负载范文10篇

时间:2023-03-31 10:49:13

负载范文篇1

电负载系统的主要由控制系统和蒸发耗能系统组成。系统的控制电源为直流28V,负载消耗为三相115V/400Hz。控制系统自动采集负载的电流、电压和消耗功率,并且按照预先设定好的加载程序进行自动加载,能够实现自动和手动加载的切换,并且具备紧急情况下自动切除负载和应急排放热水的功能。电负载系统工作原理是控制系统通过上位机实时采集飞机电源系统的剩余功率,并且向上位机发出指令,蒸发耗能系统消耗飞机电源系统的剩余功率,将电能转换成为热能,消耗飞机电源系统和飞机APU系统,达到验证其性能的目的。

1.1控制子系统

控制子系统由直流28V供电,主要实现负载加载控制、负载参数及负载系统参数采集、冷却系统控制、应急情况控制以及自检功能。控制子系统主要由相关的接触器、继电器、滤波器以及控制计算机等组成,这些控制器件统一安装在飞机客舱的控制柜内,控制计算机作为中心控制单元,负责采集压力、温度、电流、电压、流量等各个传感器的实时数据,并对数据进行分析处理,判断整个系统的实时状态,接收用户命令,实现开关量、模拟量控制等功能。控制子系统具有自动、手动加载控制的功能;具有自检、告警以及应急断电功能;能够保证罐中负载消耗平衡,在负载不平衡时,能够自动切断负载单元;具有可视化操作界面,实时显示飞机消耗功率;能够及时采集压力、温度、电流、电压、液位等,并能及时作出响应,改变系统工作状态;当采集到各个蒸发罐的液位传感器低于设定值时,控制系统发出指令,补水泵从补水罐箱对其进行补水,使其达到设定值;当检测到补水罐的液位低于设定值时,控制系统发出指令,给出报警信号;当蒸发罐和补水罐的液位均低于设定值时,系统自动断电;在紧急情况下,该系统能自动放掉热水。

1.2蒸发耗能系统

蒸发耗能系统由补水排水子系统和负载子系统组成。能够实现能量转换,自动排放高温水蒸气。补水排水子系统主要由补水分系统、应急排水分系统以及注水、排水分系统等组成。补水分系统由补水罐、补水泵以及液位传感器等组成。当液位传感器采集到各个蒸发罐的液位低于设定值时,则自动启动补水泵,由补水罐向蒸发罐组输水,使其达到设定的液位值。应急排水分系统由应急排水泵、单向阀以及单向插板阀等组成,用于在飞机应急着陆前,排放掉蒸发罐内的热水。负载子系统实现电负载的分配和消耗。负载子系统主要由安装在蒸发罐里面的60个负载元件组成。每个负载元件的功率1KVA,绝缘层热稳定性不小于300°,绝缘电阻不小于20MΩ,每相电负载最小负载1KVA、共20KVA,均分在三个电加热器罐里,为保证负载消耗平衡,每次加载最小功率3KVA,总共可以实现60KVA的负载消耗。在出现负载不平衡时,系统具有自动切除功能。

2电负载系统设计

2.1硬件设计

电负载系统硬件组成主要由工控机、西门子PLC、传感器(电压、电流、液位等)、交流接触器、断路器、采集板卡等组成。

2.2软件设计

系统软件由两部分构成,分别是一体化工作站(上位机)程序和可编程控制器(下位机)程序。上位机主要用于监控整个系统详细的工作过程,跟据预先设定好的规律,执行相对应的加载规律,上位机具有友好的工作界面,操作界面,并且能够实时监测到加载的负载以及整个系统的运行状况。下位机程序主要采用的是梯形图进行编程,主要采集补水罐和蒸发罐的液位信号,接收上位机指令,实现负载自动加载、补水泵控制和报警断电等功能。整个系统有条不紊的进行。

3电负载系统实验

在完成了软件调试、控制机柜的接线以及外部线路接线工作以后,对电负载系统进行了地面联试实验,进行了地面长时间加载实验,首先进行了系统自检工作,自检完成后,模拟飞机剩余功率进行自动加载以及卸载规律设定,进行了长达4小时的实验,实验过程顺利,实验结果表明:系统能够按照预先设定的模拟飞机的加载、卸载规律进行工作,并且在水蒸气状态下,蒸发耗能系统能够将高温水蒸气排出;模拟了飞机上故障情况,该系统能够紧急卸载以及紧急排水。经过一系列的地面联试实验和分析,电负载系统功能完善,长时间工作运行稳定可靠,达到了设计要求。

4结束语

负载范文篇2

1功能目的论

功能目的论最早由德国的翻译理论家莱斯提出。她在1971年提出把“翻译行为所要达到的特殊目的”作为新的翻译批评模式。1984年,在由费米尔和莱斯共同撰写的《翻译理论基础概述》(GeneralFoundationsofTranslationTheory)一书中,他们正式提出了“功能目的论”的概念。费米尔认为,“翻译是一种在特定语境中发生的,有动机、有目的的人类行为”[1],翻译行为所要达到的目的决定整个翻译行为的过程,即“目的决定手段”。在此基础上,诺德提出了“功能加忠诚”理论,从而形成了两大基本原则:目的原则和忠诚原则。前者认为翻译目的决定翻译过程,后者则强调翻译既要尊重原作者,又要考虑读者,“忠诚”既包括对译文读者的重视,又是对原文作者和原语文化的尊重。因此,可对原文进行删减甚至改写,使译文在译语语境中“具有意义”,实现预期的交际目的。

2文化负载词

文化负载词是指标志着某种文化中特有事物的词、词组或习语,它们反映了特定民族在漫长的历史进程中逐渐积累的、有别于其它民族的、独特的活动方式[2]。中国是一个有五千多年历史的古老国度,积累了大量的文化负载词(王德春教授称之为国俗词语)。根据王德春教授主编的《汉语国俗词典》,中国的国俗词语(本文取廖七一教授的称谓,称之为文化负载词)可分为七种:

2.1反映我国特有事物,外语中没有对应词的词语;

2.2具有特殊民族文化色彩的词语;

2.3具有特殊历史文化背景意义的词语;

2.4国俗俗语或成语;

2.5习惯性寒喧用语;

2.6具有修辞意义的人名;

2.7兼具两种以上国俗词义的词语。

3目的论指导下新闻中文化负载词的翻译

在提及新闻标题的汉译时,方梦之认为:“翻译英语新闻标题时应该兼顾三个方面:准确理解标题,领悟其妙处;适当照顾译文特点,增强可读性;重视读者的接受能力。”[3]新闻中文化负载词的翻译,更要注意这些问题,否则可能导致整个报道产生歧义甚至失真。

3.1音译

音译是指根据词汇的读音巧妙地译为译入语的对应词。音译不仅可使译文读来琅琅上口,而且可保留译出语的原汁原味,因此常用于翻译中国特色的食物、服装、乐器、民间活动或是体育项目。这些表达基本都是单个词汇,不涉及典故。例如,食物方面,馄饨译成wonton,锅贴译成guotie;服装方面,采用旗袍、马褂的发音,分别译成qipao和magua;乐器方面有箫(xiao)、葫芦丝(hulusi),二胡(erhu)、琵琶(pipa)等;体育和民间活动方面,人们非常熟悉的太极(taiji)、功夫(kongfu)在很早之前就已经成为了英语中的外来词汇。这些词汇有的已被译入语读者所接受,有的虽没成为英语词汇,但却能引发读者的兴趣。

3.2直译

直译是指在翻译时既忠实于原文内容,又考虑原文形式,按字面进行翻译的方法,可用于翻译传统节日及政治性词汇。例如,“春节”通常直译成springfestival,一方面指出节日发生的时间,另一方面点明这是个举国同庆的节日。但是春节的意义及庆祝方式并不能看出,读者如果对此感兴趣,就会继续读下去。又如“三个代表”和“科学发展观”可按字面意思处理成threerepresents和scientificdevelopment,至于其内含,读者会根据自己的兴趣加以了解,有利于引起读者的阅读欲望。

