风冷范文10篇

时间:2023-03-25 04:04:22

风冷范文篇1

摘要:空气源热泵热泵系统性能系数

1.1绪论

1.1.1专题背景

随着改革开放和大规模的基本建设的发展、人们对于生活环境的要求越来越高,空调系统作为室内空气参数的主要调节装置也就相应的越来越普及。人们对空调的要求也从原1来的夏季制冷发展到冬暖夏凉,发展到对空气品质的进一步要求。而且在能源紧缺、强调可持续发展的今天,在某些大城市和非凡地区,出于环保的考虑限制使用锅炉供暖,于是电动热泵技术成了人们的首选。其中又以空气源热泵冷热水机组较为常见。

1.1.2空气源热泵机组的特征

空气源热泵冷热水机组是由制冷压缩机、空气/制冷剂换热器、水/制冷剂换热器、节流机构、四通换向阀等设备和附件及控制系统等组成的可制备冷、热水的设备。按机组的容量大小分,又分为别墅式小型机组(制冷量10.6~52.8Kw),中、大型机组(制冷量70.3~1406.8kW)。其主要优点如下摘要:

(1)用空气作为低位热源,取之不尽,用之不竭,到处都有,可以无偿地获取;

(2)空调系统的冷源和热源合二为一;夏季提供7℃冷冻水,冬季提供45~50℃热水,一机两用;

(3)空调水系统中省去冷却水系统;

(4)无需另设锅炉房或热力站;

(5)要求尽可能将空气源热泵冷水机组布置在室外,如布置在裙房楼顶上、阳台上等,这样可以不占用建筑屋的有效面积;

(6)安装简单,运行管理方便

(7)不污染使用场所的空气,有利于环保;

1.2空气源热泵机组的种类和发展

1.2.1分类

1.从热输配对象分为摘要:空气/水-空气源热泵冷热水机组,空气/空气-空气源热泵冷热水机组;

2.从容量分为摘要:小型(7kW以下),中型,大型(%26gt;70kW);

3.从压缩机型式分为摘要:涡旋式、转子式,活塞式,螺杆式,离心式;

4.从功能分为摘要:一般功能的空气源热泵冷热水机组,热回收型的空气源热泵冷热水机组,冰蓄冷型的空气源热泵冷热水机组;

5.从驱动方式分为摘要:燃气直接驱动和电力驱动。

1.2.2发展

80年代中期以前空气源热泵冷水机组大多采用半封闭往复式多机头压缩机。由于调节灵活和压缩机性能及换热器性能的改善,机组的性能不断提高。但在80年代中期以后,螺杆式压缩机的技术进步很快。它比压缩式零部件少(为活塞式的十分之一),结构简单,无进排气阀,噪声低,可无级调节,压缩比大而对容积效率影响不大,故非凡适用于气候偏寒地区的空气源热泵和采用冰蓄冷的装置。因此空气源热泵冷热水机组采用螺杆式压缩机的越来越广泛,而且目前螺杆式压缩机大多采用R-22为冷媒,可延续到2030年才会被禁用。其价格比起其它代替冷媒要便宜的多。目前使用R-22的螺杆式压缩机的制冷量范围为摘要:140~3600kW。

1.3空气源热泵机组的性能系数cop

1.3.1全负荷时的cop

某一工况下,热泵出力于热泵入力(功耗)之比为性能系数cop,它是评价热泵装置的重要指标。通过分析,不论何种主机,出水温度对cop的影响,冬季(共热)比夏季(供冷)大的多。

1.3.2部分负荷时的cop

估量空气热源热泵机组全年运行的经济时,必须了解各机种的部分负荷性能。部分负荷特性Ф是指制冷机运行负荷率q(%)和耗功率N(%)之比。在夏季,它同样受室外温度影响(t出口一定)或出水温度影响(t室外一定),而部分负荷性能系数cop’=Фcop全。根据具体情况,部分负荷时的cop’有可能大于满负荷时的cop,这是由于压缩机能量调节(卸缸或调速等)而冷凝器、蒸发器的传热面积和风量等未能调整而改善了工况,才使机组的部分负荷性能提高。

1.4空气源热泵机组的能耗分析

1.4.1供暖季节能耗分析

1.平衡温度点对空气源热泵机组的制热季节性能系数的影响

对于选定的空气源热泵机组,当建筑物的热负荷较大时,平衡温度点将增高,使整个供暖季的辅助加热量的增加,从而导致制热季节性能系数降低;当建筑物的热负荷较小时,平衡温度点将降低,导致整个供暖季的辅助加热量的减小。同时,由于负荷的减小,机组有更多的时间处于部分负荷下运行。因此,制热季节性能系数先是增大,然后会有所降低。且在相同平衡点温度下,各地区使用热泵机组具有不同的制热季节性能系数值。

2.运行方式对空气源热泵机组制热季节性能系数的影响

一班制时,热泵机组都在白天运行,而白天时的室外气温要高于夜间,这使得在整个供暖季,一班制运行热泵机组的制热季节性能系数要高于三班制运行机组。

作为一种节能技术,要评价空气源热泵的节能效应,就必须用到一次能利用率E的概念,一次能利用率在这里指的是热泵机组的制热量和一次能耗的比值。空气源热泵机组的一次能利用率的提高,一方面有待于进一步改进技术,提高空气源热泵的制热季节性能系数;另一方面则取决于我国平均发配电效率的提高。

1.4.2供冷季节能耗分析

空气源热泵的供冷季节能耗分析采用负荷频率表法。负荷频率表法是建立在空调负荷和室内外温差大致成比例这一假设基础上的。该方法根据室外空气干球温度出现的年频率数(用于全年运行的空调系统)或季节频率数(用于季节性空调系统)和空调系统的全年或季节运行工况计算出不同室外空气状态下的加热量和冷却量。在计算出冷(热)负荷后,再根据冷(热)源机组的变工况性能表查出相应工况下的供冷(热)季节小时频率值相乘,然后累加,计算出冷(热)源设备的耗能量。

经过分析,发现供冷季节性能系数和本地区的气候条件是相一致的,因为供冷季节的气候越炎热,室外空气温度越高,空气源热泵的供冷季性能系数将越低。

1.5空气源热泵机组和水冷式冷水机组的比较

1.5.1占地面积

单就风冷式制冷机外形尺寸而言,要比水冷式制冷机组的尺寸大,但水冷式制冷机需设置冷却塔和冷却水泵,因此水冷机的综合尺寸较风冷机要大很多。另外,风冷式制冷机一般置于高层建筑的裙楼屋顶或多层建筑的屋顶,其外形尺寸同水冷式制冷机在屋顶设置冷却塔的占地面积相当,这样就节省了在建筑物内因设置了制冷机房而多占用的面积。这在寸土寸金的大城市中尤显优势。

1.5.2系统简单

风冷式制冷机因没有冷却水系统,使制冷系统变得简单化,即省去了冷却塔、冷却水泵和管路的施工安装工作量,也减小了冷却水系统运行的日常维护、保养工作量和维修费用。

1.5.3对建筑物美观的影响

目前大部分建筑物的水冷式制冷机组,均采用冷却塔循环水冷却系统。冷却塔安装在大楼屋面,既影响建筑外观,又和优雅环境不协调。使用冷却塔经常会遭到审美观念较强的建筑师的反对。而风冷式制冷机外形方正,高度一般不会超过3m,比冷却塔要低一半左右,对建筑物外观影响相对较小。而且风冷机还可防止某些冷却塔因瓢水而形成的“晴天下小雨”给人们带来的不便。

1.5.4水阻力

风冷机组水系统的另一特征是,风冷机水侧阻力通常为30~50kPa,远比一般水冷机的水侧阻力80~100kPa要小。

1.5.5节水方面

在空调工程上冷却塔运行中所蒸发和风耗的水量较大,而且无法回收。例如摘要:深圳经协大厦,空调冷却水的补水量是整个大厦中日常生活用水的一倍。而风冷机却无须消耗冷却水。

1.5.6部分负荷时的能耗新问题

美国特灵(TRANE)公司曾做过水冷离心式冷水机组和风冷离心式冷水机组在全负荷和部分负荷的耗电量比较摘要:其数据见表1

表1水冷机和风冷机耗电量比较负荷

制冷量

kW

耗电量(kW)

风冷式

水冷式

全负荷

1160

350

299

2/3负荷

774

204

209

1/3负荷

387

109

154

从表中数据可见,在全负荷时,由于风冷式冷水机组的冷凝温度高于水冷式机组,故风冷机的压缩机需要较大的功率,因此风冷式冷水机组耗电量确比水冷机要大,大约大15%左右。但在2/3负荷时两者基本持平,且风冷机耗电量还略低。而在1/3负荷时,风冷机的耗电量远远低于水冷机,大约低30%左右。但由于空调负荷在整个夏季的分布是极不平衡的,甚至在一天之内各时段的负荷也差别很大,故机组在最大负荷下运行的时间是极其有限的,即制冷机大都处于部分负荷下运转,因此使用风冷机的能耗不比水冷机的能耗大。

1.5.7风冷机和冷水机综合费用的比较

制冷机的综合费用,包括一次性投资费用和运行维护费用,就一次性投资费用而言,风冷机要比水冷机花钱多,但是水冷机造价加上冷却塔、冷却水泵、管道和水处理等费用,水冷机的一次性投资费用并不比风冷机少太多,况且冷却水系统中冷却塔、水管路和水泵等设备的维护保养费、水处理费、冷凝器清洗费等均较风冷机组高。冷水机组年运行时间越长,对风冷式制冷机组越有利,风冷机和水冷机组相比较,其处投资回收期短。所以,南方地区用于空调的冷水机组更适合采用风冷式制冷机组。从冷却条件来看,南方地区夏季室外湿球温度较高,也对水冷式制冷机组不利。

1.6空气源热泵机组的应用和展望

1.6.1空气源热泵机组的应用

在此借鉴一些国外的做法摘要:

1、对于供热负荷远小于供冷负荷的地区,可以对和供热负荷相应的冷量部分用热泵提供热量(冬)和冷量(夏),而其余冷量由cop较高的制冷设备(如离心式)来解决。这样夏季的电耗可得以节省。

2、采用蓄热方法,冬季以中午热泵出力有余,可将该热量积蓄在蓄热槽里,到晨、晚不足时使用,这种蓄热方法可以在水蓄热系统中应用,也可以在空气源热泵的冰蓄热装置中实现。

3、采用热回收式热泵,即在热泵循环中增设一冷媒/水换热器,夏季回收部分冷凝器排热量,冬季可回收空调区内的热量补充采热蒸发器的不足,即在冬季时不仅是空气热源,同时又利用了内区水热源。最近国外推出一种和夏季冰蓄冷相结合的空气源热泵装置,全年可实现八种运行工况,冬季则可根据一天内气候变化规律完成热泵供热功能,弥补了过去热泵出力和建筑能耗有相反趋向的不足。

4、当有条件多能源供冷供热时,可合理组织供能模式,例如摘要:当高层建筑物的标准层为办公楼而下部裙房为综合用途者,则高层部分可用空气源热泵装置(有条件时考虑储冰),低层部分可采用燃气吸收式系统。当电动制冷设备和燃气吸收式联合供能时,则可按夏季优先用燃气、冬季优先用电力来协调供能。

5、当利用燃气作能源时,可试行热力原动机(燃气机)直接带动的空气源热泵,它不仅利用了空气热源,还从原动机的排热中回收大量热量,其能量利用系数可达1.5左右。国外已有容量达240kW的整体式机组。

1.6.2空气源热泵机组的展望

随着城市建设对建筑立面美观性的要求、对冷却塔使用的制约等因素,和对能源的利用率,以及某些城市对冷却塔使用的制约等因素,那么,空气源冷水机组作为空调冷热源,在某些地区的使用将会愈来愈多,空气源热泵也将向着成熟和完善的方向继续发展。

参考文献

1.马最良,姚杨,《民用空调设计》,化学工业出版社,2003

2.范存养,龙惟定,《上海市空气热源热泵的应用和展望》,《暖通空调》,1994

3.周晋,李树林,《风冷热泵机组的能耗分析》,《流体机械》,2002

4.杨昌智,孙一坚,《热泵式和直燃式冷温水机组运行特性的比较探究》,《湖南大学学报》,1996

5.张永贵,《热泵供暖系统技术经济评价》,《煤气和热力》,1995

6.何耀东、何青.《中心空调》,冶金工业出版社,1998

7.汪训昌,沈晋明,《上海锦江俱乐部3号楼空气/水热泵系统的节电和经济效益分析》,《暖通空调》,1994

8.姜益强,姚杨,《空气源热泵冷热水机组的选择》,《暖通空调》,2003

9.北京市建筑设计探究院.《建筑设备专业设计技术办法》,中国建筑工业出版社,1998

10.陈君燕,《冷热联供系统的能耗估算》,《暖通空调》,2001

11.龙惟定,张蓓红,《上海住宅空调能源的目前状况和发展》,《暖通空调》,1998年第三期

12.龙惟定,《上海建筑空调的发展》,2002年

13.Michele.VIO《有关空气热源热泵机组的COP值》.《江苏暖通空调制冷》,1999年

14.WilliamF.Albern,P.E.Innovative《PreheatingofOutsideAir.Ashrae》Journal,May2002摘要:48

15.SatishKumar,Ph.DandWilliamJ.Fisk,《P.E.IEQandtheImpactOnBuildingOccupants》.AshraeJournal,April2002摘要:50-52

16.DavidM.Elovitz,P.E.《SelectingtheRightHVACSystem》.AshraeJournal,January2002摘要:24-30

风冷范文篇2

1负荷计算

冷负荷计算结果为空调负荷4063kW,折合到面积指标为123W/m2。对夏季的的冷负荷进行整理,统计不同冷负荷段的出现小时数和出现频率,详见图1。可以看出,15%负荷率以下时间占36.6%,20%至70%负荷占61.2%,75%至100%负荷占2.2%,中低负荷的运行小时数的比例在90%以上,因此冷机台数和容量方案将以匹配中和低负荷为主要目的。本项目生活热水负荷为1731kW,最高日热水量为236.86m3(60℃),平均日用水量为189.5m3(60℃),其中包括客房部分为1483kW,厨房部分热水负荷为248kW。日平均用水量为189.5吨,检修期10天总热量需求110194kWh。

