点的最大相对残余应变小于残余应变限值要求(20%);在各工况荷载作用下,各控制截面挠度校验系数在0.39~0.94之间,满足校验系数小于1.00的要求;所测测点中的主要测点相对残余变形基本满足的残余变形限值要求(限值20%)。

2)环境振动试验实测振动响应信号经试验模态分析,该桥竖向实测基频为5.00Hz,理论基频为3.07Hz,实测基频大于理论值,表明现状桥梁实际刚度较大。

3)桥梁承载力评定结果根据桥梁缺陷状况检测结果、材质状况与状态参数检测结果和荷载试验结果对桥梁承载能力进行核算,该桥承载能力不满足公路-Ⅱ级、人群3.5kN/m2(加铺10cm沥青铺装层)荷载等级的使用要求。

3结构计算分析

为了解桥梁结构提载后受力情况,本工程结构分析采用桥博3.0程序建立平面杆系模型分别对边拱肋和中拱肋进行计算。单片拱肋划分为70个单位,其中三角刚架区24个单位,桥面单元为46个单位,拱角采用完全固结,边支点采用竖向支撑,纵向滑动约束。

4病害原因分析

近几年该地区交通量急剧增加,该刚架拱桥经过长时间运营,构件混凝土的开裂呈普遍现象,裂缝的产生有着各种各样的原因,内部和外部不同原因的裂缝和不同类别的裂缝对结构的安全性和耐久性也有着不同的影响。

4.1微弯板

车轮荷载通过桥面铺装层作用于微弯板上,形成较为直接的受力构件,原设计的微弯板计算模型为将微弯板两端简化为弹性约束的变截面板进行承载力验算,该假定方法与实际受力状态相差甚大,且微弯板厚度仅设为60mm,因此大大降低了微弯板在实际工作中的可靠性。由于桥梁多年的使用,桥面铺装的破损,拱肋下挠、横向偏移等,均造成微弯板支座端偏位,严重者使得微弯板变成两端铰结的简支板,从而微弯板实际受力大大增加,超出设计范围,造成微弯板的破坏。本桥微弯板存在大量裂缝,且部分微弯板的塌陷,正是设计缺陷引起的。

4.2横向联系

刚架拱桥的结构内力分析是根据平面杆系理论进行的,基本采用弹性支撑连续梁的方法进行横向荷载分布分析,而后进行纵向桥梁内力分析。在实际工程应用中,往往很难模拟横向联系的实际受力状况,导致结构内力计算失真。弹性支撑连续梁法需要结构必须有足够的横向连接刚度,横向连接刚度是通过横系梁、桥面铺装层及微弯板进行连接,而这种连接通过多年刚架桥的使用可知,其刚度较弱。由于先天横向刚度的不足,桥梁使用一段时间后,横系梁逐渐出现开裂现象,横系梁的开裂弱化了横向刚度,出现更严重的裂缝,其裂缝基本形态为竖向贯通缝或斜向裂缝。同时在汽车荷载作用下出现振动现象,也使得横向连接减弱,导致刚度降低。同时微弯板的侧向水平推力作用也使得横系梁处于横向受拉,对横系梁产生不利作用。因此,由于刚架拱的先天不足,导致桥梁过早的出现不同程度的病害,病害又导致桥梁横向刚度降低,而刚度的降低加剧了构件的损伤、损坏,周而复始,造成桥梁使用年限大大缩短。

4.3拱肋

根据桥涵通用设计规范,进行恒载、汽车荷载、温度荷载等组合,经结构分析可知,拱顶、拱角最大抗力不满足内力需求;跨中、拱腿(与大节点连接处)、拱角、弦杆(与大节点连接处)等部分部位裂缝宽度大大超出规范的最大要求。同时,根据桥梁检测报告可知,拱肋混凝土质量表观差,表面粗糙、不平、局部蜂窝麻面;大小节点部位配筋不合理,缺乏必要的构造抗拉钢筋。因此,在桥梁使用过程在大小节点部位出现不规则裂缝,影响桥梁的结构承载力和耐久性。

5加固对策及验算

5.1加固对策

根据检测结果及上述病害分析,提出了主要处理措施,如下:

1)对拱肋跨中两侧各10m的范围内,拱肋下缘粘贴U型钢板,加配U型压条,粘贴钢板采用环氧树脂化学灌浆湿式外包钢法施工。

2)大、小节点受力复杂,两侧粘贴整体大钢板,在横系梁处断开,方便安装,粘贴整体钢板采用环氧树脂化学灌浆湿式外包钢法施工。

3)将拱腿全部和斜撑根部2.5m段外包混凝土加大截面;拱腿顶面、侧面增加混凝土厚度15cm;在拱脚2.5m段区域内,将拱腿和斜腿连成整体。在拱脚新增截面上加强抗弯受力钢筋,并将新增截面的连接钢筋植入原结构,以保证新增截面能与原结构共同受力。拱腿新增截面纵向钢筋与大节点钢板焊接连接,并将该部分混凝土过渡平顺。

4)对横系梁下表面粘贴钢板条加固,侧面上缘粘贴钢板,在拱肋处植入螺杆连接,增强横向刚度。

5)拱肋弦杆上缘出现较多裂缝,计算也发现该部分结构承载能力富余量较小甚至不足,为此采用在靠近弦杆上缘粘贴钢板条方法加固弦杆。

6)若配合整条路线改造,直接在桥面加铺10cm沥青混凝土,桥梁上将增加共250吨恒荷载,考虑原设计资料缺失,无法判定原基础承载力富裕度,应考虑尽量不增加旧桥恒载;同时,根据检测报告可以看出,微弯板及加劲肋存在较多裂缝,通过计算,原微弯板不满足荷载要求。因此,考虑采用将原桥面铺装层铣剖掉2cm的磨耗层,绑扎钢筋铺设8cm厚C40聚丙烯纤维混凝土铺装层,使得新增钢筋混凝土与原桥面板形成组合受力结构,共同承载受力;同时,对微弯板表观病害进行维修处理,采用压力注胶封闭裂缝、钢筋除锈、聚合物砂浆恢复保护层等措施。再者在桥梁铺装6cm沥青混凝土,桥两端与整体路线平滑过渡。既解决了桥面板承载不足的问题,同时又使得旧桥恒载增加不多。

7)对所有宽度大于0.15mm的裂缝进行灌浆处理,灌浆胶采用优质A级环氧灌缝胶。对所有宽度小于0.15mm的裂缝,无论缝宽大小,在进行裂缝的灌浆过程中一并封闭。

5.2加固验算

1)计算参数

验算按照JTGD60-2004要求进行,汽车荷载采用公路Ⅱ级荷载标准,人群荷载3.5kN/m2。桥面铺装二期恒载为原混凝土铺装层铣剖2cm磨耗层,加铺8cmC40钢筋混凝土铺装层,其上加铺6cm沥青混凝土铺装层。混凝土强度按检测报告实测结果,恒载按改造后使用需要计取。对拱肋、弦杆、及大小节点节点处粘贴钢板的单元将钢板等效为钢筋加入单元截面,等效计算考虑0.9的应力滞后效应。

2)拱肋挠度计算结果

挠度计算结果如所示,计算结果表明,加固措施对桥梁的刚度有大大改善。3)拱肋控制截面强度计算结果经验算现有的桥梁结构跨中强度基本能满足承载能力极限状态要求;拱腿大节点处、拱脚、斜腿脚及弦杆大节点处裂缝宽度不能满足正常使用极限状态要求。比较加固前后的计算结果,对桥梁的薄弱环节进行加强,提高了强度要求,减小裂缝宽度,增加了安全储备,达到了加固效果。边拱肋、中拱肋控制截面强度计算结果如所示;边拱肋、中拱肋控制截面裂缝计算结果如所示。路面加铺沥青混凝土提载后,经加固后桥梁拱肋各截面承载力、裂缝宽度要求等均能满足,并且有较大的富余度。

6结语

刚架范文篇3

关键词:轻型门式刚架结构设计计算

轻型门式刚架房屋结构在我国的应用大约始于20世纪80年代初期。近十多年来得到迅速的发展,目前国内每年有上千万平方米的轻钢建筑工程,主要用于轻型的厂房、仓库、体育馆、展览厅及活动房屋、加层建筑等。

单层轻型门式刚架结构是指以轻型焊接H形钢(等截面或变截面)、热轧H形钢(等截面)或冷弯薄壁型钢等构成的实腹式门式刚架或格构式门式刚架作为主要承重骨架,用冷弯薄壁型钢(槽形、Z形等)做檩条、墙梁;以压型金属板(压型钢板、压型铝板)做屋面、墙面;采用聚苯乙烯泡沫塑料、硬质聚氨酯泡沫塑料、岩棉、矿棉、玻璃棉等作为保温隔热材料并适当设置支撑的一种轻型房屋结构体系。

在目前的工程实践中,门式刚架的梁、柱多采用焊接H形变截面构件,单跨刚架的梁柱节点采用刚接,多跨者大多刚接和铰接并用;柱脚可与基础刚接或铰接;围护结构多采用压型钢板;保温隔热材料多采用玻璃棉。