3.3意译

意译是翻译文化负载词重要方法之一,是指忠实于原文内容,而在形式上另有创新的翻译方法。当直译可能导致原文化负载词的意义失真时,可以采用意译法,常见于特定时间、特定任务及新词汇的翻译。如“红色中国”没有直译成“redChina”,因为“红色”并不指颜色,而是象征革命和进步,特指中国接受马克思主义,进而走上了社会主义道路。如果采取直译,读者会摸不着头脑,不利于其对整个报道的理解,只能采用意译,将其译成“socialistChina”,点明“红色”是革命之色,当时的中国是充满着激情、向社会主义迈进的中国。

负载范文篇3

[关键词]“一带一路”;生态翻译;陕西民俗文化负载词;多维转换

1研究背景

文化负载词(culture-loadedwords)是语言系统中最能体现文化信息、反映一个民族特有社会生活的词、词组和习语等(廖七一,2000)。文化负载词是凝结民族历史与特色的符号,时常因难以实现对等的表述而出现原语有而译语缺失的情况(Baker,2000)。因此,文化负载词的翻译,一直是翻译中的难点。随着“一带一路”合作倡议的提出,陕西作为古丝绸之路和今“丝绸之路经济带”的起点,在中外文化交流中的重要地位日益凸显。为架起陕西民俗文化负载词与世界沟通的桥梁,让更多外国友人通过英语了解陕西民俗及其文化负载词,笔者从生态翻译(Eco-Transla-tology)的视角,以西安永兴坊为例,开展对陕西民俗及其文化负载词的翻译研究。

2生态翻译

生态翻译是由清华大学胡庚申教授提出的,起步于2001年,奠基于2003年(Hu,2003),整合于2006年,兴起于2009年,是一门新兴的翻译学说,推动了中国翻译从“照着说”到“接着说”再到“领着说”的巨变(贾延玲等,2017)。生态翻译理论建议从生态学的视角,对翻译活动进行整体性的研究,强调“翻译即适应与选择”,它将翻译过程描述为译者适应与译者选择的交替循环,所遵循的翻译原则是多维度(语言维、交际维、文化维)的选择性适应和适应性选择,具体的方法就是“三维”转换(胡庚申,2004)。生态翻译理论还建立了一套翻译评级标准,即多维转换程度、读者反馈以及译者素质(胡庚申,2004)。其中,语言维的转换,可以被理解为译者在翻译过程中对语言形式在不同方面、不同层次上的适应性选择转换;文化维转换,鼓励译者关注源语文化和译语文化在性质和内容上存在的差异,在翻译过程中关注双语文化内涵的适应性转换;交际维的转换,要求译者把适应性选择转换的侧重点放在交际意图能否在译文中得以体现(胡庚申,2013)。

3陕西民俗文化和西安永兴坊

3.1陕西民俗文化

陕西作为中华文明的发源地之一,其悠久的历史累积了丰富的民俗文化,涵盖物质民俗文化、精神民俗文化、社会民俗文化和口承语言民俗文化等多个方面。为了集中且系统地展示陕西民俗文化,陕西政府主持兴建了一批文化精品项目,西安永兴坊就是其中之一。于2014年12月20日首播的陕西电视台大型纪录片《美丽陕西》第32集,展示的就是陕西民俗文化的旅游名片——西安永兴坊。

3.2西安永兴坊

永兴坊位于西安市小东门里,紧邻西安城墙中山门,占地约15亩,原为唐朝名相魏征的府邸,现为仿古“坊”“肆”建筑群。建筑方面,在还原仿古特征的基础上,增添了许多陕西民俗元素,其中包括唐太宗嘉奖魏征直言进谏的“镜鉴”、陕西方言广场和陕西“八大怪”铁艺、剪纸等。经营内容方面,以省级非物质文化美食、市级非物质文化美食和各地名小吃为主,伴有手工民俗技艺表演等(永兴坊景区介绍)。

4西安永兴坊内陕西民俗文化负载词的生态翻译研究

4.1西安永兴坊的英译现状

西安永兴坊由塞纳河企业集团全程运营,现有下属西安永兴坊文商旅策划运营有限公司经营的“永兴坊文商旅”公众号不定期更新信息,在公众号内未查找到西安永兴坊翻译团队的相关内容,译者素质无从得知。受肺炎疫情影响,英语母语国读者反馈的翻译评价标准难以实施。经过实地考察(2020年10月),笔者从多维转换的程度入手,评析西安永兴坊内实现中英对照翻译的陕西精神民俗文化负载词“镜鉴”。

4.2陕西精神民俗文化负载词“镜鉴”的多维转换程度分析

负载范文篇4

传播一词原义为“分享”和“共有”,现在涵义更加广泛,是指个人与个人之间的信息交流和精神交往活动,指信息在一定社会系统内的运行。传播学在20世纪二三十年展成为一门学科,拉斯韦尔提出了著名的“5W”传播模式,还对应这五个环节勾画出了传播学的五种分析。到20世纪60年代末,传播学开始应用于翻译,尤金•奈达开始把通讯论和信息论的成果应用于翻译研究。20世纪90年代中后期,翻译学研究者开始提出翻译学的传播理论,认为翻译本身就是一种传播行为,将翻译学视为传播学的一个分支,用传播学理论来指导翻译研究。吕俊教授1997年发表了题为“翻译学——传播学的一个特殊领域”一文,在国内首次提出了翻译学传播理论。2007年张志芳的“从传播学视角看旅游翻译”以传播学的理论作为宏观的指导,指出旅游资料与其他文体不同,译者应采取以受众为中心的翻译策略,做好受众分析。

二、文化负载词的翻译策略

西安有着丰厚的历史文化积淀。而其大量的历史文化风景区也受到了了许多中外游客的喜爱。旅游文本的翻译,在西安旅游文化传播中占有举足轻重的地位。人们把能够反映特定民族在漫长的历史发展进程中逐渐积累的、有别于其他民族的、反映民族独特的活动方式的词汇称之为文化负载词汇(culture-loadedwords)。文化负载词的英译,是要让外国人了解和理解原语文化,因此译者应该从英语受众的角度出发,恰当处理文化信息,恰当选择翻译策略,有效传播中华文化。经研究,我们总结出西安旅游文本中文化负载词的翻译策略主要包括直译、音译、意译和加注。针对不同的词汇对应关系,采取恰当的翻译策略,可以达到翻译和交际、促进文化有效传播和交流的目的。

1、音译

音译,即将一些颇具汉语特色的词汇通过借用汉语拼音或拼写的方式融入英语词汇。这种方法能够完全地保留汉语的语音形式,能够原汁原味地保留中华民族传统文化的特色。在西安旅游文本的翻译中,也有很多词汇采取了音译的方法,比如西皮(Xipi)、锅盔(GuoKui)、乐府(Yuefu)等。不过,完全音译的翻译法不宜过多使用,否则拼音字母会对外国读者造成阅读障碍。对于文化负载词音译法的使用体现了中国的很多传统生活习惯和文化风俗在世界上的广泛传播和认可。

2、直译

所谓直译是指在符合译入语规范的情况下既保持原文思想内容,又不改变原文表达形式的翻译方法。直译不会引起读者的误解,不会产生信息传播中的噪音,反而会使读者感到信息很充足。比如汉砖(Hanbricks)、民间剪纸(thefolkpaper-cuts)、皮影(theshadowplay)、凉皮(thecoldnoodles)等,既能保留原文的风味,在不失去原文所表达的语言特点和民族文化特征的基础上,又能使译文易懂,以有利于中英文化的理解、交流和交融。

