粉喷桩范文10篇

时间:2023-03-28 07:17:46

粉喷桩范文篇1

关键词:公路工程;粉喷桩;设计要求;软基处理

粉喷桩也叫加固土桩,它是利用粉状水泥(或石灰)等材料作加固化剂,在钻孔过程中使用特制的深层搅拌机械将固化剂喷入软土地基的深层,经搅拌使原位土与固化剂均匀混合并发生一系列物理、化学反应,使软土硬结成具有整体相互影响,共同作用承担上部荷载的粉喷桩复合地基。由于粉喷桩具有能有效减少总沉降量、能承受较大的加荷速率、抗侧向变形能力强、可大大缩短施工期等优点,目前在我省的地方公路建设中得到广泛应用。

1、粉喷桩设计方法

⑴技术要素的选用

在进行粉喷桩的设计时,有几项比较主要的技术要素,如基准期、容许工后沉降、加载速率、预压期等,而在进行这些技术要素的标准选用时,我们必须进行严格控制,在参照相关的规范标准等要求,并结合实际应用情况之后,才能进行合理的设计。目前,我省粉喷桩采用的设计标准普遍为:

①基准期及容许工后沉降:柔性路面设计使用年限为20年,按目前通常的做法,基准期亦为20年,即从开放交通之日起至路面大修日止,所发生的沉降视为工后沉降。其容许值对于一般路段取30cm,涵洞及箱型通道处取20cm,其它结构物与路堤相连处取10cm。

②稳定验算安全系数:稳定验算安全系数一般以K≮1.2控制。

③加载速率:加载速率关系到路堤在施工中的稳定性,设计采用两种平均速率:粉喷桩处理路段及填高小于极限高度的路段取15cm/d,其余取10cm/d。施工中的速率可根据路堤稳定观测的结果予以调整。

⑵桩体及桩位的布设

粉喷桩的桩径一般为50cm,设计的桩长宜穿透软土层并达到持力层内50cm。桩距与路堤的稳定和沉降量有关,最小桩距宜为1.1~1.2m,桩位在平面上呈正三角形(梅花形)或矩形布置。为改善路堤底面的受力条件,粉喷桩处理段路堤下宜铺设30cm左右的砂垫层。经计算,如涵洞、通道位置工后沉降量大于30cm,则其地基宜采用粉喷桩处理,桩间距宜采用1.1~1.2m。对于工后沉降量小于30cm而大于20cm的位置,则其地基采用土工合成材料加筋配合等载预压进行软基处理。经计算,如桩基桥台位置工后沉降量大于30cm,则对其台前及台后地基用粉喷桩处理,再施工桩基础及进行台后路基填筑。

⑶施工沉降观测

①观测点位的布设:观测点布设在路堤中心(以距离中心线50cm左右为宜)及两侧路肩,一般软土路段每100m布设一观测断面,预压施工高度超过5m的路段上每50m设一观测断面。此外在与跨度超过30m的桩基结构物相邻的两端各设一观测断面,跨度小于30m时仅在一端设置,观测断面宜离开桥头搭板1m左右。所有涵洞(包括箱形通道)处原则上均需设置一组沉降观测点,观测点位于涵背一侧,离涵背约2m处。在粉喷桩一般处理段、过渡段、等(超)载预压段接头处,应在离开接头各10m以外的位置分别设置一组沉降观测点,以观测不同处理方案的沉降差异,距离相近、地质情况一致的可考虑统一布点。在地质情况明显变化的分界线两侧各10m处,应分别布置一组沉降观测点。

②观测频率的确定:路堤施工期:每往上填筑一层便观测一次,路堤填高超过极限高度之后,每7d观测一次,直至稳定再转入正常观测。预压期:第一个月每7d观测一次,第二个月至第三个月每15d观测一次,从第四个月起每一个月观测一次,直到铺筑路面前。

2、工艺性试桩的设计要求

为了确定各种操作技术参数,粉喷桩施工前施工单位必须考虑到不同的地质情况,根据室内配比进行工艺性试桩,试桩应达到下列要求:

(1)满足设计水泥喷入量的各种技术参数。钻进速度:参考值V≤1.5m/min;平均提升速度:参考值Vp≤0.8m/min;搅拌速度:参考值R≈30r/min;钻进、复搅与提升时管道压力:0.1MPa≤P≤0.2MPa;喷灰时管道压力:0.25MPa≤P≤0.40MPa。

(2)水泥搅拌的均匀程度,掌握下钻及提升的困难程度,确定合适的技术处理措施。成桩试验的桩数不宜少于5根。

3、施工工艺要求及注意事项

3.1施工工艺要求

要根据工艺试桩确定的各种操作技术参数制定施工要点,供现场操作人遵守。严格控制钻孔下钻深度、喷粉高程及停灰面,确保粉喷桩长度和喷粉量达到规定要求。深度误差不得大于5cm,水泥损耗量平均不得大于1kg/m。粉喷桩要穿透软弱土层到达强度相对较高的持力层,并深入硬土层50cm,持力层深度除根据地质资料外,还应根据钻进时电流表的读数值来确定,当钻杆钻进时电流表的读数明显上升,说明已进入硬土层,如能持续50cm以上则说明已进入持力层。搅拌机每次下沉或提升的时间必须有专人记录,时间误差不得大于5s,提升前要有等待送粉到达桩底的时间,防止出现提升却未喷粉的情况,具体时间随机械类型与送灰管长度而变化在桩上部1/3范围内应重复搅拌一次,并且复搅长度不足5m的,按5m施工。特别需要指出的,对于软土天然含水量大于70%的地段,要求复搅长度应贯穿软土层。

3.2施工注意事项

3.2.1关于复搅与提升:在桩顶部1/3范围内应重复搅拌一次,高度至少大于5m.钻进提升时管道压力不宜过大,以防淤泥向孔壁四周挤压形成空洞。

3.2.2关于补喷和废桩问题:如发生意外影响桩身质量时,应在水泥终凝前采取补喷措施,补喷重叠长度≤1.0m。补喷无效时须重新打桩,新桩与废桩的间距≥20cm。

3.2.3输灰管须经常检查,不得泄漏及堵塞,管道长度以60m为宜。对钻头定期检查,直径磨耗量≤1cm,钻头直径≯53cm。

3.2.4在灌注桩两侧布设粉喷桩位时,应预留钻孔灌注桩施工位置,预留净距为140cm。

3.2.5成桩施工顺序从四周边开始向中心进行,相邻两根桩必须跳跃间打。

3.2.6砂砾垫层必须在桩体强度达到70%时方可铺筑。

3.2.7监理处必须对粉喷桩施工进行全过程旁站,按实际发生数量进行计量。

4、质量验收标准

对成桩质量的验收办法,可通过有以下四种方式进行检测:

4.1成桩7天内浅部开挖桩头,其深度宜为0.5m,目测检查搅拌的均匀性,测量成桩直径。检查频率为10%。

4.2用轻便触探仪检查桩的质量,触探点应在桩径方向1/4处,抽检频率为2%。

4.3成桩28天后在桩体上部(桩顶以下0.5m、1.0m、1.5m)分别截取3段桩体进行现场足尺桩身无侧限抗压强度试验,检查频率为1%~2‰。

4.4必要时可安排进行全桩长取芯,以检测粉喷桩的质量。粉喷桩施工允许偏差。

结束语

从近年来软基处理方式的应用效果上看,粉喷桩处理软土地基在目前来看仍然是一种行之有效的技术手段,它与其他软基处理方式相比,具有了预应力砼管桩、砂桩等所没有的一些技术优点。但从施工操作的角度出发,其技术难度较大,如果掌握不好,极易出现偏差,且因其为隐蔽工程,易留下隐患。所以,我们只有以科学的态度,按照设计的方法、标准来严格规范施工的工艺控制,只有这样,才能确保粉喷桩施工质量。

参考文献:

粉喷桩范文篇2

关键词:公路工程;粉喷桩;设计要求;软基处理

粉喷桩也叫加固土桩,它是利用粉状水泥(或石灰)等材料作加固化剂,在钻孔过程中使用特制的深层搅拌机械将固化剂喷入软土地基的深层,经搅拌使原位土与固化剂均匀混合并发生一系列物理、化学反应,使软土硬结成具有整体相互影响,共同作用承担上部荷载的粉喷桩复合地基。由于粉喷桩具有能有效减少总沉降量、能承受较大的加荷速率、抗侧向变形能力强、可大大缩短施工期等优点,目前在我省的地方公路建设中得到广泛应用。

1、粉喷桩设计方法

1.1技术要素的选用

在进行粉喷桩的设计时,有几项比较主要的技术要素,如基准期、容许工后沉降、加载速率、预压期等,而在进行这些技术要素的标准选用时,我们必须进行严格控制,在参照相关的规范标准等要求,并结合实际应用情况之后,才能进行合理的设计。目前,我省粉喷桩采用的设计标准普遍为:

①基准期及容许工后沉降:柔性路面设计使用年限为20年,按目前通常的做法,基准期亦为20年,即从开放交通之日起至路面大修日止,所发生的沉降视为工后沉降。其容许值对于一般路段取30cm,涵洞及箱型通道处取20cm,其它结构物与路堤相连处取10cm。

②稳定验算安全系数:稳定验算安全系数一般以K≮1.2控制。

③加载速率:加载速率关系到路堤在施工中的稳定性,设计采用两种平均速率:粉喷桩处理路段及填高小于极限高度的路段取15cm/d,其余取10cm/d。施工中的速率可根据路堤稳定观测的结果予以调整。

1.2桩体及桩位的布设

粉喷桩的桩径一般为50cm,设计的桩长宜穿透软土层并达到持力层内50cm。桩距与路堤的稳定和沉降量有关,最小桩距宜为1.1~1.2m,桩位在平面上呈正三角形(梅花形)或矩形布置。为改善路堤底面的受力条件,粉喷桩处理段路堤下宜铺设30cm左右的砂垫层。经计算,如涵洞、通道位置工后沉降量大于30cm,则其地基宜采用粉喷桩处理,桩间距宜采用1.1~1.2m。对于工后沉降量小于30cm而大于20cm的位置,则其地基采用土工合成材料加筋配合等载预压进行软基处理。经计算,如桩基桥台位置工后沉降量大于30cm,则对其台前及台后地基用粉喷桩处理,再施工桩基础及进行台后路基填筑。

1.3施工沉降观测

①观测点位的布设:观测点布设在路堤中心(以距离中心线50cm左右为宜)及两侧路肩,一般软土路段每100m布设一观测断面,预压施工高度超过5m的路段上每50m设一观测断面。此外在与跨度超过30m的桩基结构物相邻的两端各设一观测断面,跨度小于30m时仅在一端设置,观测断面宜离开桥头搭板1m左右。所有涵洞(包括箱形通道)处原则上均需设置一组沉降观测点,观测点位于涵背一侧,离涵背约2m处。在粉喷桩一般处理段、过渡段、等(超)载预压段接头处,应在离开接头各10m以外的位置分别设置一组沉降观测点,以观测不同处理方案的沉降差异,距离相近、地质情况一致的可考虑统一布点。在地质情况明显变化的分界线两侧各10m处,应分别布置一组沉降观测点。

②观测频率的确定:路堤施工期:每往上填筑一层便观测一次,路堤填高超过极限高度之后,每7d观测一次,直至稳定再转入正常观测。预压期:第一个月每7d观测一次,第二个月至第三个月每15d观测一次,从第四个月起每一个月观测一次,直到铺筑路面前。

2、工艺性试桩的设计要求

为了确定各种操作技术参数,粉喷桩施工前施工单位必须考虑到不同的地质情况,根据室内配比进行工艺性试桩,试桩应达到下列要求:

(1)满足设计水泥喷入量的各种技术参数。钻进速度:参考值V≤1.5m/min;平均提升速度:参考值Vp≤0.8m/min;搅拌速度:参考值R≈30r/min;钻进、复搅与提升时管道压力:0.1MPa≤P≤0.2MPa;喷灰时管道压力:0.25MPa≤P≤0.40MPa。