1单层轻型门式刚架结构的特点和设计中的注意事项

1.1单层轻型门式刚架结构相对于钢筋混凝土结构具有以下特点:

(1)质量轻

围护结构采用压型金属板、玻璃棉及冷弯薄壁型钢等材料组成,屋面、墙面的质量都很轻。根据国内工程实例统计,单层轻型门式刚架房屋承重结构的用钢量一般为10~30kg/m2,在相同跨度和荷载情况下自重仅约为钢筋混凝土结构的1/20~1/30。由于结构质量轻,相应地基础可以做得较小,地基处理费用也较低。同时在相同地震烈度下结构的地震反应小。但当风荷载较大或房屋较高时,风荷载可能成为单层轻型门式刚架结构的控制荷载。

(2)工业化程度高,施工周期短

门式刚架结构的主要构件和配件多为工厂制作,质量易于保证,工地安装方便;除基础施工外,基本没有湿作业;构件之间的连接多采用高强度螺栓连接,安装迅速。

(3)综合经济效益高

门式刚架结构通常采用计算机辅助设计,设计周期短;原材料种类单一;构件采用先进自动化设备制造;运输方便等。所以门式刚架结构的工程周期短,资金回报快,投资效益相对较高。

(4)柱网布置比较灵活

传统钢筋混凝土结构形式由于受屋面板、墙板尺寸的限制,柱距多为6米,当采用12米柱距时,需设置托架及墙架柱。而门式刚架结构的围护体系采用金属压型板,所以柱网布置不受模数限制,柱距大小主要根据使用要求和用钢量最省的原则来确定。

1.2设计中的注意事项

(1)由于门式刚架结构构件的抗弯刚度、抗扭刚度较小,结构的整体刚度较弱,因此设计时应考虑运输和安装过程中要采取的必要措施,防止构件发生弯曲和扭转变形。

(2)要重视支撑体系和隅撑的布置,重视屋面板、墙面板与构件的连接构造,使其能参与结构的整体工作。

(3)组成构件的杆件较薄,设计中应考虑对制作、安装、运输的要求。

(4)设计中应充分考虑锈蚀对结构构件截面削弱的影响。

(5)门式刚架的梁柱多采用变截面杆件,梁柱腹板在设计时考虑利用屈曲后的强度,所以塑性设计不再适用。

(6)设计中对轻型化带来的后果必须注意和正确处理,比如风力可使轻型屋面的荷载反向等。

2结构形式和结构布置

2.1结构形式

门式刚架的结构形式按跨度可分为单跨、双跨和多跨,按屋面坡脊数可分为单脊单坡、单脊双坡、多脊多坡。屋面坡度宜取1/20~1/8。单脊双坡多跨刚架,用于无桥式吊车的房屋时,当刚架柱不是特别高且风荷载也不是很大时,依据“材料集中使用的原则”,中柱宜采用两端铰接的摇摆柱方案。门式刚架的柱脚多按铰接设计,当用于工业厂房且有桥式吊车时,宜将柱脚设计成刚接。门式刚架上可设置起重量不大于3t的悬挂吊车和起重量不大于20t的轻、中级工作制的单梁或双梁桥式吊车。

2.2结构布置

2.2.1刚架的建筑尺寸和布置。

门式刚架的跨度宜为9~36m,当柱宽度不等时,其外侧应对齐。高度应根据使用要求的室内净高确定,宜取4.5~9m。门式刚架的合理间距应综合考虑刚架跨度、荷载条件及使用要求等因素,一般宜取6m、7.5m、9m。纵向温度区段小于300m,横向温度区段小于150m(当有计算依据时,温度区段可适当放大)。

2.2.2檩条和墙梁的布置

檩条间距的确定应综合考虑天窗、通风屋脊、采光带、屋面材料、檩条规格等因素按计算确定,一般应等间距布置,但在屋脊处应沿屋脊两侧各布置一道,在天沟附近布置一道。侧墙墙梁的布置应考虑门窗、挑檐、雨蓬等构件的设置和围护材料的要求确定。

2.2.3支撑和刚性系杆的布置

(1)在每个温度区段或分期建设的区段中,应分别设置能独立构成空间稳定结构的支撑体系。

(2)在设置柱间支撑的开间,应同时设置屋盖横向支撑,以构成几何不变体系。

(3)端部支撑宜设在温度区段端部的第一或第二个开间。柱间支撑的间距应根据房屋纵向受力情况及安装条件确定,一般取30~45m,有吊车时不宜大于60m。

(4)当房屋高度较大时,柱间支撑应分层设置;当房屋宽度大于60m时,内柱列宜适当设置支撑。

(5)当端部支撑设在端部第二个开间时,在第一个开间的相应位置应设置刚性系杆。

(6)在刚架的转折处(边柱柱顶、屋脊及多跨刚架的中柱柱顶)应沿房屋全长设置刚性系杆。

(7)由支撑斜杆等组成的水平桁架,其直腹杆宜按刚性系杆考虑。

(8)刚性系杆可由檩条兼做,此时檩条应满足压弯构件的承载力和刚度要求,当不满足时可在刚架斜梁间设置钢管、H型钢或其他截面形式的杆件。

(9)当房屋内设有不小于5t的吊车时,柱间支撑宜用型钢;当房屋中不允许设置柱间支撑时,应设置纵向刚架。

3刚架设计

3.1荷载及荷载组合

3.1.1永久荷载

永久荷载包括结构构件的自重和悬挂在结构上的非结构构件的重力荷载,如屋面、檩条、支撑、吊顶、墙面构件和刚架自重等。

3.1.2可变荷载

可变荷载包括屋面活荷载(设计屋面板和檩条时应考虑施工和检修集中荷载,其标准值为1KN)、屋面雪荷载和积灰荷载、吊车荷载、地震作用、风荷载等。

3.1.3荷载组合

荷载组合一般应遵从《建筑结构荷载设计规范》GB50009-2002的规定,针对门式刚架的特点,《门式刚架轻型房屋钢结构技术规程》CECS102:98给出下列组合原则:

(1)屋面均布活荷载不与雪荷载同时考虑,应取两者中较大值。

(2)积灰荷载应与雪荷载或屋面均布活荷载中的较大值同时考虑。

(3)施工或检修集中荷载不与屋面材料或檩条自重以外的其他荷载同时考虑。

(4)多台吊车的组合应符合《建筑结构荷载设计规范》的规定。

(5)当需要考虑地震作用时,风荷载不与地震作用同时考虑。

3.2刚架内力和侧移计算

3.2.1内力计算

对于变截面门式刚架,应采用弹性分析方法确定各种内力,只有当刚架的梁柱全部为等截面时才允许采用塑性分析方法。变截面门式刚架的内力通常采用杆系单元的有限元法(直接刚度法)编制程序上机计算。地震作用的效应可采用底部剪力法分析确定。

根据不同荷载组合下的内力分析结果,找出控制截面的内力组合,控制截面的位置一般在柱底、柱顶、柱牛腿连接处及梁端、梁跨中等截面。控制截面的内力组合主要有:

(1)最大轴压力Nmax和同时出现的M及V的较大值。

(2)最大弯矩Mmax和同时出现的N及V的较大值。

(3)最小轴压力Nmin和相应的M及V,出现在永久荷载和风荷载共同作用下,当柱脚铰接时M=0。

3.2.2侧移计算

变截面门式刚架的柱顶侧移应采用弹性分析方法确定,计算时荷载取标准值,不考虑荷载分项系数。如果最后验算时刚架的侧移刚度不满足要求,需采用下列措施之一进行调整:放大柱或(和)梁的截面尺寸,改铰接柱脚为刚接柱脚;把多跨框架中的个别摇摆柱改为上端和梁刚接。

3.3刚架柱和梁的设计

(1)梁柱板件的宽厚比限值和腹板屈曲后的强度利用。(主要包括梁柱板件的宽厚比限值验算、腹板屈曲后强度利用验算、腹板的有效宽度验算等内容)

(2)刚架梁柱构件的强度验算。

(3)梁腹板加劲肋的配置。(梁腹板应在中柱连接处、较大固定集中荷载作用处和翼缘转折处设置横向加劲肋)

(4)变截面柱在刚架平面内的计算长度确定。

(5)变截面柱在刚架平面内的整体稳定计算。

(6)变截面柱在刚架平面外的整体稳定计算。

(7)斜梁和隅撑的强度和稳定性计算。

(8)节点设计。(包括斜梁与柱的连接及斜梁拼接、柱脚设计、牛腿设计、摇摆柱与斜梁的连接构造等内容)