3、加注法

有些文化负载词在文化中涉及面比较广,内容丰富,简单的直译或音译会使异国读者在对源语言的文化背景缺乏足够了解的情况下难以理解。译者可采用加注法把原语里的词汇直接移入到译语中去,以使译语读者从译文中获取的交际信息尽可能地等同于原语读者从原文中获取的交际信息并同时丰富译语文化。采用这种译法翻译旅游资料中的文化负载词能够让外国游客感受到独特的民族文化,并产生旅游兴趣。加注法主要分为音译加注释和直译加注释,原文中如果出现该语言和文化中独特的表达方式、人物、事件等,在译语语言和文化中又找不到与之相似的表达方式、人物或事件时,译者可以考虑用音译加注释的方法来处理。如,人文初祖——RenWenChuZu(founderofthehumancivilization),是黄帝陵简介中对于黄帝的赞誉,外国游客读到“RenWenChuZu”可能不知所云,但读到注释就会对黄帝在中华文明中起到的作用了然于心。又如,才人——cairen(thefifth-gradeconcubineoftheemperor),若只有音译,外国读者可能只闻其音不详其义,读了注释就能明白,这是中国古代皇帝妃子的第五个级别。当直译可能会对外国读者的理解带来不便,但译者又试图彰显原文的文化特色时,可以采用直译加解释性说明的方法,既可以保留源语语言文化的特征,又使译文含义明确,便于外国读者的理解。如,大雁塔——theBigWildGoosePagoda(alsocalledDaCi’enTemplePagoda)、玄奘法师——MasterXuanZang(MonkTripitaka)。

4、意译

东西方文化的差异直接地表现在汉语与英语的差异上,旅游文本中大量文化负载词的存在,增加了翻译及旅游文化的传播难度。使用意译法可以使文化负载词在形式上和内容上都可以保留原文的民族语言特色,更好地传达该词汇的文化内涵。如,陕西十大怪(the10localpeculiarities)、百家争鸣(contentionbetweenahundredschoolsofthought)、太学(ImperialCollege)。

三、结语

负载范文篇5

关键词:电能质量;不平衡负载;三相逆变器;动态特性

电力系统主要由两部分组成:一部分是对称电路,另外一部分是不对称电路。普通的对称三相交流电指的是系统会产生三相幅值相等,相位互差120°的三相正弦交流波形。但是电力系统在实际运行过程中,因为各种原因,例如电线杆倒塌、线路断路等,都会造成系统输出的三相交流电不再对称,整个系统的所有过程,例如电力发电、输送电能、分配电能等,都会受到严重的影响,形成严重的后果[1]。普通的三相电路会产生不对称三相交流电的原因主要包括两个方面:第一种情况,系统所给定的三相电源本身就是不对称的。这种情况指的是电力系统中的A,B,C各相电动势处于不对称状态,此时,无论系统承接的三相负载阻抗值相等或者不相等,此时产生的电压波形都是不对称的三相正弦波。第二种情况,电力系统所连接的三相负载处于不对称状态。这种情况主要是由以下原因造成的[2-4]:第一,三相负载的阻抗值不相等。第二,电力系统处于比较恶劣的环境(整个线路产生短路或者断路等故障)下,造成三相负载不再相等。三相负载处于不平衡状态时,电力系统就会形成负序以及零序分量。此时,如果三相电源的阻抗值恒等于零,电力系统的功能就不会受到影响。然而,电力系统中的电源内部都会存在实际的电抗,必定会引起输出电压不再对称。三相电压处于不平衡状态体现在:1)A,B,C三相电压的幅值不相等;2)三者的相位不再对称,产生了一定的偏移;3)上述两种情况都存在。电力网络在实际运行中,经常会出现三相负载处于不平衡的情况,有时甚至会产生非线性负载。普通的三相电压型逆变器产生的三相电压耦合十分紧密,所以,没有办法产生对称的三相交流波形,如果需要解决非线性负载的问题,必须将高次谐波产生的严重影响考虑其中。为了解决这些问题,查阅大量资料,解决方案是改变普通逆变器的拓扑结构,主要包括以下几种。

1带分裂电容的三相逆变器拓扑结构

带分裂电容的三相逆变器拓扑结构见图1.这个逆变器的结构特点是:中间包含两个串联在一起的电容,电源Udc与两个电容行成的电路进行并联,在两个串联的电容之间有一条连接线,这样的结构使得带分裂电容的三相逆变器能够进行三相四线输出。由于带分裂电容的三相逆变器在结构上相当于将3个相同的半桥电路相互串联,因此,当它连接三相不对称负载时仍然能够产生对称的三相电压波形[5]。这个逆变器的优点主要是:第一,这个逆变器的拓扑结构相对比较简单;第二,这个逆变器中包含比较少的电子元器件。由于在两个相互串联的电容之间引出了一根连接线,相当于第四条连接线,系统中产生的中性电流就会从第四条连接线中通过,这就要求电力系统中电容的数值必须准确,才能确保系统产生更高的电能质量,电容器的存在相应地会增加整个逆变器的体积。这个逆变器也存在一定的缺点,通过计算可以得到,它对直流母线电压的使用率是比较低的,基本上只能达到50%的利用率,因此,这个拓扑结构基本上被应用在中型或者小型功率的设备中。

2带NFT的三相逆变器拓扑结构带

NFT的三相逆变器拓扑结构见图2。这个逆变器的结构特点为:与普通三相电压型逆变器进行对比,这个逆变器在三相滤波电容的后面多了一个结构NFT,NFT是中点行成变压器的简称。带NFT的三相逆变器具备连接三相不平衡负载和非线性负载的能力,原因在于如果系统中产生中性电流,NFT结构中的三个电感行成了一个完整的星形回路,中性电流就会在这个星形回路中不断流动,导致中性电流不会对其他电路产生影响,即其他电路中流过的中性电流相当于零。但是,带NFT的三相逆变器也存在一定的缺点:随着电力系统所输出三相电压波形不平衡度的数值变大,NFT的体积随之慢慢变大,当然,其重量也就随之增大。同时,为了提高整个逆变器的工作效率和电能输出质量,就会使得NFT中变压器绕组以特别复杂的方式缠绕在一起,增加了其与外部电路连接的复杂程度[6]。这个逆变器由于自身的拓扑结构变得复杂,使得其消耗的电能也会增加,因此,整个系统输出的电能效率就会有所下降。

3带D/yn变压器的三相逆变器拓扑结构带

D/yn变压器的三相逆变器拓扑结构见图3。图3带D/yn变压器的三相逆变器UdcbacSapSbpScpiciaibLLLiCiAiBABC三相负载CGScnSbnSanpNn这个逆变器的特点在于:与普通三相电压型逆变器相比,这个逆变器是在输出端的后面连接逆变器,最后连接所需要的负载,其中变压器的联结方式主要是三角形/星形连接,星形接法可以有中性线,也可以不连接中性线。如果所连接的负载处于不平衡的状态时,此种拓扑结构的优点是在中性线中会有电流通过,因为变压器左侧的结构采用三角形联结,所产生的中性电流就会在三角形中不断的往复循环,最终所产生的不平衡电流和不平衡电压就会被减小一部分,形成较好的输出波形。但是这个结构也存在一定的缺点,由于这个逆变器中明显地添加了一部分结构,就是由一次侧为三角形,二次侧为星形而组成的变压器结构,这种情况就会造成这个逆变器无论从体积还是重量方面都会明显增加。同时,逆变器由于自身结构的影响也会产生一定值的漏电电抗,因此,当这个逆变器所接的负载处于不平衡的状态时,最终所输出的三相电压有可能也会处于不对称的状态[7-8]。

4组合式三相逆变器的拓扑结构

组合式三相逆变器的拓扑结构如图4所示。从图4能够得到,此拓扑结构的特点是左侧三个完全相同的单相的逆变器,它们通过LC电路的耦合,最终形成了一个新的组合式三相逆变器。基于这个三相逆变器的结构特点,它的优点是左侧三个单相逆变器之间是独立的,因此,可以考虑将A相电路通过第一个逆变器进行控制,B相电路通过第二个逆变器进行控制,C相电路通过第三个逆变器进行控制。如果电路中所接的负载呈现不平衡的状态,这种拓扑结构可以起到良好的效果,使所产生的电压波形尽可能呈现三相对称的状态。当所使用的电器属于大功率电器时,大部分都会应用这种拓扑结构。但是这个组合式三相逆变器也有它的缺陷,在这个拓扑结构中,明显可以看出其中包括了12个开关,相比其他逆变器而言,它的数量明显偏多,导致这个逆变器自身的体积也会相应增加,因此,在真正应用的阶段,性价比较低。