2夏季空调系统方案综合比较

考虑初投资、年运行费、配电容量、维护、维修费用、占用机房面积情、主机寿命、对用热需求的支持、制冷性能与气候的关系等多个因素,两种制冷方案的综合比价如表1和表2。

3检修期生活热水系统方案比较

市政热力每年检修期为10天,时间为春秋季节,此期间酒店不需要制冷,空调冷机处于空闲状态。考虑工程的进度问题,本项目不采用燃气制取生活水,避免燃气相关建设手续。采用风冷热泵制热工况制取生活热水,不能与市政热力共用管路,相应水泵流量增加30%,水泵设备选型投资略有增加。将其中一台单冷风冷机组换成风冷热泵机组,配电容量不需要增加,机房空间不需要增加,风冷热泵比单冷风冷机组多投入20%,本方案初投资增加了48万元。电费按照1元/kWh计算,每年检修期生活热水运行费用为3.67万元。调研了北京同类宾馆项目,针对备用期生活热水问题,大多推荐采用小型并联式电热水器[1~2],热水器功率为100kW以下,不属于特种设备,不需向技术监督部门报装、检验,可以安装任意合适的位置。本工程面积建设费用按照3000元/m2考虑,配电费用为600元/kW,电热水器设备初投资210万元,本方案初投资共计258万元。电加热热水器初投资增加258万元,比风冷热泵方案多投入210万元;电加热热水器年运行费用为11.6万元,比风冷热泵方案年运行费增加7.93万元,两种检修期生活热水的方案比较如表3。

4系统方案综合比较与结论

4.1综合经济投入比较

综合考虑初投资投入、运行费用、运行难度、系统衰减率、舒适性等多方面因素,推荐采用水冷中央空调系统结合电加热热水器制取生活热水方案(市政热水10天检修期)。将中央空调与生活热水系统综合分析,利用全生命周期费效比概念,进行权衡分析。由于两种方案的初投资、设备寿命以及运行费不一致,为了更为公正合理地进行经济性分析,采用全寿命期内的费效比分析,即在全寿命期内满足相同需求的情况下,制取相同数量的空调冷量和生活热水所需要的费用,包括初投资(考虑电力增容、机房占地等)、运行费、维护保养。如表4所示,水冷机组与电热水器的方案的寿命周期内费效比为1266.4元/GJ,风冷热泵为1417.1元/GJ,在满足相同的服务质量下,每提供一份能量后者比前者多投入12%。风冷机组方案每年的综合投入为211万元,水冷机组方案每年的综合投入为189万元,后者节省22万元。建筑寿命内风冷机组方案总投入为10562万元,水冷机组方案总投入为9439万元,后者节约1123万元。

4.2综合运行效果比较

对风冷和水冷中央空调两种方案进行分析,在实际运行过程中两种方案均存在运行不当的问题。相对而言,可以得出如下结论:

1)表面看上,风冷机组集成度高,系统简单,水冷冷水机组运行维护比风冷热泵复杂。而目前物业管理人员水平一般,对于自控集成度较高的风冷机组,不懂得或者“不敢”去操作优化,平时仅启停机组,遇到问题便需要厂家来解决,反而带来了运行保养费用的升高。而水冷机组集成度低,物业管理人员可以根据天气状况控制冷却塔开启台数,根据湿度调节冷机冷水出口水温,这些自发的简单的操作,便可以实现了显著的节能效益[3~5]。

2)水冷冷水机组实际运行性能比风冷热泵高,从实测效果来看,风冷机组的实际运行性能衰减较快,同一个项目同一时段测试发现水冷机组实际制冷效率是风冷机组的2倍;上海某办公楼在节能改造过程中,将部分风冷机组更换为水冷机组。

3)从气候特征来看,风冷机组更适合在南方地区采用,夏季炎热潮湿的时段较长,而北方尤其是北京地区,夏季“桑拿天”延续时间短,夏季大部分时间处于温度较高、但是空气较为干燥的状况,更适合水冷冷水机组的节能运行。

4)从项目规模来看,风冷机组适合小规模项目,风冷机组发展初期多以模块涡旋机组为主,噪音低,近年来出现容量较大的螺杆风冷热泵机组,应用在中等规模的项目上,额定制冷效率为3左右。水冷螺杆式机组与离心式冷机发展趋于成熟,很难找到效率更高的替代品,制冷效率至少在4.1以上。

风冷范文篇3

关键词:风冷热泵冷热水机组风机盘管独立新风系统

1、风冷热泵的工作原理

热泵的供热循环与制冷循环均系逆卡诺循环,只不过在空调器的制冷系统中增设一个四通换向阀,改变冬、夏季制冷剂流动方向来达到此目的。这样一台机组夏季可进行供冷,冬季又可进行供热。风冷热泵机组是利用室内外空气作冷热源,它不用冷却水泵、冷却水管路及冷却塔,省去了庞大的冷却水系统;不占机房面积,投资省,安装方便;冬季供暖节电,不污染环境,对环保有利;维修保养也方便。在水源紧张环境温度为-5℃~43℃的地区及长江流域一带和以南的地区,冬季较冷又无采暖设施的地区尤其适用。

2、工程概况

本设计设计对象为长沙市某电力局综合调度大楼,该大楼位于长沙市内,由主楼和群楼组成。其中主楼有十五层,群楼高两层。总建筑面积13626平方米,空调面积为6112平方米。夏季最大制冷量763KW,冬季供热量为458KW。选用两台风冷式冷热水机组,

3、负荷计算

本设计负荷计算分各层各个房间各个方向进行逐时计算,包括墙、窗等维护结构的计算负荷、人员设备照明等的计算负荷。经计算和统计归纳,得出夏季所需冷量为762KW,冬季供热量为458KW。

4、空气处理过程

本设计采用风机盘管加独立新风系统,风机盘管不承担新风负荷。新风经处理后直接送入各个房间。

5、空调系统

该空调系统为风冷热泵系统,无冷却水系统,与常规水冷系统相比,无冷却塔、冷却水泵的噪音,有利于环保;本设计根据初投资和运行管理费用的分析,最后决定采用该系统,该系统简单,易操作,运行管理费用相对较低,是一种良好的选择。

5.1空调水系统

本设计中的空调水系统根据楼层性质和功能,分为两个系统。其中,一、二层划为系统一;三至十五层划为系统二。各个水系统在水平和竖直方向上都采用同程式,这样有利于水力平衡,减少平衡阀的投资。

5.2空调新风系统

本设计采用分层设置水平式新风系统,新风通过从外墙开洞从外墙吸取。新风机组在主楼是每层选用一台。在右侧的走廊引新风。裙楼处第一层选用两台新风机组,第二层选用三台新风机组。其一是在右侧的走廊引新风,其二在庭院处引新风到营业大厅和会议室。在新风机组的入口处设防火阀。

6、空调冷热源

本设计采用两台风冷式冷热水机组,这种设备夏天可供冷,冬天又可回收和利用低位热能供热,它无需专用锅炉房,不污染环境,应用灵活;是本设计对象的良好选择。本设计中的冷热水机组尺寸不大,水泵可内置,节约了水泵的占地面积,更加减少了土地的投资。且本机组可以采用自动控制,由电脑操作,方便简单。

7、机组布置

由于本设计对象为异性结构,且由群楼和主楼组成,主楼星型结构,中间受力,故本设计机组布置于群楼楼顶,供水管向上引一跟管向上给系统二供水,向下引一跟管给系统一向下供水,回水管亦然。这样比起机组置于主楼楼顶或地下室的情形,减少了水管的投资,更经济实惠。

8、结霜除霜问题

随着节能呼声的高涨,风冷热泵机组以其对水资源的节省而受到越来越多的青睐。但风冷热泵机组在制热运行时,由于室外温度低,其蒸发器表面会逐渐结霜。随着霜层的加厚,室内冷凝器的出水温度和制热能力逐渐降低。定期除霜成为保障风冷热泵机组正常运行的必要步骤,也吸引了越来越多的学者对其进行研究。传统的除霜方法是采用四通阀换向,将室外换热器转换成冷凝器来进行。故除霜所需的热量是从室内环境的吸热量、室内换热器蓄热量、压缩机消耗电力和压缩机蓄热量这四部分热量之和。从人体舒适性角度考虑,室内换热器风扇在除霜时停止运行。由于该除霜方式需从室内换热器和室内环境吸收热量,故存在以下缺点:①除霜时间长;②因室内风扇停止运行,室内机较长时间吹不出热风;③需从室内环境取热,室温将降低5~6℃;④由于制热时室外换热器出口制冷剂可能过冷到0℃以下,换热器下部的霜层难以除掉,造成冰层堆积,甚至还可能出现室外风扇电机烧毁、扇叶损坏的现象。上述缺点使室内环境的舒适性和设备的可靠性受到较大程度的负面影响。而热气旁通除霜不仅可以缩短除霜时间,改善除霜效果,而且还可以较大地改善室内环境的舒适性。

9、风冷热泵的自动控制问题

风冷热泵系统无冷却水系统,运行费用相对较少,若增加自动控制系统,按有关经验可节能20%,故风冷热泵系统安装自动控制的话,就更加节能了。本空调系统为风冷热泵系统,风冷冷热水机组布置在群房顶层,自动控制主要对象为冷冻水泵、风冷热泵、补水箱、风机盘管和新风机组。控制原理:热泵机组控制原理为根据供回水流量和温差计算实际冷量或供热量,根据该数据与设定的数据对比,得出开一台机组还是开两台机组;补给水箱则主要是进行低水位控制,当水位低于最低水位时报警;水泵则是控制水泵开启状态、手自动状态、故障报警;风机盘管的控制根据各房间的需求进行按需控制,用户可以自己设定温度和风量的大小;新风机组需控制其进出口温湿度、过滤网压差报警。

10、消声减振设计

由于本设计采用风冷热泵系统,机组及水泵安装在群楼屋顶,其本身的噪声影响就不是很大,电动机、水泵及风冷热泵机组安装在弹性减振基础上,在通风机和水泵的进出口设置柔性接头;管道通过墙壁时或悬吊楼板下时管道和支架要隔振,通过高噪声房间的管道要做隔声处理,避免振动或者高噪声传入管内;变风量和末端采用消声软管与风口连接,以防止其流通过调节阀时产生的噪声传入室内;空气处理机组混风处和机组出口设置静压箱,内贴消声材料;在必要的地方设置消声器或消声弯头。

11、防火排烟系统的设计

在本设计中需要放置防、排烟的部位有:防烟楼梯及楼梯间及前室消防电梯前室和合用前室,本设计主要采用自然排烟,自然排烟利用与室外相邻的窗,阳台,凹廊或专用的排烟口将室内的烟排出,自然排烟不使用动力,结构简单,运行可靠,自然排烟口的面积,一般可取地板面积的2%,排烟口设在防烟分区顶棚上或靠近顶棚的基面上。

12、保温设计

空调水管、阀门、膨胀水箱、室外膨胀管、冷凝水管等均需保温.保温材料选用橡塑闭泡福乐斯,难燃B1级.空调水管公称直径采用福乐斯,管壳厚度见下表:

表11.1管道保温厚度表公称直径DN15DN20DN25DN32DN40DN50DN65DN80DN100DN125DN150

厚度(mm)2525272728293031313240

保温结构及作法按国家有关标准及产品技术文件要求进行施工;

13、设计体会

毕业设计是大学四年学习的一次全面总结,要综合运用所学的基础理论和专业知识熟悉和掌握国家有关的建设方针政策,联系实际来解决工程设计问题。通过此次毕业设计,本人明确了设计程序、设计内容及各设计阶段的目的和要求。

整个设计从负荷计算到方案比较,再由方案比较到风、水系统的设计,把我们在大学中所学的所有专业知识都联系起来,应用到《空气调节》、《供热工程》、《智能建筑概论》等很多我们所学到的专业基础及专业知识,还应用到暖通专业的《空气调节设计手册》、《暖通空调制图与设计施工规范手册》等设计规范,把我们在书本上掌握的知识应用到实际工程实践中,是一个不断学习、运用知识的过程。当完成整个设计任务时,才发现自己的专业知识、解决问题的能力以及创新能力都有了很大程度的提高,体会很深。

首先,在负荷计算阶段,运用EXCEL软件进行负荷计算速度与用人工算有太大的差别,只需几天时间就可以计算完15层大楼的冷负荷;在用WORD进行编辑设计说明时,设置标题就可以自动生成目录;在WORD中可以插入EXCEL表格,进行计算和编辑,比在WORD中插入表格来得快多了;所以我们在以后的学习中应该更加牢固地掌握WORD、EXCEL等办公软件,以利于改进速度和质量效果。

其次,方案比较时要考虑完全,在进行经济性比较时不仅要计算供热制冷机组的初投资和运行费用,还要考虑到冷却水泵冷却塔等设备的投资,因为风冷热泵机组不需要冷却水泵和冷却塔,还要考虑到一些维修管理费等实际因素。

在我们设计过程中,不仅要感谢老师的指导,还要感谢一些设计院和空调公司的专业人员在我们参观实习和讲座中给我们传授的经验和知识。他们用经历与时间换来的经验是我们在书本中所学不到的,一些实际领域的设计与新技术的应用更是值得我们所学的。其次,我们在设计设计时应该多有些创新,大胆的应用新技术,任何一种技术都有它的优点和局限性。不可能有各方面都好的技术,所以我们在借鉴前人的基础上作一些定性的分析,对新技术进行应用。

再次,在进行设计的过程中要保持认真谦虚的态度,在风管和水管的阻力计算时要找好局部阻力和最不利环路,这是我们在以后的学习和生活道路上所必须的,这次设计就培养了我耐心认真的习惯。

在绘图过程中,本人采用CAD绘图,使本人对CAD的运用能力得到加强,速度有明显增加。

总之,通过本学期的毕业设计,本人觉得自己系统的掌握了专业课知识,并可以和实际联系起来考虑问题、分析问题、解决问题的能力有了很大提高,基本可以独立设计空调系统。感谢老师对我设计过程中的关心和指导,感谢专业人员的热心指导和同学的帮助!