4辅属结构构件设计

4.1压型钢板设计

(1)压型钢板材料的选择可根据建筑功能、使用条件、使用年限和结构形式等因素考虑,钢板基板的材料有Q215钢和Q235钢,工程中多用Q235-A钢。

(2)压型钢板的截面形式较多,根据波高的不同,一般分为低波板、中波板和高波板。波高越高,截面的抗弯刚度就越大,承受的荷载也就越大。

(3)压型钢板的强度和挠度可取单槽口的有效截面按受弯构件计算。计算内容包括压型钢板腹板的剪应力计算、支座处腹板的局部受压承载力计算、挠度限值验算等。

(4)压型钢板尚应满足其他相关构造规定。

4.2檩条设计

(1)檩条的截面形式可分为实腹式和格构式两种。当檩条跨度不大于9m时,应优先选用实腹式檩条。

(2)檩条属于双向受弯构件,在进行内力分析时应沿截面两个形心主轴方向计算弯矩。

(3)檩条应进行强度计算、整体稳定计算、变形计算。

(4)檩条尚应满足其他相关构造规定。

4.3墙梁、支撑设计

(1)墙梁一般采用冷弯卷边槽钢,有时也可采用卷边Z形钢。

(2)墙梁在其自重、墙体材料和水平风荷载作用下,也是双向受弯构件。

(3)墙梁应尽量等间距设置,在墙面的上沿、下沿及窗框的上沿、下沿处应设置一道墙梁。为减少竖向荷载作用下墙梁的竖向挠度,可在墙梁上设置拉条,并在最上层墙梁处设斜拉条将拉力传至刚架柱。

(4)墙梁可根据柱距的大小做成跨越一个柱距的简支梁或两个柱距的连续梁。

(5)门式刚架结构中的交叉支撑和柔性系杆可按拉杆设计,非交叉支撑中的受压杆件及刚性系杆按压杆设计。

(6)刚架斜梁上横向水平支撑的内力,根据纵向风荷载按支承于柱顶的水平桁架计算,并计入支撑对斜梁起减少计算长度作用而承受的力,对于交叉支撑可不计入压杆的受力。

(7)刚架柱间支撑的内力,应根据该柱列所受纵向风荷载按支承于柱脚的竖向悬臂桁架计算,并计入支撑对柱起减少计算长度而应承受的力,对于交叉支撑可不计压杆的受力。当同一柱列设有多道柱间支撑时,纵向力在支撑间可平均分配。

5小结

综上所述,轻型门式刚架结构设计应遵守以下原则:

(1)保证结构的整体性。门式刚架属于平面结构,它们在纵向构件、支撑和围护结构的联系下形成空间的稳定体系,结构只有组成空间稳定整体,才能承担各种荷载和其他外在效应。

刚架范文篇4

关键词:门式刚架钢结构

一。设计方面

1.屋面活荷载取值

框架荷载取0.3kN/m2已经沿用多年,但屋面结构,包括屋面板和檩条,其活荷载要提高到0.5kN/m2.《钢结构设计规范》规定不上人屋面的活荷载为0.5kN/m2,但构件的荷载面积大于60m2的可乘折减系数0.6.门式刚架一般符合此条件,所以可用0.3kN/m2,与钢结构设计规范保持一致。国外这类,要考虑0.15-0.5N/m2的附加荷载,而我们无此规定,遇到超载情况,就要出安全问题。设计时可适当提高至0.5kN/m2.现在有的框架梁太细,檩条太小,明显有人为减少荷载情况,应特别注意,决不允许在有限的活荷载中“偷工减料”。

2.屋脊垂度要控制

框架斜梁的竖向挠度限值一般情况规定为1/180,除验算坡面斜梁挠度外,是否要验算跨中下垂度?过去不明确,可能不包括屋脊点垂度。现在应该是计算的。一般是将构件分段,用等截面程序计算,每段都要计算水平和竖向位移,不能大于允许值,等于要验算跨中垂度。跨中垂度反映屋面竖向刚度,刚度太小竖向变形就大。要的度本来就小,脊点下垂后引起屋面漏水,是漏水的原因之一。有的工程由于屋面竖向刚度过小,第一榀刚架与山墙间的屋面出现斜坡,使屋面变形。本人有此想法,刚架侧移后,当山尖下垂对坡度影响较大时(例如使坡度小于1/20),要验算山尖垂度,以便对屋面刚度进行控制。

3.钢柱换砼柱

少数设计的门式刚架,采用钢筋混凝土柱和轻钢斜梁组成,斜梁用竖放式端板与砼柱中的预埋螺栓相连,形成刚接,目的是想节省钢材和降低造价。在厂房中,的确是有用砼柱和钢桁架组成的框架,但此时梁柱只能铰接,不能刚接。多高层建筑中,钢梁与墙的连接也是如此。因为混凝土是一种脆性材料,虽然构件可以通过配筋承受弯矩和剪力,但在连接部位,它的抗拉、抗冲切的性能很并,在外力作用下很容易松动和破坏。有些设计,在门式刚架设计好之后,又根据业主要求将钢柱换成砼柱,而梁截面不变。应当指出,砼柱加钢梁作成排架是可以的,但将刚架的钢柱换成砼柱,而钢梁不变,是不行的。由于连接不同,构件内力也不同,要的工程斜梁很细,可能与此有关。

4.檩条计算不安全

檩条计算问题较大。檩要是冷弯薄壁构件,受压板件或压弯板件的宽厚比大,在受力时要屈曲,强度计算应采用有效宽度,对原有截面要减弱,不能象热轧型钢那样全截面有效。有效宽度理论是在《冷弯薄壁型钢构件技术规范》(GB50018-2002)中讲的,有的设计人员恐怕还不了解,甚至有些设计软件也未考虑。但是,设计光靠软件不行,还要能判断。软件未考虑的,自己要考虑。再有,设计人员往往忽略强度计算要用净断面,忽略钉孔减弱。这种减弱,一般达到6-15%,对小截面窄翼缘的梁影响较大。刚架整体分析采用的是全截面,如果强度计算不用净截面,实际应力将高于计算值。《规范》4.1.8、9条规定:“结构构件的受拉强度应按净截面计算;受压强度应按有效截面计算;稳定性应按有效截面计算。变形和各种稳定系数均可按毛截面计算”。有的单位看到国外资料中檩条很薄,也想用薄的。国外檩条普遍采用高强度低合金钢,但我国低合金钢Q345的冲压性能不行,只有用Q235的。国外是按有效截面计算承载力的。如果用Q235的,又想用得薄,计算时还不考虑有效截面,荷载稍大时檩条就要垮。二。施工方面

1.柱子拔出

有的刚架在大风时柱子被拔起,这是实际中常出现的事故。主要原因不是刚架计算失误,而且设计柱间支撑时,未考虑支撑传给柱脚的拉力。尤其是房屋纵向尺度较小时,只设置少量柱间支撑来抵抗纵向风荷载,支撑传给柱脚的拉力很大,而柱脚又没有采取可靠的抗拔措施,很可能将柱子拔起。,因此,在风荷载较大的地区刚架柱受拉时,在柱脚应考虑抗拔构造,例如锚栓端部设锚板等。

2.没有柱间支撑

这种情况最近较多,这样肯定不行。目前没有任何一本规范允许不设支撑。特别是柱间支撑,受力较大,绝不能省略。

3.端板合不上

端板连接是结构的重要部位。由于加工要求不严,而腹板与端板间夹角又,有的工程两块端板完全对不上,合不起来。强行用螺栓拉在一起,仍留下很宽缝隙,严惩影响工程质量。

4.锚栓不铅直

框架柱柱脚底板水平度差,锚栓不铅直,柱子安装后不在一条直线上,东倒西歪,使房屋外观很难着,这种情况不少。锚栓安装应坚持先将底板用下部调整螺栓调平,再用用无收缩砂浆二次灌浆填实。

5.保温材吸水超重

有些房屋雪不大就垮了,究其原因,是屋面防水施工太差,雪融化后水逐渐渗入,为保温村所吸收。今年冬季落雪多次,迁延时间较长。屋面的设计荷载很小时,当吸水量达至一定程序,超过了结构的承载能力,就要倒塌。

刚架范文篇5

关键词:钢结构门式刚架3D3SSTSPS2000

常常听到这样的说法:“某某软件比某某软件省用钢量”,当然,说这样话的人一般不是我们这个专业的人士,顶多也就是个一知半解,然而,作为真正的专业设计人员又了解构件设计的具体过程中的多少呢?在钢结构的设计行业中有大批的只是软件的使用者,因此,作为处在设计领域的又是软件的编制者,有必要做做这样的事:用不同的软件对相同的条件下同一个工程进行计算,看看结果到底有多大的差别。

本次所选的领域是轻型钢结构,因为这是目前使用面最广,而且对用钢量最敏感的结构,还有本人正好做过一个这样的软件,因此常常听到最多的是关于轻钢的用钢量问题。

所采用的软件都是当今行业中流行的,它们是:3D3S,STS,PS2000还有Maggie_GJ。

一、项目简介

所选工程情况如下:

两跨27m,四坡,坡度1/20,檐口标高7.5m,柱距9m,材料Q235。梁柱的截面规格(梁只标了左边跨,右边与之对称),圆圈内为构件编号,梁构件的分段尺寸也作了标注,

荷载:

屋面恒荷载:0.2KN/m2

屋面活荷载:0.3KN/m2

基本雪荷载:0.45KN/m2

基本风压:0.45KN/m2

不考虑地震。

二、分析结果

为了得到准确的结论,我们不采用让软件优化构件的功能,而只是对给定的构件截面进行验算,这里只给出各软件所计算的编号构件控制应力。

控制应力比较表表中单位:Mpa

构件编号

3D3S

STS

PS2000

Maggie_GJ

1

180.6(167.7)