(2)水泥搅拌的均匀程度,掌握下钻及提升的困难程度,确定合适的技术处理措施。成桩试验的桩数不宜少于5根。

3、施工工艺要求及注意事项

3.1施工工艺要求

要根据工艺试桩确定的各种操作技术参数制定施工要点,供现场操作人遵守。严格控制钻孔下钻深度、喷粉高程及停灰面,确保粉喷桩长度和喷粉量达到规定要求。深度误差不得大于5cm,水泥损耗量平均不得大于1kg/m。粉喷桩要穿透软弱土层到达强度相对较高的持力层,并深入硬土层50cm,持力层深度除根据地质资料外,还应根据钻进时电流表的读数值来确定,当钻杆钻进时电流表的读数明显上升,说明已进入硬土层,如能持续50cm以上则说明已进入持力层。搅拌机每次下沉或提升的时间必须有专人记录,时间误差不得大于5s,提升前要有等待送粉到达桩底的时间,防止出现提升却未喷粉的情况,具体时间随机械类型与送灰管长度而变化在桩上部1/3范围内应重复搅拌一次,并且复搅长度不足5m的,按5m施工。特别需要指出的,对于软土天然含水量大于70%的地段,要求复搅长度应贯穿软土层。

3.2施工注意事项

3.2.1关于复搅与提升:在桩顶部1/3范围内应重复搅拌一次,高度至少大于5m.钻进提升时管道压力不宜过大,以防淤泥向孔壁四周挤压形成空洞。

3.2.2关于补喷和废桩问题:如发生意外影响桩身质量时,应在水泥终凝前采取补喷措施,补喷重叠长度≤1.0m。补喷无效时须重新打桩,新桩与废桩的间距≥20cm。

3.2.3输灰管须经常检查,不得泄漏及堵塞,管道长度以60m为宜。对钻头定期检查,直径磨耗量≤1cm,钻头直径≯53cm。

3.2.4在灌注桩两侧布设粉喷桩位时,应预留钻孔灌注桩施工位置,预留净距为140cm。

3.2.5成桩施工顺序从四周边开始向中心进行,相邻两根桩必须跳跃间打。

3.2.6砂砾垫层必须在桩体强度达到70%时方可铺筑。

3.2.7监理处必须对粉喷桩施工进行全过程旁站,按实际发生数量进行计量。

4、质量验收标准

对成桩质量的验收办法,可通过有以下四种方式进行检测:

4.1成桩7天内浅部开挖桩头,其深度宜为0.5m,目测检查搅拌的均匀性,测量成桩直径。检查频率为10%。

4.2用轻便触探仪检查桩的质量,触探点应在桩径方向1/4处,抽检频率为2%。

4.3成桩28天后在桩体上部(桩顶以下0.5m、1.0m、1.5m)分别截取3段桩体进行现场足尺桩身无侧限抗压强度试验,检查频率为1%~2‰。

4.4必要时可安排进行全桩长取芯,以检测粉喷桩的质量。粉喷桩施工允许偏差。

从近年来软基处理方式的应用效果上看,粉喷桩处理软土地基在目前来看仍然是一种行之有效的技术手段,它与其他软基处理方式相比,具有了预应力砼管桩、砂桩等所没有的一些技术优点。但从施工操作的角度出发,其技术难度较大,如果掌握不好,极易出现偏差,且因其为隐蔽工程,易留下隐患。所以,我们只有以科学的态度,按照设计的方法、标准来严格规范施工的工艺控制,只有这样,才能确保粉喷桩施工质量。

参考文献:

粉喷桩范文篇3

=0.03217+0.05258fcu(R=0.991,S=0.006,N=12,P<0.001)

从抗剪参数的变化过程可以看出,粘聚力随着掺入比的增加而提高,随抗压强度的增加而增加,当fcu=1.45~5.12Mpa时,其粘聚力c=0.4~1.11,内摩擦角变化幅度为17o~400。与原状淤泥质粘土相比,粘聚力和内摩擦角都有不同程度的提高,说明水泥土的抗剪强度远大于原状土。这是因为水泥混入土体后的硬凝作用产生的水泥水化硬凝物质增加了加固土的糙度,从而加大了剪切面的摩擦系数,提高了抗剪强度。根本原因在于抗压破坏与抗剪破坏的方式不同,抗压、抗拉依靠的是土颗粒间的联结力和结构支撑力起主导作用,而抗剪时土颗粒间粘聚力和土颗粒间的摩擦力起主导作用。另外,拉、压破坏面不是一个规则平面。如果土体中土颗粒不是完全被水泥石颗粒包围,破坏可以沿颗粒间的软弱面发生,当剪切破坏则是沿一相对平整的面,剪切对土体的破坏面不能绕过水泥土颗粒,这些颗粒起着抗剪切作用,从而提高了水泥石的抗剪强度。

根据试验的数据进行的回归结果来看,水泥土的粘聚力c与其无侧限抗压强度fcu大致呈线性关系,回归方程式如下:

c=0.18849+0.17043fcu(R=0.93761,S=0.07862,N=12,P<0.001)

拟合结果如下图所示:

图2—10粘聚力—抗压强度曲线图

第五节BP神经网络模型对水泥土抗压强度影响因素的分析

室内配比试验目的是希望通过对试验资料的分析,了解各种影响因素与抗压强度之间的内在规律性,来指导粉喷桩的设计及施工。以往的做法是对样本值进行多元线性回归建立经验公式,然而,这一过程存在诸多问题。掺入比、含水量等因素与抗压强度的关系无疑是非线性的,用线性模型来拟合非线性关系,效果是不能令人满意的,这一点可以通过模型的适合性检验和残差分析得到反映;就线性模型本身而言,其应用范围的狭小和局限性,是显而易见的。鉴于水泥土自身结构的复杂性和对其加固机理的研究尚待进一步深入,用传统的数学工具模拟上述非线性过程,建模相当困难。由于影响粉喷桩的因素如掺入比、含水量、饱和度、加固土密度、龄期等较多,且诸因素相互作用,交叉影响,使的室内配比试验成果表象复杂,数据离乱,无明显的关系存在,给成果分析带来困难。再又因为试验成本的缘故,很难达到满足常规分析计算需要的样本量,亦不能保证试验样本有较好的分布规律,往往使量化结果与定性分析产生矛盾。如何明确系统的非线性关系,通常有两种办法来解决:第一种是采取“分段线性”的处理方法,如采取多元线性回归等手段;另一种方法是利用混沌论、奇异吸引子、吸引凹陷和分形等数学工具来分析非线性系统。然而这些数学工具大多只能给出严格边界条件下类似解的存在性这样的证明而不能给出明确可行的求解方法,对回归模型而言,它主要适用于大容量样本情况下,对因变量来说,自变量的离散程度在一定范围内,进行回归分析才能得到较好的结果。有没有一种方法,使得我们离开深奥的数学工具也能了解复杂的非线性系统?神经网络理论提供了另外一种解决此类问题的可能性。

一.神经网络及BP模型简介

一般而言,神经网络是一个并行和分布式的信息处理网络结构,它由许多个神经元组成,每个神经元有一个输出,它可以连接到很多其它神经元,每个神经元输入有多个连接通路,每个连接通路对应于一个连接权系数,一个简单的人工神经元结构如图2—11所示,该神经元是一个多输入、单输出的非线性系统,其输入输出关系可描述为

式中,为节点的输出;是从

其他节点传来的输入信号;为节点

j到节点i的连接权值,反映了输入

的影响大小;为阀值,表示当前节点对输入产生的影响总和进行判断,若大于,系统认为此次影响作用明显,并将其反映在输出,否则,此次影响作用将不被考虑;为传递函数,可为线性函数,或型函数(如=,=),或具有任意阶导数的非线性函数,它描述了多输入值对输出的综合影响。

神经网络是一个非线性动力系统,特点在于信息的分布式存储(配比试验的规律性信息表示为权值和阀值的大小)和并行协同处理,它具有集体运算的能力和自适应的学习能力,很强的容错性和鲁棒性,善于联想,综合和推广。

神经网络模型有各种各样,代表性的模型有感知器、多层映射BP网络、RBF网络、双向联想记忆网络、Hopfield模型等。利用这些网络模型可实现函数逼近、数据聚类、模型分类、优化计算等功能。

BP网络是一单向传播的多层前向神经网络,结构如图2—12所示,其主要功能是函数逼近。网络通常有一个或n个隐层,同层节点间无任何连接和耦合,故每层节点的输出只影响下一层节点的输出。隐层中神经元均采用SIGMOID型变换函数,这种函数变换可实现从输入到输出的任意非线性映射;输出层的神经元采用纯线性变换函数,这可以避免使网络输出限制在一个较小范围内,达到可以输出任意值的目的。信息在模型中的传递和加工是逐层进行的,随着层数的深入,信息中所蕴涵的规律逐渐被了解、存储、综合,最后经输出结果统一表现出来。对本次配比试验而言,层的具体含义可理解如下:第一层的神经元接受各种影响因素的输入,对同一配比方案,第一层的神经元同时进行运算,利用传递函数计算结果的过程就是神经元存储信息的过程;第二层神经元接受上层神经元各自独立、并行计算处理的结果后,对获得的信息判断、整理、综合后输出,从而形成反映整个系统规律的映射。

图2—12

Hecht-Nielsen的论文中指出:1.给定任一连续函数f:[0,1]n→Rm,f可以精确地用一个至多三层的前向神经网络实现。它表述了映射网络的存在性,保证任一连续函数可由一个至多三层BP网络来实现。2.给定任意ε>0,对于任意的L2型连续函数f:[0,1]n→Rm,存在一个至多三层神经网络,它可在任意ε平方误差精度内逼近f。这就告诉我们,对任意连续函数一定可以构造出这样的BP网络模型。

二.BP模型应用分析

BP网络模型应用于配比试验分析,就是通过对简单的非线性函数进行数次复合,近似任一复杂函数,从而确定掺入比等影响因素和强度之间的函数关系。而且,实现这一功能的过程仅仅是利用试验样本值对模型进行训练和学习的过程(即通过推理和逼近的方法对网络的权值和阀值调整),其间并不要求对此结构和过程有较深认识,使分析的复杂性得到极大的简化,易于理解并提高了实用性。在配比试验中应用BP神经网络模型,具有以下几点优点:

并行处理性。网络各神经元可以同时进行类似的处理过程,整个网络的信息处理是大规模并行的。虽然每个神经元的功能简单,但大量简单的处理神经元进行集体的、并行的活动能减少神经网络完成识别任务所需步数,从而提高网络模式识别能力。与传统数学(如回归分析)串行处理相比,并行计算的效率更高。

规律的分布性描述和样本的容错性。抗压强度和各影响因素之间因果关系的信息,在网络的存储是按内容分布于许多神经元之间的权中,每个权存储多种信息的部分内容,从单个权中看不出存储信息的内容。这种映射关系的产生,部分来自于非线性是神经网络中固有性质这一事实,部分是因为许多独立单元的激励,决定系统的总体响应。这类似于全息图的信息存储性质,局部带有遗失或错误信息的数据使得网络重新调用自己存储的模式,同时有误信息被填充或修改。网络模式的完善和容错功能,在配比试验中的实际意义在于,对试验结果中离群点的处理上,比传统方法采取摒弃的手段有所改进,它容忍这些点的存在并吸取其合理内容,通过泛化(Generalization)功能对于不是样本集合的输入也能给出合适的输出。

可塑性、自适应性和自组织性。神经元之间连接的多样性和可塑性,使得网络可以通过学习与训练进行自组织,以适应不同处理信息的要求。这种学习功能在配比试验中的实现,主要是根据不同配比方案产生不同强度的样本模式,逐渐调整权值和阀值,使网络输出和希望输出之差的函数(如差的平方和)最小,权值和阀值的调整过程就是系统规律性信息的存储过程,样本量的增加可以加强信息的存储,从而更好的反映系统的非线性映射关系。

BP神经网络模型自身结构的特性也说明了其应用于室内配比试验的合理性。在这种网络中,输入是正向传播,逐层处理,每一层神经元的状态只影响下一层神经元的输出,其突出特点是无反馈性,即输入值不影响系统初始状态。对室内配比试验而言,试验过程本身是不可逆的,抗压强度由掺入比等因素决定,但同样的强度也可能是不同配比方案的结果,仅仅由抗压强度不能反演出影响参数,这一特征决定了用反馈型神经网络建模是不合适的。