参考文献

⑴《空气调节设计手册》第二版电子工业部第十设计研究院主编中国建筑工业出版社出版

⑵《空气调节》第二版赵茸义主编中国建筑工业出版社出版1996

⑶《简明空调设计手册》赵茸义主编中国建筑工业出版社出版2000

风冷范文篇4

关键词:数据机房;精密空调;节能改造;水预冷技术;氟泵技术

根据工信部《新型数据中心发展三年行动计划(2021—2023年)》中提出的要求和上海市发改委、经信委《关于做好2021年本市数据中心统筹建设有关事项的通知》等文件的要求,上海市将分类型、分批次推进“老小散旧”数据中心改造和淘汰,将承载业务逐步向大型数据中心迁移。受到数据中心既有业务转移困难的限制,大部分数据中心无法在近几年内迁移,而只能开展基于原有条件的节能改造。其中,数据机房空调是节能改造的重点。这些老旧数据中心大多以风冷精密空调作为冷却设备。这些设备能效较低、可扩容性不强、维护成本较高。在实际运行中还容易存在多种安全或环境风险,例如:风冷冷凝器密集布置于屋外,形成局部热聚集,效率大幅度下降;在夏季,空调冷凝压力过高,机组频繁出现高压保护,严重威胁设备安全运行;在夏季,室外风机持续高速运转,风机噪声极大,引起周边居民不满。这些数据机房原有建筑体量较小,没有足够的室内空间增加全套水冷冷站或增加水冷精密空调间。同时,它们的IT负荷总量较小,若采用大型高效的冷水机组,容易出现喘振等问题。另外,在机房内进行水冷系统改造存在机房进水等安全风险。因此,不适合进行完全的冷水系统改造。本文通过对加装水预冷系统(以下简称“水预冷”)和加装氟泵装置(以下简称“氟泵”)的节能改造技术的测试分析,总结提炼这2项技术的适宜性和可行性。

1水预冷技术

1.1水预冷技术节能原理

在原精密空调的冷凝器至室内蒸发器的管路中间串联一个水冷壳管式换热器。高温制冷剂气体进入风冷冷凝器换热冷却后,再进入换热器中换热变为低温制冷剂。低温冷却水从冷却塔通过水泵输送到水冷壳管式换热器内,换热升温后循环回到冷却塔内,通过冷却塔降温后进入下一个循环。由此,将冷凝方式由原本的风冷模式转变为水冷模式。水预冷技术改造方案原理见图1。

1.2水预冷技术案例介绍

某数据中心设有60余套风冷精密空调,在保留原有风冷冷凝器的基础上,根据上节技术方案,加装一套水冷换热系统。项目新增了60余套壳管式冷凝器、2台循环水泵(一用一备)、1台冷却塔及配套循环水系统管路。由水冷系统作为主要冷源,原有风冷冷凝器作为备用。在水冷系统检修或故障时各精密空调可自动投入运行,确保机房时时处于安全稳定的运行环境。

1.3水预冷技术测试工况

该数据中心由动力环境监控系统提供能耗监测数据。由于单台空调用电量无计量,本文对该数据中心2层某数据机房内空调机组的整体用电量进行计量。在对比测试时,考虑机房安全运行的要求,水预冷系统不能长时间关闭。本文将水预冷系统关闭24h和运行24h作为2种工况,记录2种工况条件下空调设备的用电量,进而计算得出2种工况的能耗差,并分析计算节电率。(1)式中S为水预冷空调系统节电率;P1为水预冷系统关闭模式的平均小时用电量;P2为水预冷系统运行模式的平均小时用电量。

1.4水预冷技术测试结果及节能分析

测试时间为2020年8月18—20日,为夏季工况测试条件。通过对2种工况下的空调设备用电量的计量得到:水预冷设备运行时,精密空调平均小时用电量为264.91kW·h;水预冷设备关闭时,精密空调平均小时用电量为305.98kW·h;水预冷技术在夏季的节电率为13.42%。本次测试未得到冷却水泵的能耗数据,根据厂家提供的资料,冷却水泵额定功率为37kW,额定水流量为315m3/h,冷却塔为无风机冷却塔。根据当日机房总冷量等数据,估算得冷却水泵小时用电量为33.16kW·h。因此,水预冷技术节电率为2.44%。

2氟泵技术

2.1氟泵技术节能原理

在传统风冷精密空调的制冷循环中加装制冷剂泵、压力传感器、储液罐、单向阀、控制板等部件,在控制器的集中调节下,充分利用室外低温环境,减小压缩机的运行功率和缩短工作时间,达到节能的目的。加装氟泵装置后的精密空调系统原理图见图2。根据厂家资料,本文案例采用的氟泵节能技术具有3种运行模式。1)压缩机循环模式。当室外环境温度>20℃时,压缩机工作,提供较高的冷凝温度及冷凝压力,保证制冷剂与室外空气的换热量。此时制冷剂泵不开启。2)混合制冷模式。当10℃≤室外环境温度≤20℃时,系统所需冷凝温度和冷凝压力降低,压缩机耗能减少,此时制冷剂泵开启,提高液态制冷剂的压力,保证制冷剂的正常循环。3)制冷剂泵循环模式。当室外环境温度<10℃时,从蒸发器出来的气态制冷剂可直接在室外冷凝器中冷凝换热,压缩机无需开启,制冷剂泵单独工作。

2.2氟泵技术测试工况

某数据中心的2层数据机房内设有风冷精密空调共10台,有6台完成了氟泵改造。本文选取其中3台完成氟泵改造的精密空调,选取分别采用压缩机循环模式、混合制冷模式、制冷剂泵循环模式的时间段进行测试。通过安装电能测试仪计量其用电量,通过现场风量、温湿度的测试计算得到制冷量,进而计算空调制冷效率(COP)。分别记录精密空调在3种模式下的制冷效率,计算不同模式下的节能率。考虑到数据中心IT负荷稳定,不同模式节能率及全年节能率按以下公式计算:式(2)~(4)中S1为混合制冷模式的节能率;S2为制冷剂泵循环模式的节能率;S3为全年节能率;P1为混合制冷模式的空调制冷效率;P2为制冷剂泵循环模式的空调制冷效率;P3为压缩机循环模式的空调制冷效率;X1为混合制冷模式年运行时间;X2为制冷剂泵循环模式年运行时间;X3为压缩机循环模式年运行时间。

2.3氟泵技术测试结果及节能分析

通过对3种模式下的精密空调用电量的计量,得出氟泵技术的全年节能率为18.42%。氟泵技术全年节能率计算数据见表1。但从测试数据可见,在制冷剂泵循环模式下,精密空调的制冷量有所下降。在此对制冷量下降的原因分析如下。在夏季常规运行工况下,该数据机房的精密空调蒸发器温度约为5℃,冷凝器温度约为100℃。即在采用老旧精密空调蒸发器、冷凝器条件下,综合考虑油膜、尘垢等换热热阻的存在,冷凝器温度比室外温度高约60℃时可以达到额定制冷量。在运行制冷剂泵循环模式时,冷凝器冷凝温度与蒸发器蒸发温度较为接近。考虑制冷剂泵的压差、室内换热温差等因素,若要在制冷剂泵循环模式下达到同样的制冷量,则室内温度与室外温度的差应达到45℃左右。由于室内温度与室外温度的温差不大,使得制冷剂泵循环模式条件下的制冷量无法达到压缩机循环模式的制冷量。

3结论

风冷范文篇5

关键词:合同能源管理;分布式热管;节能

1合同能源管理概述

合同能源管理是以节能项目减少能源费用支付项目成本的一种市场化运作节能机制和商业运作模式。主要包括节能效益分享型合同能源管理、节能量保证型合同能源管理、能源费用托管型合同能源管理、融资租赁型合同能源管理等类型[1]。合同能源管理实施流程主要包含项目节能诊断、节能改造方案设计、合同谈判与签署、项目投资、节能项目建设(包含设备采购、施工、安装、调试)、项目验收、节能效益产生及监测、节能效益分享等8个环节。实施流程如图1所示。

2分布式热管背板冷却系统原理

热管背板冷却系统分为三个部分:一是室内热管排热机柜,热管内部制冷剂由液态吸收服务器的热量后蒸发变为气态,从热管背板顶部流出通过冷媒管道进入冷媒中间换热单元;二是冷媒中间换热单元,由制冷剂与冷却水完成换热,从热管背板流入的气态制冷剂在冷媒分配单元中被冷却水冷却成液态制冷剂,液态制冷剂流入热管背板中,完成制冷剂的循环;三是室外冷源部分,为冷媒中间换热单元提供稳定的冷却水,冷却水由高温冷水机组和自然冷源模块部分提供。分布式热管排热机柜运行流程如下:(1)机柜内IT设备风机和热管背板末端风机产生吸引力,机房内循环空气(冷空气)通过机柜开孔前门进入机柜。(2)循环空气(冷空气)被运行IT设备加热后温度升高成为热空气后,排出IT设备。(3)热空气排出后,被吸入热管背板末端,热量被热管背板末端中的液态制冷剂吸收,成为冷空气后,被排出分布式热管排热机柜,进入机房环境中。(4)热管背板末端中液态制冷剂吸收热空气热量后气化,在自身压差作用下,被输送至热管冷凝器中间换热单元,重新被冷却成液态制冷剂,回流至热管背板末端中。(5)排出分布式热管排热机柜冷空气,在IT负载风机及背板风机的作用下,从前门机柜被吸入IT设备,完成空气循环。

3分布式热管背板冷却系统节能改造应用实例

3.1实例现状及设计方案。该机房位于兰州市某办公楼8层,机房长约24.6m、宽5.6m,面积约为140m2,层高3.9m,计划安装机柜30架。主要参数为单个背板功率0.059kW,冷冻水循环泵功率3kW,风冷冷水机组功率19.8kW,机房末端采用新型热管排热背板技术,安装于每个机柜后门,与通信机柜紧密结合,冷却机柜排风。3.2能耗对比。分布式热管背板冷却系统耗电主要包含室内末端热管背板耗电、室外机风冷冷水机组耗电、冷冻水循环水泵耗电、风冷自然冷源模块耗电。结合兰州气候条件,在室外温度低于5℃时可充分利用室外的自然冷源条件为系统提供冷冻水。兰州典型气象参数如表1所示,运行模式如表2所示。室外干球温度≤5℃时,自然冷源模块单独供冷:耗电量=(0.059kW×30+3kW+1.14kW×2×0.7)×3090h=1.97万kWh;5℃<室外干球温度≤10℃时,自然冷却模块与风冷冷水机组联合运行时:耗电量=(0.059kW×30+1.5×2kW+3kW)×1048h+19.8kW×1048h×0.2=1.15万kWh;室外干球温度>10℃时,由风冷冷水机组提供冷量,风冷冷水机组提供100%冷量:耗电量=(0.059kW×30+19.8kW×2×0.75×1.1×0.75+3kW)×4622h=13.68万kWh。经计算,分布式热管冷却系统全年耗电量为1.97+1.15+13.68=16.8万kWh。3.3能耗分析。根据本机房负载及布局,若安装空调系统需配置3台(2用1备)60kW上出风型精密空调,耗电量包括室内送风风机全年运行,制冷压缩机、室外风机根据负荷调节运行以及湿度调节消耗的电量。主要性能参数为总冷量63.5kW、显冷量59.4kW、风量15480m³/h,室内风机功率5.25kW,压缩机总功率19kW,室外风机功率1.7kW。根据前述服务器机房IT负载和精密空调相关参数,由下公式可计算得首层数据机房空调年耗电量:(+)()acfancmpfanEEEPPρβγT=+=+××××(1)式中:acE—精密空调总能耗(kW);fanE—精密空调内风机能耗(kW);cmpE—精密空调压缩机与外风机能耗的和(kW)。计算公式:(+)cmpE=P×ρ×β×γ×8760(2)空调启停系数一般取1.1~1.5,此处取1.3;空调全年调节系数取值0.8,运行率取值:0.722。根据机房空调运行情况及计算公式,计算内风机能耗9.198万kWh,压缩机+外风机能耗27.232万kWh,空调总能耗36.43万kWh。经对比,在利用分布式热管冷却系统为机房制冷年耗电量相比普通风冷型精密空调年耗电可节省19.63万kWh,年节能率可达55.20%。

4合同能源管理模式应用分析

(1)建设投资。建设投资主要包括风冷冷水机组、自然冷源模块、冷冻水循环水泵、恒湿机、分布式热管排热机柜、中间换热单元(DCU)、配电柜、监控系统,总投资120.16万元。(2)商业模式。采用合同能源管理节能效益分享,投资内容包括设备、安装、运维等费用。合同期内,设备所有权归投资方所有。合同期满后,将设备资产无偿移交给机房。(3)经济效益分析。分布式热管背板冷却系统总投资120.16万元,合同期限为15年,年节约电量预计为19.63万kWh,15年共计节约电量294.45万kWh,电费按一般工商业均价0.765元/kWh计算,预计的年节能效益为15.02万元,投资回收期8年,15年预计年节能效益为225.28万元。

5结语

目前,中国移动、电信、联通已将分布式热管背板冷却系统作为新建数据中心的标准配置,如中国移动兰州新区数据中心等均已采用。基于合同能源管理模式,可拓展融资渠道,降低投资风险,具有良好的示范性,节能率高,可稳定实现机房降温,市场前景广阔。

参考文献

[1]DL/T1644—2016,电力企业合同能源管理技术导则[S].

[2]余跃.分布式热管背板空调在通信机房中的应用研究[C]//中国移动通信集团设计院新技术论坛,2014.