189(176)

210.8

184.9(170.1)

2

189.2(167.7)

178(164)

191.9

163.6

3

165.5(150.5)

168(154)

167.9

153.6

4

139.8(139.8)

117(105)

167.9

153.6

5

124.7(111.8)

117(105)

139.6

118.4

6

193.5(178.45)

190(176)

191.9

176.2

7

189.2(167.7)

180(167)

212.9

181.0

8

135.45(90.3)

152(76)

129.5

144.3(85.9)

对边柱(1号构件),平面外的支撑长度考虑0.6的系数(隅撑的作用),控制应力为平面内的稳定应力,括号内为平面外的稳定应力值。

中柱(8号构件),控制应力为平面外稳定应力,对于本例而言,由于活荷载均匀分布,且结构对称,中柱主要为轴力,因此截面根据计算相对较小,但实际情况应适当考虑不均匀分布的荷载,这里的计算结果是没考虑的,括号内为平面内的稳定应力值。

对于斜梁(2-7号构件),《门式刚架轻型房屋钢结构技术规程》(CECS102:2002)规定,在平面内按压弯构件计算其强度,在平面外才计算其稳定,但3D3S和STS均给出了平面内的稳定应力,而且还是控制应力。以前的《门式刚架轻型房屋钢结构技术规程》(CECS102:98)中曾提到斜梁的平面内的计算长度取竖向支承点间距,这条在后来的规程中被去掉了。如果当作压弯构件进行平面内的稳定计算,那么斜梁应该是一根弯折的构件,而轴向压力是否顺着杆件的轴线方向,或是作为水平方向来考虑呢?还有根据这样的计算长度计算的稳定系数是否还有意义呢?所以象柱那样当作压弯构件计算其平面内的稳定实在有点牵强。而计算其平面外的稳定实际上是进行受弯构件的整体稳定计算,不过也兼顾到轴向力而已,但仍然是梁的特征。所以Maggie没有计算所谓的平面内的稳定应力。

三、题外的话

刚架范文篇6

鄱阳县某大米加工及仓储项目中,有8栋平房仓,每栋平房仓由2个独立的单平房仓构成,中间设100mm宽的沉降缝。单个平房仓设计为混凝土排架体系结构,排架间距6m,跨度24m,维护墙体为490mm厚的页岩砖,沿墙高间隔1.5~2m设置了4道通长圈梁。刚架排柱截面尺寸为450×1000mm,屋面刚架斜梁截面尺寸为400×1000mm,刚架柱和屋面刚架梁形成一个门式排架,屋面刚架斜梁在屋面处设有一道300×600mm的上翻拉梁,排架之间屋面板为90mm厚,中间间隔3m设有一道50×350mm的上翻次梁。单仓平顶最大高度为9.3m,支模架搭设净为9.4m,净跨度23.5m,长度48m。

2施工分析

本平房仓具有跨度大、单仓支模架体量大(单仓支模架体积达到11000m3)、檐口高度较高、斜梁截面尺寸大,需分段施工,钢筋密且大,护墙体和排架结构交错施工等特点,见图1。本工程属于超过一定规模的危险性较大的工程,且经过了严格脚手架支模安全计算并通过了专家论证后才实施。本工程钢管均采用准48×2.8,方木采用40×80,模板采用1830×915×13mm厚的胶合多层板,也采用上述参数进行相关安全计算。

3关键施工技术

3.1地基处理和基础施工。因本工程满堂支撑架在梁底部立杆荷载较大,立杆较密,需要一个稳固的地基基础承受上部荷载,避免不均匀沉降造成架体失稳。本工程地处回填区域,部分回填厚度到5~8m,基础部分仓体采用独立基础,部分仓体采用桩承台基础。地面设计做法:水泥搅拌桩+300mm碎石+120厚C15混凝土垫层+100厚C25混凝土面层。仓房心采用水泥搅拌桩复合地基。为节约成本,基础施工时,先对房心部分进行水泥搅拌桩地基处理,再距离独立基础或承台基础四周预留2~3排搅拌桩待独立基础或承台基础施工完毕后再进行水泥搅拌桩地基处理。基础梁和承台梁施工完成后及时进行房心碎石层回填和混凝土垫层施工,为高支模架提供一个稳固的基础承载力环境。3.2排架结构和护结构的施工顺序。地基处理→独立基础(桩基+承台)施工→土方回填→地圈梁施工→地圈梁周边地基处理→碎石层和混凝土垫层施工→第一道墙体施工→第一道圈梁及以下刚架柱施工→第二道墙体施工→第二道圈梁及以下刚架柱施工→第三道墙体施工→第三道圈梁及以下刚架柱施工(5.3m处)→内高支模满堂架搭设→屋面板梁钢筋和模板施工→5.3m以上刚架柱施工→屋面板梁混凝土浇筑→屋顶刚架斜梁施工→拆模高支模满堂架。为保证后期屋面平顶板高支模架的稳固性,使排架柱承受部分斜梁传递的竖向和向外水平荷载,5.3m以上至刚架斜梁底的刚架柱部分做一次性浇筑,且需要在屋面平板浇筑前先浇筑。屋面刚架斜梁若同平板屋面一次性支模浇筑,立杆需要穿越屋面板,将在屋面板上留有大量的钢管孔洞,即不利结构安全也存在渗漏隐患,而且屋面刚架梁截面尺寸较大,将大大增加高支模架体荷载,增加施工难度。因屋面斜梁和斜板与刚架拉梁重合,为避免渗水,故在拉梁上部约300mm处设置施工缝,施工缝与斜梁截面垂直,且在斜梁1/3的净长跨度内。3.3高支模体搭设。3.3.1立杆设置。整个平房仓板底为同一个平面(除两侧斜板外,斜板也为平直板),梁均为上翻梁,根据《品茗安全计算软件》计算结果,立杆纵向和横向间距均为950mm,且在板和主次梁立杆安全计算范围内。跨度方向立杆距离两侧边墙均为350mm,长度方向立杆距离两端山墙均为455mm。刚架排梁底部垂直梁方向立杆间距1250mm,在拉梁两侧另增设2排衡向立杆,间距360mm,便于斜梁的荷载能较均匀传递给屋面板,再通过上部屋面刚架斜梁的支撑立杆与下部立杆位置对应地传递到地面,见图4。沿梁方向间距同其他部位立杆间距950mm。在跨度中间设置950×950mm钢管格构柱,采用钢管搭设,见图2。3.3.2竖向剪力撑。在满堂支撑架外侧四周由下至上设置连续式竖向剪力撑。中间部位纵向竖剪力撑每隔6m在有抗风柱的部位纵向次梁底部由下至上设置连续式竖向剪力撑,总设置3道;横向竖剪力撑也间隔6m设置在排架拉梁底部,共设置7道。剪力撑杆件的底端应与地面顶紧,每个剪力撑最多跨过5跨立杆,见图3、图4。3.3.3纵横向水平杆和水平剪力撑。水平杆步距1.5m,最低步从距地面200mm的扫地杆开始设置,每步水平杆均纵横向通长设置。水平剪力撑在扫地杆和最高一步水平杆位置各设一道。3.3.4连墙件。(柱抱箍)的设置为减少满堂支撑架水平方向晃动幅度,在5.3m以下有墙体或柱的部分,纵横向水平杆均与墙边顶紧;5.3m以上无墙体的架体,在水平杆层位置采用钢管抱箍方式与刚架排柱连接。支撑架每步均与柱进行抱箍。3.3.5格构柱的设置在每榀拉梁跨中位置设置一个格构柱,承受拉梁及后期屋面刚架斜梁荷载。格构柱950×950,采用钢管搭设。格构柱四面沿柱高每隔1.5m设置一圈水平横杆和一道斜杆,四面“之”字型设斜杆,呈桁架式。立杆采用对接扣件连接,并用一根1m长短钢管搭接加固。3.4屋面平板混凝土浇筑。屋面平板梁混凝土浇筑顺序为,单榀板由跨中向两侧斜板进行,斜板由下而上两侧对称坡面同时进行,浇筑时先浇筑上翻梁,再浇筑板。整体浇筑由中向向两侧山墙方向来回对称浇筑。屋面板混凝土第一次浇筑前采取吊装与上翻拉梁等重量的钢材放置至拉梁位置进行预先试压,查看满堂架体的变形情况。架体没有的变形再进行混凝土浇筑。板混凝土的虚铺厚度应略大于板厚,但板面混凝土严禁在一个区域集中堆积,必须平缓在楼板堆料;0.6m高的梁分2次浇筑,1m高的梁分3次浇筑。3.5屋面部分刚架斜梁施工。屋面板厚较薄,板跨度大,屋面刚架斜梁截面尺寸较大,施工荷载较大,施工过程中避免对板冲击造成板裂缝而渗漏,高支模满堂架拆模需同时满足屋面平板和屋面刚架斜梁的混凝土强度达到设计强度的100%方可拆模,现场留置混凝土拆模试块和采用混凝土回弹仪检测控制。屋面刚架斜梁支模时,立杆布置同高支模拉梁底部立杆(即垂直梁方向梁两侧立杆间距1250mm,另设置2排衡向立杆,间距360mm,设置在上翻拉梁两侧,沿梁方向立杆间距950mm),位置与下部立杆位置大致对齐(根据立杆平面布置图现场测量放样),且立杆下必须放置50mm厚的方木垫块,避免竖向荷载对板面直接冲击。屋面刚架斜梁立杆平行梁方向水平杆间距约1m左右,设置两道;垂直梁方向水平杆参照下部高支模要求设置。因刚架斜梁在屋面上为间隔6m独立设计,只有在梁顶部位设计有两道通风气楼的拉梁,立杆采用斜撑固定,且相邻两排架梁立杆的斜撑在楼板处相互顶紧,斜撑从最高立杆开始间隔一根设置一道,共6根。