BP神经网络的传递函数对隐层采用S型函数描述单个神经元对刺激的响应,一方面,它将神经元的输入范围(-∞,+∞)映射到某一确定区间,如(-1,+1),使各影响因素对目标变量抗压强度的变异性处于同一水平;另一方面,S型函数的曲线变化趋势与单因素对抗压强度的影响趋势雷同,经过对配比试验中各影响因素与水泥土的抗压强度关系分析可知,波速,掺入比,龄期等诸因素与抗压强度的相关关系大致呈指数曲线走向,以波速—抗压强度曲线为例,具体影响规律见图2—13,S型函数的曲线变化见图2—14。

图2—13抗压强度—波速曲线图图2—14S型函数曲线图

这说明S函数可以比较合理的模拟试验过程,从而更好的反映系统的映射关系。输出层节点的传递函数采用线性函数,它可将上一层神经元的输出经权值和阀值调整并累加后输出,其过程的物理意义被理解为对前一层神经元受掺入比等影响因素的激励后作出的响应的合理性进行判断,并通过将响应的合理部分迭加来模拟各种影响因素对抗压强度的综合贡献。

BP神经网络的训练和学习过程,就是通过逐步调整模型的权值和阀值来存储系统内在规律性信息的过程,从而达到正确反映抗压强度和影响因素之间映射的目的。其学习过程的基本思路是:把网络学习时输出层出现的与试验结果不符的误差,归结为连接层中各节点间连接权及阀值(有时将阀值作为特殊的连接权并入连接权)的“过错”,把误差逐层向输入层逆向传播“分摊”给各连接节点,从而可算出各连接节点的参考误差,并据此对各连接权进行相应的调整,使网络适应要求的映射。

三.工程实例

结合宁高公路二期工程粉喷桩软基处理,本次试验用土取自宁高公路(洪蓝至双牌石段)工地现场,并在室内使土样完全扰动,利用现有的土工试验仪器,土样试块为70mm×70mm×70mm的立方体,空气养护,搅拌方式为干搅,按照土工试验规程进行试验,本次配比方案掺入比为8%、12%、15%,含水量为30%、40%,龄期为30天、90天。为了验证BP模型拟合数据时样本需求量少,分析能力强的特点,本文选择了包含所有因素变化情况的最少组数(3×2×2)的试验结果进行分析,各组加固土的物理力学性能见表2—9:

表2—9.室内配比试验成果表组数

掺入比(%)

龄期(月)

含水量

孔隙度

饱和度

波速(km/s)

干密度(kg/m3)

抗压强度(Mpa)

1

15

1

0.211

0.575

0.893

1.783

1.66

3.47

2

15

3

0.153

0.535

0.62

1.813

1.63

5.12

3

12

1

0.222

0.588

0.945

1.645

1.69

2.36

4

12

3

0.192

0.555

0.816

1.626

1.66

3.58

续表2—95

8

1

0.234

0.62

0.926

1.414

1.61

1.49

6

8

3

0.204

0.594

0.797

1.278

1.66

2.42

7

15

1

0.289

0.796

0.861

1.611

1.43

1.97

8

15

3

0.264

0.775

0.771

1.620

1.42

4.58

9

12

1

0.298

0.78

0.931

1.566

1.44

1.74

10

12

3

0.248

0.726

0.78

1.565

1.47

3.30

11

8

1

0.325

0.866

0.91

1.478

1.38

1.51

12

8

3

0.289

0.801

0.842

1.365

1.40

2.48

根据试验结果建立BP网络模型,仿真各种因素对抗压强度的影响过程,网络模型结构见图2—12。利用高性能的可视化软件MATLAB中神经网络工具箱进行分析计算。由于采用并行计算的方法,模型本身可以通过增加节点数、隐层数或训练步数等方法将系统误差控制在指定范围内,而不需要再进行额外的试验,因此,在本次室内配比试验的组数比常规试验组数大大减少的情况下,采用两层BP网络模型来完成函数逼近任务。由于试验过程中对抗压强度而言,影响因素的个数有7个,因此初次确定隐层的神经元个数选7个,根据结果知最大训练步数不够或隐层中神经元个数太少。因此将神经元数目增加的14个,最大训练步数为100000次,此次训练到92885步时,仿真精度达到要求。

计算结果如表2—10:

表2—10.抗压强度计算结果与试验结果对比试验结果

1.49

1.51

1.63

1.97

2.36

2.42

2.48

3.3

3.47

3.58

3.58

5.12

多元回归

1.659

1.203

1.672

2.481

2.381

2.486

2.368

3.516

3.032

3.335

3.726

5.048

相对误差回归

0.113

0.203

0.026

0.259

0.009

0.027

0.044

0.065

0.126

0.068

0.040

0.014

BP模型

1.512

1.485

1.623

2.001

2.357

2.407

2.456

3.410

3.452

3.545

4.522

5.129

相对误差BP

0.015

0.016

0.004

0.015

0.001

0.005

0.009

0.033

0.005

0.010

0.263

0.001

由表2—10可以看出,回归模型的计算结果与样本值的偏差较大,最大时达到了20%以上。而且,对同样的样本群而言,回归模型一旦确定,其系统误差(计算值与试验结果之差)的大小也随之被确定,改善系统误差的有效办法只能是增加样本数量,这将直接带来试验成本或工程投入的加大。对BP神经网络而言,其输出不仅能较好的代表试验结果,与此同时,模型本身可以通过增加节点数、隐层数或训练步数等方法将系统误差控制在指定范围内,而不需要再进行额外的试验,这一点对工程实际而言具有十分重要的经济价值。根据本次试验的网络误差平方和随训练步数的变化趋势可知,BP神经网络系统误差平方和随步数的增加而逐渐趋于一极小值,只要模型结构合理,隐层中神经元个数足够多,保证必要的训练步数,系统误差可以控制在任一指定的误差指标范围内。

图2—15以方框表示权值矩阵和阀值矢量中元素,其面积正比于元素幅值。阀值和权值之间用垂线划开,形象表示权值和阀值对神经元输出的影响强弱。对权值和阀值而言,亮色代表正值,暗色反之。

图2—15.权值W1和阀值B1方框图

图中第一列表示本次二层的BP网络模型中隐层的阀值大小,第二列到第八列分别表示与掺入比、龄期、含水量、孔隙度、饱和度、波速和干密度有关的权值大小。图2—15中行的含义可以理解为,对同一次配比试验结果,14个神经元相互独立的进行分析,每个神经元都不同程度反应了此次配比试验中影响因素与水泥土抗压强度的关系,换句话说,模型获得的影响因素和强度相关性信息相当于进行了14次配比试验所得到的结果,神经元并行计算的特点,用在室内配比试验结果分析中,可以达到明显减小样本量的效果。

权值和阀值方框图存储的是此次室内配比试验中各影响因素和抗压强度之间因果规律信息。根据权值分布特点可得到如下认识:在各种影响因素中,波速的显著性水平明显高于其他因素,因为波速对应的权值幅值(图2—15第七列框图)明显高于其他影响因素的权值幅值,其倍数分别为十几倍到几十倍不等,这说明波速和抗压强度之间的联系非常紧密,对工程应用而言,通过测定波速的大小了解水泥土抗压强度是可行的,根据图2—13描述的函数关系,测得水泥土的声速就可以推知其抗压强度,这就为利用应力波(声波)的传播特性来测定粉喷桩质量提供了理论依据。

与其他因素相比,水泥掺入比与含水量对抗压强度的贡献较强,它们的权值幅值也相对较大,其权值幅度明显超过除波速外的其它所有影响因素。就水泥土加固机理来说,加固土的水解水化反应,硬凝反应和碳酸化作用,都离不开水泥和水的参与,因此在确定水泥土配比方案时,掺入比和含水量的作用是应当重点考虑的。除去以上两种因素外,干密度对抗压强度的影响也占有相当大的比重,其作用仅次于波速、掺入比和含水量。

关于干密度对抗压强度的影响,多元线性回归模型和BP神经网络模型的结论有所不同。笔者认为,回归方法由于自身结果的算法特点,决定了对干密度这种数值比较离散,数据相对偏少的情况的处理,回归分析的效果不能令人满意;BP神经网络可以通过并行计算的特点克服干密度样本值少的问题,而且利用BP模型对规律的分布式描述和对样本的容错性,可以对离散程度大的干密度输入,,通过模型的函数插值功能和泛化功能,给出合理的反应干密度对抗压强度的影响的输出。本文认为,对干密度的描述,BP神经网络所做的结论应该是正确的。根据这一点,说明通过增加加固土的干密度来提高其强度的措施也是十分有效的。

粉喷桩范文篇4

关键词:粉喷桩施工;公路工程;软基问题

我国开始大力进行交通公路工程建设,一方面是为了保证国家基础道路建设,另外一方面也是为了促进地区间的经济交流。而在实际的道路工程施工中,还会受到道路软基问题的影响,所以选择合理的加固方法对道路软基进行处理非常关键,一定程度上也关系到道路施工质量。在当前公路工程施工中,选择应用粉喷桩施工工艺是常见的方法,也可以有效的处理道路软基问题。所以,在实际道路施工过程中,使用粉喷桩施工工艺非常关键。

1粉喷桩工艺

粉喷桩工艺是当前公路工程施工中的常见工艺方法,同时也是道路软基处理的常见方法,其对于道路工程施工有非常重要的影响。粉喷桩道路施工工艺,也是一种加固土桩施工工艺,其在实际的施工中,主要是利用粉末状加固成分,喷入道路软基当中并进行搅拌处理,从而保证道路软件中的土壤成分发生变化,也能够在最大程度上提升土壤的承载力性能。在粉喷桩施工工艺实施中,其主要利用水泥以及石灰等材料进行软基固化处理。其在具体的工艺实施中,应用有桩位放样测量、钻机开钻、钻井深度设计、高压送气打开喷粉、搅拌工艺实施以及成桩结束等多方面工艺,从而保证工艺实施更加合理,也能够在最大程度上提升工艺实施效果,保证道路施工更加合理[1]。

2具体工程

本工程为S高速公路施工,施工要求为一级公路标准,公路工程施工全长达到32km。工程施工中主要分为五标段施工,其中四标段施工过程中,发现出现道路存在软基问题。四标段道路全长5.642km、施工土方石达到944158m3、整个道路设计通道11座、涵洞10座。而为了保证S高速公路四标段施工更加合理,在实施的施工过程中,工程单位设计应用粉喷桩工艺进行软基处理,以下是对粉喷桩工艺实施进行具体总结。

3公路工程中粉喷桩工艺实施要点

3.1S公路四标段道路软基情况分析。在粉喷桩工艺实施过程中,对道路软基问题进行具体情况分析,并对粉喷桩工艺进行合理的设计。以下是对S公路四标段道路软基情况进行分析。在S高速公路四标段道路施工过程中,发现道路软基问题,其软基路线长度达到10700m左右、软基层厚度在1.8-14.3m、软基中主要包括灰色淤泥、软压黏土、软塑-流塑状态黏土等组成。经过实际测量分析发现,四标段软土路基中其天然含水量达到32-47%之间,孔隙比为0.9-1.36、压缩系数为0.23-1.04、而液性指数为0.82-1.14。严重的软基问题给施工造成了极大的不便,也影响到后期的施工合理展开,所以在实际的施工处理过程中,应该注重采用粉喷桩工艺对软基进行有效的处理,从而保证道路工程合理展开[2]。3.2S公路四标段粉喷桩工艺方案设计。公路软基处理过程中,选择使用粉喷桩工艺实施非常关键,一定程度上决定了工艺实施效果,也关系到公路工程施工质量,而在粉喷桩工艺实施过程中,首要工作就是要完成粉喷桩工艺方案设计通过合理的方案设计,保证后续的施工合理完成。在本工程进行粉喷桩工艺应用过程中,主要设计有碎石垫层+土工格栅层施工、粉喷桩+填土预压方法实施,通过合理的方案设计,保证道路施工更加合理。在四标段进行粉喷桩施工设计过程中,其淤泥厚度达到1.05m、清淤总量达到了99382m3。设计应用粉喷桩16000根、等超载预压21001m3、土工布54482m3、土工格栅128830m3、砂垫层21392m3、碎石垫层25351m3。通过合理的粉喷桩工艺方案设计,保证合理的方案设计,保证第四标段粉喷桩工艺实施更加合理[3]。3.3粉喷桩工艺具体实施分析。粉喷桩施工工艺是相对复杂的软基处理工艺,其处理效果相对比较好,所以在实施的粉喷桩工艺实施过程中,应该注重粉喷桩实施效果提升,控制好粉喷桩施工效果流程,保证粉喷桩工艺实施更加合理。以下是对粉喷桩施工工艺进行相关总结。3.3.1粉喷桩设计环节。粉喷桩工艺实施过程中,对粉喷桩进行设计非常关键,以下是S高速公路四标段粉喷桩设计分析。a.对粉喷桩进行材料设计,本次工程实施过程中,粉喷桩工艺实施中主要是完成水泥和掺灰量的实际设计,通过各种设计方法的合理应用,保证粉喷桩工艺实施更有效果。实际的水泥选择过程中,根据水泥自身强度以及水泥的固化性能进行设计分析,本工程设计中根据地区内的软土地基情况,设计应用常用硅酸盐水泥进行粉喷桩工艺实施。掺灰量设计过程中,也对软土路基情况进行了实际的分析,并且在实际的分析过程中,设计掺灰量为50千克/延米,其桩体强度达到最高,也保证后续的粉喷桩实施效果更加良好[4]。b.实际的粉喷桩设计过程中,施工单位根据当前工程地质情况,设计了粉喷桩施工工艺各项参数。其中包括粉喷桩桩体长度设计、粉喷桩桩体距离设计、水泥土无侧限抗压强度设计、单桩承载能力设计以及符合地基承载能力设计等多方面内容。在S高速公路工程粉喷桩桩体长度设计中,主要设计桩体长度为10m、11m、12m以及13m。搅拌桩距离设计过程中,主要设计有1.1m桩距以及1.2m桩距。搅拌桩搅拌时间设计主要为27d-29d、通过搅拌桩搅拌时间的合理控制,保证桩体施工更加有效。对水泥土无侧限抗压强度进行了设计,其抗压强度设计0.8Mpa-1.2Mpa。粉喷桩单桩承载能力设计为107Kpa、120Kpa、115Kpa以及131Kpa。粉喷桩工艺实施过程中,要进行地基承载能力设计,其主要设计为106Kpa-144Kpa.通过各项参数合理设计,保证粉喷桩工艺实施更加合理,也能够在最大程度上提升软基处理效果。c.在本工程进行粉喷桩设计过程中,还对粉喷桩布局进行了合理的设计,实际的设计过程中,选择梅花式布局方法进行粉喷桩施工布局,以下图1为S高速公路四标段粉喷桩布局图。通过合理的粉喷桩布局,保证后续的施工更加合理。3.3.2粉喷桩具体工艺实施控制要点分析。在粉喷桩工艺实施过程中,其工艺实施方法应用非常关键,一定程度上决定了粉喷桩工艺实施效果,以下是对S高速公路四标段粉喷桩工艺施工要点进行具体的总结,主要包括以下几方面内容:a.施工场地清理。在粉喷桩工艺施工过程中,要先进行必要的场地清理,通过场地合理清理,保证施工有效展开,也能够最大程度上提高粉喷桩工艺实施效果。在实际的清理过程中,主要完成软土路基表面杂物清理、包括表面较大石块清理等内容,清理工作完毕后才能够进行粉喷桩工艺实施。另外,场地准备环节中还要进行桩位放样以及工程机械就位准备,从而保证工艺实施更加合理,也能够最大程度上提高工艺实施效果。b.施工具体控制要点。在粉喷桩工艺实施过程中,还应该对施工工艺进行必要的控制,完成各环节细节要点的设计,从而保证粉喷桩工艺实施更加合理。粉喷桩工艺实施前应该设计应用印喷灰计量设备,从而保证工艺实施更加合理,也能够在最大程度上提升工艺处理效果。粉喷桩工艺实施过程中要对钻机设备进行必要的准备,包括对机械设备进行质量检查和维修,从而保证钻机设备应用更加合理。实际的粉喷桩工艺实施过程中,应该控制好钻机工作速度,在本工程具体施工过程中,其钻机工作速度控制在≤1.0m/min范围之内,才能够保证范围施工应用更加合理。并且在喷灰过程中,也要适当的降速,将速度控制在≤0.8m/min范围之内,能够保证合理进行。实际的施工过程中,喷灰搅拌提升至离整平工程0.3m(或规定标高)处停喷;通过合理的控制粉喷控制,能够保证实际的工程施工更加合理,也能够在最大程度上提升施工质量。进行必要的搅拌施工,通过搅拌施工合理掌控,保证施工能够合理展开,最大程度上提升施工质量。在施工搅拌过程中,也应该合理的控制好搅拌速度,保证匀速搅拌工艺实施,能够在最大程度上提升施工效果,保证施工更加有效。搅拌完毕之后进行搅拌桩基处理,通过合理的搅拌处理能够保证工艺实施更加有效,最大程度上提升搅拌效果。c.对施工精度进行合理的控制,在本工程施工过程中,应该合理的控制施工精度,对粉喷桩施工精度进行合理的设计,最大程度上提升施工效果。以下表1为S高速公路粉喷桩工艺实施过程中,误差精度控制表。通过合理的误差控制,保证粉喷桩工艺实施更加合理,也能够在最大程度上提升粉喷桩工艺实施效果。d.粉喷桩检测工作也是非常重要的工作内容,一定程度上关系到粉喷桩工艺实施效果。在本工程实施粉喷桩工艺的过程中,应该注重对粉喷桩工艺进行合理的控制,保证工艺实施更加合理,也能够在最大程度上提升工艺实施效果。在本次粉喷桩检测工作实施过程中,主要应用CPT法、SPT法进行实际的检测,保证检测工作更加合理,最大程度上提升了粉喷桩工艺实施效果。S高速公路工程在实际的施工中应用了粉喷桩检测工艺进行工程施工,从而保证道路施工更加合理,也在最大程度上提升了道路施工效果,并且采用粉喷桩工艺进行了软土地基处理,也在一定程度上提升了道路施工安全性。

粉喷桩在公路软土地基处理中的应用非常关键,一定程度上关系到公路施工质量。并且粉喷桩应用还可以提升公路道路承载能力,对于道路施工而言也起到了非常关键的作用。通过S道路工程对粉喷桩在公路软土地基处理中的应用进行具体的总结,希望能够对道路工程施工有所帮助。

参考文献

[1]王银钢.粉喷桩在公路软土地基处理中的应用[J].中国建材科技,2020,29;170(02):99-100.

[2]许洪涛,于澜涛.粉喷桩在道路应用中的施工质量控制要点构架[J].中国战略新兴产业(理论版),2019(015):1-2.

[3]史炎森,范俊培.浅析粉喷桩在公路软土路基处理中的应用[J].汽车世界,2019(015):P.73-73.

粉喷桩范文篇5

关键词公路软土地基粉喷桩施工工艺检测方法

宁连公路北段高速化完善工程连云港市境内有13座跨线桥位于软土地基路段,其土层状态基本是表层1~3m厚硬塑层,下8~10m厚软、流塑层,再下为硬塑层(或基岩),采用粉喷桩处理软土地基,即以水泥作为固化剂,利用深层搅拌机械将水泥与原位软土进行强制搅拌、压缩,并吸收周围水分,经过一系列物理化学作用生成一种特殊的具有较高强度、较好变形特征和水稳性的混合柱状体,它对提高软土地基承载能力、减少地基的沉降量及保证桥头高填土路基稳定性具有明显的效果,下面结合工程实际对粉喷桩处理公路软土地基施工工艺与检测方法进行探讨。

1设计简介

宁连公路北段高速化完善工程(下简称“本工程”)粉喷桩设计桩径为50cm,间距1~2m,按梅花型布置,桩长以穿透软、流塑层进入硬塑层不少于50cm为原则,通常为8~12m,用于粉喷桩的水泥(425#普通硅酸盐水泥)为干粉。根据地基含水量的大小,采用水泥喷入量为45~60kg/m。含水量在40%以下时,水泥用量为45kg/m;含水量在40~60%之间,水泥用量为50kg/m;含水量在60~70%之间,水泥用量为55kg/m;含水量>70%时,水泥用量为60kg/m。设计要求水泥土28天无侧限抗压强度≥1.2MPa。

2施工准备

2.1粉喷桩施工前应准备下列施工技术资料:施工场地的工程地质报告,土工试验报告,室内配比试验报告,粉喷桩设计桩位图,原地面高程数据表,加固深度与停灰面高程以及测量资料等。

2.2场地平整、清除障碍。如场地低洼,应回填粘性土;施工场地不能满足机械行走要求时,应铺设砂土或碎石垫层。若地表过软,则应采取防止机械失稳措施。

2.3施工机具准备,进行机械组装和试运转。

2.4粉喷桩的施工工艺根据设计要求的配比和实测的各项施工参数通过试桩来确定。试桩一般为5根,通过试桩来确定钻进速度、提升速度、搅拌速度、喷气压力、单位时间喷粉量等。

2.5粉喷桩所用的水泥(425#普通硅酸盐水泥)应符合设计要求,并有产品合格证,并经室内检验合格才能使用,严禁使用受潮、结块变质的加固料。

3施工工艺流程

3.1粉喷桩施工。

3.2操作步骤为:

①深层搅拌机械就位。

②预搅下沉(至设计标高)。

③搅拌提升,同时喷干水泥粉至地面以下0.5m处(设计桩顶)。

④在桩上部的5m长范围内重复搅拌一次(1/3~1/2)桩长、桩上部强度要求较高。

⑤重复搅拌提升,直到离地面下0.5m,上部回填5%灰土(或水泥土)并压实。

⑥关闭搅拌机械移位至下一桩位。

4施工注意事项

4.1控制钻机下钻深度、喷粉高程及停灰面,确保粉喷桩长度。

4.2严禁没有粉体计量装置的喷粉机投入使用。

4.3定时检查粉喷桩的成桩直径及搅拌均匀程度。对使用的钻头定期复核检查,其直径磨耗量不得大于2cm。

4.4当钻头提升至地面以下0.5m时,喷粉机应停止喷粉。

4.5当喷粉成桩过程中遇有故障而停止喷粉,在第二次喷粉接桩时,其喷粉重叠长度不得小于1m。

4.6粉喷桩施工时,泵送水泥必须连续,固化材料的用量以及泵送固化材料的时间应有专人记录,其用量误差不得大于±1%。

4.7为保证搅拌机的垂直度。应检查起吊设备的平整度和导向架对地面的垂直度,每工作班检查不少于2次,使垂直度偏差不超过1%。

4.8搅拌机喷粉提升的速度和次数必须符合预定的施工工艺要求,搅拌机每次下沉或提升的时间应有专人记录,深度应达到设计要求,时间误差不得大于5秒,施工前应丈量钻杆长度,并标上明显标志,以便掌握钻入深度,复搅深度。施工中出现问题应及时处理、做好记录。

4.9储灰罐容量应不小于一根桩的用灰量加50kg,如储量不足时,不得对下一根桩开钻施工。

4.10粉喷桩必须根据试验确定的技术参数进行施工,操作人员应如实记录压力、喷粉量、钻进速度、提升速度、钻入深度及每根桩的钻进时间等,监理人员应随时检查记录情况。

5质量检测

5.1粉喷桩属地下隐蔽工程,施工质量受机具、施工工艺、施工人员的责任心等多种因素的影响,因而其质量控制要贯穿于施工的全过程,并坚持全方位的施工监理。

5.2施工过程中必须随时检查加固料用量、桩长、复搅长度及施工中有无异常情况,记录其处理方法及措施。

5.3成桩7天内浅部开挖桩头,其深度宜为0.5m,目测检查搅拌的均匀性,测量成桩直径。检查频率为10%。

5.4在成桩7天内采用轻便触探仪检查桩的质量,触探点应在桩径方向1/4处,抽检频率为2%。

5.5成桩28天后在桩体上部(桩顶以下0.5m、1.0m、1.5m)分别截取3段桩体进行现场足尺桩身无侧限抗压强度试验,检查频率为2‰,每一工点不少2根。

5.6成桩28天后,按1‰频率或每一工点不少于2根采用钻孔取芯法对其进行终检。

5.7粉喷桩施工质量允许偏差应符合表1规定。

经检测并参照江苏省高速公路建设指挥部《粉喷桩施工质量的检验与评判方法》进行评分,本工程4.2万根粉喷桩共计41.8万延米均达优良级。

6结语

6.1粉喷桩处理高等级公路软土地基是当前最常用的方法之一,目前的粉喷桩施工队伍大多属个体私营,一定要加强管理,施工中要加强监理,实行全天候、全方位旁站,以确保施工质量。

6.2对成桩28天的粉喷桩采用钻孔取芯法、动力解探法等进行检测是行之有效的,一方面可以通过芯样的抗压强度试验掌握桩体的强度,另一方面对整个桩体也是一次全面的检查,从而保障了粉喷桩的施工质量。

参考文献

〔1〕中华人民共和国行业标准.粉体喷搅法加固软弱土层技术规范(TB10113-96)

粉喷桩范文篇6

关键词:高速公路软基处理粉喷桩应用

沪宁高速公路昆山试验段实践证明,采用粉喷桩方法加固软土地基具有许多优点:如能有效地减少地基的总沉降量,与排水固结法相比总沉降量能减少25%~49%,这对控制路堤的工后沉降和解决桥头"跳车"具有明显的效果,具体表现在地基加固深度内沉降量的大幅度减少。经加固后路基在填筑过程中侧向位移明显减少,实测的最大侧向位移仅6~7cm。与排水固结法在相同条件下相比,侧向位移减少60%~70%,而且在较短时间内即趋稳定。侧向位移的减少,不仅能增加路基的稳定,特别在桥涵与路堤连接处保护桥台桩基不受过大的侧向推力,而且也减少地基的沉降。粉喷桩复合地基能提高地基土的承载力,适应快速填筑施工,与排水固结法相比,可以允许有较高的填土速率。但是,粉喷桩法在实际应用中尚有一些问题需要进一步探讨,有一些缺点需要克服。

1粉喷桩的支承式与悬浮式对沉降的影响

昆山段试验表明,在桩长11m范围内的沉降量与桩尖以下沉降的比值达1∶1.5。查阅其他资料也证明,当粉喷桩打穿软土层进入较硬的持力层沉降很少;若未打穿软土层,成为悬浮式时沉降就大。地基的过大沉降,说明桩尖下卧软土层的沉降还相当大,而且持续时间较长,将不得不重新进行处理甚至报废。目前高速公路不断向沿海近海地区延伸,遇到的深厚软土越来越多,而且是现有粉喷桩机所达深度远远不及的。如何来解决这个问题,除了进一步提高机械设备的性能外,在设计理论上也需要有一个突破。对下卧层软土的沉降有一个正确的评估,同时在实践中探索解决的方法。

2地基土含水量对粉喷桩质量的影响

粉喷桩质量的优劣主要反映在粉喷桩的强度指标上,这不仅与掺入粉体的质量、施工工艺、地基土的性质有关,其中尤以含水量的关系甚为密切。规范规定,地基土的天然含水量在小于30%或大于70%时不宜采用。因为当土的含水量小于30%时,土中的水份不足以使粉体进行水化作用;当含水量大于70%时,含水量过高的土壤往往孔隙比大,若按常规掺入粉体数量,由于水分过多形成不了足够强度的水泥土桩体,将严重影响粉喷桩的强度,在这种情况下必须增加粉体的掺入量和采用复搅的施工工艺。高含水量、大孔隙比和粘粒含量多时,土周边的束缚力极低,当钻头反转提升喷灰时,产生一个垂直向下挤压力和一个径向水平推力,由于土呈流塑状,束缚力极低,桩体在成形过程中向下及向四周水平向排水,影响形成竖向桩体,通常形成所谓"掉桩"或"下沉",常为地表下1~2m。当发生"掉桩"或"下沉"时,只要当时采取立即回填土并重新复喷复搅,就能克服这种现象,如果不作处理将会造成过大的路基沉降。

3粉喷桩复合地基承载力和粉喷桩单桩承载力的关系

粉喷桩复合地基的平均允许承载力公式为:

[σ复合]=a×[σ桩]+(1-a)[σ土]

式中:

σ复合——复合地基的平均允许承载力;

a——置换率;

σ桩——搅拌桩的允许承力力;

σ土——天然地基土的允许承载力。无疑,桩的强度将直接影响复合地基的强度,假设桩的强度不断增加而土的强度依然不变,按照公式的计算,复合地基的强度也会不断增加,然而实际情况并不如此。因为粉喷桩从本质上来讲是属摩擦桩类,当土的强度不变,而且饱和软粘土的强度很低时,在这种情况下,即使不断增加桩的强度,但总的复合地基强度也不会随之增加。这如同一根筷子在浆糊里和一个钢筋在浆糊里的情况是类同的。只有当天然土的强度也增强时,整个复合地基的强度才会增加。所以桩的强度应适度,要和天然土的强度相互匹配。反过来桩的强度很低,这当然也是不行的。

4桩土置换率及粉体掺入量对复合地基强度的影响

在实际设计运算时往往提供所要求达到的复合地基强度、拟定的粉喷桩强度及天然地基土的强度来求桩土的置换率,计算出桩数,然后布置桩位,再作有关的验算。实践证明若置换率过低,如小于10%往往达不到设计要求,甚至全功尽弃。某高速公路采用粉喷桩复合地基处理,置换率仅为6%~7%,当路堤填至设计标高后出现裂缝,不得不重新处理。这说明作为复合地基的桩土置换率必须大于一定值,否则起不到复合地基的作用,所以在规范中定为10%~20%,这是有道理的。同样粉体的掺入量也需控制在一定值,规范定为10%~15%。如前所述,当软土中含水量大于70%,必须加大粉体掺入量,否则将形成不了桩体或形成强度达不到要求的桩体,不能满足设计要求。

5复搅和转速对桩强度的影响

大量的施工实践已充分证明复搅与不复搅的质量相差甚大。复搅的作用在于通过充分的搅拌使粉体与粘土及水得到比较完全的接触和作用,促使桩体的充分形成。同时,钻头喷出的粉体一般呈脉冲状,若不充分进行搅拌,粉体在桩中往往呈层状,形成一种"夹生",对桩的强度不利。如承受水平推力截止水作用的话,应进行全程复搅,若作为路基加固只承受垂直向力作用,也可以只复搅上部1/3的桩体。为了提高工效,粉喷钻机下钻时可以提高转速,但是当反转提升喷粉搅拌时切莫快速旋转和提升;否则将会严重影响搅拌的均匀性和足够粉量的掺入。

粉喷桩范文篇7

粉喷桩复合地基是以水泥作固化材料,通过深层搅拌机将软土和固化材料强制拌和,使软土结硬提高地基强度,成为桩土共同承担外部荷载的复合地基。因此,复合地基承重的水平荷载也是由桩和桩间土共同承担的,但分担的比例不但与桩和桩间土的条件有关,还与复合地基的滑动形式、接触形式有很大关系。

复合地基的水平荷载试验仍可按天然地基的水平荷载试验方式进行。水工建筑物在垂直及水平荷载共同作用下,如果沿地基表面滑动时,则其垂直压力与抗剪强度的临界状态符合库仑定律。因此,只要施加一定范围的法向压力,测出在各法向应力作用下的荷载板滑动临界状态的抗剪强度,就可以得出混凝土底板与复合地基间的摩擦系数及黏聚力,也可以观察到粉喷桩复合地基在竖向及水平荷载作用下的滑动形式。

二、试验设计

1.试验点的相对位置及编号

水平荷载特性试验场地位于某新建闸消力池下游河槽内,共布置试验板24根,试桩平面布置如图1。试桩水泥掺量15%,桩径50cm,桩长6.10m,桩顶高程约为9.0m,在第2层的淤泥、淤泥质黏土层内,桩底高程为2.9m。

2.研究的内容、目的和方法

试验研究的内容、目的和方法见表1。

三、试验成果分析

1.复合地基水平推力试验结果汇总

根据库仑定律,在法向压力变化范围不大时,抗剪强度与法向压力的关系近似为一条直线,说明滑动沿其荷载板与地基的表面滑动;当其法向压力大到一定值时,抗剪强度与法向压力的关系将不一定为一条直线,说明滑动将在浅层或深层发生。各组试验的C、Φ值如表2。

2.复合地基水平推力试验成果分析

(1)天然淤泥质地基采用粉喷桩加固后,其复合地基的水平推力特性比天然地基有明显的改善,C、Φ值有很大提高。各复合地基的C、Φ值相当于IL=0~0.25硬塑粉质黏土,抗剪强度大幅度提高、粉喷桩的加固效果在抗水平荷载特性与抗垂直荷载特性两方面同样都是显著的。

(2)单桩复合地基和多桩(四桩)复合地基得出C、Φ值没有什么差别,因此工程上计算用的C、Φ值,可以用单桩复合地基求得的C、Φ值。

(3)超压固结是指单桩复合地基在垂直荷载作用下已产生较大的永久变形。卸荷后再按水平荷载试验的加荷程序求得的C、Φ值,与未超压固结的复合地基C、Φ值稍有区别。从试验结果来看,C值略有减小,Φ值略有增大。

(4)粉喷桩桩头嵌固于底板内,其复合地基的水平荷载特性与桩头不嵌固复合地基的水平荷载特性有本质的区别。在桩头不嵌固的工况下,当垂直压力较小时,在水平荷载作用下,将在桩顶与荷载板的交界面上产生表层水平滑动;当垂直压力超过一定值后,滑动面将下移。

桩头嵌固于荷载板内10cm的复合地基,其水平荷载特性将不是水平滑动问题,水平荷载将使桩产生弹性变形,桩周土产生弹性压缩变形,水平抗力的大小将与桩身强度及桩周土的抗力有直接关系。在淤泥质地基介质中,对于桩头嵌入底板的粉喷桩,其抗水平推力性能可以按刚性桩进行分析,桩身的截面越大,桩身强度和地基土的强度越高,桩的水平承载力也越高。桩头嵌固扣、桩的抗弯刚度大于桩头自由时的刚度,所以桩头嵌固提高了桩抵抗横向弯曲能力。

3.复合地基水平荷载传递特性分析

(1)复合地基在垂直及水平荷载作用下,荷载传递现象为:当垂直压力施加完成后,随着水平推力的逐渐增加,桩内各测点的抗压应变基本呈线性增加,一旦当荷载板滑动时,桩内上部测点的应变值突然减小或呈不稳定的跳动状态,这种现象在垂直压力较小时更加明显。当垂直压力较大时,除位移不断增加外,应变突然释放的现象不十分明显。

(2)复合地基在水平荷载作用下,粉喷桩类似受弯弹性地基梁,桩与土共同变形。由于土的弹塑性性质及荷载板与桩周土的黏聚摩擦作用、垂直荷载的压密作用等,土的抗力问题是比较复杂的。因为桩似一受弯的弹性地基梁,因此桩身各侧的应变值反映了梁的受弯特性,只是桩身最大弯矩出现,在荷载板下0.8~1.3m左右的范围内,弯矩的分布随着垂直压应力的增加而加深,这也是深浅层滑动的原因。由弯矩产生桩的抗压应力分布来看:桩身拉、压应力的最大值不在同一高程截面出现,最大拉应力出现的位置在最大压应力的上部。

四、结语

粉喷桩范文篇8

关键词:高速公路软基处理粉喷桩应用

沪宁高速公路昆山试验段实践证明,采用粉喷桩方法加固软土地基具有许多优点:如能有效地减少地基的总沉降量,与排水固结法相比总沉降量能减少25%~49%,这对控制路堤的工后沉降和解决桥头"跳车"具有明显的效果,具体表现在地基加固深度内沉降量的大幅度减少。经加固后路基在填筑过程中侧向位移明显减少,实测的最大侧向位移仅6~7cm。与排水固结法在相同条件下相比,侧向位移减少60%~70%,而且在较短时间内即趋稳定。侧向位移的减少,不仅能增加路基的稳定,特别在桥涵与路堤连接处保护桥台桩基不受过大的侧向推力,而且也减少地基的沉降。粉喷桩复合地基能提高地基土的承载力,适应快速填筑施工,与排水固结法相比,可以允许有较高的填土速率。但是,粉喷桩法在实际应用中尚有一些问题需要进一步探讨,有一些缺点需要克服。