风冷范文篇6

关键词:商业建筑负荷预测DeST

0引言

随着空调系统在商业建筑领域的广泛应用,如何做到合理预测全年负荷是商业建筑空调设计非常重视的一个问题。目前,商业建筑设计多数采用经验数据进行冷、热负荷估算,这种方法只提供冷热负荷的最大值,已经远远不能满足空调蓄冷蓄热系统设计、冷热源系统选择、BCHP系统设计和设备搭配以及城市能源规划对负荷全年动态变化的要求。因此,我们有必要用一种新的方法对商业建筑的全年负荷进行预测。

1商业建筑空调负荷特征

商业建筑空调负荷主要由下面几个因素组成:1)室内热扰,包括人员、灯光和设备2)围护结构传热3)新风负荷。在这几个因素中,室内热扰及其动态变化过程对负荷的影响很大。同时,由于在变风量系统中,新风随人员密度的变化而变化,因此新风负荷和室内热扰的变化过程密切相关。所以,合理地预测负荷应把重点放在室内热扰的参数设定及其动态变化设计上。

2典型商业建筑内扰的参数设计和全年作息时间的设计

2.1商业建筑的分类

商业建筑种类繁多,功能各异。本文依据不同的使用性质,选择了典型的几种商业建筑进行了建筑内扰和全年作息的设计,如下:1)客房:分为五星级客房、四星级客房、三星级客房以及三星级以下客房;2)办公室:分为高级办公室和一般办公室;3)美容院;4)保龄球馆;5)舞厅;6)健身房;7)商场;8)餐厅:分为中餐厅、西餐厅和火锅餐厅;9)门厅;10)会议室;11)展览馆;12)影剧院;13)游泳池;14)教室;15)医院:包括病房、手术室、候诊室、门诊办公室、婴儿室和药品储存室;16)走廊;17)档案库房;18)卫生间;19)电脑机房;20)室。

2.2室内参数设计

商业建筑的空调属于舒适性空调,即从人体的舒适感出发确定室内温度、湿度设计标准。

室内参数包括:1)夏季干球温度(℃)和相对湿度(%)2)冬季干球温度(℃)和相对湿度(%)。

2.3内扰的参数设计

内扰参数主要包括:1)人员热扰2)灯光热扰3)设备热扰

各参数的具体指标如下:

1)人员热扰:最大人员密度(人),人均发热量(W),人均产湿量(kg/hr),新风量(﹒人);

2)灯光热扰:最大功率();

3)设备热扰:最大功率();

2.4全年作息的设计

所谓全年作息是指室内热扰参数全年每一时刻的数量大小与设定的最大值的比值。由于在商业建筑中,作息基本是以一周为周期的,所以本文的设计也是以一周为基础,分开考虑工作日与休息日;同时,对于一些季节性变化比较强的商业建筑,如商场、教室等,就得考虑全年不同月份的变化。作息的设计参数主要包括:

1)人员密度的作息:是指某时刻的人员密度和设定最大人员密度的比值;

2)灯光的作息:是指某时刻的灯光功率和设定最大灯光功率的比值;

3)设备的作息:是指某时刻的设备功率和设定最大设备功率的比值;

2.5设计举例

由于篇幅原因,只选取几个典型的商业建筑举例说明设计过程。

2.5.1办公室

办公室是组成写字楼等商业建筑的基本元素,可分为高级办公室(如经理办公室)和一般办公室,在参数设计中要求也不同。

1)室内条件参数设定

房间使用性质

夏季

冬季

干球温度

相对湿度

干球温度

相对湿度

%

%

高级办公室

23-25

50-60

21-23

35-40

一般办公室

24-26

50-60

20-22

35-40

2)内扰的参数设计

房间使用性质

新风量

(.人)

人员热扰

灯光热扰

设备热扰

最多人数

(人)

人均发热量()

人均产湿量()

最大功率()

最大功率()

高级办公室

40

0.05-0.1

64

0.084

10

10

一般办公室

30

0.1

64

0.084

10

20

3)全年作息的设计

办公室的作息基本上是以一周为周期的,有工作日和休息日的区别,而无季节性的变化。由于办公室中的设备主要是电脑,它和人的作息基本上是一致的,因此把办公室的人员和设备热扰一同考虑。对于灯光来说,它不但受到人员密度大小的限制,而且和一天中的阳光强度变化有密切的关系。白天,人们利用充沛的自然光,所以尽管白天人员密度大,但灯光的功率却不是最大。考虑到在休息日加班的情况,所以休息日的人员、设备和灯光的作息不为0。

?

图1办公室人员/设备作息(工作日)图2办公室灯光作息(工作日)

图3办公室人员/设备作息(休息日)图4办公室灯光作息(休息日)

2.5.2商场

商场也是一类典型的商业建筑。在商场空调负荷中,人体冷负荷占有主导地位。人员密度取值的少许增减都会对空调能耗和投资有明显影响。

1)室内条件参数设定

房间使用性质

夏季

冬季

干球温度

相对湿度

干球温度

相对湿度

%

%

商场

25-27

55-65

20-22

40-50

2)内扰的参数设计

房间使用性质

新风量

(.人)

人员热扰

灯光热扰

设备热扰

最多人数

(人)

人均发热量()

人均产湿量()

最大功率()

最大功率()

商场

15-25

1.0

68

0.1

20

3)全年作息的设计

商场的室内热扰作息随季节的变化很大。一般来说,夏季是销售淡季,人员密度小;春节期间是销售旺季,人员密度大。所以,商场人员密度作息的周期为一年,要考虑不同季节的影响。

而灯光作息随季节的变化和人员密度变化很小,并且商场的内部空间很大,只靠自然采光是无法满足室内要求的,所以灯光的作息在一天内的变化几乎是不变的,其周期也是以一天为设计标准,不需考虑工作日和休息日的变化,如图10。如图6至图9,作者把一年分为四组来设计人员密度作息:1)12月初-2月末;2)3月初-5月末;3)6月初-8月末;4)9月初-11月末。同时,对于五一、十一、春节等人员密度极大的节假日单独设计作息,如图5

图5商场人员作息(五一、十一、春节等节假日)图6商场人员作息(12月初-2月末

图7商场人员作息(3月初-5月末)图8商场人员作息(6月初-8月末)

图9商场人员作息(9月初-11月末)图10商场灯光作息

3全年负荷预测

3.1全年负荷预测方法

通过对各典型商业建筑的内扰的参数设计和全年作息时间的设计,作者利用建筑能耗模拟软件DeST计算各典型商业建筑的全年逐时冷(热)负荷,并由此得到建筑全年冷(热)负荷逐时变化无因次曲线和单位体积新风冷(热)负荷逐时变化曲线。

所谓建筑全年冷(热)负荷逐时变化无因次曲线,是指每一时刻建筑冷(热)负荷与全年最大冷(热)负荷的比值组成的一条曲线。

所谓单位体积新风冷(热)负荷逐时变化曲线,是指每一时刻单位体积的新风所产生的冷(热)负荷变化曲线。

在负荷预测过程中,只需估计单位建筑面积的最大冷(热)负荷,便可以通过建筑全年冷(热)负荷逐时变化无因次曲线,获得全年逐时单位建筑面积的冷(热)负荷;同理,如果确定了该建筑的设计新风量,便可以通过单位体积新风冷(热)负荷逐时变化曲线得到全年的新风负荷。从而为估计商业建筑的全年逐时负荷提供了一种简单的估计方法。

3.2办公类建筑全年负荷预测举例

下面以办公类建筑这一典型商业建筑为例说明。本次模拟的地点是北京,图11是办公楼的模型图,这是一个以办公室为主的建筑。

3.2.1办公楼冬(夏)季典型日负荷变化无因次曲线

图12是办公楼冬季典型日负荷变化无因次曲线;图13是办公楼夏季典型日负荷变化无因次曲线。从图中可以看到,冬季全天的建筑负荷最大值出现在刚开启空调的时刻,即所谓的尖峰负荷,这是由于夜间建筑内温度下降,冷量积蓄的缘故;夏季全天的建筑负荷最大值出现在下午,由于北京夜间比较凉爽,建筑内的蓄热得以散出,因此在空调开启时刻并没有出现尖峰负荷。

3.2.2建筑全年冷(热)负荷逐时变化无因次曲线

图14是建筑全年冷(热)负荷逐时变化无因次曲线,横轴表示全年8760个小时。从图中可以看到,热负荷出现在11月中旬至第二年的3月中旬,并在1月初达到最大值;冷负荷全年都存在,并在7月中旬达到最大值。对比这两条曲线,可以看到冬季办公楼一天中同时存在冷热负荷,这是由于外区受气候影响需要供热,而内区几乎没有围护结构传热,只存在着内部发热,所以需要供冷的原因。

3.2.3单位体积新风冷(热)负荷逐时变化曲线

图15是单位体积新风冷(热)负荷逐时变化曲线。新风负荷与外界环境密切相关。从图14我们可以确定在3月中旬至11月中旬建筑只有冷负荷,从图15我们可以确定在4月下旬至9月下旬这段时间内,以新风冷负荷为主,所以,在3月中旬至4月下旬,九月下旬至11月中旬期间,可以利用通入新风直接除去建筑的热负荷,避免了空调带来的能源浪费。

3.2.4负荷预测

使用者只需估计单位建筑面积的最大负荷,便可以通过办公类建筑负荷的无因次曲线,获得全年逐时单位建筑面积的负荷,并可根据自己的需要得到全年累计,冬夏季累计等数值;同理,如果确定了该建筑的设计新风量,便可以通过单位体积新风冷热负荷逐时变化曲线得到全年的新风负荷逐时变化量。

4结语

4.1在商业建筑中,室内热扰(人员、灯光和设备)及其动态变化过程对负荷的影响很大。所以,合理地预测负荷应把重点放在室内热扰的参数设定及其动态变化设计上。

4.2利用建筑能耗模拟软件DeST可得到建筑全年冷(热)负荷逐时变化无因次曲线和单位体积新风冷(热)负荷逐时变化曲线,大大简化了负荷的计算过程,为估计商业建筑的负荷估算提供了一种简单可靠的方法。

4.3商业建筑的外形千变万化,内部结构也千差万别,但功能类型相同的商业建筑必然在负荷趋势上有着共同点,本文的预测方法重点不在于单个建筑之间的差异性,而是着眼于作为某类商业建筑的共同特性,从而为空调蓄冷蓄热系统设计、冷热源系统选择、BCHP系统设计和设备搭配以及城市能源规划等提供设计参考和依据。

4.4最大冷热负荷的预测方法不是本文的主要论述对象。

4.5由于气象条件不同,其它城市的商业建筑也可利用这种方法得到一系列的不同商业建筑的负荷变化曲线,这必然会给设计者带来极大的便利。

参考文献:

(1)四机械工业部第十设计研究院.空气调节设计手册.1983

(2)上海节能建筑设计标准

(3)邹建忠.商场空调设计中客流量和新风量取值的探讨,长春工程学院学报,2001(2)

(4)郑万兵.医院空调设计中几个问题探讨,制冷空调与电力机械,2002(3)

风冷范文篇7

[论文摘要]文章结合目前通信机房空调设备产品存在的问题及空调资源的合理优化和合理配置,对通信机房的空调系统节能潜力进行分析,涵盖空调产品的节能及资源优化设计等内容,从四个方面来阐述空调系统的节能手段,并提出各种手段的可执行方式和具体措施。

在我国目前经济高速发展的同时降低能源消耗是今后必须实现的目标,是经济可持续健康发展的重要保障。对通信行业而言,实现资源节约和环保的战略目标,其中的一个重要着眼点就是要大力推动以节能降耗为重点的设备更新和技术改造,加快淘汰高耗能、高耗水、高耗材的工艺、设备和产品。根据通信部门多年来的统计数据分析,通信行业的运营成本主要是电耗成本,而在电耗成本中,机房空调的电耗约占总电耗50%以上。可以说降低空调机组的运行费用,能有效降低电信行业的运营成本。

本文结合目前通信机房空调设备产品存在的问题及空调资源的合理优化和合理配置对通信机房的空调系统节能潜力进行分析,涵盖空调产品的节能及资源优化设计等内容,从四个方面来分别阐述空调系统的节能手段,并提出各种手段的可执行方式和具体措施。

一、机房空调气流组织的科学化

机房内空调系统气流组织的科学化是合理解决机房环境要求的必要条件,也是实现节能效应的有效途径。机房内的气流组织应包括机房大环境的气流组织和通信机柜内部的气流组织,所以机房空调气流组织的科学化解决方案应立足这两方面予以考虑。

(一)机房送风方式应优先考虑地板下送风

目前通信机房规划大多数采用上走线上送风方式,而专用空调上送风方式主要采用风帽直接吹送和风管送风两种常见方式,但这两种送风方式由于造成机房内空调送风断面过大,且系统调节性能较差,不能实现机房内系统总风量的高效、合理的分配。特别是一些发热量较大的数据、交换机房,由于机房内负荷较大且分布不均匀,易造成局部发热源集中区域的局部分配的送风量不足,热量不能及时散发而造成局部过热现象。且上送风方式由于在整个机房空间内冷、热气流混合交叉现象严重,制冷效率偏低。

为解决目前机房内存在的局部过热问题,并使机房内气流组织的合理高效从而实现较好的节能效果,建议通信机房在层高满足的条件下优先采用地板下送风方式。根据实际工程案例进行经济性分析,下送风方式比上送风方式普遍可节约20%左右的运行费用,节能效应显著。

地板下送风方案在工程应用中,要达到理想的效果,应注意以下环节:(I)地板下只准通风,严禁布放线缆(消防用线缆除外);(2)架空层下有效净空高度一般应控制在350~500mm范围内;(3)送风距离易小于15m。若送风距离超过15m,可以考虑两侧安装空调送风或地板下安装风管进行远距离输送;(4)地板架空层下的水泥楼面应铺设不燃烧材料制造的隔热保温层和保护层,防止楼层水泥面或下层天花板结露。

(二)机柜内气流组织合理化

机柜内部安装的设备产生的热量能否及时散发到周围的环境中,一方面要求机房大环境有良好的气流组织和适宜的环境参数(温度、湿度等),另外一方面要求通信机柜具备良好的散热工艺。