4结语

本工程8个平房仓,16个独立单仓,若同时施工,支模架体系达到16万方,钢管、模板和方量用量之大,且为一次性投入,将造成巨大的浪费。经过上述边砌体施工,边支模架主体施工等穿插施工的工序安排;屋面下部高支模和屋面刚架斜梁支模架分开施工的步骤以及高支模架的拆模时间上的安排;两个单仓同时施工,整体流水施工等安排,即确保了施工安全和结构安全,又节约了大量周转材料,还满足了整体工期要求。实践证明了以上的施工方法及支模工艺是安全、合理、可行的,可为类似工程提供一定的参考价值。

参考文献

[1]建筑施工手册(第五版).中国建筑工业出旅社,2012.

[2]建筑施工扣件式钢管脚手架安全技术规范:JGJ130-2011.中国建筑工业出版社,2011.

刚架范文篇7

论文摘要:轻型金属板材及其配套的门式刚架等系列轻型钢结构已得到了较为广泛的应用,加强钢结构专业队伍素质的提高,已成为一项紧迫的任务。

由于钢结构本身具备自重轻、强度高、施工快等独特优点,因此对高层、大跨度,尤其是超高层、超大跨度,采用钢结构更是非常理想。轻型金属板材及其配套的门式刚架等系列轻型钢结构已得到了较为广泛的应用。下面简单谈一谈轻型钢结构工程中常见的一些质量问题及预防措施。

1柱脚的制作安装

1.1预埋地脚螺栓与砼短柱边距离过近。在刚架吊装时,经常不可避免的会人为产生一些侧向外力,而将柱顶部砼拉碎或拉崩。在预埋螺栓时,钢柱侧边螺栓不能过于靠边,应与柱边留有足够的距离。同时,砼短柱要保证达到设计强度后,方可组织刚架的吊装工作。

1.2往往容易遗忘抗剪槽的留设和抗剪件的设置。柱脚锚栓按承受拉力设计,计算时不考虑锚栓承受水平力。若未设置抗剪件,所有由侧向风荷载、水平地震荷载、吊车水平荷载等产生的柱底剪力,几乎都有柱脚锚栓承担,从而破坏柱脚锚栓。

1.3柱脚底板与砼柱间空隙过小,使得灌浆料难以填入或填实。一般二次灌料空隙为50mm。

1.4有些工程地脚螺栓位置不准确,为了方便刚架吊装就位,在现场对底板进行二次打孔,任意切割,造成柱脚底板开孔过大,使得柱脚固定不牢,锚栓最小边(端)距亦不能满足规范要求。

2梁、柱连接与安装

2.1多跨门式刚架中柱按摇摆柱设计,而实际工程却把中柱与斜梁焊死,致使实际构造与设计计算简图不符,造成工程事故。所以,安装要严格按照设计图纸施作;

2.2翼缘板与加厚或加宽连接板对接焊缝时,未按要求做成倾斜度的过渡。对接焊缝连接处,若焊件的宽度或厚度不同,且在同一侧相差4mm以上者,应分别在宽度或厚度方向从一侧或两侧做成坡度不大于1:2.5(1:4)的斜角。

2.3端板连接面制作粗燥,切割不平整,或与梁柱翼缘板焊接时控制不当,使端板翘曲变形,造成端板间接触面不吻合,连接螺栓不得力,从而满足不了该节点抗弯受拉、抗剪等结构性能。

2.4刚架梁柱拼接时,把翼缘板和腹板的拼接接头放在同一截面上,造成工程隐患。拼接接头时,翼缘板和腹板的接头一定要按规定错开。

2.5刚架梁柱构件受集中荷载处未设置对应的加劲肋,容易造成结构构件局部受压失稳。

2.6连接高强螺栓不符合《钢结构用扭剪型高强度螺栓连接的技术条件》或《钢结构用高强度大六角头螺栓、大六角头螺母、垫圈型式尺寸与技术条件》的相关规定。高强螺栓拧紧分初拧、终拧,对大型节点还应增加复拧。拧紧应在同一天完成,切勿遗忘终拧。一定要在结构安装完成后,对所有的连接螺栓应逐一检查,以防漏拧或松动。

2.7有些工程中高强螺栓连接面未按设计图纸要求进行处理,使得抗滑移系数不能满足该节点处抗剪要求。必须按照设计要求的连接面抗滑移系数去处理。

2.8有的工程缺乏有针对性的吊装方案,吊装刚架时,未采用临时措施保证刚架的侧向稳定,造成刚架安装倒塌事故。应先安装靠近山墙的有柱间支撑的两榀刚架,而后安装其他刚架。头两榀刚架安装完毕后,应在两榀刚架间将水平系杆,檩条及柱间支撑,屋面水平支撑,隅撑全部装好,安装完成后应利用柱间支撑及屋面水平支撑调整构件的垂直度及水平度,待调整正确后方可锁定支撑,而后安装其他刚架。

3檩条、支撑等构件的制作安装

3.1为了安装方便,随意增大、加长檩条或檩托板的螺栓孔径。檩条不仅仅是支撑屋面板或悬挂墙面板的构件,而且也是刚架梁柱隅撑设置的支撑体,设置一定数量的隅撑可减少刚架平面外的计算长度,有效的保证了刚架的平面外整体稳定性。若檩条或檩托板孔径过大过长,隅撑就失去了应有的作用。3.2隅撑角钢与钢梁的腹板直接连接,当刚架受侧向力时,使腹板在该处局部受到侧向水平力作用,容易导致钢梁局部侧向失稳。

3.3有的工程所用檩条仅用电镀,造成工程尚未完工,檩条早已生锈。檩条宜采用热镀锌带钢压制而成的檩条,且保证一定的镀锌量。

3.4因墙面开设门洞,擅自将柱间垂直支撑一端或两端移位。同一区隔的柱间支撑、屋面水平支撑与刚架形成纵向稳定体系,若随意移动其位置将会破坏其稳定体系。

3.5有些单位为了节省钢材和人工,将檩条和墙梁用钢板支托的侧向加劲肋取消,这将影响檩条的抗扭刚度和墙梁受力的可靠性。故施工单位不得任意取消设计图纸的一些做法。

3.6有的单位擅自增加屋面荷载,原设计未考虑吊顶或设备管道等悬挂荷载,而施工中却任意增加吊顶等悬挂荷载,从而导致钢梁挠度过大或坍塌。任何单位均不得擅自增加设计范围以外的荷载。

3.7屋面板未按要求设置,将固定式改为浮动式,使檩条侧向失稳。往往设计檩条时,会考虑屋面压型钢板与冷弯型钢檩条牢固连接,能可靠的阻止檩条侧向失稳并起到整体蒙皮作用。

3.8刚性系杆、风拉杆的连接板设置位置高低不一,使得水平支撑体系不在同一平面上,从而影响刚架的整体稳定性。刚性系杆与风拉杆构成水平支撑体系,其设置高度在同一坡度方向应保持一致。

目前,我国钢结构住宅产业已进入一个新的发展阶段,有关规范和标准已经出台,国内钢材产量充足,有了一批钢结构住宅试点与示范的建设经验和科技成果,钢结构住宅的发展已具备了较好的物质和技术基础。当然,在钢结构住宅发展方面,还有一些技术问题有待解决。钢结构住宅的推广还需要做大量的工作,完善不同类型结构设计规范和施工技术标准,研制新型的轻质保温墙体材料以及与住宅部品的配套问题,同时还要广泛宣传开发轻钢住宅的益处,让更多的开发商、设计师和用户认识了解钢结构住宅的优点。

参考文献

刚架范文篇8

1.1预埋地脚螺栓与砼短柱边距离过近。在刚架吊装时,经常不可避免的会人为产生一些侧向外力,而将柱顶部砼拉碎或拉崩。在预埋螺栓时,钢柱侧边螺栓不能过于靠边,应与柱边留有足够的距离。同时,砼短柱要保证达到设计强度后,方可组织刚架的吊装工作。

1.2往往容易遗忘抗剪槽的留设和抗剪件的设置。柱脚锚栓按承受拉力设计,计算时不考虑锚栓承受水平力。若未设置抗剪件,所有由侧向风荷载、水平地震荷载、吊车水平荷载等产生的柱底剪力,几乎都有柱脚锚栓承担,从而破坏柱脚锚栓。