5三相四桥臂逆变器的拓扑结构

三相四桥臂逆变器的拓扑结构主要呈现形式如图5,图6所示。将图5,图6进行对比,就可以发现图6是在图5的基础上添加了一个电感Ln,它的作用主要是滤除杂波。其他部分都是相同的,因此,将两种拓扑结构统一进行介绍。将它们与普通的三相电压型逆变器进行比较,可以发现,普通的三相电压型逆变器仅仅包含三个相同的桥臂,而这两个拓扑结构在原有桥臂的基础上增加了一个桥臂,形成了4个桥臂,构成了三相四线制输出方式,使其具备解决由于不平衡负载产生的三相不对称输出电压的能力。从它本身的结构能够看出,在第四个桥臂之间引出了一条中性线,中线和第四桥臂的交叉点被称为中性点,通过中性点的电压值大小主要是由第四个桥臂决定的。普通的三相三桥臂逆变器仅仅包含2个自由度,而三相四桥臂逆变器却拥有3个自由度。如果采用这个结构进行控制,需要把第1,2,3个桥臂进行解耦,这种情况下就可以对A,B,C三相电压进行分别控制,即使该拓扑结构所接的负载处于不平衡状态,甚至非线性状态,该逆变器依然能良好的解决这个问题,产生三相对称输出波形。三相四桥臂逆变器具备很多优点:1)相比其他的逆变器结构,它的拓扑结构比较简单,不需要增加其他的装置,体积和重量比较小;2)这种拓扑结构的电压利用率比较高;3)实际应用时,它的性价比较高。

6结语

当系统中所接的三相负载相等时,即负载处于三相平衡状态时,普通的三相电压型逆变器就可以满足需求,能够输出三相对称的输出波形,A,B,C三相电压之间角度相差120°,它们的幅值也是相等的。但是当电力系统由于电杆倒塌、短路、开路等故障时,通过逆变器产生的波形就会出现很大的偏负,不符合电力设备的需求,因此就要对这种现象进行解决。文中所提出的6种拓扑结构可以不同程度的解决这个问题,同时也对各自的优缺点进行了阐述。近年来,采用三相四桥臂逆变器拓扑结构解决这类问题比较多,因为此结构本身具备三相四线制输出,不但能解决不平衡负载的问题,还能一定程度上解决非线性负载的问题。当然,其他拓扑结构也都被应用到不同场合,大家可以根据自己的需求进行解决,使电力系统能够达到更高的利用率,造福万民。

参考文献:

[1]李江,周铁军,杨润冰,等.三相负荷不平衡自动调节装置在低压配电网中的应用研究[J].自动化技术与应用,2022,41(1):30-33,152.

[2]肖丽平,吕超,田紫君.统一电能质量调节器的结构及控制策略综述[J].智慧电力,2021,49(12):1-10.

[3]孔祖荫,张志,王泺涵,等.三相四桥臂逆变器的空间矢量调制研究[J].电子世界,2021(22):22-23.

[4]刘德华.配电网三相不平衡治理装置对比分析[J].大众用电,2021,36(11):32-33.

[5]邱梓霖.三相不平衡对配电网的影响分析[J].大众用电,2021,36(10):27-28.

[6]孙国文,赵徐成,刘章龙.基于组合式拓扑的三相逆变电路设计与仿真[J].装备制造技术,2017(16):194-196.

[7]吴斌,杨旭红.基于改进遗传PI和重复控制的三相逆变器并网研究[J].电力科学与技术学报,2021,36(6):151-156.

负载范文篇6

关键词:变频器容量选择校验

引言:

随着电力电子学、微电子学、计算机技术和控制理论的迅速发展,交流传动系统,在宽调速范围高稳速精度、快速响应和四象限运行等性能方面也达到了与直流调速媲美的效果。尤其是让变频器为核心的变频调速因其优异的调速性能而被公认为最有发展前途的调速方式。目前,变频器已迈进了高性能、多功能、小型化和廉价化阶段。为便于变频器的合理使用,本文将对变频器容量选择过程作简略探讨。

1、变频器容量的选择

变频器容量的选择是一个重要且复杂的问题,要考虑变频器容量与电动机容量的匹配,容易偏小会影响电动机有效力矩的输出,影响系统的正常运行,甚至损坏装置,而容量偏大则电流的谐波分量会增大,也增加了设备投资。

1.1变频器容量选择的步骤:

变频器容量选择可分三步:

(1)了解负载性质和变化规律,计算出负载电流的大小或作出负载电流图I=f(t)。

(2)预选变频器容量及其他

(3)校验预选变频器。必要时进行过载能力和起动能力的校验。若都通过,则预选的变频器容量便选定了;否则从(2)开始重新进行,直到通过为止。

在满足生产机械要求的前提下,变频器容量越小越经济。

1.2基于不用电动机负载电流下变频器容量的选择

一般地说,变频器的容量有三种表示方法:①额定电流;②适配电动机的额定功率。③额定视在功率。不管是哪一种表示方法,归根到底还是对变频器额定电流的选择,应结合实际情况根据电动机有可能向变频器吸收的电流来决定。通常变频器的过载能力有两种:①1.2倍的额定电流,可持续1分钟;②1.5倍的额定电流,可持续1分钟;而且变频器的允许电流与过程时间呈反时限的关系。如1.2(1.5)倍的额定电流可持续1min;而1.8(2.0)倍的额定电流,可持续0.5min。这就意味着:①不论任何时候向电动机提供在1min(或0.5min)以上的电流都必须在某些范围内。②过载能力这个指标,对电动机来说,只有在起动(加速)过程中才有意义,在运行过程中,实际上等同于不允许过载。

下面讨论如何根据电动机负载电流的情况来选择变频器的容量。

1.2.1一台变频器只供一台电动使用,即一拖一。

在计算出负载电流后,还应考虑三个方面的因素:①用变频器供电时,电动机电流的脉动相对工频供电时要大些;②电动机的起动要求。即是由低频低压起动,还是额定电压、额定频率直接起动。③变频器使用说明书中的相关数据是用该公司的标准电机测试出来的。要注意按常规设计生产的电机在性能上可能有一定差异,故计算变频器的容量时要留适当余量。

(1)恒定负载连续运行时变频器容量的计算。

由低频低压起动或由软起动器起动,而变频器只用来完成变频调速时,要求变频器的额定电流稍大于电动机的额定电流即可:IFN≥1.1IMN,其中,IFN—变频器额定电流,IMN——电动机额定电流。

额定电压、额定频率直接起动时,对三相电动机而言,由电动机的额定数据可知,起动电流是额定电流的5—7倍。因而得用下式来计算变频器的频定电流。

IFN≥Imst/KFg

式中Imst—电动机在额定电压,额定频率时的起动电流。

KFg—变频器的过载倍数

(2)周期性变化负载连续运行时变频器容量的计算。

很多情况下电动机的负载具有周期性变化的特点。显然,在此情况下,按最小负载选择变频器的容量,将出现过载,而按最大负载选择,将是不经济的。由此推知,变频器的容量可在最大负载与最小负载之间适当选择,以便变频器得到充分利用而又不到过载。

首先作出电动机负载电流图n=Φt)及I=f(t),然后求出平均负载电流Iav再预选变频器的容量,关于Iav的计算采用如下公式:

Iav=(I1t1+I2t2+…+Ijtj+…)÷(t1+t2+…+tj+…)

考虑到过渡过程中,电动机从变频器吸收的电流要比稳定运行时大,而上述Iav没有反映过渡过程中的情况。因此,变频器的容量按IFN≥(1.1—1.2)Iav修正后预选(式中,Ij为第j段运行状态下的平均电流,tj为第j段运行状态下对应的时间,同时若过渡过程在整个工作过程中占较大比重,则系数(1.1—1.2)选偏大的值。

(3)非周期性变化负载连续运行时变频器容量的计算。

这种情形一般难以作出负载电流图,可按电动机在输出最大转矩时的电流计算变频器的额定电流,可用该式IFN≥IM(max)/KFg(式中IM(max))为电动机在输出最大转矩时的电流,确定。

1.2.2一台变频器同时供多台电动机使用,即一拖多

除了要考虑一拖一的几种情形外,还可以根据以下三种情况区别对待。

(1)各台电动机均由低频低压起动,在正常运行后不要求其中某台因故障停机的电动机重新直接起动,这时变频器容量按IFN≥IM(max)+ΣIMN,(式中ΣIMN,为其余各台电动机的额定电流之和。IMst(max)为最大电动机的起动电流?