通信机柜的结构形式应充分考虑散热工艺的要求,否则会造成热量在机柜内部堆积而无法及时散发到周围的环境中去,从而影响通信设备的正常运行,严重时会造成通信设备故障率明显增加。目前一些通信机柜的结构形式在散热工艺上存在一些缺陷,可能存在的问题主要包括:(1)机柜前后门开孔率不足,有些在前柜门位置还设置有防尘网,造成冷气进入阻力过大;(2)有些机房通信机柜内部堆放的设备过于密集,气流流道过于狭窄,内部气流循环不通畅;(3)柜内气流组织不合理,冷、热气流混合现象明显;(4)一些散热量大的通信设备机柜缺少风扇强制排风,仅靠机柜内部自然排风散热效果较差。

针对上述目前一些通信机柜内部存在的一系列问题,必须在机柜前期结构研发阶段对一些环节进行优化处理:应增加通信机柜的柜门开孔率,内部结构形式寻求更合理的流道设计,散热量大的机柜应考虑强制排风,进风量应可以根据柜内设备安装情况进行调节。

根据国内外一些工程的经验,对一些设备散热量较大且采用上送风的机房,可以考虑采用开放型货架式机柜。通信设备均搁置在完全敞开式的托架平台上,设备散发的热量可以迅速地释放到周围环境中,散热效果得到极大改善,当然这种开放式机柜也会对设备安装管理带来一些问题。

二、水冷替代风冷或采用双冷源机组

目前通信机房空调大多数采用风冷型专用空调机组,这种风冷型机组均为单元式机组,具有安装灵活、可靠安全的优点,但也存在性能系数较低、运行性能不稳定、受室外环境温度变化波动较大、室内外机组安装管线较短、室外机组占用大量建筑面积的缺点。

从节能角度考虑,由于水冷效率明显高于风冷,水冷机组性能系数高于风冷机组,在通信机房中推广水冷型专用空调机组具有一定程度的节电降耗价值,特别是在一些中、大型项目上不但节能效益显著,而且可以减少空调设备的投资。

在中、大型项目中无论采用冷冻水型或冷却水型机组,均能实现一定程度的节能降耗、减少投资的目的,且由于水冷型机组没有风冷型机组室外机占用大量安装位置的问题,提高了建筑利用率。但由于水冷型系统中安装的设备及阀门等部件较多,系统单点故障点较多,系统在安全可靠性要求上存在隐患。从提高系统的安全可靠性角度出发,在通信机房项目中推荐采用双冷源机组。

双冷源机组常见的主要是风冷+冷冻水型或风冷+冷却水型两种机组。在大多数季节中系统主要启用经济节能的水冷系统,而在不满足水冷型机组运行的季节或系统发生故障及检修维护时才启用风冷系统。采用双冷源机组虽然会增加项目的初投资费用,但系统安全可靠性较高,且运营成本可以大大降低。

三、直接利用室外自然冷源

在冬季及室外焓值低于室内焓值的过渡季节时,从室外引入新风作为冷源对机房环境温度进行降温处理,是降低机房空调设备运行能耗的一种有效措施。

根据各地气象条件特点,在这些季节可以直接利用室外丰富的自然冷源对机房环境降温,从而可以大大缩短专用空调机组的压缩机的全年运行时问。这样不但节约了大量的电能,同时也延长了空调机的使用寿命,减少了空调机组的维护工作量,降低了维护成本。

目前根据这一节能原理开发了不少机房节能空调产品,我们重点推荐两种在技术上较为成熟,并且在实际工程有过应用、产生了较好的经济效益的产品予以介绍。

(一)FCX系列节能空调

原理:把室外新风过滤后直接引入节能空调,在机组内新风同室内回风充分混合后送人湿膜加湿器加湿,然后由送风机将处理后的空气送入室内。引入室外新风会降低室内空气的含湿量,通过湿膜加湿器加湿后,提高室内空气的含湿量。同时,室内空气通过湿膜后温度会降低5℃左右。

特点:新风直接引入型节能空调机组没有传热损失,运行效率高。

全年运行时间长,在室外环境温度低于12℃时,可完全替代机房空调压缩机制冷,节能效果十分显著。同时机组配置的湿膜加湿器可以替代机房空调的加湿器,节约大量能源。

FCX系列分体节能空调

FCX-A机组:大风量新风混风型节能空调机组,室外新风过滤后直接进入节能空调,控制系统根据室内外温度由变频调速风机控制引入的新风量,保证送风温度在机房温度的露点温度以上,然后由送风机将处理后的空气送入室内。

FCX-B机组:大风量高余压湿膜加湿器,与FCX-A机组配合使用。引入室外新风会降低室内空气的含湿量,室内空气通过湿膜加湿器加湿后,提高室内空气的含湿量。同时,室内空气通过湿膜后温度会降低5℃左右。FCX-A机组也在机房内独立使用替代空调加湿器。

特点:新风直接引入型节能空调机组没有传热损失,运行效率高,全年运行时间长。

在室外环境温度低于12℃时,可完全替代机房空调压缩机制冷,节能效果十分显著。同时机组配置的湿膜加湿器可以替代机房空调的加湿器,节约大量能源。

(二)FCR系列机房节能空调

原理:采用板式显热换热器为核心部件,室内、外空气在换热芯体内进行能量交换。室外新风引入显热交换器,对室内空气进行冷却降温处理,然后排出室外;被冷却后的室内空气再送回室内,达到为机房降温的目的。

特点:室外空气引入换热芯体,与室内空气热交换后排除室外,可以保证机房的洁净度和湿度不受影响。板式显热换热器的材质为耐腐蚀亲水铝箔,采用特殊工艺加工而成。换热通道面积大风阻小,具有换热效率高、使用寿命长和维护简单的优点。

四、确定合理的机房环境温度

风冷范文篇8

机房内空调系统气流组织的科学化是合理解决机房环境要求的必要条件,也是实现节能效应的有效途径。机房内的气流组织应包括机房大环境的气流组织和通信机柜内部的气流组织,所以机房空调气流组织的科学化解决方案应立足这两方面予以考虑。

(一)机房送风方式应优先考虑地板下送风

目前通信机房规划大多数采用上走线上送风方式,而专用空调上送风方式主要采用风帽直接吹送和风管送风两种常见方式,但这两种送风方式由于造成机房内空调送风断面过大,且系统调节性能较差,不能实现机房内系统总风量的高效、合理的分配。特别是一些发热量较大的数据、交换机房,由于机房内负荷较大且分布不均匀,易造成局部发热源集中区域的局部分配的送风量不足,热量不能及时散发而造成局部过热现象。且上送风方式由于在整个机房空间内冷、热气流混合交叉现象严重,制冷效率偏低。

为解决目前机房内存在的局部过热问题,并使机房内气流组织的合理高效从而实现较好的节能效果,建议通信机房在层高满足的条件下优先采用地板下送风方式。根据实际工程案例进行经济性分析,下送风方式比上送风方式普遍可节约20%左右的运行费用,节能效应显著。

地板下送风方案在工程应用中,要达到理想的效果,应注意以下环节:(I)地板下只准通风,严禁布放线缆(消防用线缆除外);(2)架空层下有效净空高度一般应控制在350~500mm范围内;(3)送风距离易小于15m。若送风距离超过15m,可以考虑两侧安装空调送风或地板下安装风管进行远距离输送;(4)地板架空层下的水泥楼面应铺设不燃烧材料制造的隔热保温层和保护层,防止楼层水泥面或下层天花板结露。

(二)机柜内气流组织合理化

机柜内部安装的设备产生的热量能否及时散发到周围的环境中,一方面要求机房大环境有良好的气流组织和适宜的环境参数(温度、湿度等),另外一方面要求通信机柜具备良好的散热工艺。

通信机柜的结构形式应充分考虑散热工艺的要求,否则会造成热量在机柜内部堆积而无法及时散发到周围的环境中去,从而影响通信设备的正常运行,严重时会造成通信设备故障率明显增加。目前一些通信机柜的结构形式在散热工艺上存在一些缺陷,可能存在的问题主要包括:(1)机柜前后门开孔率不足,有些在前柜门位置还设置有防尘网,造成冷气进入阻力过大;(2)有些机房通信机柜内部堆放的设备过于密集,气流流道过于狭窄,内部气流循环不通畅;(3)柜内气流组织不合理,冷、热气流混合现象明显;(4)一些散热量大的通信设备机柜缺少风扇强制排风,仅靠机柜内部自然排风散热效果较差。

针对上述目前一些通信机柜内部存在的一系列问题,必须在机柜前期结构研发阶段对一些环节进行优化处理:应增加通信机柜的柜门开孔率,内部结构形式寻求更合理的流道设计,散热量大的机柜应考虑强制排风,进风量应可以根据柜内设备安装情况进行调节。

根据国内外一些工程的经验,对一些设备散热量较大且采用上送风的机房,可以考虑采用开放型货架式机柜。通信设备均搁置在完全敞开式的托架平台上,设备散发的热量可以迅速地释放到周围环境中,散热效果得到极大改善,当然这种开放式机柜也会对设备安装管理带来一些问题。

二、水冷替代风冷或采用双冷源机组

目前通信机房空调大多数采用风冷型专用空调机组,这种风冷型机组均为单元式机组,具有安装灵活、可靠安全的优点,但也存在性能系数较低、运行性能不稳定、受室外环境温度变化波动较大、室内外机组安装管线较短、室外机组占用大量建筑面积的缺点。

从节能角度考虑,由于水冷效率明显高于风冷,水冷机组性能系数高于风冷机组,在通信机房中推广水冷型专用空调机组具有一定程度的节电降耗价值,特别是在一些中、大型项目上不但节能效益显著,而且可以减少空调设备的投资。

在中、大型项目中无论采用冷冻水型或冷却水型机组,均能实现一定程度的节能降耗、减少投资的目的,且由于水冷型机组没有风冷型机组室外机占用大量安装位置的问题,提高了建筑利用率。但由于水冷型系统中安装的设备及阀门等部件较多,系统单点故障点较多,系统在安全可靠性要求上存在隐患。从提高系统的安全可靠性角度出发,在通信机房项目中推荐采用双冷源机组。

双冷源机组常见的主要是风冷+冷冻水型或风冷+冷却水型两种机组。在大多数季节中系统主要启用经济节能的水冷系统,而在不满足水冷型机组运行的季节或系统发生故障及检修维护时才启用风冷系统。采用双冷源机组虽然会增加项目的初投资费用,但系统安全可靠性较高,且运营成本可以大大降低。

三、直接利用室外自然冷源

在冬季及室外焓值低于室内焓值的过渡季节时,从室外引入新风作为冷源对机房环境温度进行降温处理,是降低机房空调设备运行能耗的一种有效措施。

根据各地气象条件特点,在这些季节可以直接利用室外丰富的自然冷源对机房环境降温,从而可以大大缩短专用空调机组的压缩机的全年运行时问。这样不但节约了大量的电能,同时也延长了空调机的使用寿命,减少了空调机组的维护工作量,降低了维护成本。

目前根据这一节能原理开发了不少机房节能空调产品,我们重点推荐两种在技术上较为成熟,并且在实际工程有过应用、产生了较好的经济效益的产品予以介绍。

(一)FCX系列节能空调

原理:把室外新风过滤后直接引入节能空调,在机组内新风同室内回风充分混合后送人湿膜加湿器加湿,然后由送风机将处理后的空气送入室内。引入室外新风会降低室内空气的含湿量,通过湿膜加湿器加湿后,提高室内空气的含湿量。同时,室内空气通过湿膜后温度会降低5℃左右。

特点:新风直接引入型节能空调机组没有传热损失,运行效率高。

全年运行时间长,在室外环境温度低于12℃时,可完全替代机房空调压缩机制冷,节能效果十分显著。同时机组配置的湿膜加湿器可以替代机房空调的加湿器,节约大量能源。

FCX系列分体节能空调

FCX-A机组:大风量新风混风型节能空调机组,室外新风过滤后直接进入节能空调,控制系统根据室内外温度由变频调速风机控制引入的新风量,保证送风温度在机房温度的露点温度以上,然后由送风机将处理后的空气送入室内。

FCX-B机组:大风量高余压湿膜加湿器,与FCX-A机组配合使用。引入室外新风会降低室内空气的含湿量,室内空气通过湿膜加湿器加湿后,提高室内空气的含湿量。同时,室内空气通过湿膜后温度会降低5℃左右。FCX-A机组也在机房内独立使用替代空调加湿器。

特点:新风直接引入型节能空调机组没有传热损失,运行效率高,全年运行时间长。

在室外环境温度低于12℃时,可完全替代机房空调压缩机制冷,节能效果十分显著。同时机组配置的湿膜加湿器可以替代机房空调的加湿器,节约大量能源。

(二)FCR系列机房节能空调

原理:采用板式显热换热器为核心部件,室内、外空气在换热芯体内进行能量交换。室外新风引入显热交换器,对室内空气进行冷却降温处理,然后排出室外;被冷却后的室内空气再送回室内,达到为机房降温的目的。

特点:室外空气引入换热芯体,与室内空气热交换后排除室外,可以保证机房的洁净度和湿度不受影响。板式显热换热器的材质为耐腐蚀亲水铝箔,采用特殊工艺加工而成。换热通道面积大风阻小,具有换热效率高、使用寿命长和维护简单的优点。

四、确定合理的机房环境温度

目前机房内的环境参数根据相关的规范及标准要求,温度一般控制在24℃±2℃,湿度50%±5%左右,而一般通信设备电子元器件正常的工作温度范围较大,上限一般在35℃~40℃左右。当然设计规范中要求的环境温度值相对偏低,是考虑到由于气流组织不合理、冷热气流混合交叉、局部风量分配不足等因素造成机房环境温度与通信机柜内部的温度有一定程度的温度梯度差值。这种情况就造成了为了保证机柜内部的通信设备散热效果良好,必须保证机房过道环境温度较低,空调设备保持在送风出口和回风温度较低的工况下运行,从而使空调设备制冷系数降低,能耗损失较大。