1.3柱脚底板与砼柱间空隙过小,使得灌浆料难以填入或填实。一般二次灌料空隙为50mm。

1.4有些工程地脚螺栓位置不准确,为了方便刚架吊装就位,在现场对底板进行二次打孔,任意切割,造成柱脚底板开孔过大,使得柱脚固定不牢,锚栓最小边(端)距亦不能满足规范要求。

2梁、柱连接与安装

2.1多跨门式刚架中柱按摇摆柱设计,而实际工程却把中柱与斜梁焊死,致使实际构造与设计计算简图不符,造成工程事故。所以,安装要严格按照设计图纸施作;

2.2翼缘板与加厚或加宽连接板对接焊缝时,未按要求做成倾斜度的过渡。对接焊缝连接处,若焊件的宽度或厚度不同,且在同一侧相差4mm以上者,应分别在宽度或厚度方向从一侧或两侧做成坡度不大于1:2.5(1:4)的斜角。

2.3端板连接面制作粗燥,切割不平整,或与梁柱翼缘板焊接时控制不当,使端板翘曲变形,造成端板间接触面不吻合,连接螺栓不得力,从而满足不了该节点抗弯受拉、抗剪等结构性能。

2.4刚架梁柱拼接时,把翼缘板和腹板的拼接接头放在同一截面上,造成工程隐患。拼接接头时,翼缘板和腹板的接头一定要按规定错开。

2.5刚架梁柱构件受集中荷载处未设置对应的加劲肋,容易造成结构构件局部受压失稳。

2.6连接高强螺栓不符合《钢结构用扭剪型高强度螺栓连接的技术条件》或《钢结构用高强度大六角头螺栓、大六角头螺母、垫圈型式尺寸与技术条件》的相关规定。高强螺栓拧紧分初拧、终拧,对大型节点还应增加复拧。拧紧应在同一天完成,切勿遗忘终拧。一定要在结构安装完成后,对所有的连接螺栓应逐一检查,以防漏拧或松动。

2.7有些工程中高强螺栓连接面未按设计图纸要求进行处理,使得抗滑移系数不能满足该节点处抗剪要求。必须按照设计要求的连接面抗滑移系数去处理。

2.8有的工程缺乏有针对性的吊装方案,吊装刚架时,未采用临时措施保证刚架的侧向稳定,造成刚架安装倒塌事故。应先安装靠近山墙的有柱间支撑的两榀刚架,而后安装其他刚架。头两榀刚架安装完毕后,应在两榀刚架间将水平系杆,檩条及柱间支撑,屋面水平支撑,隅撑全部装好,安装完成后应利用柱间支撑及屋面水平支撑调整构件的垂直度及水平度,待调整正确后方可锁定支撑,而后安装其他刚架。

3檩条、支撑等构件的制作安装

3.1为了安装方便,随意增大、加长檩条或檩托板的螺栓孔径。檩条不仅仅是支撑屋面板或悬挂墙面板的构件,而且也是刚架梁柱隅撑设置的支撑体,设置一定数量的隅撑可减少刚架平面外的计算长度,有效的保证了刚架的平面外整体稳定性。若檩条或檩托板孔径过大过长,隅撑就失去了应有的作用。

3.2隅撑角钢与钢梁的腹板直接连接,当刚架受侧向力时,使腹板在该处局部受到侧向水平力作用,容易导致钢梁局部侧向失稳。

3.3有的工程所用檩条仅用电镀,造成工程尚未完工,檩条早已生锈。檩条宜采用热镀锌带钢压制而成的檩条,且保证一定的镀锌量。

3.4因墙面开设门洞,擅自将柱间垂直支撑一端或两端移位。同一区隔的柱间支撑、屋面水平支撑与刚架形成纵向稳定体系,若随意移动其位置将会破坏其稳定体系。

3.5有些单位为了节省钢材和人工,将檩条和墙梁用钢板支托的侧向加劲肋取消,这将影响檩条的抗扭刚度和墙梁受力的可靠性。故施工单位不得任意取消设计图纸的一些做法。

3.6有的单位擅自增加屋面荷载,原设计未考虑吊顶或设备管道等悬挂荷载,而施工中却任意增加吊顶等悬挂荷载,从而导致钢梁挠度过大或坍塌。任何单位均不得擅自增加设计范围以外的荷载。

3.7屋面板未按要求设置,将固定式改为浮动式,使檩条侧向失稳。往往设计檩条时,会考虑屋面压型钢板与冷弯型钢檩条牢固连接,能可靠的阻止檩条侧向失稳并起到整体蒙皮作用。

3.8刚性系杆、风拉杆的连接板设置位置高低不一,使得水平支撑体系不在同一平面上,从而影响刚架的整体稳定性。刚性系杆与风拉杆构成水平支撑体系,其设置高度在同一坡度方向应保持一致。

目前,我国钢结构住宅产业已进入一个新的发展阶段,有关规范和标准已经出台,国内钢材产量充足,有了一批钢结构住宅试点与示范的建设经验和科技成果,钢结构住宅的发展已具备了较好的物质和技术基础。当然,在钢结构住宅发展方面,还有一些技术问题有待解决。钢结构住宅的推广还需要做大量的工作,完善不同类型结构设计规范和施工技术标准,研制新型的轻质保温墙体材料以及与住宅部品的配套问题,同时还要广泛宣传开发轻钢住宅的益处,让更多的开发商、设计师和用户认识了解钢结构住宅的优点。

参考文献

[1]刘玉株.钢结构住宅技术问题讨论.建筑创作,2003年2月.

[2]陈禄如等.攻克关键技术推动钢结构住宅发展.建设科技,2003年12月.

刚架范文篇9

关键词:多层民用住宅轻钢结构

1.轻钢住宅在我国的发展

我国轻型钢结构经过20多年的发展历史,虽然起步并不晚,主要由于经济与技术的原因使得多层轻钢住宅的发展受到制约。国内最早出现的轻钢结构住宅是94年11月建于上海浦东北蔡的8层钢结构住宅,采用冷弯成型的矩形钢管混凝土柱和U型冷弯型钢组合梁组成框架。其特点是采用稻草板作外墙和楼板的组件,单位面积用钢量34kg/m2。

天津经济开发区太平村是我国住宅产业化的探索基地之一,来自中国,日本,美国,加拿大等15个国家和地区的95名参展商展示了各自的产品,其中钢结构住宅均采用框架结构。楼板及墙体、屋顶均采用复合结构,工厂预制,现场安装,缩短了施工工期。

长沙远大集团建造的8层钢结构公寓,称之为集成化建筑。该建筑装有中央空调一体化机组,整体浴室,“五表”远传系统等现代化设备。室内设计考究,体现了钢结构住宅的风格和质量,表明了钢结构住宅的良好发展前景。表1为若干轻钢住宅经济技术指标。

当前,国家将住宅产业作为国民经济新的经济增长点。为居民提供高质量的符合市场需求的商品化住宅成为必然趋势。国家鼓励发展

表1轻钢住宅经济技术指标

工程名称马钢住宅试验楼北京西三旗水电工程宿舍涿州中铁紫荆关钢结构公司试验楼保定太行集团轻钢住宅示范楼

结构体系12层框架-支撑体系6层框剪体系6层钢框架-砼核心筒体系空间框架结构

结构型式热轧H型钢H型钢,压型钢板组合楼板焊接工型梁柱H形柱,工形梁

用钢量(kN/m2)52634652

单位造价(元)110011001200900

“新型建筑体系”,已将其列入优先发展的高新技术领域中。国务院1999年颁发的72号文件

提出要发展钢结构住宅产业,在沿海大城市限期停止使用粘土砖。建设部标准定额研究司正在编制与修改与多层钢结构房屋密切相关的技术规程。建设部科技司在今年上半年分别召开了“钢结构住宅产业化技术导则编制研讨会”和“钢结构住宅建筑体系及关键技术研究课题立项评审会”。通过了18个包括钢结构住宅建筑体系及其关键和试点工程的立项。国家政策为钢结构住宅开发创造了条件,钢结构产业化住宅有望在最近取得突破性进展。

2.多层轻钢住宅的优势

过去我国大量开发的是以小开间砖混结构为主的住宅。这种住宅体系由于使用实心粘土砖,浪费土地资源,建筑物自重大,对抗震不利。另一方面,由于结构体系自身的限制,住宅平面布局多为封闭式的小开间,不能适应不断变化的居住模式的要求。与传统住宅相比,多层轻钢住宅具有明显的特点与优势,日益受到重视。

(1)自重轻,抗震性能好。采用高效轻型薄壁型材,构件截面特性优良,相对承载力高,受力性能良好,整体刚度大,抗震性能好,可以大量节约材料,减轻结构重量,降低基础,运输和安装费用。因此,对地震区,地质条件差和运输不便的地区,其优越性更为明显。

(2)外形美观,建筑造型简洁,丰富,构件截面尺寸小,净使用面积增加。钢材强度高,可以提供较大的柱网布置;当考虑楼板的组合作用,使用组合梁或扁梁时,可以增加净高。这种开放式住宅既为建筑师提供设计的回旋余地,又为住户提供了灵活分隔室内空间的可能。

(3)供货迅速,安装方便,可以比混凝土结构至少缩短一半工期。在当前贷款利率高的金融形式下,早投产,早回收投资,这对于降低工程总造价,增加投资效益幅度是十分重要的。