(2)一部分电动机直接起动,另一部分电动机由低频低压起动。

除了使电动机运行的总电流不超过变频器的额定输出电流之外,还要考虑所有直接起动电动机的起动电流,即IFN≥(ΣIMst’+ΣIMN’)/KFg,(式中,ΣMisty为所有直接起动电动机在额定电压,额定频率下的起动电流总和,ΣIMN为全部电动机额定电流的总和)。

上述是变频器容量选择的一般原则和步骤。生产实际中,还需要针对具体生产机制的特殊要求,灵活处理,很多情况下,也可根据经验或供应商提供的建议,采用一些比较实用的方法。

2、变频器起动加速为能力的校验

在电动机起动(加速)的过程中电动机不仅要负担稳速运行的负载转矩,还要负担加速转矩,如果生产机械对起动(加速)时间无特殊要求,可适当延长起动(加速为)时间来避让峰值电流。若生产机械对起动(加速)时间有一定要求,就要慎重考虑。如前所述,变频器的允许电流与过程时间呈反时限关系。如果电动机起动(加速)时,其电流小于变频器的过载能力,则预选容量通过,如果电动机起动(加速)时,其电流已达到变频器的过载能力,而要求的加速时间又与变频器过载能力规定的时限发生冲突,这时,变频器的容量应在预选容量的基础上增容。

负载范文篇7

1负载模拟系统的模型

系统的总体结构如图1所示,驱动电机和负载;模拟电机同轴连接,其中驱动电机是三相交流电机,加载电机为一台可以四象限运行的直流电机。通过对模拟电机进行控制,使其为驱动电机提供负载,完成对驱动电机的测试或者驱动电机伺服控制算法的研究。……扭矩传感器‘…‘;图l系统总体结构框图;由于驱动电机采用三相异步电机,为了取得良好的伺服控制效果,对其采用矢量控制,得出驱动电i机控制数学模型。:(+Ld)i一+丁Lms~r(1)lLqs:(+Lss)+L~tosd8+—Lm—o)s~br(2)fr:~’r•;=(3):PTL,.tpriq~(4)IrTLmLqs(5)I—rrr6=dt(6)IJ0、式中_-/Ads和分别为d轴和q轴定子电压;如和i分别为d轴和q轴定子电流;为转子磁链;Te为电磁转矩;R和R分别为定子和转子绕组电阻;和三分别为定子和转子绕组电感;为定子与转子之间的互感;∞。为转差频率;to为转子转速;∞为荤定子磁场同步转速;卜怠;Lr。絮方程如下:蓑一。)+Bt)to(7)一=(a++e)+(a+(7)馨;式中:J为驱动电机转动惯量;J为负载模拟电机载!转动惯量;t,为编码器的转动惯量;为驱动电机-ii的粘性摩擦系数;为负载模拟电机B的粘性摩擦系数。一般情况下,编码器的转动惯量远小于电机的i转动惯量,可忽略不计。

2负载模拟电机控制算法

文献[1]指出实际系统中的很多机械负载,它们的阻力矩与其转速之间存在一固定的关系,可以用下式来表示::d=n+.,ido)+B+6∞+c(IJ。(9)式中:a为恒定的转矩;.,为转动惯量;B为粘性摩擦系数;b和c分别为速度平方和速度三次方的系数。通过控制负载模拟电机使其模拟机械负载,则要求驱动电机驱动负载模拟电机的响应,应该等同于驱动电机驱动真实的机械负载一致,因此可得负载模拟电机的参考转矩,如下:=口+(.,一.,1)do)+(日一BI)co+6+c(cJ(10)对于负载模拟电机的控制,目前多数采用如图2所示的直接控制方法。a^c-,曰.丑.图2负载电机直接控制方法这种控制方法的特点是简单,但是精度较差。文献[1]提出了一种负载模拟电机转矩反馈的控制策略,通过转矩传感器测出轴上的转矩,这种方法能够提高测量精度和控制精度,该方法的结构如图3所示,本文采用该种控制算法。

3仿真研究

交流电机的参数:定子电阻0.435Q,电感2mH,互感70mH,转子电阻0.816Q,电感2mH,转动惯量0.089kg•m,粘性摩擦系数0.005N•m•s。直流电机参数:转动惯量0.05kg•m,粘性摩擦系数为0.01N•m•s,电枢电阻0.78Q,电枢电感0.016H。

3.1线性负载模拟实验

对于要模拟的机械负载,T,~a=a+J+乩+。+伽,取转动惯量J=0.003kg•In,取粘性摩擦系数B=0.15N•Ill•s,a=1,b=0,C=0,仿真实验曲线如图4所示。(a)定子电流{ol厂…一、………一-2。1(C)给定速度与实际速度(b)转矩~。L—广—碡—丁(d)速度曲线局部放大图一~卜——一言.。『’———厂一2一。2—砖—T—广—t/st/s(e)扭矩(f)负载电机转矩图4线性负载模拟仿真实验曲线从仿真实验曲线可见,驱动电机的定子电流波形是正弦波,谐波较小,控制效果理想;电机的实际速度能够跟踪给定速度的变化;负载电机转矩的变化同速度的变化趋势基本一致,控制效果理想,实现了对于线性负载的模拟。

3.2非线性负载模拟实验

对于要模拟的机械负载,:d=0+.,00)+乩+6+伽,取转动惯量.,=0.0005kg•In,取粘性摩擦系数B=O.001N•nl•s,a=1,b=0,c=0.002;仿真实验曲线如图5所示。萼.。眺(a)定子电流(b)转矩鞭(C)给定速度与实际速度(d)速度曲线局部放大图一2O『一、2O『善。—一善。r——一。2o占——1——市—一2‘20占——1——1t/st/s(e)扭矩(f)负载电机转矩图5非线性负载模拟仿真实验曲线从图5仿真实验曲线可见,对于非线性负载,驱动电机的定子电流波形也是正弦波,控制效果理想;电机的实际速度能够跟踪给定速度的变化,在1S时,通过降低转速测试系统的动态特性,发现驱动电机和负载电机转矩都能够按照预期的规律变化;负载电机转矩的变化同速度的变化趋势基本一致,控制效果理想,实现了对于非线性负载的模拟。

负载范文篇8

1前言

我国电力变压器产品可按容量大小分为大型变压器(容量大于或等于8000kVA)和中小型变压器(容量小于或等于6300kVA);也可按电压等级分为6kV、10kV、35kV、60kV、110kV、220kV、330kV和500kV等。作为电压变换设备,变压器被广泛应用于输电和配电领域,特别是10kV和35kV电压等级的变压器,在电力、工业和商业配电系统中被普遍使用,且数量巨大。1999年,我国年产变压器约33.8万台,其中10kV和35kV级约31.3万台,占92.6%。据估计,目前在电网上运行的10kV和35kV级变压器约有10亿kVA以上。由于使用量大,运行时间长,变压器在选择和使用上存在着巨大的节能潜力,特别是量大面广的10kV和35kV级变压器。选择高效节能产品,不但对节约能源具有重要意义,同时还可以大大降低变压器的运营成本,是企业改善经济效益的重要途径。我国10kV和35kV级变压器绝大多数为标准设计,其产品标准经历?quot;64"标准、"73"标准、"86"标准到90年代中期的"95"标准的不断进步,产品由原来的高损耗型(SJ,SJL…S7)发展到了现行的较低损耗型(S9型等)。截至1998年底,S7型变压器及以前的产品已由国家先后公布淘汰,停止其生产和销售。随着计划经济向市场经济的转变,以及社会对节能和环保的需求,我国变压器的效率水平将呈现出多样化的趋势。目前市场上已出现了比S9系列更节能的产品,如S10、S11系列等。

在电网使用的变压器中,役龄超过20年的老旧变压器仍约占10%以上。这些变压器是按照60和70年代当时"64"和"73"标准设计的产品,损耗非常高。与当前的S9系列相比,平均损耗高100%以上,节能潜力巨大。对于企业来说,如何从长远的经济效益出发,确定适当的变压器效率水平以及是否应该用节能变压器替换高耗能变压器,是变压器选购和管理中亟待解决的问题之一。

国际上有许多评价变压器能效的方法,所有的方法都要求比较变压器价格及其损耗费用。美国在70年代后期,由于能源价格的攀升,许多电力公司开始要求所设计的变压器应能具有最低的服务年限费用,这样就产生了总拥有费用(TOC)法。TOC法在美国于1981年发展成为工业标准。按照TOC标准购置变压器一直沿用至今,TOC方法是总和了变压器的初始费用和等价现值的损耗费用,表达所购变压器全面的综合费用。我们用TOC法曾评述过配电变压器S9型与S7型的经济效益,比较结果说明了S9变压器价格虽高于S7约20%,但损耗指标比S7低约21%,S9所多支村的资金可以在2~3年内从节约的损耗电费中收回。同样,用S9变压器更换80年前的老变压器产品进行效益比较的结果说明,在只支付S9的设备费不计老变压器回收价值的条件下,S9的资金也可以在2~3年内从节约的损耗电费中得到偿还。

本文介绍了用等价初始费用(EquivalentFirstCost-EFC)的总拥有费用法TOCEFC(以下简称TOC)评价变压器经济效益的具体方法及计算过程。

本文提供的方法参照了美国国家电气制造商协会的有关标准,即:美国NEMATP1-1996标准,并结合了中国的实际情况。

2总拥有费用法TOC(TotalOwningCost)

所谓总拥有费用(TOC),就是变压器的初始投资和其在使用期内的损耗费用之和。总拥有费用法通过比较具有不同效率水平和不同价格的变压器的总拥有费用,按照总拥有费用最低来选择变压器效率水平。

2.1TOC的计算公式

TOC=C+A×NL+B×LL

式中NL--变压器额定空载损耗或铁损,kW;LL--变压器额定负载损耗或铜损,kW;A--变压器寿命期间空载损耗每千瓦的资本费用,元/kW;B--变压器寿命期间负载损耗每千瓦的资本费用,元/kW;C--变压器初始费用,方案对比时可用其设

备价格,元。

2.2计算式参数的确定

2.2.1变压器空载损耗NL和负载损耗LL

变压器空载损耗NL和负载损耗LL都包括额定有功损耗并计及其无功功率在电网上的有功损耗,按下式计算:

空载损耗NL=P0+kQ0=P0+k(I0%Se/100)

负载损耗LL=Pf+kQf=Pf+k(Ud%Se/100)

式中P0--变压器额定空载有功损耗,即铁损kW;

Q0--变压器额定励磁功率,kvar;

Pf--变压器额定负载有功损耗,即铜损kW;

Qf--变压器额定负载漏磁功率,kvar;

k--无功经济当量,按变压器在电网中的位置取值,一般可取k=0.1kW/kvar;

I0%--变压器空载电流,%;

Ud%--变压器阻抗电压,%;

Se--变压器额定容量,kVA。

2.2.2A、B系数

A系数是变压器寿命期间单位空载损耗的资本费用(元/kW),B系数是变压器寿命期间单位负载损耗的资本费用(元/kW)。A和B两个系数对于变压器购买者掌握变压器空载损耗和负载损耗价值甚为重要。一旦确定A和B的数值,评价变压器的总费用就变得简单易行了。

对电力企业和非电力企业,A和B系数的确定有不同的方法。A和B系数与变压器空载损耗和负载损耗有联系的能量费用和容量费用呈函数关系。对于电力企业而言,由于单位损耗的能量费用和容量费用与发电、输电和配电的整个过程投资和运行方式有关,比较复杂,需由电力企业专业人员研究制定,本文在此就不予赘述了。

对于非电力企业,单位损耗的能量费用和容量费用则主要与该企业所负担的电价及变压器运行方式有关,本文给出了A、B系数的计算方法,对其在更广泛的行业所用数据见附录。

(1)系数A--变压器空载损耗每千瓦的资本费用

变压器空载损耗每千瓦的资本费用或系数A,通常可以看作变压器在寿命期不变的数,一天24小时,一年365天,20年不变(以下均设变压器寿命期为20年)。A的数值主要由电价来决定,等效于期初的现值表达式如下:

A=kPW×(EJL×12+EL×hPY),元/kW

式中kPW--现值系数={1-[(1+a)/(1+i)]n}/(i-a),(式中变压器使用期n年,年利率i,年通货膨胀率a,其中的关系见以下说明);EJL--两部电价中的基本电费(元/kW,月);

EL--两部电价中的电量电费(元/kW·h);

hPY--年运行小时数,一般取8760h。

(2)系数B--变压器负载损耗每千瓦的资本费用

变压器负载损耗每千瓦的资本费用或系数B,除了电价因素外,主要与变压器所带负载特征有关,负载特征可用年最大负载损耗小时数(由最大负载利用小时Tmax和功率因数确定,见附录中表1)以及负载率表示。重负载、运行时间长以及负载率高的生产企业,其系数B就大,反之则小。系数B的数值等效于初始费用的现值,表达式如下:

B=kPW×(EJL×12+EL×τ)×P2,元/kW

式中kPW--现值系数,同系数A;

EJL--两部电价中的基本电费(元/kW·月);

EL--两部电价中的电量电费(元/kWh);

τ--年最大负载损耗小时数(由最大负载利用小时数Tmax和功率因数cosφ确定,

见附录表1);

p--变压器负载率=变压器计算负载÷变压器额定容量。

(3)现值系数kPW对系数A和B的影响

在初期筹措变压器使用年限损耗费用的资金时,要考虑资金的时间价值,此时需将变压器运行中每年的损耗电费折算到投资初始的时刻,A和B系数均含现值系数kPW分量使其等值于设备购置同一时刻的初始费用。

现值系数kPW基于计算年限(变压器寿命)n、年利率i和年通货膨胀率a的三个因素,其计算式为:

kPW={1-[(1+a)/(1+i)]n}/(i-a)

从计算式可看出,已知计算年限为n,当年利率i愈高,计算所得kPW现值系数愈小,损耗费用的A与B系数也愈小。因为这时资金的时间价值高(利息高),故资金的投入也就减少。而年通货膨胀率a则反之,当a愈高,计算所得kPW现值系数愈大,损耗费用的A与B系数也愈大。因为这时物价上涨,货币贬值,货币资金的时间价值下降,资金投入也就要增加。

(4)常用的A、B系数为便于应用,在附录里我们提供事先计算好的按不同用电负荷类别和不同负载率的A和B单位损耗功率费用的数值。这与按照工程具体情况计算的A、B数据可能有出入,如需要数值精确可另作计算。

2.2.3价格

举例中的变压器价格取自机械工业出版社的《1999年机电产品报价手册》参考价格。

2.3TOC法的计算举例

计算S9-800/10与S7-800/10变压器的总拥有费用比较,使用年限20年,变压器运行在有色冶炼工厂,三班制生产,变压器负载率为75%。

解:(1)计算S9-800/10型,800kVA变压器的无功功率在内的损耗数值;