风冷范文篇9

a)具有单台房间空调器的优势。如质量可靠、故障率低、使用灵活、安装方便、维护简单等。

b)具有中央空调的优势,如房间内温度分布均匀,不占有房间的使用面积,能和装修较好的配合,室内噪音低等。

c)

具有较好的个性化,一方面要体现在住户个人购买、个人使用,另一方面室内空调机布置能够灵活多样,可根据房间的布局、个人喜好有多种方案可供选择。

d)

家用中央空调消费群体不光是针对高消费群体,而主要针对普通的工薪阶层。随着空调厂家大规模生产、开发,其价格会逐渐回落,使家用中央空调能落户于普通百姓家庭成为可能。

3几种家用中央空调方式的分析比较

3.1小区集中供冷供热系统

小区内集中设冷热源站房,通过室外管网将冷热水送至每户。该系统具有中央空调的优势,如房间的温度分布均匀、不占有房间的使用面积、室内噪音低等。但一次性投资大,需有效的物业管理,平时运行费用高,计费计量准确困难,在原计划经济下使用较多。随着福利分房取消,住房私有化,集中供冷暖系统计费、收费越来越困难,此系统市场份额也日渐萎缩。

3.2户用小型风冷热泵中央空调系统

由风冷热泵机组、室内机及空调水管及附件组成。室外机设于阳台上,将噪音阻隔于户外。风冷热泵机组内置小型压力膨胀水箱、循环水泵及自动补水阀。风机盘管空调末端有多种形式,可根据业主喜好、功能使用、室内装饰等进行选择。

该系统结构紧凑、安装方便、与全空气系统比占建筑空间少,容易配合装饰。机组设有内置式膨胀水箱,可使安装、操作、维修更为简单且无损建筑外观美。风冷热泵机组采用微电脑全自动控制,操作简单,各房间独立控制,又可集中控制,方便实用、便于节电。若设新风需另设新机组,增加造价。

该系统缺点为:集水盘内易集尘、滋生细菌,存在漏水隐患,但漏水处容易发现,便于维修。风冷热泵机组为三相电源,需另配电,设电表计量等。

3.3一拖多空调系统(常称家用变频中央空调系统)

由室内、外机,冷媒管、凝结水管及附件组成。与3.2节方案相同,室外机置于阳台上,室内机多款可供选择,但室内、外机之间采用紫铜冷媒管连接,不需膨胀水箱、循环泵。可选用单相电流,不需特批三相入户,节省线路,便于计量计费。

该系统优点:由于冷媒直接蒸发,能效比较高;具备所有家用空调性能,如:离子除尘过滤网、光触媒、夜光遥控、超低噪音等。室内机送风自动摆动,导流叶片;型号规格多,选择余地大,可根据不同性能、功能要求选择;一拖多台,根据正在运转室内机数量及每个房间不同负荷状况,变频电路调整压缩机转速,以随时适应各个时刻的总荷量,使每台室内机都得以高效运转,相比传统中央空调节能40%以上,减少运行费用、节能、经济;室外机小巧紧凑,方便灵活安装,能节省室外空间,美化家居环境,减少室外机数量;带有自动故障检测,方便检修;自动转换供热/冷模式,自动风速变换,有定时、夜间设定模式,可同时实现集中管理和单独控制。

其缺点:供电峰谷差大,电网发电机在低负荷下运行时效率低、耗能较大;温室气体排放量大大提高;无新风供应,安装要求高;如发生冷媒管泄漏,很难找出漏点,不易维护,其价格较高。目前,国内空调企业海尔、美的等开始推广该种机型,价格可望进一步下调。

3.4一拖一风管式空调系统

由室外机、管道式空调箱、送风管及风阀、风口组成。制冷原理与分体式空调类似,也属冷媒直接蒸发式,只是将3.3节方案中室内机改换为管道式空调箱。该管道式空调箱属全空气系统,无水系统及其各种配套设备,大大降低了初投资;室内机放置于室内吊顶内,节省了机房面积和基建投资;风系统简单,无需专人管理,只需定期检查,与3.2节方案比无漏水之忧,相对价格低;可充分考虑新风,提高室内空气品质,保持空气清晰;直接蒸发式冷却空气,省却了冷媒水循环过程中造成的能量损失,且蒸发温度相对于冷水机组有所提高,因此提高了系统的制冷效率。

管道式空调箱出风口处风压较高,一般为80~150Pa,可通过风道来保证每只风口的冷热风有一定的射程,使室内气流场和温度场保持均匀;也可配置消声器,充分满足室内噪声要求。在商场等大面积空调场所使用多台管道机,可依据室内负荷变化情况,开停一部分管道机来进行能量调节;但用在住宅空调中,各房间不能独立控制使用,集中回风,影响各房间的私密性;风管占建筑空间较大。再者对空气过滤能力差,所处理空气的焓降小,除湿能力不强。

综合以上四种家用中央空调方式,笔者认为:各个方式各有自身特点,视工程具体情况,经济、技术分析比较,确定最后能最适合工程空调方案。但在目前,笔者认为一拖多空调系统和一拖一风管式空调系统较适合现住宅空调。前者因价位原因,推广起来是有一定困难,估计今后几年,随着家用空调生产厂商大量介入商用空调,其价位下降,市场占有份额会不断上升;后者现阶段应具有较好的市场潜力。

4在家用中央空调系统设计施工中应注意的几个问题

4.1空调室内机容量可适量放大

按我国目前大多数人的生活习惯,下班回家,迅速打开空调,并希望尽快达到空调效果;另由于围护结构无隔热处理,楼上、下邻居未开空调时,冷损大,应适当放大空调室内机的容量,可保证空调效果。同时室内机设有调节装置,可根据需要调节风量、冷量。

4.2室外主机容量可适当减小

按目前大多数家庭三口或五口之家生活习惯,空调末端不可能同时满负荷运行,当客厅、餐厅开空调时,卧室、书房几乎不开或少开。可视具体情况,适当降低主机容量,以降低初投资和运行费用。

4.3安装质量要保证

管道安装应严密,不能漏风、漏水,特别冷媒管发生泄漏,不易找到漏点,维修困难,也易产生纠纷。空调水管、冷媒管可考虑穿梁、剪力墙等,以节省空间。

4.4冷凝水排放,管道保温要做好

漏水是家庭装饰时常遇到问题,也是较难解决的问题。对空调系统来说,冷凝水排放最容易被忽视而造成潜在漏水隐患。冷凝水宜设独立竖管集中排放,水平管不宜过长,且

保证不小于0.008坡度坡向竖管。风管、冷凝水管特别是空调水管和冷媒管,因其温度低,如保温不好,外表易结露滴水。

5结语

家用中央空调业在我国是一个很新的行业,自改革开放以后逐渐发展起来,经过十几年的努力,建立了一批较高水平的企业,带动了家用中央空调业的腾飞,相信在未来几年后,随着科技的突飞猛进,市场进一步规范,家用中央空调业会进入一个崭新的新时代。

参考文献:

[1]GBJ-87,采暖通风与空调设计规范[S]

[2]陆耀庆,等。实用供热空调设计手册[M]。北京:中国建筑工业出版社出版,1993。

[3]顾兴蓥,等。民用建筑暖通空调设计技术措施[M]。北京:中国建筑工业出版社出版,1996。

风冷范文篇10

关键词:中央空调市场选型制冷机

第一章中国制冷机组和大型空调设备的发展趋势

中国目前集中空调的市场形势良好,在数量上增长很多,但由于竞争导致了价格下降。制冷机的平均价格的大幅下降,也反映了制冷逐渐小型化的趋势。

风机盘管还是主要的末端产品。空调箱(组合式空调器)和其它的末端设备有所增加,但他们对风机盘管的主流地位没有形成重要威胁。

一、制冷机规格

根据BSRIA(UK)的调查,以产品的制冷量计算,大型设备的市场规模减小了(1000kw,285Reftons);但加以价值计算,制冷量在401kw(114ton)和401kw以上的制冷机在2000年占了67%,或达到4.24亿美元。并且仅1000kw以上的总销售额就达3.02亿美元,占总市场销售额的47%.

最近几年,大量的小型制冷机,主要是涡旋式的,应用在家用领域。中型的制冷机的销售有上升的趋势,基于以下的原因:

●螺杆机受到设计人员和用户越来越多的欢迎。

●有一种用多台小型机组代替一台大型机组的趋势。这样在只有部分负荷的情况下,减少了运行频率,达到节能和更高的稳定性。

经过国企改革和重组,非常大的工业项目投资减少了,在过去这是大型制冷机的主要领域。在其它的领域,有大规模的外资企业投资于新的商业建筑、工厂设施等。

采用国外的先进技术推动了具有更高性能的新产品的出现,主要表现在螺杆、离心压缩机,热交换器和电子控制等方面。与此同时,吸收式制冷机的技术则是由国内的领导厂商开发和提高。

二、制冷类型

在中国销售的绝大多数的制冷机是风冷的,占了整个市场的76%,而在1997年水冷机组占据了67%的市场。这标志着一个重要的转变,这种趋势还将持续下去。

1、制冷机类型

一个明显的趋势是应用螺杆和涡旋技术。活塞机在3年前还处于主导地位,现在的市场份额却急剧下降到15%左右。

吸收式机组由于电力供应的改善和油价的上涨,市场也在萎缩。

由于没有太多的如机场、医院和高等级的写字楼等大型建设项目,离心机的市场在2000年保持在850台左右。

1.1、吸收式制冷机

1.1.1、概况:吸收式制冷机的发展在很大程度由能源结构状况决定。在过去的2-3年中,吸收式制冷机的市场由于以下的原因而萎缩:

●电力供应的增加;

●油价的上涨;

●电制冷机更换为HCFC(活塞、螺杆、涡旋、离心机);

●电制冷机效率的提高。

1.1.2、发展简史

直到90年代中期,蒸汽机主要是由国内厂商提供,而直燃机组要从日本进口。江苏双良在中国处于领先地位。尽管双良曾于美国特灵在90年代后半段建立了一家合资企业,且双方于99年(实际是2000年3月,译者注)已经解除了合资关系,双良一直是排名第一的中国吸收式制冷机的制造商。双良并且已经开始积极向海外市场拓展。

90年代初,中国厂商远大推出了直燃型吸收式冷热水机组(主要是燃油型)。燃气直燃机最初采用低热值的城市煤气。随着天然气管网在大城市的发展,燃天然气的直燃机也随之增多。

1993-1995市场繁荣期。根据蒙特利尔议定书,中国宣布在2006年前分期淘汰工商业制冷机使用的CFC.由于电制冷机没有大规模使用新的制冷剂,作为替代,吸收式制冷机得到了快速扩张。另外,政府把吸收式制冷机的应用作为解决当时电力短缺的一种途径,因此也鼓励发展吸收式技术。这样,市场需求突然转向了吸收式制冷机,同时也吸引了数十个竞争对手进入吸收式制冷机市场。

1995-1998市场稳定期。这时期市场逐步走向成熟。技术提高得很快,许多的市场参与者被淘汰。双良、远大、三洋和开利主宰了市场。烟台荏原和LG同和次之。远大的直燃机在扩张。

与此同时,电制冷机在更换完制冷剂后,正逐步重新夺回失去的市场。从1998至今,吸收式制冷机面临着电力制冷机的激烈竞争:电力供应增加,一些地区的电价下降。更甚的是油价却在上涨。涡旋和螺杆机由于性能和效率的原因越来越受欢迎。高额初期投入和能源供给的方便性,导致一些客户转向了其它形式的制冷机。

1.1.3、供应

吸收式制冷机是唯一具有自主知识产权的集中空调产品。中国已经成为除日本外的第二大吸收式制冷机的生产国。

国内需求的绝大部分是由国内生产来满足。出口的数量微乎其微。但随着双良和远大的海外拓展战略的执行,出口将会增加。

值得特别关注的是开利的战略。它已决定关闭其它的工厂而将上海一冷的工厂作为全球吸收式制冷机市场的供应中心。因此,这也将促进出口。

1.1.4、燃料分析

直燃机在中国渐受欢迎的原因是由于不需要锅炉来供暖,因此就节省了成本。在主要的城市,吸收式制冷机中多数是直燃型的。在有区域热源的地方还是采用蒸汽/热水型机组。

由于昂贵的油价和燃气管网的建设,燃气已成为直燃机的主要燃料,并且未来的趋势也是如此。而目前单效的吸收式机组在中国已很少见。

1.2、离心机

离心机的市场容量大约在700-1200台之间徘徊。因为要基于大型的基建项目,而过去2-3年大型的基建项目不是很多,因此离心机的市场也较平淡。

离心机市场的特点是采用水冷和通常大于800kw的大型机组。

市场被美国品牌如约克、开利、特灵和麦克维尔所垄断。进口机组大约占了整个国内市场的50%.这个比例是所有制冷机中最高的。

自从1999年电力供应富余以来,封闭性离心机的市场稳定增长。国内制造的机组也引进了先进的技术。合众开利已在上海组装和制造封闭式压缩机,并且也采用当地其它合资企业的部件来组装制冷机。而其它的公司还是采用组装好的进口压缩机。

1.3、螺杆机

螺杆机市场正在增长。因为被认为具有高性能和低噪音,在小于800kw的机型中挤占活塞机的份额。甚至在大于800kw的机型中,与离心机相比又具有灵活性的特点。所以,螺杆机越来越受到用户和设计院的喜爱。

螺杆机增长的另一个因素是近年来对中型制冷机的需求的增加。在工业领域投资的主体是私有企业和合资企业,他们的工厂大多为中型建筑。螺杆机组自然是最佳的选择。

螺杆机组中多数是水冷型。但风冷型,特别是风冷热泵机组逐步增长。日立、大金、约克、特灵、开利、顿汉布什、麦克维尔和吉荣是市场中主要参与者。不过,大约1/4的机组的进口的。所有这些厂家都在中国有组装工厂。日立即将在广州万宝生产风冷螺杆单元式空调机,万宝广州已经生产水冷单元式空调。