(4)干法施工,装备化程度高,建设快速,高效,质量有保证。

(5)轻钢结构在生产和使用的过程中能源与原材料消耗低,建筑垃圾少,粉尘少,噪音低,具有很高的可重复使用性和可循环性,因此是一种绿色环保结构。

3.多层轻钢住宅的体系与结构特点

3.1抗侧力结构体系

主要应用于多层轻钢住宅的体系可分为:纯钢框架体系,框架-支撑体系,钢框架-混凝土剪力墙体系,周围抗侧力体系等。

(1)纯框架体系常用于4~8层住宅。它主要由宽翼缘的H型或箱形柱和工字型梁组成,亦可采用热轧H型钢。这种体系具有较为灵活的空间布局,但侧向刚度较弱。相对于框架-支撑体系,用钢量较大。纯框架体系多采用双向刚接,这样可以加大结构自身的侧移刚度,减少抗侧移构件内力,加强耗能机制,提高建筑物的延性。但节点形式较为复杂。由于建筑美观的要求,端板连接不宜于多层轻钢住宅。

(2)框架-支撑体系主要由焊接工字型梁柱组成。多数情况下,这种体系为横向承重。梁柱节点在横向上,为刚接;纵向为铰接。因此,结构在纵向相当于排架,抗侧移刚度很低,需设置侧向支撑抵抗水平荷载,限制结构的水平变形。支撑可用槽钢,角钢或圆钢杆,具体形式可结合建筑立面或门窗洞口需要采用单斜杆、X型、K型或偏心支撑。单斜杆简单明快,但必须设置两组不同倾斜支撑,以保证结构在两个方向具有同样抗侧力能力。X型支撑具有很好的侧向刚度,但是交叉点处的细部构造比较复杂。偏心支撑具有非常好的抗震耗能效果。它的工作原理是:在中、小地震作用下,支撑提供主要的抗侧力刚度,与中心支撑相似;在大地震作用下,保证支撑不发生受压屈曲,而让耗能梁段屈服消耗能量。它是专为抗震设计提供的支撑形式。

(3)框架-钢筋混凝土剪力墙(筒)体系。用钢筋混凝土剪力墙部分或全部代替钢支撑,就形成了框架-钢筋混凝土剪力墙(筒)体系。它适用于小高层住宅。一般将楼梯或电梯间设计成钢筋混凝土墙(筒)。这样即有效的加强了建筑物的侧向刚度,又解决了楼梯间的防火问题。如果结构刚心偏移过大,出现扭转的问题,可在适当部位设置钢支撑。

(4)周围抗侧力体系。这种体系在欧美国家的商业和民用建筑中十分流行。它的特点是刚架柱强轴与其相交的建筑轴线垂直,形成外筒,抵抗水平荷载,将之传递到基础。它适用于建筑外型接近于正方型的结构。可以将这种思路应用到框架-支撑体系中。把纵向的支撑去掉,将原有位置的刚架柱扭转90度,梁柱由铰接变为刚接。这样,刚架柱同时起到抗风柱与竖向支撑的作用。

对于多层轻钢民用住宅体系的选择,不必拘泥于某一种特定的体系。可以根据建筑平面设计的要求,灵活处理,综合使用不同的抗侧力体系。

3.2楼面屋盖结构

楼面和屋盖必须有足够的强度,刚度和稳定性,同时应当尽量减少楼板厚度,增加室内净高。压型钢板-混凝土组合楼盖是目前应用较为广泛的形式。它具有施工速度快,平面刚度大,增加房屋净高的优点。具体做法是在钢梁上铺设压型钢板,再现浇100~150mm混凝土。在钢梁上焊接足够的剪力连接件,使钢梁与混凝土协同工作构成组合楼盖。这种做法耗钢量较大,且需防火处理。可以用预应力钢筋混凝土薄板取代压型钢板。此外,预应力圆孔板、迭合板、组合扁梁也是常用形式。

3.3墙体结构

各种轻质墙体材料以其良好的保温、隔热、隔声性能受到开发商的青睐。目前,墙体主要分为自承重式和非自承重式。自承重墙体主要包括用于护结构的加气混凝土块、太空板、轻钢龙骨加强板等,以及用于内墙的轻混凝土板、石膏板、水泥刨花板、稻草板等。外挂的非自承重式墙体材料主要有彩色压型钢板、彩色压型钢夹芯板、玻璃纤维增强外墙板等。采用非自承重式墙体材料,需设置墙梁用以悬挂护结构。门窗洞口上下要布置。墙梁多采用C或Z型冷弯薄壁型钢,尺寸取决于跨度(刚架间距)和墙距(板跨)。

3.4多层轻钢住宅的防火

钢材属于不耐火材料,温度为400°C时,钢材的屈服强度将降为常温的一半,温度达到600°C时,钢材基本丧失全部强度和刚度。所以,钢结构不仅要进行结构的抗火设计,还要采用防火措施保护。目前常用的防火措施有以下四种方法(1)防火涂料法。将具有一定厚度的防火涂料直接喷在钢结构构件上。防火涂料主要两类:涂层8~50mm,粒状表面,密度较小,耐火极限1~3h的为厚涂型防火隔热材料;涂层3~7mm,遇火膨胀增厚,耐火极限0.15~2h的为薄涂型防火隔热材料。喷涂法造价较低,操作简便,施工速度快,但是构件表面不平整,影响美观。(2)隔离法。将防火材料或防火砖沿构件的,将构件包裹,与外界隔离。这种方法美观,无污染,但施工速度较慢,适用于外露的构件。(3)实心包裹法。将钢构件浇注到混凝土中。(4)膨胀漆覆盖法。将具有一定厚度的膨胀漆喷涂、抹、刷在经过处理的构件表面。抗火极限最高达2h。覆盖法施工容易,但不适用于潮湿的环境,仅适用于干燥的室内。

4.工程实例

4.1工程背景介绍

某示范楼建筑面积4665m2,5层纯钢框架结构,长67m,宽13.5m,层高3m。焊接工字形梁,纵横双向刚接H形柱。楼面活荷载为2.0kN/m2,屋面活荷载0.3kN/m2,轻型屋面恒荷载0.3kN/m2;基本风压0.25kN/m2;设计地震烈度为7度,Ⅱ类场地。屋面为冷弯薄壁C型檩条铺双层镀锌压型钢板夹100mm厚保温棉屋面系统,外墙采用200mm厚陶粒混凝土空心砌体墙,分户墙为180mm厚菱镁土板,户内隔墙为90mm厚菱镁土板。条型基础,柱与基础为刚接。

示范楼共有四个居住单元,两种建筑平面布置形式,建筑面积分别为143M2,102M2。一单元为大两室两厅,二、三、四单元为小两室两厅。一单元的大客厅使用了组合扁梁,从而实现了梁与楼盖的一体化,减少了结构层高。对于正常极限状态下的组合扁梁,将钢和混凝土两种材料组成的组合梁截面换算成同一种材料的截面,再按照弹性理论计算。为了楼板的放置,扁梁的下翼缘一般较宽,需验算施工时产生的偏心荷载。为了减少设计工作量,通常把扭矩简化为已对大小相等、方向相反的力分别作用于扁梁的上下翼缘。详细分析方法见文献。

4.2计算方法与基本要求

对于多层轻钢住宅,尽管采用单向板,但由于纵横向均有墙体荷载分布,宜采用三维空间计算模型。本工程采用的是普通楼板,不考虑楼盖对钢架梁刚度增大的作用,忽略楼板的空间联系作用,空间模型为纯框架结构。计算分析是采用有限元分析软件ANSYS完成。在结构计算中采用三维梁单元,质量单元计算结构自振周期以及静力分析。

相对于工业建筑而言,多层民用建筑的荷载工况简单明了。主要考虑以下三种工况:

工况一:1.2×恒载标准值+1.4×活荷载标准值

工况二:1.2×恒载标准值+0.85×1.4×(风荷载+活荷载)标准值

工况三:1.2×重力代表值+1.3×水平地震作用标准值

对于多层轻钢住宅地震荷载计算,由于楼层较低,结构布置对称,采用底部剪力法就可满足要求。

多层轻钢住宅侧向位移具体要求如下:

(1)在风荷载作用下的顶点水平位移与总高度之比不宜大于1/500。

(2)层间相对位移与层高之比不宜大于1/400。

(3)在常遇地震作用下,层间侧移不超过楼层高度1/250。

对于多层轻钢住宅,还要满足刚架柱构件稳定性与钢框架的整体稳定性要求。

表2两种方案(空间模型)比较

柱截面(mm)柱用钢量(t)单位用量(kg/m2)纵向主自振周期(s)地震作用下纵向最大层间位移横向主自振周期(s)地震作用下横向最大层间位移(mm)

方案一300x300x12x892.9151.961.6571/4261.2321/633

方案二300x300x10x10114.5557.461.1401/7001.2311/632

方案比较节省19%节省9.6%基本相同

4.3计算分析

由于活荷载与基本风压较小,所以工况三为控制工况。计算设计时将两种方案进行了比较,不改变刚架梁的截面形式,只对刚架柱进行改动。方案一,刚架柱为工字形;方案二,刚架柱为箱形。表2给出两种方案空间模型的主要计算结果,可得到以下结论:

(1)两种方案的刚架柱在强轴方向惯性矩相同,即在横向结构的刚度相同,因此横向主自振周期以及地震作用下横向最大层间位移基本一致。

(2)本工程长宽比5,纵横双向刚接,因此对于方案一,当横向侧向刚度满足要求时,纵向刚度也能达到要求。

(3)在满足规范要求的前提下,方案一节约钢材用量,单位面积用钢量减少约10%,经济性好。因此,在设计中选择了工字形刚架柱。表3示范楼主要构件尺寸及其用钢量。但是由于轻钢体系刚架柱的腹板很薄,为了防止局部失稳引起的结构失效,刚架柱宜在纵向梁柱刚接处做成局部箱形柱。

表3示范楼主要构件尺寸及其用钢量

截面尺寸(mm)用钢量(t)比例(%)

刚架柱(GJZ)I300x300x12x892.9138.3

刚架梁(GJL)I400x180x8x678.5238.4

扁梁(BL)I280x140x16x10x21010.864.48

次梁1(CL1)I300x180x8x69.143.77

屋面梁I300x160x8x610.564.36

其它4.04016.7

刚架范文篇10

福州瑞联钢有限公司30万吨冷板工程1#厂房位于马尾连104国道西北测,厂房长度234m,跨度为21+21m,建筑面积1万m2。吊车轨顶标高为10.0m。见图1,柱脚采用刚接,采用门式刚架结构,主刚架采用热轧H型钢,Q345B级。屋面坡度采用1/10。计算软件采用钢结构STS软件。至今该工程已竣工投产近一年。

图1建筑剖面图

2基础设计

2.1地质条件

根据岩土工程勘察报告,工程地质情况见表1,建筑场地类别为Ⅲ类。

表1地基各岩土层设计计算指标推荐使用值表

指项

标目

岩土层

名称

天然

容重

压缩模量

内聚力

内摩擦角

承载力特征值

桩端阻力特征值qsa和桩侧阻力特征值qsa

桩侧负摩阻力系数

层厚(米)

预制桩

r

Es1-2

Es2-3

Es3-4

C

φ

fak

qsa

qsa

ζ

kN/m3

Mpa

Kpa

Kpa

Kpa

0.25

1.6~2.2

①-1

素填土

17.5

70-80

0.25

0.4~2.5

①-2

填中砂

17.0

80-90

0.4~0.9

粘土

18.7

4.0-5.0

15

7.5

110-120

10-13

0.20

15.2~37.3

淤泥

15.6

1.5-20.

2.0-2.5

3

3.1

40-45

6-7

0.25

1.1~12.10

粘土

19.1

5.5-6.5

7.0-9.0

31

11.6

170-190

18-20

1088-2000

1.2~1.8

淤泥质土

16.1

2.0-2.5

2.5-3.0

5

6.5

55-60

9-10

2.8~4.9

粘土

19.3

7.0-8.0

9.0-10.0

40

11.0

180-190

18-20

5.5~

2.2桩基础设计

根据工程地质条件及电算结果,由于业主工期要求快,故采用PHC预应力高强管桩,以粉质粘土④为持力层。桩身进入持力层0.8m。单桩竖向承载力特征值R=500kN,由于柱脚固接,吊车作用下,柱底弯矩较大,为使桩不出现拉力,而形成抗拨桩,因此必须采用双桩,而且桩距不能按常规取3.5d。本工程边柱最大轴压力N=653kN,M=-364.8kN,V=-77.8kN,两桩桩距取3.2m,承台高1.2m。墙体传来4.1×4.5×6=110.7kN

桩最小反力Nmin=(653+110.7+0.8×4.220)/2-(364.8+77.8×1.0)/3.2=262kN<R=600kN

Nmax=568.35<1.2R

中柱,N=1137kN,V=35.4kN,M=225.6kN算得Nmin=513.9<R=600kN

Nmax=690.3<1.2R=720kN经计算满足要求,可满足抗冲、抗剪要求。

3上部结构设计

本工程为两跨21m,两台10t+15t重级工作制吊车,柱距6m,共有39跨固接的门式刚架,为保证吊车正常运转,厂房稳定,满足位移变形要求加强支撑设计和吊车制动桁架来增加厂房的整体空间刚度,全长234m,不设伸缩缝,墙体采用压型钢板。选用热轧H型钢经选用电算定下,用钢量最低的刚架尺寸,见图2

图2刚架图

3.1柱间支撑设计

若支撑设置不当,吊车行走时,就会造成刚架晃动,存在安全隐患,因此支撑的设置非常关键,因选用用钢量小的窄翼缘H型钢,因此柱平面外计算长度仅能取4m,在高4m处设置一道焊接钢管侧向水平支撑。交叉支撑采用角钢,在厂房的头、尾跨设置柱间支撑,中间跨每隔4跨设置一道。在设置柱间支撑的同一跨并设屋面支撑,为能更好传递风荷载在屋面每隔4米设一道水平钢管刚性系杆。

3.2抗震措施

工程地处设防烈度7度区,房屋自重小,承载力不受地震作用效应组合控制,可不进行抗震计算。仅针对轻钢结构的特点采取抗震构造措施。

构件之间的连接均采用螺栓连接,斜梁下翼缘与刚架柱的连接均加腋,柱脚底板设抗剪键。增设吊车制动桁架。

3.3隅撑的设计

隅撑可以用来提高屋面梁式柱的受压翼缘稳定能力,因此在檐口位置,刚架斜梁与柱内翼缘交接点附近的檩条和墙梁处,各设置一对隅撑。在斜梁下翼缘受压区隔一檩条设隅撑,并使其间距不大于相应受压翼缘宽度的16倍,见图3。

图3隅撑的设计

3.4高强螺栓连接设计

由于屋面荷载很轻,在设计荷载作用下,斜梁与柱的连接部位主要承受弯矩作用,剪力很小,高强螺栓以受拉为主。剪力由连接构件间的摩擦力传递剪力。本工程建筑大量采用阳光板,开窗面积少,风顺力大减少,相应剪力也小,选用摩擦型高强螺栓,因此表面可不作专门处理。不必进行摩擦而抗滑移试验,这有助于提高效益和降低成本。

3.5檩条设计

檩条的设计计算是最为困难的。首先,在目前设计规范或规程中尚无简单实用的计算公式供设计人员采用,其次,为节省钢材,轻钢结构中的檩条除用于承担梁的功能外往往兼作支撑体系中的压杆,同时还通过隅撑对门式刚架的梁和柱提供侧向支承。如果考虑门式刚架房屋中的蒙皮效应,则檩条的构造和受力计算更为复杂。檩条通常由薄钢板冷弯成型,计算中还需考虑屈曲后的有效截面等问题,因此,精确计算檩条的承载力非常困难。在竖向荷载作用下,檩条的自由翼缘受拉,受压翼缘由于和屋面有可靠的连接面不存在稳定问题。

由于Z型连续檩条是拱接而成的连续檩条,其内力分布较均匀刚度大,能节省用钢量,同时在制作、运输、安装诸方面都很便利,因此本工程采用Q345Z型檩条,内力计算按如下一种简单通用的模式考虑:按等截面连续梁计算模式,考虑活荷载按不利分布作用,光按50%活载均匀满布得到一个效应值S1,再用50%活荷载按最不利隔跨分布得到一个效应S2。两者相加即为最不利活荷载所产生的效应S。另外再考虑在支座处因搭接嵌套松动所产生的弯矩释放10%。

在风吸力作用下,檩条的自由翼缘受压。因此,当檩条下翼缘无面板侧向支撑时,必须对檩条的下翼缘进行稳定性验算。福州地区基本风压为0.7kN/m2,按门式刚架技术规程附录E公式计算结果得知,是风吸力作用下稳定计算起控制作用。选用Z180×70×22.2Q345,檩距1.2m,可以满足要求。

4结语

本工程至今已竣工投产近一年,吊车运转正常,经历几次强台风和冬夏大温差的考验,均能满足正常使用要求,取得较好的经济效益和社会效益。

轻钢结构的优点是节材高效,耗钢少,自重轻,制造安装运输简便,工期短,可拆迁,定型批量生产易于实现商品化等。近年来发展迅速,应用领域日益广泛。本工程采用刚接柱脚和Q345钢使用钢量减少了许多,经对比验算采用Q345钢的用钢量比采用Q235钢的用钢量下降16%左右,采用较平缓坡度(1/10)的门式刚度也可节约钢材。为达到进一步减少钢耗,降低成本的目的,还可以采用各种先进的科技手段,如引入预应力技术以加强结构刚度和承载力,提高结构稳定性,若能在檩条中张拉板材可以防止风吸力下的局部失稳和提高弹性受力幅值,将可大大减少檩条的用钢量。为此,在谋求改进方面希望本文能起到抛砖引玉的作用,同时我们期待着与专家同行的合作。请大家共同关注与探讨并指正。

参考文献

[1]陆赐麟,轻钢结构的重量应该更轻,建筑结构[J],2003(10)

[2]钢结构设计规范GB50017-2003