空载损耗PNL=P0+kQ0=P0+k×(I0%Se/100)

=1.40+(0.1×0.008×800)=2.04kW

负载损耗PLL=Pf+kQf=Pf+k×(Ud%Se/100)

=7.5+(0.1×0.045×800)=11.09kW

(2)同理,S7-800/10的损耗数值:

空载损耗:S7为2.5kW,负载损耗:S7为13.49kW。

(3)变压器空载与负载的损耗费用(使用年限20年):

查附录表1,对应有色冶炼行业,负载率为75%,A=48672元/kW,B=17668元/kW。

空载损耗费用:

S9变压器为A×NLS9=2.04×48672=99291元

S7变压器为A×NLS7=2.5×48672=121680元

负载损耗费用:

S9变压器为B×LLS9=11.09×17668=195938元

S7变压器为B×LLS7=13.49×17668=238341元

(4)变压器单价:S9为63640元,S7为55340元。

(5)使用期20年的TOC总拥有费用:

TOCS9=63640+(2.04×48672)+(11.09×17668)=358869元。

TOCS7=55340+(2.5×48672)+(13.49×17668)=415361元。

3投资回收年限的计算

投资价差回收年限计算分两种算法。

3.1简单计算

不考虑资金的时间因素,只计算支出费用,计算式:投资价差回收年限=两种变压器投资价差÷两种变压器年耗电费用价差

3.2计及资金时间价值的回收年限的计算式

计算两变压器(两方案)总拥有费用相等时的使用年数n值,便得计及资金时间价值的回收年。计算式:变压器1的TOC=变压器2的TOC:

两种变压器投资价差=kPW(两种变压器年耗电费用价差)

kPW=两种变压器投资价差÷两种变压器年耗电费用价差

此处的kPW系两种变压器投资价差和年耗电费用价差相等时的现值系数。

假设,通货膨胀率a=0,年利率i=0.07,依据现值系数kPW公式算出n值

n=log(1-0.07kPW)÷log[1/(1+0.07)]

3.3回收年计算举例

用S9型的35kV、3150kVA变压器更换SJ型的35kV、3200kVA老变压器,计算S9更换时投资的回收年限。投资只计算购置S9变压器,其费用为179800元;不扣除更换下来SJ老变压器的回收价值和更换过程中的拆装费用。变压器使用条件同举例1。

解:(1)简单计算回收年1分别计算出两变压器的损耗值SJ变压器空载损耗

PN=P0+kQ0=11+(0.1×0.04×3200)=23.8kW

SJ变压器负载损耗

PL=Pf+kQf=37+(0.1×0.055×3200)=54.6kW

S9变压器空载损耗

PN=P0+kQ0=4.5+(0.1×0.010×3150)=7.65kW

S9变压器负载损耗

PL=Pf+kQf=22.0+(0.1×0.07×3150)=44.05kW

2从附录表1查得A=48672,B=17668,乘以资金回收系数(=1/kPW),此处kPW=10.59。

S9的回收年=S9变压器购置费/SJ与S9变压器损耗费价差

=179800/{[48672×(23.8-7.65)+17668×(54.6-44.05)]/10.59}

=1.96年

(2)计算资金时间价值的回收年

kPW=两种变压器投资价差÷两种变压器年电费用价差

=(179800-0)/(200478.4-108651.2)=1.96

将kPW=1.96代入现值系数的计算式,便可得到计入计算资金时间价值的回收年n:

n=log(1-0.07×1.96)÷log[1/(1+0.07)]=2.18年

4附录:损耗系数A和B的确定

4.1典型的不同用电行业的A、B值

参考有关文献资料,可以查到一些典型行业的负载特点,与年最大负载利用小时数Tmax,cosφ=0.9和最大负载损耗小时数τ相关数据,按照TOC公式计算的A、B系数,如表1所示。

表1数据的计算条件:基本电价EJL=18/月·kW,电度电价EL=0.5元/kWh,变压器使用年n=20年,年利率i=7%,通货膨胀率a=0,功率因数cosφ=0.9。为便于计算,表2列出不同功率因数cosφ下最大负载损耗小时数τ与最大负载利用小时数Tmax的关系供计算参考。

说明:(1)表1中A和B系数是在特定的两部电价和寿命期时间价值下做的,如果电价及寿命期有变,表中的系数要按A与B的公式重算。一定的电价系数A是固定的,而系数负载率p按各行业最大负载损耗小时改变(即按最大负载利用小时数及功率因数改变)。

(2)掌握对应于变压器空载损耗单位费用的系数A和负载损耗单位费用的系数B,将有利于对选择变压器铁损和铜损大小的考虑。要注意的是在所有参与方案比较中,A、B系数是相同,

即空载损耗费用=A×空载损耗;负载损耗费用=B×负载损耗。

4.2最大负载损耗小时数τ与最大负载利用小时数Tmax的关系

负载范文篇9

关键词:变频器;输出特性;波形分析

引言

众所周知,我们所使用的市电频率是50Hz,但是,在实际生活中,有时需要的电源频率不是50Hz,这就需要变频电源。对一个电源来说,用户期望它在各种性质的负载下,都能输出稳定的电压,变频电源也不例外。因此,有必要研究变频电源在各种性质的负载(纯阻性,感性,容性,非线性)下的输出特性。

1实验方案

本实验的接线框图如图1所示。

50Hz的三相电网电压经变频器整流逆变后,输出频率可变(用户可自行调节输出频率)的正弦波,经LC滤波后,再经过升压变压器(作用是升压和隔离)加到三相负载上。三相负载可以是纯阻性,感性,容性和非线性。

本实验期望得到的结果是,当变频器的输出电压和输出频率设定为固定值时,此变频电源装置能在各种性质的负载下,输出稳定的电压和频率。

2参数选择

2.1变频器

本实验用的变频器是SIEMENS公司的MIDIMASTERVECTOR(MDV),它的输出功率是7.5kW,额定输入电压380V,输出电压可调,输入频率50Hz,输出频率可调。

2.2变压器及滤波参数

由于变频器输入额定电压是380V,输出电压在0~380V范围内可调,本实验设定变频器输出电压最高为300V,因此,就需要一个升压变压器,变比为300/380,使加在负载两端的电压为380V。

由于采用的滤波电路为LC滤波,其滤波电感和电容须满足式(1)

1/2μ(根号LC)≤根号f1fs(1)

式中:fs为变频器的开关频率,fs=4kHz;

f1取为fs。

所以根号f1fs=根号(800×4000)=1789Hz

如果取L=7mH,C=1.5μF,则=1/[2π(根号LC)]

1553Hz满足式(1)。

2.3负载参数

在纯阻性负载实验中,每相均采用5个250Ω,额定功率200W的电阻串联;在感性负载实验中,每相均采用3个250Ω/200W的电阻并联,然后再跟62mH的电感串联组成感性负载;在容性负载实验中,每相用3个10Ω/250W的电阻串联,再跟70μF的电容串联组成容性负载,另外,每相用5个250Ω/200W的电阻并联,再跟70μF的电容并联也组成容性负载;在非线性负载实验中,采用额定电压为800V,额定电流为20A的整流桥作为非线性负载。

3实验过程及分析

按图1接线,其中三相滤波电感L均为7mH,三相滤波电容均为1.5μF,变压器采用△/Y接法,变比是300/380,变频器输出频率设定为60Hz,然后接不同性质的负载进行实验。

3.1纯阻性负载实验及分析

三相负载均采用五个250Ω/200W的陶瓷电阻串联,输出电压为300V,当确认一切接线都没有问题时,开始实验,测得波形如图2所示。分析及说明如下:

1)由于变频器输出电压为300V,则变压器输入电压接近300V,而变压器变比是300/380,所以,理论上变压器输出电压为380V,其峰值为537V;

2)实验中,通过观察图2中的波形,得到变压器输出电压峰值的实验值为540V,接近理论值;

3)用频谱分析仪观察谐波分布,看到4kHz的谐波与60Hz基波相差最大,有30dB,即谐波约占基波的3.16%。

3.2感性负载实验及分析

把图1中的负载换成感性,其中每相均用3个250Ω/200W电阻并联,再跟63mH的电感串联,三相负载接成星形,输出电压为300V,当确认一切接线均没有问题后,开始实验,测得波形如图3所示。分析及说明如下:

1)用频谱分析仪观察谐波分布,发现此种情况下300Hz以内谐波及4kHz,8kHz谐波与60Hz的基波相差30dB左右,即谐波成分约占基波的3.16%,其余次数的谐波含量更低,表明滤波效果良好;

2)为了进一步改善波形,尝试把每相滤波电感由7mH换为10mH,再观察谐波分布,发现高次谐波(4kHz,8kHz)与基波相差33.6dB,波形有所改善,如图4所示;

3)由于本次实验所用电感的漆包线比较细,不能承受很大的电流,因此,把变频器输出电压调节为230V,此时理论上变压器输出电压峰值应为412V,观察图3波形,发现实验值为420V,基本接近理论值。

3.3容性负载实验及分析

3.3.1电阻与电容串联

把图1的负载换成三相容性负载,每相均由3个10Ω/250W的电阻串联,再与70μF的电容串联,变频器输出电压为298.4V,测得波形如图5所示。分析与说明如下:

用频谱分析仪观察谐波分布状况,发现最高次谐波为高次谐波(4kHz,8kHz),其倍频与基波相差35dB,即谐波成分占基波的1.8%,滤波效果非常好,有高次谐波,是因为变频器的开关频率为4kHz。

3.3.2电阻与电容并联

再把负载换成每相均由5个250Ω/200W的电阻并联,再与70μF的电容并联,变频器输出电压为303V,测得波形如图6所示。

3.4非线性负载实验及分析

把图1的负载换成额定电压为800V,额定电流为20A的整流桥作为非线性负载,变频器输出电压为300V,检查一切接线均无问题后,开始实验,实验情况如下:

1)整流桥输出电压波形,如图7所示,其理论值为515V,观察波形,实验值为520V,相差不大,实验效果还可以;

2)变压器输出电压波形,如图8所示。用频谱分析仪观察谐波分布,发现谐波比较厉害,其中300Hz的谐波最厉害,与60Hz基波相差20.6dB;120Hz,240Hz,1.2kHz,4kHz,8kHz谐波也较厉害,其中4kHz的谐波与基波相差28.8dB,8kHz的谐波与基波相差34dB;

3)尝试把滤波电容由1.5μF变为3μF,发现高频部分谐波有所减小,波形更接近正弦波;

4)再把滤波电感由7mH变为10mH,发现谐波分布无明显变化。

3.5实验结果总结

在综合分析了上述实验波形及数据后,总结如下:

1)当变频器输出频率设定为60Hz时,变频电源在各种性质的负载下输出频率也为60Hz,波动很小,符合设计要求;

2)在纯阻性负载情况下,变频器输出电压设定为300V,变频电源输出电压峰值为540V,在510V~564V的范围内(理论值的波动在±5%范围内);

3)在感性负载情况下,由于所用电感的漆包线比较细,承受电流比较小,最多3A,因此,把变频器输出电压调节为230V,此时变频电源输出电压峰值为420V,照此推论,如果变频器输出电压为300V,则变频电源输出电压峰值为549V,也在510V~564V的范围内,满足要求;

4)在容性负载情况下,当电阻与电容串联时,变频器输出电压为298.4V,变频电源输出电压峰值为530V;当电阻与电容并联时,变频器输出电压为303V,变频电源输出电压峰值为540V;

5)在非线性负载情况下,变频器输出电压仍然设定为300V,此时变频电源输出电压峰值为530V,也在510V~564V的范围内,同样满足要求。

负载范文篇10

图1所示是经常遇见的一种有两电个电源、3个变(配)电所的两端供电网络。开式运行方式通常采用的是:电源甲供变(配)电所A、C,电源乙供变(配)电所B;电源甲供变(配)电所A,电源乙供变(配)电所B、C。即变(配)电所C的负载是由电源甲供电,还是由电源乙供电,需在这两种运行方式中通过定量计算,优选损耗最小的经济运行方式。

为使分析计算简单化,计算中取电网运行电压U等于额定电压UΝ,各负载功率因数cosφ为平均值cosφp。这是因为电网运行电压在规定的范围内,与额定值的偏差最大不超过10%;目前在电网中普遍应用无功补偿装置,基本实现无功就地平衡,各变(配)电所负载的功率因数都比较高,这些假设对计算结果造成的误差很小。

本文首先对3个变(配)电所电网开式经济运行方式进行分析讨论,再深入到有多个变(配)电所的电网。

13个变(配)电所电网经济运行方式的判定

1.1有功经济运行方式的临界负载

令变电所A、B、C的负载分配系数分别为DA、DB、DC,其与各负载间的关系为

DA和DB的关系有

DA+DB=1(2)

当变电所C的负载SC由电源甲供电时,既要在线路L1C的R1C产生有功功率损失,又要引起线路L11的R11损失的增加,由负载SC所产生的总有功功率损失的ΔP甲C(kW)计算式

当变电所C的负载SC由电源乙供电时,既要在线路L2C的R2C产生有功功率损失,又要引起线路L21的R21的损失增加。由负载SC所产生的总有功功率损失的ΔP乙C(kW)计算式

以上二式中,当R11、R21、R1C、R2C、和Sσ、DC为常数时,则ΔP甲C=f(DA)和ΔP乙C=f(DA)。令ΔP甲C=ΔP乙C整理后得

(2DLPADC+DC2)R11+DC2R1C

=[2DC(1-DLPA)+DC2]R21+DC2R2C(5)

化简后,可求得临界负载分配系数DLPA

对式(6)进行分析,在DLPA=f(DC)函数关系中,有下列三种情况:(1)当(R21+R2C)-(R11+R1C)>0时,DLPA=f(DC)的曲线变化如图2a所示;(2)当(R21+R2C)-(R11+R1C)=0时,DLPA=f(DC)的曲线变化如图2b所示;(3)当(R21+R2C)-(R11+R1C)<0时,DLPA=f(DC)的曲线变化如图2c所示。

由图2可知:当实际工况负载DA<DLPA时应由电源甲供电为经济运行方式,当SA>DLPB时应由电源乙供电为经济运行方式。

1.2无功经济运行方式的临界负载

同理也可给出变电所C的负载SC由电源甲和电源乙供电的二种运行方式的无功功率消耗ΔQ甲C(kvar)和ΔQ乙C(kvar)的计算式

根据以上二式同理可导出变电所C由电源甲供电的无功经济运行方式临界负载系数DLQA

把图(2)中的DPA、DPC和DLPA分别换成DQA、DQC和DLQA,也适用于对无功经济运行方式的分析。

1.3综合功率经济运行方式的临界负载

变压器(电力线路)综合功率损失是指:由变压器(电力线路)的有功功率损失和无功功率消耗,使受电网增加的有功功率损失与变压器(电力线路)自身的有功功率损失之和。综合功率损失的概念和计算方法已纳入GB/T13462—92国家标准中。

同理也可给出变电所C的负载由电源甲和电源乙供电的二种运行方式综合功率损失计算式(略),并可导出变电所C由电源甲供电方式的综合临界负载分配系数DLZA的计算式

式中KQ—无功经济当量;

KP—有功经济当量。

无功经济当量KQ的物理意义是:变压器(电力线路)每减少1kvar无功功率消耗时,引起连接系统有功功率损耗下降的kW值。有功经济当量KP的物理意义是:变压器(电力线路)每减少1kW有功功率损耗时,引起连接系统有功功率损耗下降的kW值。