还有很多中国当地厂商从Bitzer、Hanbell,Fusheng,Refcomp等公司进口压缩机或用国产的压缩机来设计和组装制冷机。这些厂商是大连冰山、浙江王牌、上海富田、重庆嘉陵、武汉冷冷机厂等。意大利品牌如RC、Climavereta、Clivet也较知名。台湾知名厂商Kuenling也于去年4月在上海建立了工厂。

1.4、活塞机

活塞机被涡旋机和螺杆机分割了大量的市场。并且已退出了家用市场,只在商业和工业领域保持了一些市场份额。多数机组的制冷量低于350kw,并且热泵的比例也在增加。开利、约克、麦克维尔和其它国内品牌如大连冰山、南京五洲、吉荣和烟台冰轮在市场中处于领先地位。鉴于国内技术的已成熟和市场的萎缩,进口的机组很少见。

1.5、涡旋式

Copeland和Danfoss是中国最大的涡旋压缩机供货商。大多数涡旋压缩机用于单元式空调机。

2000年中国市场共销售大约2万台涡旋制冷机。其中大部分的制冷量为5-35kw,主要用于高级别墅和多居室的公寓。作为户式中央空调一种主要类型,涡旋机的市场在1999和2000年开始繁荣。未来几年的情景依然看好。

制冷量大于35kw的机组适用于小型商业领域如办公室、小酒店、剧院等。这种类型的涡旋机中的大多数实际上是模块化的涡旋机。只有特灵能提供单台大型的涡旋机组。

2、最近的趋势

在中国销售的大多数机组是国内厂商或合资企业在中国境内生产的。关键部件现在也本地化了。中国制冷空调工业凭借低成本和不断提高质量的产品,正在由进口导向逐渐转向出口导向。

2.1、蒸汽压缩型(容积式)制冷机

由于政府的管理和温和的气候,空气源热泵是长江流域市场的宠儿。冬季用来取暖的燃煤锅炉在长江以南的区域已被政府禁止使用。因此,包括房间空调器,主要用于制冷,同时也能制热的热泵深受这一地区的喜爱。热泵能用于取暖,因此就可以省去锅炉。直燃型冷热水机组的应用也是如此。

采用活塞或涡旋式压缩机的制冷量为5-10RT的小型风冷或热泵制冷机的大多数用于户式中央空调系统。制冷量为20-400RT的风冷、空气源热泵和水冷活塞、涡旋或螺杆机主要用于商业建筑。400RT以上的蒸汽压缩制冷机大多数是半封闭的离心机组。

由于具有高效和高可靠性的特点,封闭螺杆机正在抢占活塞机的市场。同时由于电力富余和初投资低的因素也挤占吸收式制冷机的市场。而螺杆压缩机的本地化可以降低成本。

2.2、吸收式制冷机

在过去电力短缺时,政府对总电力消费进行管制,但也没有对吸收式的销售给于任何特殊的优惠政策。吸收式的购买是由用户基于他们个人对产品经济性、质量、可靠性和售后服务的评估来决定的。

根据行业统计资料,2000年吸收式市场容量大约为2600台(其中蒸汽双效占50%,燃油直燃机占25%,燃气直燃机占25%)。单效和热水型机组非常少。

2000年,双良、远大和大连三洋被认为是市场的领导者。烟台荏原和LG同和的市场份额增加的同时,开利却在丢失市场份额。

2001年政府建立了新的吸收式制冷机组国家标准,其中规定冷却水进水温度从原来的32℃变为30℃,而新的直燃机在制冷时LHV状态下COP最低为11(在HHV状态下为10)。这些指标被认为即使是现有的机型也很容易达到。

2.3、制冷剂问题

自1995年来,中国是世界上最大的CFC使用国。根据蒙特利尔议定书,中国计划在10年内淘汰使用CFC.

中国淘汰CFC计划表:

汽车空调系统到2002年工商业制冷机到2006年家用空调到2010年

目前使用HCFC-22的制冷机将被使用HFC-407C或-410A的活塞、螺杆和涡旋机替代。制冷机组的制冷剂替换比单元式空调机组的替换要快得多。集中空调系统从CFC(R12)更换为HCFC(R22)的工作已完成。

活塞、螺杆和涡旋机中的绝大多数仍旧使用R22.市场中有一些使用R134A和个别使用R407C的,通常是客户要求的。70%的离心机已从R22转向R134A.也有使用其它的替代物如R407C和R123.不过,R134A将是最通常的选择。

2.4、单元式空调机组

商业和多居室住宅使用的单元式空调机组的市场容量大约为80万-100万台/年。其中80%以上的是风冷分体式。10%左右是水冷室内单元式。其中大多数是当地组装的,主要的厂商有:春兰、海尔、美的、格力、科龙、吉荣和华南。这部分市场正在快速成长。

美的从两年前引进东芝开利的技术开始制造和销售VRF空调系统。海尔的技术也来自东芝开利。最初,日本的主要厂商大金采取从日本出口的方式,但由于关税的原因降低了价格的竞争力,因此大金决定从今年开始在中国进行生产(见8月份JAPN)。

日立刚宣布了一个将日立空调制冷设备(广州)公司的资本翻倍的计划。用于增加风冷制冷机和将单元式空调机组国产化。

第二章主机选型综述

(—)冷水机组类综述

冷水机组是中央空调系统的心脏,正确选择冷水机组,不仅是工程设计成功的保证,同时对系统的运行也产生长期影响。因此,冷水机组的选择是一项重要的工作。

1.选择冷水机组的考虑因素:

★建筑物的用途。

★各类冷水机组的性能和特征。

★当地水源(包括水量水温和水质)、电源和热源(包括热源种类、性质及品位)。

★建筑物全年空调冷负荷(热负荷)的分布规律。

★初投资和运行费用。

★对氟利昂类制冷剂限用期限及使用替代制冷剂的可能性。

2.冷水机组的选择注意事项:

在充分考虑上述几方面因素之后,选择冷水机组时,还应注意以下几点:

★对大型集中空调系统的冷源,宜选用结构紧凑、占地面积小及压缩机、电动机、冷凝器、蒸发器和自控组件等都组装在同一框架上的冷水机组。对小型全空气调节系统,宜采用直接蒸发式压缩冷凝机组。

★对有合适热源特别是有余热或废热等场所或电力缺乏的场所,宜采用吸收式冷水机组。

★制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。同一机房内可采用不同类型、不同容量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。选择活塞式冷水机组时,宜优先选用多机头自动联控的冷水机组。

★选择电力驱动的冷水机组时,当单机空调制冷量φ>1163kW时,宜选用离心式;φ=582~1163kW时,宜选用离心式或螺杆式;φ<582kW时,宜选用活塞式。

★电力驱动的制冷机的制冷系数COP比吸收式制冷机的热力系数高,前者为后者的二倍以上。能耗由低到高的顺序为:离心式、螺杆式、活塞式、吸收式(国外机组螺杆式排在离心式之前)。但各类机组各有其特点,应用其所长。

★选择制冷机时应考虑其对环境的污染:一是噪声与振动,要满足周围环境的要求;二是制冷剂CFCs对大气臭氧层的危害程度和产生温室效应的大小,特别要注意CFCs的禁用时间表。在防止CFCs污染方向吸收式制冷机有着明显的优势。

★无专用机房位置或空调改造加装工程可考虑选用模块式冷水机组。

★尽可能选用国产机组。我国制冷设备产业近十年得到了飞速发展,绝大多数的产品性能都已接近国际先进水平,特别是中小型冷水机组,完全可以和进口产品媲美,且价格上有着无可比拟的优势。因此在同等条件下,应优先选用国产冷水机组。

(二)热泵机组类

★热泵机组的冷负荷计算方法同于常规空调系统,热负荷计算方法于采暖系统大致相同,但需考虑新风耗热量;

★选型时要注意当地是否有足够的水源(包括水量、水温及水质)、电源和热源(包括热源性质、品位高低);

★风冷热泵机组的供水温度一般为45℃,而风机盘管机组和组合式空调机组等样本中提供的供热量,通常都是以60℃进水为前提,所以,必须对这些设备的供热量进行修正;

★选择热泵机组时,一般应以冬季供暖负荷作为选择依据,同时校核夏季的冷负荷;

★对于商场、餐厅等内部负荷和新风负荷特别大的建筑物,由于供暖负荷一般仅为供冷负荷的60%~70%。所以,宜采用热泵机组与单冷机组联合供应的方式,例如“3十1”模式,即3台风冷热泵机组加1台单冷机组;

★风冷热泵机组的额定供热量,通常都是标准工况(环境温度t0=7℃,出水温度ts=45℃条件下的数值,当环境温度低于7℃时,供热量将大幅度降低。一般的降低幅度大致如下:t0=5℃时,下降百分比为5%~8%;t0=3℃时,下降百分比为12%~14%,t0=0℃时,下降百分比为25%~32%;t0=-3℃时,下降百分比为45%~50%;t0=-5℃时,下降百分比为55%~65%。注:按标准工况设计的风冷热泵机组,实际上在一3℃以下时已不能正常运行;

★风冷热泵机组的单台容量较小,宜应用于中小型工程;

★冬季室外的空气温度,白天总是高于夜晚。因此,室外供暖计算温度久tw=-3℃地区,对于仅白天使用的建筑物如办公楼、商场等,可以采用风冷热泵机组。对于全天(24小时)要求供暖的建筑物,采用风冷热泵时则应谨慎对待;

★水源热泵系统比较适合于多住户的公寓楼及面积较大的大型别墅。设计时应确保系统水流量计算准确。以便于冷却塔、水泵等设备的选型;

★在相对湿度较高的地区,选用热泵时,应特别注意分析运行条件,并采取有效的除霜措施。

(三)地源热泵的机房内热泵机组部分

1.地源热泵的机房内热泵机组部分可以参照下列步骤进行选型:

★水源热泵机组的容量不要过大。中央空调冷热源设备选型时,设备制冷(热)量约为设计冷(热)负荷的1.05~1.10.

★水源热泵机组选型时,应尽量接近设计冷(热)负荷。若机组偏大时,运行时间短,启动频繁。机组容量合适,运行时间长,有利于除湿。

★封闭水系统水温的选择,夏季要求水温低些,目的是提高能效,降低耗电功率。冬季水温不要太高,因为水温高时,虽然制冷量高了,但耗电功率也高了,能效系数变化不大。

★设计时要考虑采暖空调对象建筑物的同时使用系数。同时使用系数的取值与建筑物类型有关,与建筑物的数量有关,需通过理论计算和实测确定。《住宅建筑空调负荷计算中同时使用系数的确定》列出数据是:当住户〈100户时,该系数为0.7;当户数为100~150户时,为0.65~0.7;当户数为150~200户时为0.6.

2.室外地下换热部分可参照以下步骤进行选择:

地热换热器的选型包括型式和结构的选取,对于给定的建筑场地条件应尽量使设计在满足运行需要的同时成本最低。地热换热器的选型主要涉及以下几个方面:

★地热换热器的布置型式,包括埋管方式和联结方式,如图所示。埋管方式可分为水平式和垂直式。选择主要取决于场地大小、当地土壤类型以及挖掘成本,如果场地足够大且无坚硬岩石,则水平式较经济;如果场地面积有限时则采用垂直式布置,很多场合下这是唯一的选择。如果场地土中有坚硬的岩石,用钻岩石的钻头可以成功钻孔。联结方式有串联和并联两种,在串联系统中只有一个流体信道,而并联系统中流体在管路中可有两个以上的流道。采用串联或并联取决于成本的大小,串联系统较并联系统采用的管子管径要大,而大直径的管子成本要高。另外,由于管径较大,系统所需的防冻液也较多,管子重量也相应增大,导致安装的劳动力成本也较大。

★塑料管的选择,包括材料、管径、长度、循环流体的压头损失。聚乙烯是地热换热器中最常用的管子材料。这种管材的柔韧性好、且可以通过加热熔合形成比管子自身强度更好的连接接头。管径的选择需遵循以下两条原则:其一,管径足够大,使得循环泵的能耗较小;其二:管径足够小,以使管内的流体处于紊流区、使流体和管内壁之间的换热效果好。同时在设计时还要考虑到安装成本的大小问题。

★循环泵的选择。选择的循环泵应该能够满足驱动流体持续地流过热泵和地热换热器,而且消耗功率较低。一般在设计中循环泵应能够达到每吨循环液所需的功率为100W的耗能水平。

(四)水源热泵机组

★水源热泵机组的容量不要过大。中央空调冷热源设备选型时,设备制冷(热)量约为设计冷(热)负荷的1.05~1.10.水源热泵机组选型时,应尽量接近设计冷(热)负荷。若机组偏大时,运行时间短,启动频繁。机组容量合适,运行时间长,有利于除湿。

★封闭水系统水温的选择,夏季要求水温低些,目的是提高能效,降低耗电功率。冬季水温不要太高,因为水温高时,虽然制冷量高了,但耗电功率也高了,能效系数变化不大。

★设计时要考虑采暖空调对象建筑物的同时使用系数。同时使用系数的取值与建筑物类型有关,与建筑物的数量有关,需通过理论计算和实测确定。《住宅建筑空调负荷计算中同时使用系数的确定》列出数据是:当住户〈100户时,该系数为0.7;当户数为100~150户时,为0.65~0.7;当户数为150~200户时为0.6.