1粉喷桩的支承式与悬浮式对沉降的影响

昆山段试验表明,在桩长11m范围内的沉降量与桩尖以下沉降的比值达1∶1.5。查阅其他资料也证明,当粉喷桩打穿软土层进入较硬的持力层沉降很少;若未打穿软土层,成为悬浮式时沉降就大。地基的过大沉降,说明桩尖下卧软土层的沉降还相当大,而且持续时间较长,将不得不重新进行处理甚至报废。目前高速公路不断向沿海近海地区延伸,遇到的深厚软土越来越多,而且是现有粉喷桩机所达深度远远不及的。如何来解决这个问题,除了进一步提高机械设备的性能外,在设计理论上也需要有一个突破。对下卧层软土的沉降有一个正确的评估,同时在实践中探索解决的方法。

2地基土含水量对粉喷桩质量的影响

粉喷桩质量的优劣主要反映在粉喷桩的强度指标上,这不仅与掺入粉体的质量、施工工艺、地基土的性质有关,其中尤以含水量的关系甚为密切。规范规定,地基土的天然含水量在小于30%或大于70%时不宜采用。因为当土的含水量小于30%时,土中的水份不足以使粉体进行水化作用;当含水量大于70%时,含水量过高的土壤往往孔隙比大,若按常规掺入粉体数量,由于水分过多形成不了足够强度的水泥土桩体,将严重影响粉喷桩的强度,在这种情况下必须增加粉体的掺入量和采用复搅的施工工艺。高含水量、大孔隙比和粘粒含量多时,土周边的束缚力极低,当钻头反转提升喷灰时,产生一个垂直向下挤压力和一个径向水平推力,由于土呈流塑状,束缚力极低,桩体在成形过程中向下及向四周水平向排水,影响形成竖向桩体,通常形成所谓"掉桩"或"下沉",常为地表下1~2m。当发生"掉桩"或"下沉"时,只要当时采取立即回填土并重新复喷复搅,就能克服这种现象,如果不作处理将会造成过大的路基沉降。

3粉喷桩复合地基承载力和粉喷桩单桩承载力的关系

粉喷桩复合地基的平均允许承载力公式为:

[σ复合]=a×[σ桩]+(1-a)[σ土]

式中:

σ复合——复合地基的平均允许承载力;

a——置换率;

σ桩——搅拌桩的允许承力力;

σ土——天然地基土的允许承载力。

无疑,桩的强度将直接影响复合地基的强度,假设桩的强度不断增加而土的强度依然不变,按照公式的计算,复合地基的强度也会不断增加,然而实际情况并不如此。因为粉喷桩从本质上来讲是属摩擦桩类,当土的强度不变,而且饱和软粘土的强度很低时,在这种情况下,即使不断增加桩的强度,但总的复合地基强度也不会随之增加。这如同一根筷子在浆糊里和一个钢筋在浆糊里的情况是类同的。只有当天然土的强度也增强时,整个复合地基的强度才会增加。所以桩的强度应适度,要和天然土的强度相互匹配。反过来桩的强度很低,这当然也是不行的。

4桩土置换率及粉体掺入量对复合地基强度的影响

在实际设计运算时往往提供所要求达到的复合地基强度、拟定的粉喷桩强度及天然地基土的强度来求桩土的置换率,计算出桩数,然后布置桩位,再作有关的验算。实践证明若置换率过低,如小于10%往往达不到设计要求,甚至全功尽弃。某高速公路采用粉喷桩复合地基处理,置换率仅为6%~7%,当路堤填至设计标高后出现裂缝,不得不重新处理。这说明作为复合地基的桩土置换率必须大于一定值,否则起不到复合地基的作用,所以在规范中定为10%~20%,这是有道理的。同样粉体的掺入量也需控制在一定值,规范定为10%~15%。如前所述,当软土中含水量大于70%,必须加大粉体掺入量,否则将形成不了桩体或形成强度达不到要求的桩体,不能满足设计要求。

5复搅和转速对桩强度的影响

大量的施工实践已充分证明复搅与不复搅的质量相差甚大。复搅的作用在于通过充分的搅拌使粉体与粘土及水得到比较完全的接触和作用,促使桩体的充分形成。同时,钻头喷出的粉体一般呈脉冲状,若不充分进行搅拌,粉体在桩中往往呈层状,形成一种"夹生",对桩的强度不利。如承受水平推力截止水作用的话,应进行全程复搅,若作为路基加固只承受垂直向力作用,也可以只复搅上部1/3的桩体。为了提高工效,粉喷钻机下钻时可以提高转速,但是当反转提升喷粉搅拌时切莫快速旋转和提升;否则将会严重影响搅拌的均匀性和足够粉量的掺入。

粉喷桩范文篇9

关键词:高速公路软土地箕处理技术

1上海高速公路软基处理发展过程概述

上海地区高路堤软基处理的主要目的是减少高路堤工后沉降量,路堤稳定性是地基处理的重点。

1984年上海第一条高速公路——沪嘉高速公路开始修建,至今已有莘松、沪嘉东延伸段、沪宁及沪杭等高速公路相继建成或处于工程建设之中。表1列出了各条高速公路的最大路堤高度与局部路段曾使用的地基处理方法。

上海高速公路建设情况一览表表1

工程名称

长度

(km)

最大高度

(m)

平均高度

(m)

建设期

地基处理

备注

沪嘉

15.6

4.5

2.7

1984.4~

1988.10

粉煤灰填筑砂井堆载预压

多数欠载,部分试验路超载

莘松

20.59

7.5

3

1985.10~

1990.12

粉煤灰路堤砂井塑料排水板

等载为主

沪嘉东

延伸段

5

8.9

3

1992.2~

1993.12

粉煤灰路堤不处理超载,粉喷桩

粉喷桩为欠载预压

沪宁

(上海段)

26

7.5

4.3

1993.8~

1996.10

粉煤灰路堤粉喷桩,钢渣桩

粉喷桩主要是欠载

沪杭

(上海段)

26

7.5

4

1996.8~

1998.10

粉煤灰路堤塑料排水板,粉喷桩,钢渣桩

1984年沪嘉高速公路主要采用袋装砂井,最大路堤高度控制在4.5m以下,在部分试验段进行了超载预压,多数路段为欠载预压,且预压时间不足。试验路还进行不同砂井间距的对比,在不同间距砂井处理段之间设过渡段。有些路堤采用粉煤灰,约减少了路堤自重1/4。1985年莘松高速公路仍采用袋装砂井处理,同时进行了塑料排水板试验,在堆载方面强调等载预压的技术措施。新桥立交采用全粉煤灰路堤试验,地基采用砂井处理,最大路堤高度达7.5m。1992年沪嘉高速公路东延伸段大规模采用粉煤灰路堤,地基用粉喷桩处理,最大路堤高度达8.9m;此外还进行了不处理地基条件下的超载预压试验;为解决“三孔”跳车,首次试用加筋土桥台,以期保证桥台与路基的同步沉降,减少差异沉降。1993年沪嘉高速公路上海段地基主要采用粉喷桩处理,并对钢渣桩进行了试验。1996年沪杭高速公路动工修建,在地基处理方面总结以往经验。根据软土层厚度分别采用塑料排水板、粉喷桩、钢渣桩等处理技术,并进一步使用超载预压,采取综合处理,因地制宜的技术方案。

2上海软土地基特性

上海的地基主要为沿海软土层。从高路堤的工程特性来看,影响沉降量及工后沉降的主要土层为:褐黄色粉质粘土②(俗称“硬壳层”),淤泥质土③④,暗绿色粉质粘土⑥等。根据该三类土层的分布及厚度,上海的地基土主要分两大类:一类地基“硬壳层”厚度一般在2~3m左右,淤泥质土厚度达10m以上,暗绿色土层埋藏较深或缺失,该类地基采用砂井等竖向排水固结法或粉喷桩法无法打穿淤泥质土层,地基土的压缩变形量大;另一类地基“硬壳层”一般或较厚,淤泥质土层不厚,暗绿色土层埋深浅,该类地基可采用打穿软土层的处理工艺,地基土的变形量较小。根据上海几条高速公路的地质资料绘制而成,可以看出上海地基土的厚度存在较大的差异。表2为三类土的主,要物理力学指标。

上海地基土主要土层物理力学指标表2

土名

孔隙比

e

天然含

水量%

塑性

指数

lp

液性

指数

lL

压缩

系数

压缩

模量

KPa

天然

密度

抗剪强度

(固快)

容许

承载力

kPa

ф

CkPa

褐黄

色硬

壳层

0.9~

1.06

26.5

~38

7~

16

0.6~

1.1

0.14~

0.33

4~6

18.5

20~

27

11~

22

100~

110

灰色

淤泥

质粉

粘土

0.96

~1.3

40.6

~49

14~

15

1.5~

1.67

0.62~

0.88

2.5~

3.1

17~

17.6

15~

17

13

60~

80

灰色

淤泥

质粘

1.2~

1.45

40~

60

11

1.89

0.68

2.5~

2.9

17.5

15~

17

13

60~

80

暗绿

色粉

粘土

2~

3.5

24.1

12.7

0.44

0.22

6.5~

7.4

19.7

~2.0

16

53

185

3高路堤软基处理总体评述

3.1软基处理不能完全消除工后沉降

在目前有限的施工期内,堆载时间不可能很长,要通过地基处理来完全消除工后沉降是不现实的,工后修补不可避免。

高路堤软基处理不能完全消除工后沉降包括两层含义:一是工后沉降不可能为零;一是工后沉降不能满足地基处理设计的控制标准。上海地区高速公路工后沉降控制指标为:路桥连接段高路堤控制工后沉降为10cm,结构物之间的高路堤段控制工后沉降为30cm。根据上海沪嘉、莘松及沪嘉东延伸段几条高速公路建成通车后3.5~8年内高路堤的沉降观测资料,工后沉降量基本都超过10cm,最大的工后沉降超过50cm,砂井打穿软土层,工后沉降满足10cm。表3列出部分路段的工后沉降观测结果。

上海高速公路段工后沉降量表3

沪嘉

莘松

沪嘉东延伸段

位置

1+

030

1+486

1+541

4+465

新桥

立交

通波

塘桥

六磊

塘桥

庙塘

0+400

0+550

0+938

1+190

88.10

96.12

88.10

96.12

88.10

96.12

88.10

96.12

90.12

93.6

90.12

93.6

90.12

93.6

90.12

93.6

93.12

94.10

93.12

94.10

93.12

94.10

93.12

94.10

m

3.37

3.22

3.22

3.67

7.56

4.3

4.2

3

8.6

6.2

4.1

4.5

cm

4

8.6

16.6

28

>24

>14

>19

>16

22

17

3

5

砂井

超载

打穿

天然

粉煤灰

等载

天然

粉煤灰

等载

砂井

填浜

未打穿

粉煤

砂井

未打穿

粉煤灰

粉喷桩

未打穿

粉煤灰

粉喷桩

未打穿

粉煤灰

超载

粉煤灰

超载

从上海高速公路建成以来历年不断修补的事实来看,沪嘉自通车第一年就进行桥头沉降处理,连续4年以上,每年进行修补;莘松自通车后第二年也开始桥头沉降处理,到1993年,部分桥头已进行过二次处理,1993年6月以后,开始对几座沉降较大的桥接坡进行罩面处理;沪嘉东延伸段工程通车不到一年的时间内就对祁连山高架路堤接坡进行了修补,通车三年内先后对其它两座桥接坡进行了罩面处理。通车5年后,路堤沉降基本稳定。

这说明,采用地基处理后不可能消除工后沉降,工后修补不可避免。

3.2选择软基处理方法应与路堤高度、地基条件相结合

十多年来,上海先后进行过袋装砂井、塑料排水板、粉喷桩、钢渣桩及超载预压等地基处理方法的实际工程应用,从减少工后沉降的实践来看,各种软基处理方法在不同的路堤高度,不同的地基条件下,减少工后沉降的实际作用差异较大,具体表现为:

(1)同一种方法在某一路堤高度范围内效果较佳;

(2)路堤高度不同,处理方法的效果相比较存在差异;

(3)地基条件不同,不同处理方法的效果也存在差异。

莘松、沪嘉及沪嘉东延伸段路堤工后沉降高度的散点关系。莘松高速公路自松江立交至新桥立交范围内路堤高度多大于3m,最大路堤高度达7.65m,多数桥接坡采用砂井处理,工后沉降基本与路堤高度成比例:沪嘉高速公路自祁连山路至南翔段路堤高度在2~4m之间,部分路段桥接坡采用砂井处理,从总体上看,工后沉降与路堤高度成比例增加,个别情况路堤接近4m而工后沉降小于10cm,路堤高度只有2m而工后沉降大于10cm;沪嘉东延伸段为粉喷桩加固地基,在路堤高度大于4m的情况下,工后沉降与高度成比例,且都大于10cm。这说明不同地基处理方法的技术效果与路堤高度有关,还可以看出,当路堤高度达到4~5m以上时,选用砂井与选用粉喷桩的处理效果相差不多。

沪嘉与莘松的地质条件也有较大差别。沪嘉在近祁连山及桃浦路段,软土层厚度在10m左右,14m深可见暗绿色土层,该路段砂井打穿软土层,因而工后沉降较小,3.3m高度土路堤在工后2年内沉降小于5cm;莘松高速公路近松江段软土层厚度达15~20m,采用砂井处理的路段一般经过一年半的等载预压,不少3m以下路段工后一年半的沉降达10cm;沪嘉东延伸段软土层厚度10~15m,暗绿色土层缺失,粉喷桩处理工后沉降超过10cm。这表明,在地基条件较好时,可选用砂井或粉喷桩等打穿软土层的处理方法,而软土层厚度大时,可采用较经济的砂井、预压处理方法。

3.3软基处理需要足够的预压荷载和预压期

众所周知,天然地基与砂井需要一定的预压荷载和预压期。对粉喷桩、钢渣桩这一类柔性桩是否也需要预压荷载与预压期尚需论证。根据沪嘉东延伸段与沪宁高速公路的应用结果,粉喷桩处理地基仍需要一定的预压期。

预压荷载分超载、等载与欠载三种类型。超载预压是减少工后沉降的有效方法,对于天然地基及砂井处理地基,应尽可能采用超载或等载预压形式。在沪嘉高速公路修建时,不少路段因工期紧,预压荷载达不到等载要求,因而工后沉降较大,即使某些2.5m以下高度路堤也不例外;莘松高速公路普遍采用等载预压,预压期保持1年以上,因而工后的沉降量相对沪嘉而言要小,个别路段因预压期不够,工后沉降较大;沪嘉东延伸段工程对4~4.5m高度粉煤灰路堤采用超载预压,预压时间为9个月,工后一年半的沉降量小于5cm,张泾河桥与桃浦河桥两侧桥接坡路堤由于预压时间短,工后沉降达10cm。对于粉喷桩处理软基,较普遍的观点是沉降能很快稳定,预压荷载不强调等载或超载。然而在沪嘉东延伸段工程中,粉喷桩段路堤荷载采用欠载预压,预压时间仅4个月,4.2m高粉煤灰路堤工后一年半沉降达15cm。可见,无论是砂井处理或者粉喷桩处理,保持等载是必要的。

预压期的确定比较复杂,一方面要考虑工后沉降技术标准,另一方面又要现实地考虑工期太长,确定施工期沉降稳定的标准非常必要。从高速公路建设的实际情况看,沪嘉高速公路建设期3.5~4年,路堤预压期3个月到2.5年;莘松高速公路建设期5年多,路堤预压期为一般在14个月;沪嘉东延伸段工程建设期2年,路堤预压期4~9个月;沪宁高速公路工程建设期3.5年,路堤预压期6~9个月,究竟预压多少时间较为合理呢?下面就等载预压作一简要分析。

当地基处理方式选定之后,地基的沉降规律就基本确定。比如,当砂井的间距、长度、直径、地基土类型选定后,地基固结规律就已确定,固结度仅与时间有关。表4中列出沪嘉、莘松等部分路段不同预压时间的固结度、沉降速率及工后沉降,可以看出,当预压时间达6个月时,沉降速率为0.35~1.61mm/d,工后沉降为17.8~62cm;当预压时间达12个月时,沉降速率为0.2~0.53mm/d,工后沉降为13~29.3cm;当预压时间达18个月时,沉降速率为0.11~0.32mm/d,工后沉降为8.5~22cm。要使工后沉降达到10cm的控制标准,预压期需要2年以上,在路堤大于6m或地质条件差的路段预压时间需2.5~3年。从沉降过程看,当路堤超过临界高度时,沉降速率逐渐增大,满载预压一段时间后,沉降速率逐渐减小,沉降曲线上一般存在一个拐点,拐点之前,增加单位预压时间减少的工后沉降量很大,拐点之后沉降速率逐渐变小,增加单位预压时间减少的工后沉降量逐渐减小,因此预压时间至少应超过拐点。拐点实际上是沉降速率变化最大的位置,部分路段拐点时间见表4。达到拐点的时间一般要4~13个月,地质条件好,达到拐点时间短,反之则长。

不同预压时间的沉降速率及工后沉降量表4

沪嘉

莘松

沪宁

1+030

1+541

1+330

1+360

19+735

20+520

19+600

m

3.37

3.22

4

4

4.2

7.4

6.7

沉降

速率

工后

沉降

沉降

速率

工后

沉降

沉降

速率

工后

沉降

沉降

速率

工后

沉降

沉降

速率

工后

沉降

沉降

速率

工后

沉降

沉降

速率

工后

沉降

6

0.61

18.4

0.44

17.8

1.8

51

1.61

62

0.35

19.3

0.81

55.4

0.5

33

12

0.29

13.3

0.20

13

0.5

25

0.53

29.3

0.2

15.3

0.35

29

0.35

24

18

0.14

8.3

0.11

8.5

0.3

18.6

0.3

22.2

0.18

13.2

0.20

19.4

0.32

19

6

9

13

13

5

4

5

砂井超

载打穿

天然

粉煤灰

等载砂

井未打穿

等载砂井

未打穿

欠载粉煤

灰粉喷桩

5m未穿表

层11m硬土

欠载粉煤

灰粉喷桩

0m未穿表

层10m硬土

天然地基

注:①沉降速率单位,mm/d。②工后沉降单位,cm。③拐点为满载后月份。

由此来看,要使工后沉降量满足或接近10cm的标准,等载预压1.5年是完全必要的,在地基条件较差或路堤高度较低(小于3m)时,预压时间可减少为1年,而地基条件较差或路堤高度较高(大于6m)时,预压时间应增加到2年以上。按沉降速率达到0.1~0.2mm/d作为路堤稳定和施工面层的依据是符合地基沉降规律的。在等载预压条件下,工后沉降达到10cm的控制标准也是可能的。争取合理的工期,予以合理的施工组织,确保必要的预压期,是降低工后沉降最经济的措施,

3.4桥头接坡软基处理长度应与路堤高度、地基条件及工后沉降相结合

桥接坡软基处理长度取多少,没有一个明确的选择标准,多数路段以处理50m作为标准。从理论上讲,软基的纵向处理长度首先应保证减少工后沉降的需要,其次要确保道路纵向线形的流畅。从实际情况来看,桥接坡路堤预压期普遍较短,工后纵向沉降造成桥接坡段路面产生一个凹槽段,其纵向长度一般在30~50m,在路堤高度大于5m时,影响长度可达80m,尽管产生这一现象的原因较多,但凹槽段的长度与形状变化不大,产生最大沉降处一般距离桥台10~15m,在搭板的端部存在较大的折点。从工后加罩改善路面线形的实践来看,工后沉降较小的桥接坡罩面长度在20~30m左右,工后沉降在10~20cm范围内的桥接坡罩面长度50~60cm左右,工后沉降超过20cm的桥接坡罩面长度在80~100m不等。由此看来,桥头接坡段软基处理的长度也应按路堤高度、地基条件及工后沉降等因素综合考虑,一般路段路堤高度在5m以下时取50m还是较为合理的。

桥头接坡段软基处理是否有必要设置长度渐变或间距渐变的过渡形式,应根据地质条件来定。对于软土较厚的地基,工后沉降较大,有无过渡段不会反应在路面线形的变化,而对于处理深度能打穿软土层,工后沉降较小的情况,有必要设过渡段。事实上当路堤达到一定高度后整体刚度较大,地基条件变化反应到路面上也是平滑过渡的。

3.5路面横坡应增大0.5~1%作为预留坡度

不处理地基及砂井处理地基,路堤断面沉降呈现锅底状,而粉喷桩处理后,断面沉降变得较为平缓。根据沪嘉、莘松等高速公路观测成果,路面横坡改变随着时间与沉降的增大而增大。横坡与沉降成曲线关系,沉降小于100cm时,曲线斜率较大,超过100cm时,曲线斜率变小。当路堤高度大于6m或当地基条件较差,路堤总沉降为120~160cm,若工后沉降为30cm时,通车后横坡变化约0.5%,而路堤高度在4~5m左右时,总沉降量一般为70~100cm,若工后沉降为30cm,通车后横坡变化约0.7%,而路堤高度在4~5m时,总沉降量一般为70~100cm,若工后沉降为30cm,通车后横坡变化约0.7%,沪嘉高速公路工后8年的路面横坡变化一般在0.3%,少数路段达0.5%。可见,在施工时对路面横坡增大0.5~1%,工后沉降引起横坡变化后,仍能满足设计要求。

3.6关于地基沉降规律及最终沉降推算

地基总沉降的推算方法有双曲线法、指数曲线法、对数曲线法等,曾有不少文章探讨过上海地区最终沉降量采用何种方法较为合理,从推算的结果看,对数曲线法最大,双曲线法次之,指数曲线法最小。从沪嘉高速公路工后沉降观测资料来看,沉降与时间不完全呈单对数关系,在单对数图中曲线尾部略微逐渐变平,说明用单对数曲线预测工后沉降略微偏大,可用双曲线推算;日本的观测资料表明沉降与时间呈单对数关系,杭甬高速公路沉降曲线不完全呈单对数关系,但与对数曲线较为接近。从地质条件来看,日本的条件最差,杭甬的条件次之,沪嘉的条件相对较好,这说明地质条件越差,曲线越接近对数曲线。实际上,对数关系反映了地基的流变特性,这是软粘土固有的工程特性。

3.7关于砂井与粉喷桩布桩间距的设计

间距设计是砂井与粉喷桩地基处理设计内容之一。砂井间距受地基固结度控制,根据沪嘉和莘松的试验结果,砂井间距大于4.5m后排水固结的作用已不明显,沪嘉的经验是,间距为3m与1.5m的布置方式能达到大致相等的固结效果,并且布桩间距越密,总沉降量也越大,同不处理地基相比较,砂井处理后可增加10%左右的沉降量,从沉降过程看,增加的该部分沉降是在施工预压期内产生的,并不对工后沉降产生影响。因此上海地区可视具体地质条件,选用1.5~3.m布桩间距。粉喷桩布桩间距受面积置换率控制,从桩长范围内复合体的模量来看,桩间距越小,模量越高,该范围内压缩量越小,但从路堤总沉降量来看,桩间距从1.4~1.6m之间变化,相应的面积置换率从0.1~0.05m之间,总体沉降变化不大,只是桩长范围内与桩端以下压缩量的相对比例发生了改变,桩距为1.4m时,桩长范围内压缩量占总沉降量的10%,而桩距为1.6m时,桩长范围内压缩量占总沉降量的40%,从粉喷桩处理后总沉降量减少方面来看,基本能减少20~30%,桩间距变化并不产生总沉降较大的改变,粉喷桩间距通常采用1.5m尚有潜力可挖。

3.8关于路堤临界高度

上海天然地基在低路堤(小于2.5m)作用下总沉降量不大,且沉降可很快稳定。根据莘松的经验,当填土在1.8m高时,经15个月预压,沉降稳定在10cm以内,填土高度在2~2.3m时,在两年时间内沉降稳定在15~20cm,曲线较平缓,因此莘松提出2.3m作为最佳填土高度,在此高度范围内无需地基处理。沪嘉的沉降资料表明,路堤高度在1.5m以下时,工后沉降仅3~4cm,路堤高度在1.9~2.7m时。工后沉降为8~11cm,大都满足或者接近工后10cm的控制标准,对路堤高度达到3m的桥接坡(如马陆圹桥)工后沉降为14.1cm,略超过10cm。从地质条件来看,沪嘉比莘松好,不处理地基的临界高度也略有变化,一般2.5m作为一个平均的临界路堤高度还是比较恰当的。

粉喷桩处理后地基也存在“临界路堤高度”。对存在这一高度的原因不少学者作过分析研究,笔者认为地基的超固结特性应是主要原因。地表以下5~10m范围内的土处于超固结状态,并且天然地基临界高度荷载与地基土先期固结压力相吻合。粉喷桩处理地基存在这一现象与天然地基有较大区别。桩土作为实体基础,当路堤高度达到临界时,实体与地基侧向摩阻力达到极限,桩尖产生刺入变形,桩尖以下淤泥质软土变形量较大,从而开始出现沉降量增大的趋势。根据沪嘉东延伸段实测沉降资料,当路堤高度达3.5~3.8m时沉降量较大幅度增加,这说明粉喷桩处理后对3.8m以下高路堤可较大幅度减少总沉降量,从而也较大地减少工后沉降,但实际上对这样高的路堤采用粉喷桩处理并不经济。

3.9加筋桥台技术可消除“三孔”跳车现象

高速公路汽孔、机孔和人孔(三孔)这三类横穿通道是引起跳车的主要构筑物,其数量在高速公路桥涵通道中占有相当高的比例。虽然这些通道接坡路堤高度较大中型桥涵低,从沪嘉运营期的养护情况看,不少“三孔”跳车现象严重,需进行多次罩面处理。鉴于这种情况,在沪嘉高速公路东延伸段首次对古宗路汽孔和孟古路拖孔采用加筋土桥台技术,彻底解决了因差异沉降而引起的跳车问题,通车3.5年,两座通道无行车颠簸感觉,两座通道工后沉降曲线,可以看出,古宗路汽孔两侧路堤与桥台同步沉降,孟古路拖孔加筋桥台下沉较大,两侧路堤下沉较小,这是由于两侧进行过超载预压,而加筋土桥台未预压过的缘故。尽管如此,行车无任何跳车感觉。事实证明,加筋土桥台技术是解决“三孔”跳车的一种可行方法。重要的是确保“三孔”的净空。

粉喷桩范文篇10

关键词:粉喷桩基础施工监理

前言

粉喷桩是“粉体喷射搅拌桩”的简称,就是利用专用的喷粉搅拌钻机将水泥等粉体固化剂喷入软土地基中,并将软土与固化剂强制搅拌,利用固化剂与软土之间所产生的一系列物理化学反应,使软土结成具有一定强度的水泥桩体而形成复合地基的一种施工方法。粉喷桩于20世纪70年代首先由日本和瑞典分别提出、推广和应用,我国于80年代初引入此项技术。由于粉喷桩具有能有效减少总沉降量、能承受较大的加荷速率、抗侧向变形能力强、可大大缩短施工期等优点,目前在高速公路建设领域应用得较为广泛。

在以往的工程实践中,粉喷桩处理软土地基施工中常存在如下一些问题:施工单位偷工减料,水泥用量难控制;均匀性差、强度低;沉降得不到有效减少,达不到设计意图;甚至还有沉降量反而增大了等,影响了加固效果。因此,在施工过程中监理人员采取何种科学有效的质量控制措施,确保粉喷桩处理软基的加固效果,成了需要克服的难题。以下本人结合杭宁高速公路浙江段一、二期工程的实践和一期工程“粉体喷射搅拌桩加固桥头软基试验研究”的科研项目谈一点粉喷桩处理软基施工监理过程中应采取哪些质量控制措施的粗浅认识。

1、粉喷桩施工前监理的质量控制措施

1.1加强对施工机械设备的检验

(1)、每台桩机必须配置可以控制桩身每米喷粉量的记录器,且记录器上的任何一个可操作的按钮和开关不得用于设定或操作时间、深度、喷粉重量、桩位编号、复搅深度、复搅次数等参数,防止伪造施工记录。

(2)、桩机上的气压表、转速表、电流表、电子称必须经过标定,不合格的仪表必须更换。

(3)、每台桩机钻架相互垂直两面上分别设置两个0.5Kg重的吊线锤,并画上垂直线。

(4)、在每台桩机的钻架上画上钻进刻度线,标写醒目的深度。

(5)、钻头直径的磨损量不得大于1cm。

1.2加强对原材料的检验

(1)、粉喷桩所用水泥必须经过试验室抽检,满足规范的要求。并尽量不采用那些产量较小、质量不稳定的小水泥厂生产的水泥。

(2)、水泥的堆放应该符合防雨、防潮的要求,严禁使用过期、受潮、结块、变质的水泥。

1.3施工前必须进行工艺试桩

不同地段具有不同的地质条件,为了克服盲目性,确保粉喷桩加固地基收到预期的效果,在粉喷桩施工前必须进行工艺试桩,试桩数量不少于5根。试桩的目的是:

(1)、提供满足设计喷粉量的各种操作参数。如管道压力、灰罐压力、钻机提升速度、钻进速度、搅拌速度等。

(2)、验证搅拌均匀程度及成桩直径。

(3)、确定该地质条件下,符合质量要求的合理掺灰量。

(4)、确定该地质条件下,合理的工艺流程。

(5)、确定进入持力层的判别方法。

2、粉喷桩施工过程中监理的质量控制措施

粉喷桩施工过程中,监理人员重点要控制好三个重要施工环节和日水泥用量、日进度两个指标。

2.1三个重要施工环节的质量控制措施

2.1.1桩长按进入持力层控制

根据本项目“粉体喷射搅拌桩加固桥头软基试验研究”科研项目成果,与塑料排水板处理方案相比,采用粉喷桩处理沉降量要减小25%~49%,沉降的分布亦有明显的改变,在桩身范围内的沉降量减小很多,而桩尖以下的软土沉降量有所增大。在桩长11m范围内的沉降量与桩尖以下沉降量的比值达1:1.5。而且由于大部分荷载由桩体承受,所以桩周土中孔隙压力较低,而桩尖以下土体中的孔隙压力较大,而且很难消散,因此,粉喷桩宜尽量打至持力层上(一般控制为qc=800kpa),并且进入持力层50cm左右。在施工过程中,桩底设计标高往往与持力层并不一致,施工单位容易出现桩长以设计标高控制的现象,如在桩尖下尚留几米软土,根据科研成果,则会有较大的工后沉降量,由于排水不畅,预压很长时间也很难稳定。故粉喷桩实际施工桩长应按进入持力层控制。判别是否进入持力层的方法可由钻机钻到最深时的下钻速度和电流表的读数来判定,这两个参数是在工艺试桩时由监理确定,一般是下钻速度0.5米/分,电流值是额定电流值的125%以上。

2.1.2粉体计量控制

粉喷桩的质量好坏与水泥掺入量的多少及喷粉的均匀性有直接的关系,因此,如何来计量粉体是控制的关键。目前一般较为常用的是电子称重法与钻机深度相结合的计量装置,它能在记录上反映深度、相对应每延米的喷粉量、总灰量等。粉体计量控制主要应注意以下两点:

(1)、要保证喷粉的均匀性,关键是掌握好钻头的提升速度。因水泥喷入为人工控制,必须避免出现为满足每米喷粉量的要求,施工人员根据记录器显示凑数字,而认为导致的喷粉不均匀现象。对于直径一定的粉喷桩来说,粉体发送器单位时间内水泥的喷出量Q与搅拌轴提升速度可由下式来确定:

Q=π/4.D2.R.S.V

其中:D:钻头直径(m);

R:软土的容重(t/m3);

S:水泥掺入比;

V:钻头提升速度(m/min)

(2)、从开始喷灰到钻头处出灰有一定时间,钻机钻至桩底后,必须预喷停留一段时间,方可提钻。停留时间由管道长度等确定。喷灰时,水泥在管道内的输送速度大约为1m/s,如管道长40米,钻至桩底后即喷粉提钻,则桩底实际少灰长度接近1米,反而搅动破坏了桩底原状软土,使沉降量加大。

2.1.3复搅控制

水泥与土搅拌均匀程度是关系到粉喷桩桩体强度的关键因素。大量的施工实践已充分证明粉喷桩复搅与不复搅的质量相差甚大。钻头喷出的粉体往往呈脉冲状,若不充分搅拌,粉体在桩中呈现层状,形成一种“夹生”,这样的桩即使水泥掺入量再多也没有强度。复搅的作用在于通过充分的搅拌使粉体与土及水得到比较完全的接触与作用,促使桩体的形成。为了确保搅拌的均匀性,施工时要严格掌握好钻机提升速度、搅拌叶旋转速度等,并应尽量采用全桩复搅以保证质量。当桩长较长、土体天然含水量较高、粘性重时,应采用“二喷二搅”的施工工艺,即:钻进—钻至桩底后慢档提升、喷灰、搅拌至停灰面—钻进、复搅复喷至桩底—提升、搅拌至停灰面—移位。防止出现“沉桩”现象。

2.2日水泥用量与日进度指标的质量控制措施

(1)、现场监理应全过程旁站,旁站过程中,应随时抽查钻机的水平度和垂直度、钻进深度、喷灰深度、停灰标高、复搅深度、喷灰的管道压力、灰罐内的水泥加入量、剩余水泥量等,并作好相应检查记录。

(2)、现场监理应及时收取记录器打印记录,并校核时间、桩号的连续性等,防止出现弄虚作假现象。每日施工结束后,所有打印记录应由现场监理检查合格后签字认可。

(3)、现场监理应在每日施工结束后对施工现场水泥用量和记录器打印记录中的水泥用量加以统计、对比,并记录在当天的监理日志中。当两者误差大于5%时,必须查明原因后方可在打印记录上签字认可或采取补桩等处理措施。

(4)、现场监理应核对前后左右的桩的深度和成桩时间,如果深度相差较大或相同深度的桩成桩时间相差很大,则认为存在搅拌不匀或弄虚作假,并应采取补桩处理。

(5)、现场监理应根据钻杆的提升速度、每台桩机的日工作数等,确定每日完成延米数和每根桩的施工时间。如果某台桩机完成的延米数超过规定值较多或某根桩记录器打印记录显示时间少于规定值较多,则认为存在搅拌不匀或弄虚作假,并应采取补桩处理。

3、事后检测阶段监理的质量控制措施

粉喷桩施工完成后,应按规定频率进行取芯、无侧限抗压强度、单桩及复合地基承载力试验。检测时,现场监理应全过程旁站,对取芯、单桩及复合地基承载力试验的桩,应由监理工程师指定。对检测发现的问题,如未穿透软土层、部分断灰、喷灰不均匀、强度不足等,应严格进行加密、补桩等处理。

取芯时,取芯位置应取在桩径1/2处,而不应取在桩中心处,因粉喷桩桩体中心是钻杆占据的空间,成桩后中心部位强度较低,易造成桩体强度偏小的假象;钻孔取芯时要注意保持钻机平衡,避免因钻杆倾斜而造成斜孔,导致取芯失败;取芯长度应比桩长长50cm左右,以检验桩底土性状。

在粉喷桩检测方法中,应以取芯试验为主,通过该方法,可以直观地掌握整个桩体的完整性、搅拌的均匀程度、桩体垂直度、桩长、是否达到持力层、含灰量的多少等。

结语

通过杭宁高速公路浙江段一期工程“粉体喷射搅拌桩加固桥头软基试验研究”科研项目的研究和一期工程粉喷桩处理软基施工的实践。我们在二期工程粉喷桩处理软基施工监理过程中采取了有针对性的质量控制措施,有力地保证了粉喷桩处理软基的施工质量和处理效果,根据二期工程通车后情况来看,达到了预期的目的,有效地减少了桥头沉降。

参考文献

[1]:《粉体喷射搅拌桩加固桥头软基试验研究》课题组粉体喷射搅拌桩加固桥头软基试验研究1999;