(五)直燃机机组

直燃机设计选型时要确保同时满足冷热负荷的需要,但不设过大余量,以防造成主机投资浪费。一个系统最好配置两台以上主机且分别配置独立的冷却水循环泵、冷却塔及冷热水循环泵,这样可以使系统可靠性更高,低负荷时水泵电耗更低。由于直燃机运转时无振动、无磨损,运转可靠,如选用单台主机也具有明显的经济优势而不降低其可靠性。

标准型直燃机供热量是制冷量的80%,即.如果热负荷大(如制冷时供卫生热水,或供暖时供卫生热水或供暖负荷大于制冷负荷),则可选择高压发生器加大型以提高供热能力,或选择大冷量机组来实现(这样初投资较大)。每加大一号高压发生器,供热能力增加20%,即Q增加=0.8×0.2.如夏季制冷并供应卫生热水(按夏季制冷量选型)则有:,或,,N为高压发生器的加大号数。如系统需夏季制冷、冬季供暖并供应卫生热水(满足夏季制冷量要求选定机型后校核冬季供热量)则:

①满足夏冬两季使用要求;

②如冬季热负荷大,采取加大高压发生器满足;

③如冬季热负荷大,采取加大机组型号来满足使用要求(,指机组加大型号后的制冷量)。若须加大机组型号满足使用要求,则夏季靠调节燃烧器以保证经济运行。在过渡季节系统则靠调节燃烧器火头以保证经济运行。另外,制冷量和供热量的比例也可利用一些阀门来调节实现。

(六)热泵机组

★机组负荷选择风冷热泵机组的容量通常是根据建筑物的夏季冷负荷来选择,同时对冬季热负荷进行校核计算。如果机组供热量大于采暖负荷,则该机组满足冬季采暖要求;如果采暖负荷大于机组供热量,可按下面2种情况考虑:当机组供热量小于等于采暖负荷的50%~60%时,可增加辅助电加热装置;反之则应综合考虑初投资和运行费用来确定机组的容量,即适当加大机组的装机容量。

★辅助电加热装量的形式风冷热泵机组空调系统的辅助电加热装置有以下几种形式可供选择:(1)在风机盘管系统中设置小型锅炉,以此来提高冬季机组的供水温度;(2)在有另外热源(热水或废热水)时,可采用扳式热交换器提高冬季供水温度;(3)采用直烧式(气源可为水煤气、天煤气、柴油等)加热器提高冬季供水温度;(4)采用电加热器提高冬季供水温度。

★蓄冷(热)负荷在选择风冷热泵机组时还应考虑建筑物的蓄冷(热)负荷。一般公共建筑,空调设备往往是间歇运行,即白天运行、夜间关闭,这样在第2天运行时,由于建筑物的蓄冷(热),房间温度需要运行一定的时间后能达到设定值,如果要求缩短这一时间,在选择机组时就要考虑蓄冷(热)负荷。它与预冷(热)时间有关,一般预冷(热)时间按2~3h.

(七)组合式空调器类综述

目前,在各类综合性功能高层建筑的中央空调系统中,往往对所需温度、湿度、新风量、冷(热)负荷的空气气流组织,采用分层或分区进行集中处理,其优点是便于建筑物内的物业管理和使用中的节能。

组合式空调机组的特点是以功能段为组合单元,用户可根据空气调节和空气处理的需要,任选所需各段进行自由排列组合,有极大的自由度和灵活性。

考虑到运行和检修方便、气流均匀等因素,应适当设置中间段。

选型时必须注意到以下几点:

1、向制造厂家提供组合式空调机组所需功能段的组合示意图。示意图上应注明所选机组型号、规格、段号、功能段长度、排列先后次序以及左右式方位等基本要求。

2、组合式空调机组的操作面规定为:

(1)送、回风机有传动皮带的一侧;

(2)袋式过滤器能装卸过滤袋的一侧;

(3)自动卷绕式过滤器设有控制箱的一侧;

(4)冷(热)媒进、出口的一侧,有排水管一侧;

(5)喷水室(段)喷水管接水管的一侧。

当人面对机组操作时,气流向右吹为右式,反之则为左式,选型订货时需说明所需机组的左、右式。

3、选用表冷器、加热器和消声器前,必须设置过滤器(段),以保护换热器和消声器表面清洁度,防止堵塞孔、缝,并应设置中间段。

4、喷水段、表冷段等,除已有排水管接至空调机组之外,还应考虑排水的水封装置。

5、选用喷水室(段)时,应说明几级几排。

6、选用表冷器、加热器(段)时,应注明型式和排数,使用的冷(热)媒性质、温度和压力等。机组用蒸汽供热时,空气温升不小于20℃;以热水加热时,空气温升不小于15℃。

7、选用干蒸汽加湿器需要说明加湿量、供汽压力和控制方法(手动、电动或气动)。

8、选用风机段要说明风机的型号、规格、安装形式、出风口位置,风机段前应设置中间段,保证气流均匀。新风机组的空气焓降应不小于34kJ/kg.

9、注明各风口接口的位置、方向和尺寸,送、回风阀的型式、规格,采用的控制方式(手动、电动或气动)。风机出口应有柔性短管,风机底座应有减振装置。

10、需要留出的观察孔以及仪表安装孔位置和个数,风机供电的引线位置走向。

11、机组的基础应高于室内地平面,基础四周应设有排水沟或地漏,以便排除冷凝水和放空设备底部存水。

12、机组四周或机组与机组(多台时)布置时应留出足够的操作和检修空间。

13、考虑到机组防腐性能,箱体材料最好选用镀锌钢板、玻璃钢或特殊铝合金。对于黑色金属制作的构件表面应作过防腐处理;对于玻璃钢箱体应采用氧指数不小于30的阻燃树脂制作。

14、机组漏风率标准:

(1)机组内静压保持700Pa时,机组漏风率不大于3%

(2)净化空调系统的机组内静压保持1000Pa、洁净度低于1000级时,机组漏风率不大于2%;洁净度高于或等于1000级时,机组漏风率不大于1%.

对机组性能考核要求:机组的风量、余压、供冷量和供热量的实测值应大于或等于其名义值的93%.机组的水阻力和输入功率的实测值不得大于其名义值的110%.

基本参数应符合下列规定:

a机组风量实测值不低于额定值的95%,全压实测值不低于额定值的88%.

b机组额定供冷量的空气焓降应不小于17kJ/kg;新风机组的空气焓降应不小于34kJ/kg.

c机组供热量的空气温升至少应不小于蒸汽加热时温升20℃热水加热时温升15℃

机组在85%的额定电压下能正常启动和工作。

机组的盘管及其管路在下列相应条件下应能长期正常运行,且无渗漏:

a冷水盘管在980kPa压力下,或通热水使用时,在980kPa压力、60℃的热水条件下;

b热水盘管在980kPa压力、130℃的热水条件下;

c蒸汽盘管在70kPa压力、112℃的蒸汽条件下。

机组箱内的隔热、隔声材料应具有无毒、无异味、自熄性和不吸水性能。不应使用裸露的含石棉或玻璃纤维的材料。隔热、隔声材料与面板之间应贴牢固、平整、无缝隙,保证在运行时箱体外表面无凝露。

机组应有凝结水处理设置,在运行中箱体外不应有渗漏水,箱体内不应有积水,排水应通畅。

箱体和检查门应具有良好的气密性,机组的漏风率应不大于5%.检查门锁紧性能要好,防止因内、外压差而自行开关。盘管的迎面风、风速超过2.5m/s时,应加设挡水板。喷水段进、出风侧应有挡水板。

机组箱体应具有足够的刚度,在运行中不应产生变形。机组采用黑色金属材料制成的构件,其表面均应做防腐处理。

第三章辅助设备选型综述

一、清水泵类产品选型指南:

1、选择清水泵主要看参数流量和扬程;

2、离心泵适用于大流量、大扬程的场所;

3、管道泵流量范围不大,适用于扬程低的场所;

4、常规选择卧式泵,当安装有局限时选立式泵;

5、当单级泵不能满足要求时选择双级泵;

6、当温度t>65℃,选热水泵;当t≤65℃,选冷水泵。

二、新风机设备选型步骤如下:

1、据安装设置选择新风机的形式;

2、设备风量、风压选用时以不小于设计值为原则;

对于特殊行业,如医院(手术室、特护窝病房)、实验室、工业车间、按文书行业相关规范条例确定所需新风量。

3、确定制冷量及制热量的设计工况;

4、原则上一台新风机组只负责一层楼面所需的新风量;

三、风机盘管设备选型步骤如下:

1、明确所选用机组的型式、规格、风口位置等要求。

在选用风机盘管制冷机组时,是把设计预热负荷与机组显热负荷相匹配。在大多数情况下,盘管有足够的潜热容量,可满足设计需要。如使用室外空气则相应修整其负荷及计算公式:水温升(℃)=空气温升(℃db)

先要确定工作要求:

制冷:室内预热制冷负荷(),室内总热制冷负荷(),进风温度(℃db/℃wb),进水温度(℃),风量();

制热:通常按制冷选用的机组,供暖能力是足够的,回执量是按照水流量相同时来选定的。即用进水温度来满足室内所需加热负荷。室内加热负荷(),进风温度(℃)。

然后再确定机组规格、水量、所需水温及压降等参数。

2、明确所选用机组的接水管左出或右出方向(与管道布置等有关)。

3、明确风机电动机轴承是否采用含油或不含油轴泵。若选用不含油轴泵,使用中一贯内按规定定期加油。

4、注意出水的保温措施,以免夏季使用时产生凝露,污损室内建筑物。

5、冬季通热水,水温一般不超过60℃,可减少结垢,同时减轻冷热交替作用使胀管胀紧力减弱,影响传热。

6、机组盘管最高处设置放气阀。

四、冷水塔类综述

1、按照被冷却水的温度选择:高温塔、中温塔、常温塔。

2、按照安装位置的现状及对噪声的要求选择:横流塔与逆流塔。

3、按照冷水机组的冷却水量选择冷却水量,原则上冷却塔的水量要略大于冷水机组的冷却水量。

4、选用多台水塔时尽量选择同一型号。

其次,冷却塔选型需要注意:

1、塔体结构材料要稳定、经久耐用、耐腐蚀,组装配合精确。

2、配水均匀、壁流较少、喷溅装置选用合理,不易堵塞。

3、淋水填料的型式符合水质、水温要求。

4、风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有足够的强度。风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。

5、电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。

6﹑冷却塔应尽量避免布置在热源、废气和烟气发生点、化学品堆放处和煤堆附近。

7、冷却塔之间或塔与其它建筑物之间的距离,除了考虑塔的通风要求,塔与建筑物相互影响外,还应考虑建筑物防火、防爆的安全距离及冷却塔的施工及检修要求。

8、冷却塔的进水管方向可按90°、180°、270°旋转。

9、冷却塔的材料可耐-50℃低温,但对于最冷月平均气温低于-10℃的地区订货时应说明,以便采取防结冰措施。冷却塔造价约增加3%.

10、循环水的浊度不大于50mg/l,短期不大于100mg/l不宜含有油污和机械性杂质,必要时需采取灭藻及水质稳定措施。

11、布水系统是按名义水量设计的,如实际水量与名义水量相差±15%以上,订货时应说明,以便修改设计。

12、冷却塔零部件在存放运输过程中,其上不得压重物,不得曝晒,且注意防火。冷却塔安装、运输、维修过程中不得运用电、气焊等明火,附近不得燃放爆竹焰火。

13、圆塔多塔设计,塔与塔之间净距离应保持不小于0.5倍塔体直径。横流塔及逆流方塔可并列布置。

14、选用水泵应与冷却塔配套,保证流量,扬程等工艺要求。

15、当选择多台冷却塔的时候,尽可能选用同一型号。

此外,衡量冷却塔的效果还通常采用三个指标:

(1)冷却塔的进水温度t1和出水温度t2之差Δt,Δt被称为冷却水温差,一般来说,温差越大,则冷却效果越好。对生产而言,Δt越大则生产设备所需的冷却水的流量可以减少。但如果进水温度t1很高时,即使温差Δt很大,冷却后的水温不一定降低到符合要求,因此这样一个指标虽是需要的,但说明的问题是不够全面的。

(2)冷却后水温t2和空气湿球温度ξ的接近程度Δt‘,Δt’=t2-ξ(℃),Δt‘称为冷却幅高。Δt’值越小,则冷却效果越好。事实上Δt‘不可能等于零。

(3)考虑冷却塔计算中的淋水密度。淋水密度是指1m2有效面积上每小时所能冷却的水量。用符号q表示。q=Q/F,m3/m2.h(Q-冷却塔流量,m3/h;F-冷却塔的有效淋水面积,m2)

其它说明:

1、根据使用工况及水量确定它的主要参数。

2、优选换效率高的(相同水量体机小的)。

3、优选噪音低的(相同水量风机输入功率低的噪音低)。

4、填料材质好的寿命长、阻燃填料为第一优选。

5、选型位置应考虑不受季风影响。

要求:

1、阻力后的配管不能低于补水管进水口径。

2、冷却塔出水管的阀门离塔越近越好。

3、建议回水管室外部分做保温。

4、多台并联的冷却塔建议水路做成两路,便于在机组能量调整时节能运行。

5、冷却塔启动时一定要先开水泵,后开风机。不允许在没有淋水的情况下是风机运转。

因此,在布水管上设有倾斜的收水板,如果开动风机而没有喷水时,布水器反转,收水板会刮到填料,使填料刮出来被风带走,或者将布水管卡坏,因此,冷却塔启动时,一定要先开水泵,后开风机,停止工作时,应先停风机,后停水泵。

五、风口类产品选型指南

1、首先,根据工艺要求和现场的条件等,确定送回风的形式、气流组织形式以及风口型式;

2、其次,再根据风量来确定风口的外形尺寸;

3、再次,选型时还要注意以下要求:

(1)一般可采用百叶风口或条缝型风口等侧送,有条件时,侧送气流宜贴附。工艺性空气调节房间,当室温允许波动范围小于或等于±0.5℃时,侧送气流应贴附。

(2)当有吊顶可利用时,应根据房间高度以及使用场所对气流的要求,分别采用圆型、方型和条缝型散流器和孔板送风。当单位面积送风量较大,而且工作区内要求风速较小或区域温差要求严格时,应采用孔板送风。

(3)空间较大的公共建筑和室温允许波动范围大于或等于±1.0℃的高大厂房,可采用喷口或旋流风口送风。

采用贴附侧送时,应符合下列要求:

(1)送风口上缘离顶棚距离较大时,送风口处应设置向上倾斜10-20℃的导流片。

(2)送风口内应设置使射流不至左右偏斜的导流片。

(3)射流流程中不得有阻挡物。此外,送风口的出口风速,应根据送风方式、送风口类型、安装高度、室内允许风速和噪声标准等因素确定。消声要求较高时,宜采用2-5m/s,喷口送风可采用4-10m/s.

回风口的布置方式,应符合下列要求: