电结线范文10篇

时间:2023-03-16 12:28:33

电结线范文篇1

1方案选择

沙角C电厂(简称沙角C厂)有3台660MW机组,每台机组发出的电能都是经各自的主变压器升压至500kV,由500kV变电站进入广东省主网。发电机机端电压为19kV,主变压器为Yo/△接线,每台机有2台容量各为44MVA的△/Yo接线高压厂用工作变压器,2台高压厂用工作变压器各带一10kV机组段。全厂设1台容量为44MVA的高压厂用备用变压器及设高压厂用公用段10kV两段。厂用电接线如图1所示。对于这样一种结线,在工程谈判阶段业主和设计院曾就电厂的厂用电结线作了两个方案比较。

方案一:全厂设高压厂用起动/备用变压器,而不设发电机开关;

方案二:每台机装设发电机开关,而全厂只设1台容量较小的高压厂用备用变压器。

方案二的优点是:

a)机组正常起、停不需切换厂用电,只需操作发电机开关,厂用电可靠性高。

b)机组在发生发电机开关以内故障时(如发电机、汽机、锅炉故障),只需跳开发电机开关,厂用电源不会消失,也不需切换,提高了厂用电的可靠性,同时减轻了操作人员的工作量和紧张度。这一点在沙角C厂的调试过程中,表现非常突出。同时对于国内大型机组采用一机只配一主操作员和一副操作员的值班方式非常有益。

c)对保护主变压器、高压厂用工作变压器有利。对于主变压器、高压厂用工作变压器发生内部故障时,由于发电机励磁电流衰减需要一定时间,在发电机-变压器组保护动作切除主变压器高压侧断路器后,发电机在励磁电流衰减阶段仍向故障点供电,而装设发电机开关后由于能快速切开发电机开关,而使主变压器受到更好的保护,这一点对于大型机组非常有利。

d)发电机开关以内故障只需跳开发电机开关,不需跳主变压器高压侧500kV开关,对系统的电网结构影响较小,对电网有利。

方案一无上述优点。

对于方案二,当时我们主要担心发电机开关价格昂贵,增加工程投资,以及发电机开关质量不可靠,增加故障机会。对于工程投资的比较是如果不装设发电机开关,按目前国内大型火力发电厂设计规程要求的2台600MW机组需配2台高压厂用起动/备用变压器的原则,沙角C厂则要配4台较大容量起动/备用变压器,且由于条件所限,起动/备用变压器的电源只能从沙角A厂220kV系统引接。因而,方案一需增加220kVGIS间隔4个,220kV电缆4根,220kV级的较大容量起动/备用变压器4台;方案二需增加33kV电缆1根,33kV级的较小备用变压器1台,发电机开关3台。方案一的投资可能超过方案二。对发电机开关质量问题,经调查了解,当时GEC-ALSTHOM公司法国里昂开关厂生产的空气断路器,额定电流33.7kA,额定开断电流180kA,这种断路器已供应美国、法国许多大型核电站使用,运行良好。

因此,我们最终选择了方案二,并选用了GEC-ALSTHOM公司的PKG2C空气断路器。目前这种断路器经在沙角C厂多年的运行,上百次的动作,证明其性能良好。

沙角C厂发电机开关的主要技术参数:

型号

灭弧介质

额定电流

额定电压

额定频率

额定对称开断电流

额定不对称开断电流

额定短路关合电流

额定短时承受电流

对地工频耐压

雷电冲击耐压峰值

额定开断时间

额定负载下操作顺序

正常操作压力

最低操作压力PKG2C

压缩空气

33.7kA

21kV

50Hz

180kA

340kA

509kA

275kA

70kV/min

170kV

0.1s

CO—30min—CO

3.34MPa

3.00MPa

2设计原则

2.1高压厂用工作变压器的容量设计

GEC-ALSTHOM公司对高压厂用工作变压器容量的设计原则为:

a)带单机负荷的一半,加1台电动给水泵再加公用厂用负荷的一半;

b)提供单机辅助负荷一半,再加2台电动给水泵。

2.2备用变压器容量设计

备用变压器的容量选择同高压厂用工作变压器容量。

2.310kV厂用电系统运行方式的设计

由于受备用变压器容量所限,备用变压器在同一时间内只能带1段10kV公用段及1段10kV机组段,因此要求在正常情况下公用段尽量由某2台正常运行机组的高压厂用工作变压器各带1段。同时为防止不同机组的10kV段通过公用段并列,在各机组机组段至公用段的联络开关上有电气闭锁。

2.410kV厂用电源事故切换

10kV厂用电源事故切换采用自动慢切换,当正在向1段10kV公用段供电的10kV机组段由电压继电器判断为失压,且保护是反应非10kV母线段上故障时,在确认10kV机组段进线开关已跳开后,将会起动自动慢切换,经5s延时,将备用变压器低压侧10kV开关合上,从而恢复该机组段和原由它供电的公用段的供电。当保护是反应10kV母线段上故障时,则不起动自动慢切换。自动慢切换是采用传统的中间继电器和时间继电器通过硬接线来实现的。虽然备用变压器下接10kV公用段A和10kV公用段B,但由于备用变压器容量有限,在同一时间内备用变压器只能带1段公用段,从备用变压器来的10kV公用段A进线开关和10kV公用段B进线开关之间有电气闭锁,防止2个开关同时合上。同样,虽然各机组的10kV机组段各段与相应的10kV公用段各段都有联络断路器连接,但为防止正常情况下不同机组的10kV机组段通过10kV公用段并列,相互之间设有闭锁,防止同一时间2台机的10kV机组段向同一10kV公用段供电。正常情况下,厂用电源的手动切换及由备用变压器供电转为正常供电时厂用电的短时并列供电,要通过手动经同期装置进行,并经200ms延时自动跳开另一开关。

由上可知,由于备用变压器受容量及上述运行方式的限制,在事故情况下只能向1段公用段及当时向该公用段供电的机组段供电,因而事故情况下后备电源只能保证机组50%的负荷。而且,如果当时该机组段未带1段公用段,则后备电源将不能向机组提供厂用电源。如果该机组又失去全部厂用电,则需要靠柴油机组来保障机组的安全。因此,该种接线对柴油机组要求较高,而目前沙角C厂使用的柴油机组质量较好,经受了很多次起动的考验。

由上可见,备用变压器主要是作为全厂的1个由系统来供电的用于机组停机或停机后的安全电源,且对其中的1台机组起不到提供后备电源的作用。

3厂用电系统电压等级及切换

3.1厂用电系统电压等级

目前沙角C厂厂用电有3个电压等级:10kV电压,3kV电压,380V电压。其中10kV系统、3kV系统为中阻接地,380V系统为不接地系统。380V的照明用电和其他需要中性点接地的380V/220V系统,采用△/Yo的变压器来产生。

3.2各级电压的切换

10kV系统如前所述有电源自动慢速切换。3kV系统机组2段之间、3kV系统公用2段之间有联络开关,联络开关之间不带同期和自动切换。当需要切换电源时只能通过手动切换。

380V系统机组锅炉、汽机、除尘各有2段,公用段也有2段,2段之间有联络开关,联络开关之间不带同期和自动切换。当需要切换电源时只能通过手动切换。

4开关设备型式

10kV系统开关全部采用真空开关,型号HWX。

3kV系统的进线开关采用真空开关,馈线采用F-C回路,型号HMC1172。

380V系统的进线开关采用空气开关,接触器、熔断器。

电结线范文篇2

沙角C电厂(简称沙角C厂)有3台660MW机组,每台机组发出的电能都是经各自的主变压器升压至500kV,由500kV变电站进入广东省主网。发电机机端电压为19kV,主变压器为Yo/△接线,每台机有2台容量各为44MVA的△/Yo接线高压厂用工作变压器,2台高压厂用工作变压器各带一10kV机组段。全厂设1台容量为44MVA的高压厂用备用变压器及设高压厂用公用段10kV两段。厂用电接线如图1所示。对于这样一种结线,在工程谈判阶段业主和设计院曾就电厂的厂用电结线作了两个方案比较。

方案一:全厂设高压厂用起动/备用变压器,而不设发电机开关;

方案二:每台机装设发电机开关,而全厂只设1台容量较小的高压厂用备用变压器。

方案二的优点是:

a)机组正常起、停不需切换厂用电,只需操作发电机开关,厂用电可靠性高。

b)机组在发生发电机开关以内故障时(如发电机、汽机、锅炉故障),只需跳开发电机开关,厂用电源不会消失,也不需切换,提高了厂用电的可靠性,同时减轻了操作人员的工作量和紧张度。这一点在沙角C厂的调试过程中,表现非常突出。同时对于国内大型机组采用一机只配一主操作员和一副操作员的值班方式非常有益。

c)对保护主变压器、高压厂用工作变压器有利。对于主变压器、高压厂用工作变压器发生内部故障时,由于发电机励磁电流衰减需要一定时间,在发电机-变压器组保护动作切除主变压器高压侧断路器后,发电机在励磁电流衰减阶段仍向故障点供电,而装设发电机开关后由于能快速切开发电机开关,而使主变压器受到更好的保护,这一点对于大型机组非常有利。

d)发电机开关以内故障只需跳开发电机开关,不需跳主变压器高压侧500kV开关,对系统的电网结构影响较小,对电网有利。

方案一无上述优点。

对于方案二,当时我们主要担心发电机开关价格昂贵,增加工程投资,以及发电机开关质量不可靠,增加故障机会。对于工程投资的比较是如果不装设发电机开关,按目前国内大型火力发电厂设计规程要求的2台600MW机组需配2台高压厂用起动/备用变压器的原则,沙角C厂则要配4台较大容量起动/备用变压器,且由于条件所限,起动/备用变压器的电源只能从沙角A厂220kV系统引接。因而,方案一需增加220kVGIS间隔4个,220kV电缆4根,220kV级的较大容量起动/备用变压器4台;方案二需增加33kV电缆1根,33kV级的较小备用变压器1台,发电机开关3台。方案一的投资可能超过方案二。对发电机开关质量问题,经调查了解,当时GEC-ALSTHOM公司法国里昂开关厂生产的空气断路器,额定电流33.7kA,额定开断电流180kA,这种断路器已供应美国、法国许多大型核电站使用,运行良好。

因此,我们最终选择了方案二,并选用了GEC-ALSTHOM公司的PKG2C空气断路器。目前这种断路器经在沙角C厂多年的运行,上百次的动作,证明其性能良好。

沙角C厂发电机开关的主要技术参数:

型号

灭弧介质

额定电流

额定电压

额定频率

额定对称开断电流

额定不对称开断电流

额定短路关合电流

额定短时承受电流

对地工频耐压

雷电冲击耐压峰值

额定开断时间

额定负载下操作顺序

正常操作压力

最低操作压力PKG2C

压缩空气

33.7kA

21kV

50Hz

180kA

340kA

509kA

275kA

70kV/min

170kV

0.1s

CO—30min—CO

3.34MPa

3.00MPa

2设计原则

2.1高压厂用工作变压器的容量设计

GEC-ALSTHOM公司对高压厂用工作变压器容量的设计原则为:

a)带单机负荷的一半,加1台电动给水泵再加公用厂用负荷的一半;

b)提供单机辅助负荷一半,再加2台电动给水泵。

2.2备用变压器容量设计

备用变压器的容量选择同高压厂用工作变压器容量。

2.310kV厂用电系统运行方式的设计

由于受备用变压器容量所限,备用变压器在同一时间内只能带1段10kV公用段及1段10kV机组段,因此要求在正常情况下公用段尽量由某2台正常运行机组的高压厂用工作变压器各带1段。同时为防止不同机组的10kV段ü枚尾⒘校诟骰榛槎沃凉枚蔚牧缈厣嫌械缙账?br>

2.410kV厂用电源事故切换

10kV厂用电源事故切换采用自动慢切换,当正在向1段10kV公用段供电的10kV机组段由电压继电器判断为失压,且保护是反应非10kV母线段上故障时,在确认10kV机组段进线开关已跳开后,将会起动自动慢切换,经5s延时,将备用变压器低压侧10kV开关合上,从而恢复该机组段和原由它供电的公用段的供电。当保护是反应10kV母线段上故障时,则不起动自动慢切换。自动慢切换是采用传统的中间继电器和时间继电器通过硬接线来实现的。虽然备用变压器下接10kV公用段A和10kV公用段B,但由于备用变压器容量有限,在同一时间内备用变压器只能带1段公用段,从备用变压器来的10kV公用段A进线开关和10kV公用段B进线开关之间有电气闭锁,防止2个开关同时合上。同样,虽然各机组的10kV机组段各段与相应的10kV公用段各段都有联络断路器连接,但为防止正常情况下不同机组的10kV机组段通过10kV公用段并列,相互之间设有闭锁,防止同一时间2台机的10kV机组段向同一10kV公用段供电。正常情况下,厂用电源的手动切换及由备用变压器供电转为正常供电时厂用电的短时并列供电,要通过手动经同期装置进行,并经200ms延时自动跳开另一开关。

由上可知,由于备用变压器受容量及上述运行方式的限制,在事故情况下只能向1段公用段及当时向该公用段供电的机组段供电,因而事故情况下后备电源只能保证机组50%的负荷。而且,如果当时该机组段未带1段公用段,则后备电源将不能向机组提供厂用电源。如果该机组又失去全部厂用电,则需要靠柴油机组来保障机组的安全。因此,该种接线对柴油机组要求较高,而目前沙角C厂使用的柴油机组质量较好,经受了很多次起动的考验。

由上可见,备用变压器主要是作为全厂的1个由系统来供电的用于机组停机或停机后的安全电源,且对其中的1台机组起不到提供后备电源的作用。

3厂用电系统电压等级及切换

3.1厂用电系统电压等级

目前沙角C厂厂用电有3个电压等级:10kV电压,3kV电压,380V电压。其中10kV系统、3kV系统为中阻接地,380V系统为不接地系统。380V的照明用电和其他需要中性点接地的380V/220V系统,采用△/Yo的变压器来产生。

3.2各级电压的切换

10kV系统如前所述有电源自动慢速切换。3kV系统机组2段之间、3kV系统公用2段之间有联络开关,联络开关之间不带同期和自动切换。当需要切换电源时只能通过手动切换。

380V系统机组锅炉、汽机、除尘各有2段,公用段也有2段,2段之间有联络开关,联络开关之间不带同期和自动切换。当需要切换电源时只能通过手动切换。

4开关设备型式

10kV系统开关全部采用真空开关,型号HWX。

3kV系统的进线开关采用真空开关,馈线采用F-C回路,型号HMC1172。

380V系统的进线开关采用空气开关,接触器、熔断器。

电结线范文篇3

1方案选择

沙角C电厂(简称沙角C厂)有3台660MW机组,每台机组发出的电能都是经各自的主变压器升压至500kV,由500kV变电站进入广东省主网。发电机机端电压为19kV,主变压器为Yo/△接线,每台机有2台容量各为44MVA的△/Yo接线高压厂用工作变压器,2台高压厂用工作变压器各带一10kV机组段。全厂设1台容量为44MVA的高压厂用备用变压器及设高压厂用公用段10kV两段。厂用电接线如图1所示。对于这样一种结线,在工程谈判阶段业主和设计院曾就电厂的厂用电结线作了两个方案比较。

方案一:全厂设高压厂用起动/备用变压器,而不设发电机开关;

方案二:每台机装设发电机开关,而全厂只设1台容量较小的高压厂用备用变压器。

方案二的优点是:

a)机组正常起、停不需切换厂用电,只需操作发电机开关,厂用电可靠性高。

b)机组在发生发电机开关以内故障时(如发电机、汽机、锅炉故障),只需跳开发电机开关,厂用电源不会消失,也不需切换,提高了厂用电的可靠性,同时减轻了操作人员的工作量和紧张度。这一点在沙角C厂的调试过程中,表现非常突出。同时对于国内大型机组采用一机只配一主操作员和一副操作员的值班方式非常有益。

c)对保护主变压器、高压厂用工作变压器有利。对于主变压器、高压厂用工作变压器发生内部故障时,由于发电机励磁电流衰减需要一定时间,在发电机-变压器组保护动作切除主变压器高压侧断路器后,发电机在励磁电流衰减阶段仍向故障点供电,而装设发电机开关后由于能快速切开发电机开关,而使主变压器受到更好的保护,这一点对于大型机组非常有利。

d)发电机开关以内故障只需跳开发电机开关,不需跳主变压器高压侧500kV开关,对系统的电网结构影响较小,对电网有利。

方案一无上述优点。

对于方案二,当时我们主要担心发电机开关价格昂贵,增加工程投资,以及发电机开关质量不可靠,增加故障机会。对于工程投资的比较是如果不装设发电机开关,按目前国内大型火力发电厂设计规程要求的2台600MW机组需配2台高压厂用起动/备用变压器的原则,沙角C厂则要配4台较大容量起动/备用变压器,且由于条件所限,起动/备用变压器的电源只能从沙角A厂220kV系统引接。因而,方案一需增加220kVGIS间隔4个,220kV电缆4根,220kV级的较大容量起动/备用变压器4台;方案二需增加33kV电缆1根,33kV级的较小备用变压器1台,发电机开关3台。方案一的投资可能超过方案二。对发电机开关质量问题,经调查了解,当时GEC-ALSTHOM公司法国里昂开关厂生产的空气断路器,额定电流33.7kA,额定开断电流180kA,这种断路器已供应美国、法国许多大型核电站使用,运行良好。

因此,我们最终选择了方案二,并选用了GEC-ALSTHOM公司的PKG2C空气断路器。目前这种断路器经在沙角C厂多年的运行,上百次的动作,证明其性能良好。

沙角C厂发电机开关的主要技术参数:

型号

灭弧介质

额定电流

额定电压

额定频率

额定对称开断电流

额定不对称开断电流

额定短路关合电流

额定短时承受电流

对地工频耐压

雷电冲击耐压峰值

额定开断时间

额定负载下操作顺序

正常操作压力

最低操作压力PKG2C

压缩空气

33.7kA

21kV

50Hz

180kA

340kA

509kA

275kA

70kV/min

170kV

0.1s

CO—30min—CO

3.34MPa

3.00MPa

电结线范文篇4

关键词:变电所配电所存在问题规范

10、6kV配电所及10、6/0.4kV变电所设计,是工程建设中非常普通又非常重要的一项工作,其规范性和技术性都很强,许多方面涉及到国家强制性条文的贯彻落实。要做好变配电所设计既要执行国家现行的有关规范和规程,又要满足当地供电部门的具体要求,否则会出现种种问题,影响设计质量和工程进度。为了做好变配电所的设计,现将本人在审查我院变配电所设计图纸时发现各种问题中的一部分整理出来,进行简要的分析,与大家相互交流,以便共同提高。

1.变电所和配电所的名称工程设计在使用名词术语时要力求准确,不能随意。在具体项目的设计文件中不宜笼统使用“变配电所”这一名称。“变配电所”是变电所和配电所的统称,仅用于泛指。具体谈到某种类别或某一个体时,应分别称为“变电所”或“配电所”。在GB50053-94《10kV及以下变电所设计规范》中,“变电所”的解释是“10kV及以下交流电源经电力变压器变压后对用电设备供电”:“配电所”的解释是“所内只有起开闭和分配电能作用的高压配电装置,母线上无主变压器”。在变电装置与配电装置均有时,以升降压为主要功能包括附有高、中压配电装置者,称为“变电所”“以中压配电为主要功能包括附有3~10/0.4kV变压器者,称为”配电所“。一项工程具有多个变电所时,应以所在建筑物的名称或用流水号对各变电所分别命名。

2.带电导体系统的型式和系统接地的型式根据国际电工委员会IEC-TC64第312条,配电系统的型式有两个特征,即带电导体系统的型式,如三相四线制,和系统接地的型式如TN-C-S系统。在正式文件中不得把三相四线制的TN-S系统称为“三相五线制”。在GB50054-95《低压配电设计规范》第37页“名词解释”中已明确指出,“三相四线制是带电导体配电系统的型式之一,三相指L1、L2、L3三相,四线指通过正常工作电流的三根相线和一根N线,不包括不通过正常工作电流的PE线”。它并进一步阐明“TN-C、TN-C-S、TN-S、TT等接地型式的配电系统均属三相四线制”。在我国低压配电电压应采用220V/380V.带电导体系统的型式宜采用单相二线制、两相三线制、三相三线制和三相四线制。在设计文件中,对TN-S与TN-C-S接地型式的划定有时混淆不清。系统的接地型式一般是就一个变电所或一台变压器的供电范围而言。中性线N线和保护线PE线仅在局部范围内,如一栋楼或一层楼分开时,应称TN-C-S系统。TN系统中某一剩余电流保护器负荷侧电气装置的外露导电体单独接地时,可称为局部TT系统。

3.分级分类术语和标准计量单位设计文件中的各种分级、分类等名词术语,应与国家标准、行业标准统一,不得混淆。如经常使用的术语:电力负荷应称为一、二、三级负荷,这里用“级”不用“类”;防雷建筑称为一、二、三类防雷建筑物,这里用“类”不用“级”新的防雷规范不再分工业、民用,屋面避雷网的网格大小也应以新规范为准;爆炸性气体环境危险区域分为0、1、2区,爆炸性粉尘环境危险区域分为10、11区,火灾危险区域分为21、22、23区,这里均用“区”不用“级”或“类”;而火药、炸药、弹药及火工品危险场所电气分为Ⅰ、Ⅱ、Ⅲ类危险场所,这里用“类”不用“区”。其他的名词术语也应正确使用,如在正式文件中应使用“断路器”、“变电所”,而不宜使用“自动开关”、“变电站”等等,不一一列举。计量单位的标准符号要正确,字母的大小写不能随意。如A、V、W、kV、kW、kVA、kvar、lx、km等应一律使用法定计量单位,特别要注意单位符号字母的大小写要正确,凡由人名转化来的单位符号如A、V、W、N、Pa和兆以上的词头符号如M、G均应大写;除此之外,则一律小写,如kV、MW、kvar、km等。有关计量单位的资料,可参阅“工业与民用配电设计手册”第十六章第773~783页。

4.对土建的要求在GB50053-94《10kV及以下变电所设计规范》中明确规定了变电所所址选择和对建筑等有关专业的要求,在执行中我们还存在不少具体问题,现仅列举以下几例略加分析,今后设计时应予以重视。

1)防火挑檐:车间附设变电所选用油浸电力变压器时,有的未在变压器室大门的上方设置防火挑檐。在工程建设标准强制性条文GB50053-94的第6.1.8条,规定“在多层和高层主体建筑物的底层布置有可燃性油的电气设备时,其底层外墙开口部位的上方应设置宽度不小于1.0m的防火挑檐”。

2)安全出口:有的设计在长度大于7m的配电室仅设一个出口或设两个出口但靠近同一端。这不符合GB50053-94第6.2.6条的规定,规范要求“长度大于7m的配电室应设两个出口,并宜布置在配电室的两端”。

3)梁高:有的设计在考虑室内净高时未计及梁的高度。由于变配电所的跨度较大,有时梁的高度可达800mm左右,故在提土建条件层高时应考虑梁的高度。

4)值班室:有的设计将值班室设在交通不便的里角。这不符合GB50053-94的第4.1.6条规定,该条规定“有人值班的配电所,应设单独的值班室。高压配电室与值班室应直通或经过通道相通,值班室应有直接通向户外或通向走道的门。”

5)电缆沟:有的变电所内双排布置的低压配电屏仅在屏底和后侧设置地沟,两排屏的沟之间互不连通。为了方便电缆的进出和今后线路的调整,宜将所内所有主电缆沟和控制电缆沟均连通。

6)电缆分界室:有的分界室不满足供电部门的要求。北京供电局规定北京地区的10kV用户必须设置电缆分界室作为工程的电源总进线室。电缆分界室的位置应接近电源进线方向,并靠近建筑物的外墙。其面积一般为6m×3.5m即20mm2左右,净高应不小于2.7m,下设净高不小于1.8m的电缆夹层,并设600mm×600mm的人孔和爬梯。电缆分界室在无地下室的建筑物中一般设在一层;而在有地下室的建筑物中,则不论地下有几层,电缆分界室均要求设在地下一层。根据北京市供电局的规定,电缆分界室归北京市供电局管理,故电缆分界室的门应向外开向公共走道。

5.设备布置在变配电所的设备布置方面,我们也存在种种问题,甚至违反强制性条文的规定,现仅举列如下:

1)高、低压配电系统图与平面图不一致。其表现形式有两种:其一是系统图与平面图中柜屏的排列顺序相反。看系统图时是面向柜屏的正面,将其从左至右排列为1、2、3……n;而在平面图上却是面向屏的背面,将其从左至右排列为1、2、、3……n,必然弄反了。要避免这一错误的关键是在系统图和平面图上都应面向柜屏的正面从左至右按顺序排列。其二是平面图上双排面对面布置的配电屏之间有母线桥,而在系统图却未画出。

2)低压配电屏屏前、屏后通道宽度不满足新规范要求。如屏后有时仅距墙700mm,抽屉式低压屏双排面对面布置时仅相距1800mm.根据规范GB50053-94第4.2.9条规定,低压配电室内成排布置配电屏的屏前、屏后的通道最小宽度为:其屏后通道,固定式和抽屉式均为1000mm;其屏前通道,固定式单排布置为1500mm,抽屉式单排布置为1800mm,固定式双排面对面布置为2000mm,抽屉式双排面对面布置为2300mm.只有当建筑物墙面遇有柱类局部凸出时,凸出部分的通道宽度可减少200mm.

3)配电柜屏后通道的出口数量不满足规范要求。作为规范强制性条文,GB50053-94第4.2.6条规定“配电装置长度大于6m时,其柜屏后通道应设两个出口,低压配电装置两个出口间的距离超过15m时,尚应增加出口。”这一条要强制执行的理由,是为了当高压柜、低压屏内电气设备有突发性故障时,在屏后的巡视或维修人员能及时离开事故点。

4)配电室内灯具采用线吊、链吊,且安装在配电装置的正上方不符合安全要求。GB50053-94第6.4.3条规定,“在配电室内裸导体的正上方,不应布置灯具和明敷线路,当在配电室内裸导体上方布置灯具时,灯具与裸导体的水平净距不应小于1.0m,灯具不得采用吊链和软线吊装”。因低压屏顶部布置有母线铜排通常又不封闭,故要执行此条规定。配电室内可采用线槽型荧光灯用吊杆安装。

5)变配电所内设有接地扁钢沿墙敷设,但未设置临时接地接线柱。为了方便试验和维修时临时接地,应适当设置临时接地接线柱。接地接线柱的做法可参见国家标准图集86D563《接地装置安装》第25页。

6.推荐选用D,yn11结线变压器最近十年,在TN系统中采用D,yn11结线组别的变压器已很普遍,但还有不少工程仍选用Y,ynO结线组别的变压器,其原因主要是不清楚前者的优点。在GB50052-95《供配电系统设计规范》中第6.0.7条规定:“在TN及TT系统接地型式的低压电网中,宜选用D,yn11结线组别的三相变压器作为配电变压器”。这里“宜选用”的理由,主要基于D,yn11结线比Y,ynO结线的变压器具有以下优点:

1)有利于抑制高次谐波电流。三次及以上高次谐波激磁电流在原边接成△形条件下,可在原边形成环流,有利于抑制高次谐波电流,保证供电波形的质量。

2)有利于单位相接地短路故障的切除。因D,yn11结线比Y,ynO结线的零序阻抗小得多,使变压器配电系统的单相短路电流扩大3倍以上,故有利于单相接地短路故障的切除。

3)能充分利用变压器的设备能力。Y,ynO结线变压器要求中性线电流不超过低压绕组额定电流的25%见GB50052-95第6.0.8条,严重地限制了接用单相负荷的容量,影响了变压器设备能力的充分利用;而D,yn11结线变压器的中性线电流允许达到相电流的75%以上,甚至可达到相电流的100%,使变压器的容量得到充分的利用,这对单相负荷容量大的系统是十分必要的。因此在TN及TT系统接地型式的低压电网中,推荐采用D,yn11结线组别的配电变压器。

7.电缆型号与截面的选择

1)电缆选型:YJV型交联聚乙烯电缆和VV型聚氯乙烯电缆,是工程建设中普遍选用的两种电缆。YJV型交联电缆与VV型电缆相比,虽然价格略贵,但具有外径小、重量轻、载流量大、寿命长YJV型电缆寿命可长达40年,而VV型电缆仅为20年等显著优点,因此在工程设计中应尽量选用YJV型交联聚乙烯电缆,逐步淘汰VV型聚氯乙烯电缆。

2)电缆截面选择:电缆作为导体的一种,其截面选择应满足规范强制性条文GB50054-95第2.2.2条,有关选择导体截面应符合的四点要求,而我们设计选用的电缆截面有时却不符合该条规范中第一、第二点的要求。

第一点:“线路电压损失应满足用电设备正常工作及起动时端电压的要求”。电缆截面的选择除了载流量要满足计算电流要求外,还应按电压损失进行校验。由于未进行电压损失校验,我们多次发现因选用6mm2、10mm2截面的电缆作远距离配电干线而不能满足用电设备端电压要求的错误,因此应进行电压损失计算,用以校验所选用的电缆截面是否满足用电设备端电压的要求。规范GB50052-95第4.0.4条,对用电设备端电压偏差允许值有下列要求:电机机为±5%;在一般工作场所的照明为±5%,远离变电所的小面积一般工作场所照明、应急照明、道路照明和警卫照明为+5%、-10%;其它用电设备当无特殊规定时为±5%。

第二点:“按敷设方式及环境条件确定的导体载流量,不应小于计算电流。”在执行本条时应考虑环境温度、导体工作温度,并列系数等对电缆载流量的影响,尤其是电缆敷设时并列数对载流量的影响。如电缆在桥架上无间距配置2层并列时持续载流量的校正系数,梯架水平排列为0.65,托盘水平排列为0.55见92DQ1-77。有关电线电缆载流量的各种修正系数可参见华北标《建筑电气通用图集》92DQ1-75~77页。

此外,电缆截面的选择还须适当考虑备用设备的用电和新增设备的用电。

8.断路器选择与短路电流计算在低压配电系统中用作保护电器的有断路器和熔断器两种。目前我们使用最多的是断路器,用它来作配电线路的短路保护和过载保护。但是,在选用低压断路器时存在不少问题,其中突出的问题是没有进行短路电流计算。配电线路短路保护电器的分断能力应大于安装处的预期短路电流。选择断路器应先计算其出口端的短路电流,但有的设计者却没有进行短路电流计算,所选短路器的极限短路分断能力不够,不能切断短路故障电流。要确定断路器安装处的短路电流,可按设计手册进行计算,但比较烦杂;也可以采用“短路电流查曲线法”来确定计算电流,比较简便。现将由上海电器科学研究所设计、浙江瑞安万松电子电器有限公司断路器产品资料中提供的一种“短路电流查曲线法”附在后面。通过查此曲线,可以较方便地求得任意安装位置的短路电流近似值。所举例子的短路点仅为假设,实际工程设计中最常用的短路点是选在保护电器的出口端。

9.断路器与断路器的级联配合低压配电线路采用断路器作短路保护时,断路器的分断能力必须大于安装处可能出现的短路电流。但是有时不能满足此要求。例如:C45N、C65N/H微型断路器的分断能力仅分别为6kA、10kA,但其安装处出口端的短路电流有时可达15kA甚至更高。这时可用两路办法来解决此问题,第一是改用短路分断能力高的塑壳断路器;第二是仍选用微型断路器,利用其与上级断路的级联配合来实现短路保护。但是,进行级联配合的上下级断路器的选择须满足下列条件:

1)先决条件是上级断路器的固有分断时间比下级断路器的全分断时间短。也就是说下级断器出口端短路时,下级未来得及切断短路电流,上一级先行切断了短路电流。

2)下级断路器虽不能切断短路电流,但下级断路器及其被保护的线路应能承受短路电流的通过。

3)越级切断电路不应引起故障线路以外的一、二级负荷的供电中断。

4)上下级断路器宜采用同一系列的产品,其额定电流等级最好相差1~2级,或根据生产厂提供的级联配合表来选择。现将施耐德电气公司提供的级联配合表附后。由此表可见,C65N/H型断路器可与NS100、NS160、NS250型断路器进行级联配合,不能与更大的NS400、N630及以上的断路器进行配合,更不能直接接在变压器低压侧框架式主开关后的母线低压屏上。

10.断开中性线及应用四极开关GB50054-95《低压配电设计规范》实施以来,由于设计人员对规范的理解和认识不一致,因此在设计低压配电系统时对断开中性线及应用四极开关的做法也就很难统一。针对这一情况,《电气工程应用》杂志从1999年第一期起,陆续发表了多篇国内知名专家的专题论文。专家们就国内外规范和IEC标准对断开中性线及应用四极开关的有关规定和做法阐明了各自观点,使我们获益不少。现仅将专家们普遍认同,又与我们设计工作密切相关的一些观点整理如下。尽管这些观点尚未纳入国家规范中,但对我们的设计工作颇具现实指导意义。

1)当两个电源间需进行电源转换时,如果两电源系统的接地型式不同,或者供电变压器绕组的接线组别不同,则应断开中性线,并采用四极开关。

2)IT系统和TT系统应当隔离中性线。TN-C系统中禁止断开PEN线。

3)TN-S系统中,不需要断开中性线;变压器低压侧出口总开关与母联开关不必断开中性线;由外部低压电网向民用建筑物供电的进线处,宜隔离中性线可采用四极隔离开关等隔离电器,也可采用在中性线上设置连接片、接线端子或连接汇流排等措施;每户住家的入户线处应隔离中性线大多居民用户为单相负荷,采用双极开关即可解决问题。

4)正常供电电源与应急备用发电机电源间的转换开关需采用能断开中性线的四极开关,并使二者不能并联。

5)在有气体爆炸危险的1区及有粉尘爆炸危险的10区场所,游泳池、浴池等特别潮湿场所,应装设将中性线和相线一起断开的隔离电器。

电结线范文篇5

关键词:变电所配电所存在问题规范

10、6kV配电所及10、6/0.4kV变电所设计,是工程建设中非常普通又非常重要的一项工作,其规范性和技术性都很强,许多方面涉及到国家强制性条文的贯彻落实。要做好变配电所设计既要执行国家现行的有关规范和规程,又要满足当地供电部门的具体要求,否则会出现种种问题,影响设计质量和工程进度。为了做好变配电所的设计,现将本人在审查我院变配电所设计图纸时发现各种问题中的一部分整理出来,进行简要的分析,与大家相互交流,以便共同提高。

1.变电所和配电所的名称工程设计在使用名词术语时要力求准确,不能随意。在具体项目的设计文件中不宜笼统使用“变配电所”这一名称。“变配电所”是变电所和配电所的统称,仅用于泛指。具体谈到某种类别或某一个体时,应分别称为“变电所”或“配电所”。在GB50053-94《10kV及以下变电所设计规范》中,“变电所”的解释是“10kV及以下交流电源经电力变压器变压后对用电设备供电”:“配电所”的解释是“所内只有起开闭和分配电能作用的高压配电装置,母线上无主变压器”。在变电装置与配电装置均有时,以升降压为主要功能包括附有高、中压配电装置者,称为“变电所”“以中压配电为主要功能包括附有3~10/0.4kV变压器者,称为”配电所“。一项工程具有多个变电所时,应以所在建筑物的名称或用流水号对各变电所分别命名。

2.带电导体系统的型式和系统接地的型式根据国际电工委员会IEC-TC64第312条,配电系统的型式有两个特征,即带电导体系统的型式,如三相四线制,和系统接地的型式如TN-C-S系统。在正式文件中不得把三相四线制的TN-S系统称为“三相五线制”。在GB50054-95《低压配电设计规范》第37页“名词解释”中已明确指出,“三相四线制是带电导体配电系统的型式之一,三相指L1、L2、L3三相,四线指通过正常工作电流的三根相线和一根N线,不包括不通过正常工作电流的PE线”。它并进一步阐明“TN-C、TN-C-S、TN-S、TT等接地型式的配电系统均属三相四线制”。在我国低压配电电压应采用220V/380V.带电导体系统的型式宜采用单相二线制、两相三线制、三相三线制和三相四线制。在设计文件中,对TN-S与TN-C-S接地型式的划定有时混淆不清。系统的接地型式一般是就一个变电所或一台变压器的供电范围而言。中性线N线和保护线PE线仅在局部范围内,如一栋楼或一层楼分开时,应称TN-C-S系统。TN系统中某一剩余电流保护器负荷侧电气装置的外露导电体单独接地时,可称为局部TT系统。

3.分级分类术语和标准计量单位设计文件中的各种分级、分类等名词术语,应与国家标准、行业标准统一,不得混淆。如经常使用的术语:电力负荷应称为一、二、三级负荷,这里用“级”不用“类”;防雷建筑称为一、二、三类防雷建筑物,这里用“类”不用“级”新的防雷规范不再分工业、民用,屋面避雷网的网格大小也应以新规范为准;爆炸性气体环境危险区域分为0、1、2区,爆炸性粉尘环境危险区域分为10、11区,火灾危险区域分为21、22、23区,这里均用“区”不用“级”或“类”;而火药、炸药、弹药及火工品危险场所电气分为Ⅰ、Ⅱ、Ⅲ类危险场所,这里用“类”不用“区”。其他的名词术语也应正确使用,如在正式文件中应使用“断路器”、“变电所”,而不宜使用“自动开关”、“变电站”等等,不一一列举。计量单位的标准符号要正确,字母的大小写不能随意。如A、V、W、kV、kW、kVA、kvar、lx、km等应一律使用法定计量单位,特别要注意单位符号字母的大小写要正确,凡由人名转化来的单位符号如A、V、W、N、Pa和兆以上的词头符号如M、G均应大写;除此之外,则一律小写,如kV、MW、kvar、km等。有关计量单位的资料,可参阅“工业与民用配电设计手册”第十六章第773~783页。

4.对土建的要求在GB50053-94《10kV及以下变电所设计规范》中明确规定了变电所所址选择和对建筑等有关专业的要求,在执行中我们还存在不少具体问题,现仅列举以下几例略加分析,今后设计时应予以重视。

1)防火挑檐:车间附设变电所选用油浸电力变压器时,有的未在变压器室大门的上方设置防火挑檐。在工程建设标准强制性条文GB50053-94的第6.1.8条,规定“在多层和高层主体建筑物的底层布置有可燃性油的电气设备时,其底层外墙开口部位的上方应设置宽度不小于1.0m的防火挑檐”。

2)安全出口:有的设计在长度大于7m的配电室仅设一个出口或设两个出口但靠近同一端。这不符合GB50053-94第6.2.6条的规定,规范要求“长度大于7m的配电室应设两个出口,并宜布置在配电室的两端”。

3)梁高:有的设计在考虑室内净高时未计及梁的高度。由于变配电所的跨度较大,有时梁的高度可达800mm左右,故在提土建条件层高时应考虑梁的高度。

4)值班室:有的设计将值班室设在交通不便的里角。这不符合GB50053-94的第4.1.6条规定,该条规定“有人值班的配电所,应设单独的值班室。高压配电室与值班室应直通或经过通道相通,值班室应有直接通向户外或通向走道的门。”

5)电缆沟:有的变电所内双排布置的低压配电屏仅在屏底和后侧设置地沟,两排屏的沟之间互不连通。为了方便电缆的进出和今后线路的调整,宜将所内所有主电缆沟和控制电缆沟均连通。

6)电缆分界室:有的分界室不满足供电部门的要求。北京供电局规定北京地区的10kV用户必须设置电缆分界室作为工程的电源总进线室。电缆分界室的位置应接近电源进线方向,并靠近建筑物的外墙。其面积一般为6m×3.5m即20mm2左右,净高应不小于2.7m,下设净高不小于1.8m的电缆夹层,并设600mm×600mm的人孔和爬梯。电缆分界室在无地下室的建筑物中一般设在一层;而在有地下室的建筑物中,则不论地下有几层,电缆分界室均要求设在地下一层。根据北京市供电局的规定,电缆分界室归北京市供电局管理,故电缆分界室的门应向外开向公共走道。

5.设备布置在变配电所的设备布置方面,我们也存在种种问题,甚至违反强制性条文的规定,现仅举列如下:

1)高、低压配电系统图与平面图不一致。其表现形式有两种:其一是系统图与平面图中柜屏的排列顺序相反。看系统图时是面向柜屏的正面,将其从左至右排列为1、2、3……n;而在平面图上却是面向屏的背面,将其从左至右排列为1、2、、3……n,必然弄反了。要避免这一错误的关键是在系统图和平面图上都应面向柜屏的正面从左至右按顺序排列。其二是平面图上双排面对面布置的配电屏之间有母线桥,而在系统图却未画出。

2)低压配电屏屏前、屏后通道宽度不满足新规范要求。如屏后有时仅距墙700mm,抽屉式低压屏双排面对面布置时仅相距1800mm.根据规范GB50053-94第4.2.9条规定,低压配电室内成排布置配电屏的屏前、屏后的通道最小宽度为:其屏后通道,固定式和抽屉式均为1000mm;其屏前通道,固定式单排布置为1500mm,抽屉式单排布置为1800mm,固定式双排面对面布置为2000mm,抽屉式双排面对面布置为2300mm.只有当建筑物墙面遇有柱类局部凸出时,凸出部分的通道宽度可减少200mm.

3)配电柜屏后通道的出口数量不满足规范要求。作为规范强制性条文,GB50053-94第4.2.6条规定“配电装置长度大于6m时,其柜屏后通道应设两个出口,低压配电装置两个出口间的距离超过15m时,尚应增加出口。”这一条要强制执行的理由,是为了当高压柜、低压屏内电气设备有突发性故障时,在屏后的巡视或维修人员能及时离开事故点。

4)配电室内灯具采用线吊、链吊,且安装在配电装置的正上方不符合安全要求。GB50053-94第6.4.3条规定,“在配电室内裸导体的正上方,不应布置灯具和明敷线路,当在配电室内裸导体上方布置灯具时,灯具与裸导体的水平净距不应小于1.0m,灯具不得采用吊链和软线吊装”。因低压屏顶部布置有母线铜排通常又不封闭,故要执行此条规定。配电室内可采用线槽型荧光灯用吊杆安装。

5)变配电所内设有接地扁钢沿墙敷设,但未设置临时接地接线柱。为了方便试验和维修时临时接地,应适当设置临时接地接线柱。接地接线柱的做法可参见国家标准图集86D563《接地装置安装》第25页。

6.推荐选用D,yn11结线变压器最近十年,在TN系统中采用D,yn11结线组别的变压器已很普遍,但还有不少工程仍选用Y,ynO结线组别的变压器,其原因主要是不清楚前者的优点。在GB50052-95《供配电系统设计规范》中第6.0.7条规定:“在TN及TT系统接地型式的低压电网中,宜选用D,yn11结线组别的三相变压器作为配电变压器”。这里“宜选用”的理由,主要基于D,yn11结线比Y,ynO结线的变压器具有以下优点:

1)有利于抑制高次谐波电流。三次及以上高次谐波激磁电流在原边接成△形条件下,可在原边形成环流,有利于抑制高次谐波电流,保证供电波形的质量。

2)有利于单位相接地短路故障的切除。因D,yn11结线比Y,ynO结线的零序阻抗小得多,使变压器配电系统的单相短路电流扩大3倍以上,故有利于单相接地短路故障的切除。

3)能充分利用变压器的设备能力。Y,ynO结线变压器要求中性线电流不超过低压绕组额定电流的25%见GB50052-95第6.0.8条,严重地限制了接用单相负荷的容量,影响了变压器设备能力的充分利用;而D,yn11结线变压器的中性线电流允许达到相电流的75%以上,甚至可达到相电流的100%,使变压器的容量得到充分的利用,这对单相负荷容量大的系统是十分必要的。因此在TN及TT系统接地型式的低压电网中,推荐采用D,yn11结线组别的配电变压器。

7.电缆型号与截面的选择

1)电缆选型:YJV型交联聚乙烯电缆和VV型聚氯乙烯电缆,是工程建设中普遍选用的两种电缆。YJV型交联电缆与VV型电缆相比,虽然价格略贵,但具有外径小、重量轻、载流量大、寿命长YJV型电缆寿命可长达40年,而VV型电缆仅为20年等显著优点,因此在工程设计中应尽量选用YJV型交联聚乙烯电缆,逐步淘汰VV型聚氯乙烯电缆。

2)电缆截面选择:电缆作为导体的一种,其截面选择应满足规范强制性条文GB50054-95第2.2.2条,有关选择导体截面应符合的四点要求,而我们设计选用的电缆截面有时却不符合该条规范中第一、第二点的要求。

第一点:“线路电压损失应满足用电设备正常工作及起动时端电压的要求”。电缆截面的选择除了载流量要满足计算电流要求外,还应按电压损失进行校验。由于未进行电压损失校验,我们多次发现因选用6mm2、10mm2截面的电缆作远距离配电干线而不能满足用电设备端电压要求的错误,因此应进行电压损失计算,用以校验所选用的电缆截面是否满足用电设备端电压的要求。规范GB50052-95第4.0.4条,对用电设备端电压偏差允许值有下列要求:电机机为±5%;在一般工作场所的照明为±5%,远离变电所的小面积一般工作场所照明、应急照明、道路照明和警卫照明为+5%、-10%;其它用电设备当无特殊规定时为±5%。

第二点:“按敷设方式及环境条件确定的导体载流量,不应小于计算电流。”在执行本条时应考虑环境温度、导体工作温度,并列系数等对电缆载流量的影响,尤其是电缆敷设时并列数对载流量的影响。如电缆在桥架上无间距配置2层并列时持续载流量的校正系数,梯架水平排列为0.65,托盘水平排列为0.55见92DQ1-77。有关电线电缆载流量的各种修正系数可参见华北标《建筑电气通用图集》92DQ1-75~77页。

此外,电缆截面的选择还须适当考虑备用设备的用电和新增设备的用电。

8.断路器选择与短路电流计算在低压配电系统中用作保护电器的有断路器和熔断器两种。目前我们使用最多的是断路器,用它来作配电线路的短路保护和过载保护。但是,在选用低压断路器时存在不少问题,其中突出的问题是没有进行短路电流计算。配电线路短路保护电器的分断能力应大于安装处的预期短路电流。选择断路器应先计算其出口端的短路电流,但有的设计者却没有进行短路电流计算,所选短路器的极限短路分断能力不够,不能切断短路故障电流。要确定断路器安装处的短路电流,可按设计手册进行计算,但比较烦杂;也可以采用“短路电流查曲线法”来确定计算电流,比较简便。现将由上海电器科学研究所设计、浙江瑞安万松电子电器有限公司断路器产品资料中提供的一种“短路电流查曲线法”附在后面。通过查此曲线,可以较方便地求得任意安装位置的短路电流近似值。所举例子的短路点仅为假设,实际工程设计中最常用的短路点是选在保护电器的出口端。

9.断路器与断路器的级联配合低压配电线路采用断路器作短路保护时,断路器的分断能力必须大于安装处可能出现的短路电流。但是有时不能满足此要求。例如:C45N、C65N/H微型断路器的分断能力仅分别为6kA、10kA,但其安装处出口端的短路电流有时可达15kA甚至更高。这时可用两路办法来解决此问题,第一是改用短路分断能力高的塑壳断路器;第二是仍选用微型断路器,利用其与上级断路的级联配合来实现短路保护。但是,进行级联配合的上下级断路器的选择须满足下列条件:

1)先决条件是上级断路器的固有分断时间比下级断路器的全分断时间短。也就是说下级断器出口端短路时,下级未来得及切断短路电流,上一级先行切断了短路电流。

2)下级断路器虽不能切断短路电流,但下级断路器及其被保护的线路应能承受短路电流的通过。

3)越级切断电路不应引起故障线路以外的一、二级负荷的供电中断。

4)上下级断路器宜采用同一系列的产品,其额定电流等级最好相差1~2级,或根据生产厂提供的级联配合表来选择。现将施耐德电气公司提供的级联配合表附后。由此表可见,C65N/H型断路器可与NS100、NS160、NS250型断路器进行级联配合,不能与更大的NS400、N630及以上的断路器进行配合,更不能直接接在变压器低压侧框架式主开关后的母线低压屏上。

10.断开中性线及应用四极开关GB50054-95《低压配电设计规范》实施以来,由于设计人员对规范的理解和认识不一致,因此在设计低压配电系统时对断开中性线及应用四极开关的做法也就很难统一。针对这一情况,《电气工程应用》杂志从1999年第一期起,陆续发表了多篇国内知名专家的专题论文。专家们就国内外规范和IEC标准对断开中性线及应用四极开关的有关规定和做法阐明了各自观点,使我们获益不少。现仅将专家们普遍认同,又与我们设计工作密切相关的一些观点整理如下。尽管这些观点尚未纳入国家规范中,但对我们的设计工作颇具现实指导意义。

1)当两个电源间需进行电源转换时,如果两电源系统的接地型式不同,或者供电变压器绕组的接线组别不同,则应断开中性线,并采用四极开关。

2)IT系统和TT系统应当隔离中性线。TN-C系统中禁止断开PEN线。

3)TN-S系统中,不需要断开中性线;变压器低压侧出口总开关与母联开关不必断开中性线;由外部低压电网向民用建筑物供电的进线处,宜隔离中性线可采用四极隔离开关等隔离电器,也可采用在中性线上设置连接片、接线端子或连接汇流排等措施;每户住家的入户线处应隔离中性线大多居民用户为单相负荷,采用双极开关即可解决问题。

4)正常供电电源与应急备用发电机电源间的转换开关需采用能断开中性线的四极开关,并使二者不能并联。

5)在有气体爆炸危险的1区及有粉尘爆炸危险的10区场所,游泳池、浴池等特别潮湿场所,应装设将中性线和相线一起断开的隔离电器。

电结线范文篇6

1老式直流系统屏存在的缺点

茂名热电厂原用的直流系统屏为老式直流系统屏(同一屏为双母线结线,采用直流发电机及硅充电装置)。从超过30a的运行情况来看,主要存在的缺点或不足之处如下。

1.1双工作母线结线布置复杂

因直流屏采用双工作母线结线,6根直流母线水平布置于屏顶上(根据控制、信号音响的需要,直流母线上还设有8根小母线)。在同一块屏上,有两组母线的馈线回路或电源与馈线回路相混合布置。当设备出现接触不良等缺陷时,往往因结线复杂和设备间距小,而使缺陷难以处理。

1.2仪表和灯光信号难以维护

老式的直流屏,其屏的正面都不采用活动门的型式。这样,装于屏面上的仪表、信号灯等设备,往往损坏后不能更换。

1.3直流发电机维护工作量和耗能大

茂名热电厂原使用同轴电动直流发电机组及GVA型硅整流装置担负直流系统经常负荷及作为蓄电池的核对性充电设备。配有1台Z2-17,15kW的直流发电机,由J2-62-4,17kW的电动机带动,当直流电机持续运行时,电动机月耗电量约12MWh,影响节能降耗,且整流子碳刷易冒火花,需经常维护。当使用GVA型硅充电装置担负直流系统的经常负荷时,由于硅整流装置不能自动调节输出,直流系统负荷突变时(如汽机启动直流油泵),若不及时调整硅装置的输出,将会导致母线电压偏低,致使蓄电池过放电,严重时影响继电保护装置的正常工作。当蓄电池进行核对性放电时,因硅装置为不可逆式,无法作为蓄电池的放电负载,蓄电池须在空母线的前提下另接电阻作负载进行放电,而母线的倒闸操作较复杂,容易出现错漏。

1.4绝缘监察装置动作灵敏度低

老式直流系统屏采用电磁式绝缘监察装置反映直流系统的接地状况。从茂名热电厂多年的运行情况来看,该装置能正确反映单极明显的接地现象,但当两极的绝缘都下降时,却不能准确反映。

2新直流屏的设计原则

茂名热电厂为早期发电厂,机组控制模式采用原苏联早期形式,即电气系统采用集中控制,60年运的1号、2号机组,机、炉采用分散控制,70年代的3号、4号机组,机、炉采用集中控制。因此,对于现代机组普通采用的单元机组独立的直流系统方式将无法实现,只能根据该厂的实际情况,采用全厂统一布置的直流系统方式。

2.1接线方式

新的直流屏采用单母线分段的接线方式,两组蓄电池经联络刀开关进行连接。为防止两组蓄电池并列运行,联络刀开关与蓄电池电源刀开关之间应设有闭锁措施。

2.2屏上设备布置

做到简单清晰,电源(充电设备和蓄电池)、馈线、事故照明装置布置于各自的屏上。带有仪表及灯光信号的屏面,使用活动门的型式。

2.3充电装置

选用可控可逆式硅充装置,实行负荷自动跟踪,保证直流母线的电压质量。当蓄电池进行核对性放电时,硅装置工作于整流的逆变状态,蓄电池不用另接电阻作为放电负载。

2.4蓄电池组

原则上选用免维护密封式蓄电池,当原GGM-800型蓄电池组经校验后,仍满足直流系统的要求时,可暂不更换。

2.5绝缘监察装置和馈线开关

原则上选用90年代技术先进、成熟可靠的设备。例如,选用由CMOS集成电路组成的ZJJ-1型绝缘监察装置,该装置在直流两极绝缘均等下降时都能正确动作发信。

3新直流系统屏的设备选型

3.1直流系统负荷

经统计,直流系统各类负荷如表1。

因茂名热电厂为中型火力发电厂,且与系统相连,所以蓄电池事故放电时间考虑为1h。对于汽轮机润滑油泵,因为是高温、高压机组,故其事故计算时间为1.0h,直流润滑油泵的K值取0.8,密封油泵的K值取0.7计算。冲击负荷考虑为1台最大合闸电流的断路器合闸。

3.2蓄电池组的选择

3.2.1按事故持续放电状态选择

tj=KkQsg/Isg=1.1×307Ah/306A=1.1h

式中tj——GGM型蓄电池假想时间,h;

Kk——可靠因数,取1.1;

Qsg——事故负荷计算容量,Ah;

Isg——事故放电电流,A。

查《电力工程设计手册》(西北电力设计院、东北电力设计院主编)中P769曲线表,得Idj=16.8A,则

Qe≥36Isg/Idj=(36×306/16.8)Ah=658Ah

式中Qe——蓄电池的10h放电容量,Ah;

Idj——单位容量蓄电池在放电假想时间内所允许的放电电流,A。

选用720Ah的蓄电池即可。原选用的蓄电池为GGM-800型可满足要求。

3.2.2按最大冲击电流选择

Qe≥0.78(Isg+Ich)=[0.78×(306+235)]Ah=422Ah

根据计算结果,蓄电池的容量按事故持续放电状态下计算选择。原运行的GGM-800型蓄电池组仍满足负荷的要求。

3.2.3直流电压水平校验(以GGM-800型为例)

a)按事故放电初期,蓄电池突然承受放电电流的电压水平验算:

Kcho=Iso/C10=609A/800Ah=0.76h-1

式中Kcho——单位容量蓄电池放电初期放电系数,h-1。

查GGM型蓄电池短时冲击放电曲线表得:

表1直流系统各类负荷

负荷名称计算容量

/kW经常负荷

/A(事故负荷)/(初期Iso/A持续Is/A冲击Ich/A)事故时间

/h事故放电

容量/Ah

经常负荷7.2333333—133

事故照明25—114×0.6114×0.6—168

通信备用电源3—14×0.514×0.5—17

热工备用电源3—14×0.514×0.5—17

直流润滑油泵80×0.8—728×0.5291×0.5—1146

直流密封油泵20.1×0.7—260×0.591×0.5—1146

断路器合闸电流————235——

合计—33609306235—307

Kcho=0.76h-1时,Ucho=1.86V,则直流母线电压为

N.Ucho=106×1.86V=197.16V>0.85Ue

式中Ucho——单位容量电池冲击负荷初期端电压,V;

N——浮充电池个数;

Ue——直流母线额定电压,V。

b)按事故放电末期,蓄电池再承受冲击负荷时的电压验算:

Km=Is/C10=306A/800Ah=0.38h-1

Kchm=Ich/C10=235A/800Ah=0.29h-1

式中Km——单位容量蓄电池持续放电系数,h-1;

Kchm——单位容量蓄电池冲击放电末期放电系数,h-1。

查有关曲线得Uchm=1.72V,则直流母线电压为

N.Uchm=106×1.72V=182.32V

0.80Ue<N.Uchm<0.85Ue

式中Uchm——单位容量蓄电池冲击负荷末期端电压,V。

从计算结果来看,选取蓄电池为800Ah时,按事故放电的末期,蓄电池再承受冲击负荷时,母线电压为182.32V,能满足断路器的合闸电压要求,但难以满足直流油泵的运行要求(直流油泵运行允许电压范围为(-10%~+10%)Ue间)。蓄电池的容量应选大一级为宜,即C10=1000Ah。但上述校验为运行中的极端情况,运行中出现的概率极少,当出现时可通过调整蓄电池组的放电个数来满足直流油泵的运行。故原选用的GGM-800型蓄电池可满足要求。但原用的GGM-800型Ⅰ、Ⅱ组蓄电池运行时间已达10a以上,受蓄电池自放电、过放电及电极纯化等影响,蓄电池阴、阳极板脱落渗液严重,电池难以满足充电,可靠性大大降低。因此,利用改造机会将Ⅰ、Ⅱ组蓄电池更换为英国进口的VH34-1000型免维护蓄电池。

3.2.4蓄电池的个数

蓄电池个数为:N=230/1.85=124,其中基本电池数为88个,端电池数为36个。

3.3充电设备的选择

3.3.1核对性充电设备

3.3.1.1充电设备的额定电流

a)按事故放电后进行充电的要求选择充电设备,计算公式为:

Ic=1.1Qsg/t+Ijc=1.1×307Ah/12h+33A=61A

式中Ijc——浮充电设备的工作电流,A;

Ic——充电设备应具备的输出电流,A。

b)考虑核对性充放电,按最大充电电流选择,

Ic=0.1Qe+Ijc=(0.1×800+33)A=113A

故充电设备的额定输出电流应大于113A。

3.3.1.2充电设备的输出电压范围

对有端电池的直流系统,充电设备的电压应满足蓄电池充电末期的电压选择。即:

Uc=N×Ucm=124×2.4V=297.6V

式中Uc——充电设备输出电压,V;

Ucm——蓄电池满充电端电压,V。

取最大一级,即360V。

充电设备容量:Pc=IcUcm=113A×360V=41kW。

不考虑选用直流发电机,应选用的硅整流装置为KGCfA-150/360,则额定输出电流为150A,最高输出电压为360V。

3.3.2浮充电设备

浮充电设备持续负荷电流Ifc为Ifc=0.0042Qe+Ijc=(0.0042×1000+33)A=37.2A

浮充电设备正常工作容量Pfc为Pfc=IfcUcm=37.2A×360V=14kW

按核对性充电设备选得的KGCfA-150/360可满足蓄电池浮充电要求。

电结线范文篇7

1老式直流系统屏存在的缺点

茂名热电厂原用的直流系统屏为老式直流系统屏(同一屏为双母线结线,采用直流发电机及硅充电装置)。从超过30a的运行情况来看,主要存在的缺点或不足之处如下。

1.1双工作母线结线布置复杂

因直流屏采用双工作母线结线,6根直流母线水平布置于屏顶上(根据控制、信号音响的需要,直流母线上还设有8根小母线)。在同一块屏上,有两组母线的馈线回路或电源与馈线回路相混合布置。当设备出现接触不良等缺陷时,往往因结线复杂和设备间距小,而使缺陷难以处理。

1.2仪表和灯光信号难以维护

老式的直流屏,其屏的正面都不采用活动门的型式。这样,装于屏面上的仪表、信号灯等设备,往往损坏后不能更换。

1.3直流发电机维护工作量和耗能大

茂名热电厂原使用同轴电动直流发电机组及GVA型硅整流装置担负直流系统经常负荷及作为蓄电池的核对性充电设备。配有1台Z2-17,15kW的直流发电机,由J2-62-4,17kW的电动机带动,当直流电机持续运行时,电动机月耗电量约12MWh,影响节能降耗,且整流子碳刷易冒火花,需经常维护。当使用GVA型硅充电装置担负直流系统的经常负荷时,由于硅整流装置不能自动调节输出,直流系统负荷突变时(如汽机启动直流油泵),若不及时调整硅装置的输出,将会导致母线电压偏低,致使蓄电池过放电,严重时影响继电保护装置的正常工作。当蓄电池进行核对性放电时,因硅装置为不可逆式,无法作为蓄电池的放电负载,蓄电池须在空母线的前提下另接电阻作负载进行放电,而母线的倒闸操作较复杂,容易出现错漏。

1.4绝缘监察装置动作灵敏度低

老式直流系统屏采用电磁式绝缘监察装置反映直流系统的接地状况。从茂名热电厂多年的运行情况来看,该装置能正确反映单极明显的接地现象,但当两极的绝缘都下降时,却不能准确反映。

2新直流屏的设计原则

茂名热电厂为早期发电厂,机组控制模式采用原苏联早期形式,即电气系统采用集中控制,60年运的1号、2号机组,机、炉采用分散控制,70年代的3号、4号机组,机、炉采用集中控制。因此,对于现代机组普通采用的单元机组独立的直流系统方式将无法实现,只能根据该厂的实际情况,采用全厂统一布置的直流系统方式。

2.1接线方式

新的直流屏采用单母线分段的接线方式,两组蓄电池经联络刀开关进行连接。为防止两组蓄电池并列运行,联络刀开关与蓄电池电源刀开关之间应设有闭锁措施。

2.2屏上设备布置

做到简单清晰,电源(充电设备和蓄电池)、馈线、事故照明装置布置于各自的屏上。带有仪表及灯光信号的屏面,使用活动门的型式。

2.3充电装置

选用可控可逆式硅充装置,实行负荷自动跟踪,保证直流母线的电压质量。当蓄电池进行核对性放电时,硅装置工作于整流的逆变状态,蓄电池不用另接电阻作为放电负载。

2.4蓄电池组

原则上选用免维护密封式蓄电池,当原GGM-800型蓄电池组经校验后,仍满足直流系统的要求时,可暂不更换。

2.5绝缘监察装置和馈线开关

原则上选用90年代技术先进、成熟可靠的设备。例如,选用由CMOS集成电路组成的ZJJ-1型绝缘监察装置,该装置在直流两极绝缘均等下降时都能正确动作发信。

3新直流系统屏的设备选型

3.1直流系统负荷

经统计,直流系统各类负荷如表1。

因茂名热电厂为中型火力发电厂,且与系统相连,所以蓄电池事故放电时间考虑为1h。对于汽轮机润滑油泵,因为是高温、高压机组,故其事故计算时间为1.0h,直流润滑油泵的K值取0.8,密封油泵的K值取0.7计算。冲击负荷考虑为1台最大合闸电流的断路器合闸。

3.2蓄电池组的选择

3.2.1按事故持续放电状态选择

tj=KkQsg/Isg=1.1×307Ah/306A=1.1h

式中tj——GGM型蓄电池假想时间,h;

Kk——可靠因数,取1.1;

Qsg——事故负荷计算容量,Ah;

Isg——事故放电电流,A。

查《电力工程设计手册》(西北电力设计院、东北电力设计院主编)中P769曲线表,得Idj=16.8A,则

Qe≥36Isg/Idj=(36×306/16.8)Ah=658Ah

式中Qe——蓄电池的10h放电容量,Ah;

Idj——单位容量蓄电池在放电假想时间内所允许的放电电流,A。

选用720Ah的蓄电池即可。原选用的蓄电池为GGM-800型可满足要求。

3.2.2按最大冲击电流选择

Qe≥0.78(Isg+Ich)=[0.78×(306+235)]Ah=422Ah

根据计算结果,蓄电池的容量按事故持续放电状态下计算选择。原运行的GGM-800型蓄电池组仍满足负荷的要求。

3.2.3直流电压水平校验(以GGM-800型为例)

a)按事故放电初期,蓄电池突然承受放电电流的电压水平验算:

Kcho=Iso/C10=609A/800Ah=0.76h-1

式中Kcho——单位容量蓄电池放电初期放电系数,h-1。

查GGM型蓄电池短时冲击放电曲线表得:

表1直流系统各类负荷

负荷名称计算容量

/kW经常负荷

/A(事故负荷)/(初期Iso/A持续Is/A冲击Ich/A)事故时间

/h事故放电

容量/Ah

经常负荷7.2333333—133

事故照明25—114×0.6114×0.6—168

通信备用电源3—14×0.514×0.5—17

热工备用电源3—14×0.514×0.5—17

直流润滑油泵80×0.8—728×0.5291×0.5—1146

直流密封油泵20.1×0.7—260×0.591×0.5—1146

断路器合闸电流————235——

合计—33609306235—307

Kcho=0.76h-1时,Ucho=1.86V,则直流母线电压为

N.Ucho=106×1.86V=197.16V>0.85Ue

式中Ucho——单位容量电池冲击负荷初期端电压,V;

N——浮充电池个数;

Ue——直流母线额定电压,V。

b)按事故放电末期,蓄电池再承受冲击负荷时的电压验算:

Km=Is/C10=306A/800Ah=0.38h-1

Kchm=Ich/C10=235A/800Ah=0.29h-1

式中Km——单位容量蓄电池持续放电系数,h-1;

Kchm——单位容量蓄电池冲击放电末期放电系数,h-1。

查有关曲线得Uchm=1.72V,则直流母线电压为

N.Uchm=106×1.72V=182.32V

0.80Ue<N.Uchm<0.85Ue

式中Uchm——单位容量蓄电池冲击负荷末期端电压,V。

从计算结果来看,选取蓄电池为800Ah时,按事故放电的末期,蓄电池再承受冲击负荷时,母线电压为182.32V,能满足断路器的合闸电压要求,但难以满足直流油泵的运行要求(直流油泵运行允许电压范围为(-10%~+10%)Ue间)。蓄电池的容量应选大一级为宜,即C10=1000Ah。但上述校验为运行中的极端情况,运行中出现的概率极少,当出现时可通过调整蓄电池组的放电个数来满足直流油泵的运行。故原选用的GGM-800型蓄电池可满足要求。但原用的GGM-800型Ⅰ、Ⅱ组蓄电池运行时间已达10a以上,受蓄电池自放电、过放电及电极纯化等影响,蓄电池阴、阳极板脱落渗液严重,电池难以满足充电,可靠性大大降低。因此,利用改造机会将Ⅰ、Ⅱ组蓄电池更换为英国进口的VH34-1000型免维护蓄电池。

3.2.4蓄电池的个数

蓄电池个数为:N=230/1.85=124,其中基本电池数为88个,端电池数为36个。

3.3充电设备的选择

3.3.1核对性充电设备

3.3.1.1充电设备的额定电流

a)按事故放电后进行充电的要求选择充电设备,计算公式为:

Ic=1.1Qsg/t+Ijc=1.1×307Ah/12h+33A=61A

式中Ijc——浮充电设备的工作电流,A;

Ic——充电设备应具备的输出电流,A。

b)考虑核对性充放电,按最大充电电流选择,

Ic=0.1Qe+Ijc=(0.1×800+33)A=113A

故充电设备的额定输出电流应大于113A。

3.3.1.2充电设备的输出电压范围

对有端电池的直流系统,充电设备的电压应满足蓄电池充电末期的电压选择。即:

Uc=N×Ucm=124×2.4V=297.6V

式中Uc——充电设备输出电压,V;

Ucm——蓄电池满充电端电压,V。

取最大一级,即360V。

充电设备容量:Pc=IcUcm=113A×360V=41kW。

不考虑选用直流发电机,应选用的硅整流装置为KGCfA-150/360,则额定输出电流为150A,最高输出电压为360V。

3.3.2浮充电设备

浮充电设备持续负荷电流Ifc为Ifc=0.0042Qe+Ijc=(0.0042×1000+33)A=37.2A

浮充电设备正常工作容量Pfc为Pfc=IfcUcm=37.2A×360V=14kW

按核对性充电设备选得的KGCfA-150/360可满足蓄电池浮充电要求。

电结线范文篇8

一、工作目标

对城区范围内的架空管线开展集中专项整治,改造、整理或拆除空中横跨街道、巷道的电源线、电话线、电视信号线、支撑线、挂晒线等各类架空管线,按照入地、入管、贴墙、捆扎等方式集中敷设,基本消除私接乱拉、影响城市景观和安全的现象,确保管线整齐、美观、安全,使县城区市容景观明显改观。

二、整治范围及重点

重点整治城区三条道路,即:

1、环城北路:东起四堰坪路口、西至留春园桥头,全长1048米。

2、大道:东起二道河、西至环城西路,全长1636米。

3、江岸路:北起老征稽所,南至环城西路口,全长481米。

三、工作任务及责任

(一)城区架空管线入地清理整治工作由县城区管线入地工程领导小组负责总协调、总指导,各成员单位要积极参与,密切配合,通力协作,各负其责,县供电、电信、广电、移动、联通等各管线产权单位要做好各自管线入地的专项整治工作。

(二)对重点整治的城区三条道路不按行业规范和技术标准设置的各类电源线、电话线、网络联结线、电视信号线、监控器联结线、支撑线和存在安全隐患的其他管线等,按照“入地、捆扎、贴墙、入管”的原则进行全面整治和改造。县住建和规划设计部门要迅速拿出城区三条道路管线入地整治设计方案,做好技术服务和工程监理,确保施工质量。强电线路整治由县供电公司负责牵头,弱电线路整治由县电信公司负责总牵头,广电、移动、联通、公安(交警)等部门按照“谁所有谁负责”的原则,共同配合,完成任务。牵头单位负责管沟的开挖及结构层以下的工程处理,城管部门负责结构层以上破挖街道的全面恢复,城关镇要负责做好社区(或单位)居民用户引线贴墙工作。

(三)对非重点整治的城区临街道路杂乱无章、破旧残损、有安全隐患但确需继续使用的架空管线,应重新更换并规范设置。要统一对散乱零星的线路进行集中束理、捆扎、贴墙处理。责任单位:各管线产权单位。

(四)大型户外广告牌、门头招牌及灯箱等照明及亮化用电线路必须按入地敷设或贴墙设置的原则进行整治和改造。责任单位:县城管局、各业主单位。

(五)凡未经许可私自拉接电源线、电话线、网络联结线、电视信号线和其他管线的,责令当事人限期改正,拒不改正的,依法处罚并强制拆除。责任单位:各管线产权单位、城关镇人民政府;协助单位:县城管局、各有关单位。

四、实施步骤

(一)准备发动阶段(5月10日至5月25日)

要求各管线产权责任部门从即日起开展自查摸底,制定本单位管线入地工作整改方案,并上报领导小组办公室备案。

(二)实施整改阶段(5月26日—7月10日)

按照工作方案要求,全面开展城区重点整治的三条道路架空管线专项整治工作,各管线产权单位按照“谁所有谁负责”的原则,做好各自管线入地的专项整治。

(三)巩固提高阶段(7月11日至7月20日)

对专项整治成果进行再巩固,再梳理,发现问题及时整改,务求清理彻底,净化城市空间。

(四)检查验收阶段(7月21日至7月31日)

责任部门将整治结果以书面形式报县城区管线入地工程协调领导小组办公室,领导小组将对各责任部门的整治情况进行集中检查验收,并对检查结果进行通报。

五、工作要求

(一)统一思想,加强领导。县城区架空管线入地的清理整治工作是我县服务第二届七夕文化旅游节市容环境综合整治任务中的重要专项整治工作,此项工作协调难度大、施工时间紧,县政府决定成立城区管线入地工程协调领导小组,副县长周文生任组长,政府办副主任朱美林任副组长,县住建、城管、公安、广电、供电、电信、移动、联通、县广电网络公司、县丰源供水公司、县路灯所、县园林所、城关镇人民政府等单位主要负责人为成员,领导小组办公室设在创卫指挥部,具体负责组织协调工作。各有关单位必须站在讲大局、讲政治的高度,切实履行职责,也要成立工作专班,主要领导要亲自出面,加强组织指挥和统筹协调,制订出具体的工作方案,制定倒计时安排表,周密计划,确保按时按质完成整治任务。

电结线范文篇9

茂名热电厂原用的直流系统屏为老式直流系统屏(同一屏为双母线结线,采用直流发电机及硅充电装置)。从超过30a的运行情况来看,主要存在的缺点或不足之处如下。

1.1双工作母线结线布置复杂

因直流屏采用双工作母线结线,6根直流母线水平布置于屏顶上(根据控制、信号音响的需要,直流母线上还设有8根小母线)。在同一块屏上,有两组母线的馈线回路或电源与馈线回路相混合布置。当设备出现接触不良等缺陷时,往往因结线复杂和设备间距小,而使缺陷难以处理。

1.2仪表和灯光信号难以维护

老式的直流屏,其屏的正面都不采用活动门的型式。这样,装于屏面上的仪表、信号灯等设备,往往损坏后不能更换。

1.3直流发电机维护工作量和耗能大

茂名热电厂原使用同轴电动直流发电机组及GVA型硅整流装置担负直流系统经常负荷及作为蓄电池的核对性充电设备。配有1台Z2-17,15kW的直流发电机,由J2-62-4,17kW的电动机带动,当直流电机持续运行时,电动机月耗电量约12MWh,影响节能降耗,且整流子碳刷易冒火花,需经常维护。当使用GVA型硅充电装置担负直流系统的经常负荷时,由于硅整流装置不能自动调节输出,直流系统负荷突变时(如汽机启动直流油泵),若不及时调整硅装置的输出,将会导致母线电压偏低,致使蓄电池过放电,严重时影响继电保护装置的正常工作。当蓄电池进行核对性放电时,因硅装置为不可逆式,无法作为蓄电池的放电负载,蓄电池须在空母线的前提下另接电阻作负载进行放电,而母线的倒闸操作较复杂,容易出现错漏。

1.4绝缘监察装置动作灵敏度低

老式直流系统屏采用电磁式绝缘监察装置反映直流系统的接地状况。从茂名热电厂多年的运行情况来看,该装置能正确反映单极明显的接地现象,但当两极的绝缘都下降时,却不能准确反映。

2新直流屏的设计原则

茂名热电厂为早期发电厂,机组控制模式采用原苏联早期形式,即电气系统采用集中控制,60年运的1号、2号机组,机、炉采用分散控制,70年代的3号、4号机组,机、炉采用集中控制。因此,对于现代机组普通采用的单元机组独立的直流系统方式将无法实现,只能根据该厂的实际情况,采用全厂统一布置的直流系统方式。

2.1接线方式

新的直流屏采用单母线分段的接线方式,两组蓄电池经联络刀开关进行连接。为防止两组蓄电池并列运行,联络刀开关与蓄电池电源刀开关之间应设有闭锁措施。

2.2屏上设备布置

做到简单清晰,电源(充电设备和蓄电池)、馈线、事故照明装置布置于各自的屏上。带有仪表及灯光信号的屏面,使用活动门的型式。

2.3充电装置

选用可控可逆式硅充装置,实行负荷自动跟踪,保证直流母线的电压质量。当蓄电池进行核对性放电时,硅装置工作于整流的逆变状态,蓄电池不用另接电阻作为放电负载。

2.4蓄电池组

原则上选用免维护密封式蓄电池,当原GGM-800型蓄电池组经校验后,仍满足直流系统的要求时,可暂不更换。

2.5绝缘监察装置和馈线开关

原则上选用90年代技术先进、成熟可靠的设备。例如,选用由CMOS集成电路组成的ZJJ-1型绝缘监察装置,该装置在直流两极绝缘均等下降时都能正确动作发信。

3新直流系统屏的设备选型

3.1直流系统负荷

经统计,直流系统各类负荷如表1。

因茂名热电厂为中型火力发电厂,且与系统相连,所以蓄电池事故放电时间考虑为1h。对于汽轮机润滑油泵,因为是高温、高压机组,故其事故计算时间为1.0h,直流润滑油泵的K值取0.8,密封油泵的K值取0.7计算。冲击负荷考虑为1台最大合闸电流的断路器合闸。

3.2蓄电池组的选择

3.2.1按事故持续放电状态选择

tj=KkQsg/Isg=1.1×307Ah/306A=1.1h

式中tj——GGM型蓄电池假想时间,h;

Kk——可靠因数,取1.1;

Qsg——事故负荷计算容量,Ah;

Isg——事故放电电流,A。

查《电力工程设计手册》(西北电力设计院、东北电力设计院主编)中P769曲线表,得Idj=16.8A,则

Qe≥36Isg/Idj=(36×306/16.8)Ah=658Ah

式中Qe——蓄电池的10h放电容量,Ah;

Idj——单位容量蓄电池在放电假想时间内所允许的放电电流,A。

选用720Ah的蓄电池即可。原选用的蓄电池为GGM-800型可满足要求。

3.2.2按最大冲击电流选择

Qe≥0.78(Isg+Ich)=[0.78×(306+235)]Ah=422Ah

根据计算结果,蓄电池的容量按事故持续放电状态下计算选择。原运行的GGM-800型蓄电池组仍满足负荷的要求。

3.2.3直流电压水平校验(以GGM-800型为例)

a)按事故放电初期,蓄电池突然承受放电电流的电压水平验算:

Kcho=Iso/C10=609A/800Ah=0.76h-1

式中Kcho——单位容量蓄电池放电初期放电系数,h-1。

查GGM型蓄电池短时冲击放电曲线表得:

表1直流系统各类负荷

负荷名称计算容量

/kW经常负荷

/A(事故负荷)/(初期Iso/A持续Is/A冲击Ich/A)事故时间

/h事故放电

容量/Ah

经常负荷7.2333333—133

事故照明25—114×0.6114×0.6—168

通信备用电源3—14×0.514×0.5—17

热工备用电源3—14×0.514×0.5—17

直流润滑油泵80×0.8—728×0.5291×0.5—1146

直流密封油泵20.1×0.7—260×0.591×0.5—1146

断路器合闸电流————235——

合计—33609306235—307

Kcho=0.76h-1时,Ucho=1.86V,则直流母线电压为

N.Ucho=106×1.86V=197.16V>0.85Ue

式中Ucho——单位容量电池冲击负荷初期端电压,V;

N——浮充电池个数;

Ue——直流母线额定电压,V。

b)按事故放电末期,蓄电池再承受冲击负荷时的电压验算:

Km=Is/C10=306A/800Ah=0.38h-1

Kchm=Ich/C10=235A/800Ah=0.29h-1

式中Km——单位容量蓄电池持续放电系数,h-1;

Kchm——单位容量蓄电池冲击放电末期放电系数,h-1。

查有关曲线得Uchm=1.72V,则直流母线电压为

N.Uchm=106×1.72V=182.32V

0.80Ue<N.Uchm<0.85Ue

式中Uchm——单位容量蓄电池冲击负荷末期端电压,V。

从计算结果来看,选取蓄电池为800Ah时,按事故放电的末期,蓄电池再承受冲击负荷时,母线电压为182.32V,能满足断路器的合闸电压要求,但难以满足直流油泵的运行要求(直流油泵运行允许电压范围为(-10%~+10%)Ue间)。蓄电池的容量应选大一级为宜,即C10=1000Ah。但上述校验为运行中的极端情况,运行中出现的概率极少,当出现时可通过调整蓄电池组的放电个数来满足直流油泵的运行。故原选用的GGM-800型蓄电池可满足要求。但原用的GGM-800型Ⅰ、Ⅱ组蓄电池运行时间已达10a以上,受蓄电池自放电、过放电及电极纯化等影响,蓄电池阴、阳极板脱落渗液严重,电池难以满足充电,可靠性大大降低。因此,利用改造机会将Ⅰ、Ⅱ组蓄电池更换为英国进口的VH34-1000型免维护蓄电池。

3.2.4蓄电池的个数

蓄电池个数为:N=230/1.85=124,其中基本电池数为88个,端电池数为36个。

3.3充电设备的选择

3.3.1核对性充电设备

3.3.1.1充电设备的额定电流

a)按事故放电后进行充电的要求选择充电设备,计算公式为:

Ic=1.1Qsg/t+Ijc=1.1×307Ah/12h+33A=61A

式中Ijc——浮充电设备的工作电流,A;

Ic——充电设备应具备的输出电流,A。

b)考虑核对性充放电,按最大充电电流选择,

Ic=0.1Qe+Ijc=(0.1×800+33)A=113A

故充电设备的额定输出电流应大于113A。

3.3.1.2充电设备的输出电压范围

对有端电池的直流系统,充电设备的电压应满足蓄电池充电末期的电压选择。即:

Uc=N×Ucm=124×2.4V=297.6V

式中Uc——充电设备输出电压,V;

Ucm——蓄电池满充电端电压,V。

取最大一级,即360V。

充电设备容量:Pc=IcUcm=113A×360V=41kW。

不考虑选用直流发电机,应选用的硅整流装置为KGCfA-150/360,则额定输出电流为150A,最高输出电压为360V。

3.3.2浮充电设备

浮充电设备持续负荷电流Ifc为Ifc=0.0042Qe+Ijc=(0.0042×1000+33)A=37.2A

浮充电设备正常工作容量Pfc为Pfc=IfcUcm=37.2A×360V=14kW

按核对性充电设备选得的KGCfA-150/360可满足蓄电池浮充电要求。

电结线范文篇10

《电力安全工作规程》规定:高压电气设备都应安装完善的防误操作闭锁装置。其目的就是从技术措施上实现电力系统俗称的“五防功能”,即:防止误拉、合开关,防止带负荷拉、合刀闸,防止带电合(挂)接地刀闸(接地线),防止误入带电间隔,防止带接地线(接地刀闸)合闸等。但目前防误装置的类型和使用效果又是怎样的呢?随着技术的发展,管理模式的变化,原有的五防技术是否能跟上发展的步伐?传统的五防理念是否要有所改变?是否有更好的防误系统来实现五防管理现代化呢?下面我就这些问题作简要论述。

一、防误装置应用的现状分析

目前在电力系统中使用的电气设备防误装置类型主要有:微机防误系统、电气闭锁、电磁闭锁、机械程序锁、程序挂锁、普通挂锁、机械联锁等,其闭锁方式和优缺点如下:

1、普通挂锁。普通挂锁是最原始的防误措施,它是利用民用的普通挂锁对刀闸等电气设备的操作把手进行加挂来实现闭锁的,其结构简单、明了。但由于闭锁方式简单,且存在钥匙繁多、管理麻烦、容易拿错、无法实现设备间联锁等原因,防误功能和可靠性等方面不能满足现有运行要求,系统中除一些特殊设备外,目前已绝少使用。

2、程序挂锁。程序挂锁也是初期产品,它是利用带有程序编码性质的双开挂锁来实现单个间隔内的简单程序闭锁,由于其与普通挂锁相同的缺点,目前系统内也已鲜见。

3、机械程序锁。它是利用带有程序编码性质的机械锁具对开关、刀闸等电气设备的操作把手实行机械定位控制来实现闭锁的,它能实现多个间隔之间的程序闭锁,在设备不多、一次接线简单的小型变电所内使用时其防误功能尚可,当用于结线较复杂的变电所,如双母线带旁路结线时,由于开锁程序复杂、开锁钥匙繁多、开锁时间长、开锁原理人员不易掌握、使用过于麻烦等原因,加上锁具制作及安装工艺精度要求高造成日常维护量大和解锁量大,目前也逐步被其它类型的防误装置所取代。

4、机械闭锁。机械闭锁是利用刀闸、开关等设备操作机械传动部分通过互相限位、相互制约来实现相互联锁的闭锁方式,其特点是闭锁简单、可靠,不需使用开锁钥匙。这种闭锁实现的前提是一体化设备,如单一刀闸、开关柜、组合电器等,如要实现单元设备间的闭锁就相当困难,因此,其防误功能是有限的。

5、电磁闭锁。电磁闭锁是利用电磁锁的锁栓对刀闸、网门等电气设备的操作把手实行机械定位控制来实现相互闭锁的,其原理是利用断路器、刀闸、开关柜门等辅助接点、微动开关,接通或断开需闭锁设备的电磁锁电源,使其操作机构无法操作或门无法打开,从而实现设备间的联锁。其特点是原理简单,实施和操作简便,适用于电气结线较简单变电所内部分设备和配电装置的防误。但由于辅助接点过多、电缆使用量大、调试较为困难,加上运行环境恶劣、辅助接点不可靠、故障机率较高等,常常导致闭锁失灵,并且防误功能不够完善。

6、电气闭锁。电气闭锁属于电气逻辑闭锁,它是利用开关、刀闸等设备的辅助接点串接入需要闭锁的设备的电动操作回路中,从而实现设备之间的相互闭锁。其特点是没有过多的附属设备,外表十分简捷。这种方式仅适用于电动操作的设备机构上,闭锁逻辑关系不宜太复杂,对辅助开关质量和运行环境要求较高,闭锁功能不够完善。

7、微机防误闭锁装置。目前电力系统中使用的微机防误闭锁装置,主流产品是一种离线的防误闭锁系统,它由计算机主机、电脑钥匙、若干电气编码锁、机械编码锁等硬件组成,通过设置在系统内的软件实现防误逻辑闭锁功能。操作人员在操作前需先在防误系统中进行模拟操作,将模拟操作顺序输入到系统中,然后通过专用接口将操作程序传输到电脑钥匙中,操作人员用电脑钥匙到现场按已输入的操作顺序依次打开编码锁实施操作,并采集设备状态以作为下一步能否操作的判据,整个操作完毕后再将电脑钥匙中的状态信息返回给防误主机进行状态更新,以实现防误主机与现场设备状态的一致性。其特点是防误闭锁逻辑功能由微机五防系统独立完成,理论上能实现较为复杂的程序闭锁功能,其安装、维护比较方便。缺点是这种模式只能离线控制设备及采集设备状态,当操作过程中设备发生异常变位后,电脑钥匙不能及时得到设备的变位信息,因而不能完全实现开关、刀闸等设备操作时的实时防误功能,仍然存在发生误操作的隐患,加上防误系统的操作比较繁琐,电脑钥匙易受环境电磁场的干扰、产品的质量等因素的影响造成程序丢失,使得实际应用中还不尽人意。在变电所实行无人值班后,无法实现远方遥控操作,阻碍了变电所无人值班管理工作的推进。

综上所述,一体化的设备,如刀闸主刀与其两侧地刀、开关柜的开关与刀闸间等比较适用机械闭锁;非一体化的单元间隔利用电磁锁或电气闭锁也不很困难,但要对一个变电所,特别是接线比较复杂的变电所做一套完善的五防方案,上述几种方式就显得捉襟见肘了。

离线式微机防误装置虽然解决了适应各类结线及各设备之间的联锁问题,但随着无人值班变电所的实施、设备装备水平的发展、电动操作设备的增多以及监控中心、操作班的建立,一些新的倒闸操作管理模式又在挑战着传统或现有的防误装置的防误功能和五防理念:

1、离线式微机防误闭锁装置采用电脑钥匙到现场开锁操作的方式无法满足监控系统后台遥控操作电动设备时的需求。

2、传统的解锁管理,是有权批准解锁的人员通过电话了解现场操作步骤和解锁原因来判断是否能够同意解锁操作,但对现场人员解锁操作的正确与否无法监控,为了实现对解锁操作的监控,特别是在实行单人和检修参与操作时,生产实际中就迫切需要防误系统对变电所解锁操作具有远程解锁监控的功能。

3、系统操作时需要解决联络线路两侧防误联锁的问题;变电所操作量大时需要解决多任务并行操作的问题等。

由于上述问题的凸现,防误装置的功能迫切需要打破传统单一变电所五防闭锁管理方式,从无人值班变电所及监控中心的整体考虑,建立一个信息化联网、功能更强大、手段更全面的五防闭锁集控化综合管理模式。而目前普遍使用的离线式微机防误闭锁装置不仅无法实现,而且在使用过程中暴露其不可克服的弱点,如操作繁琐、限制并行操作、锁具复杂、维护困难、操作过程无法监控,更无法实现不同变电所间的联络线的联锁以及使用防误钥匙增加操作麻烦等。因此,如何利用现代网络技术,实现防误装置在理念和技术上的新突破就显得非常迫切。而实时在线的,根据开关、刀闸等设备的实时状态信息,用微机防误系统实现“五防”功能的在线式微机防误装置必将以其实时性强、适用性强、灵活方便、便于全方位考虑、并且满足无人值班变电所远方遥控操作的防误功能等特点,在目前防误系统领域独领风骚。AAN-2000网络型防误集控系统就是在这样的大背景下应运而生。

二、AAN-2000系统的简要介绍

AAN-2000智能型电气防误操作网络是以微型计算机和工业级单片机为基础,以变电所一次系统图和所有电气设备的防误操作规则库软件为核心,由变电所防误系统和监控中心防误工作站两部分构成。对现场设备的实时位置控制与采位由分布式控制器通过CAN总线完成,分布式控制器对锁具的控制采用星形接线方式,总控机对分布式控制器下发或接收数据信息,再通过网络与监控中心进行信息交换,完成各项防误功能。整个系统的结构清晰、组网方便,为以后系统的扩展与维护带来极大的方便。

1、系统结构和主要原理

变电所端防误系统包括开关继电器、电控锁、分布式控制器、ZKJ总控机、调度或监控侧防误管理主机和现场管理机等(见图一),电控锁接受分布式控制器的指令,采集并监控现场设备的实时位置和状态,分布式控制器与锁具采用星形接线方式连接,防误管理主机通过CAN总线,对分布式控制器发送或接收数据信息,实施厂站现场防误操作管理。

监控中心五防工作站包括五防工作站、通信服务器、网络交换机等(见图二),通过局域网与变电所防误系统进行信息交换,从而构成了变电所网络型电气防误操作一个完整、有效、实用的解决方案。每个变电所的防误管理主机通过与调度自动化系统完全独立的通道与防误集控站系统通信,防误集控站通过提供终端服务器接入多个变电所防误系统,通信服务器通过终端服务器与变电所防误系统进行数据采集、命令控制、角色权限管理、数据库管理、远程设置和调试等功能。

2、系统主要特点

AAN-2000电气防误操作系统以其网络化的优势,提供了一个网络化防误管理的平台,大大提高了变电所防误操作功能,有效地解决了对变电所五防装置实时监控的问题,其主要特点可概括如下:

(1)具有实时监控功能。取消了电脑钥匙,自动完成操作过程中控制、传输的人机交互对话,对被控锁具能实施远程实时监控,能实时掌握防误管理系统的运行情况和运行人员的操作情况。

(2)由于采集了设备的实时状态信息,解决了多任务并行操作时各组操作之间设备实时闭锁的难题。

(3)由于防误网络的形成,实现了远程解锁、远程闭锁功能以及站端之间的联锁问题,提高了防误管理的安全性。

(4)由于减少了操作过程中电脑钥匙的使用操作,大大节省了操作时间,提高了操作效率。

(5)匹配性能强,能与其它防误设施灵活组合,能与各类电气设备配套,在防误规则和运行管理上能根据用户要求进行定制。

(6)能与其它监控系统实行有机的防误操作组合,既可将监控系统与本微机防误系统接口实现后台或远方遥控操作的闭锁功能,也可将防误系统单独组网,在监控系统下发操作指令的同时也通过防误系统下发操作指令,其遥控操作的指令符合防误系统开放的闭锁规则及条件时方可执行操作。

(7)产品实用性强。智能化的电控锁具有设备位置采集功能,较好地解决了某些设备无辅助开关或辅助开关接触不可靠带来的联锁问题。

(8)系统或装置出现各种问题能实时自动报警。

3、该系统应用情况

据统计,2003年以来,该系统已在省内115座35-500千伏变电所中应用,共装有3560台分布式控制器和2.15万具智能控制锁,运行情况良好。同时,基本实现了远程实时监控、远程开闭锁、联络线远程联锁、多任务同时操作等很实用的功能,实现了五防管理上的现代化。

4、取得的成效

一是进一步完善了变电所的防误功能,使其在技术上具备了全部五防的能力,实现了从局部联锁防误到整体联锁防误、系统联锁防误的转变。第二,较好地解决了目前变电所通用防误装置设计复杂、可靠性不高、维护困难等问题,有较强的适应性和可靠性。三是解决了对被控设备的控制及状态采集具有实时性的难题。四是在满足单任务内纵向闭锁的同时,通过智能化的网络防误管理,还解决了不同任务不同回路之间的横向闭锁功能。五是其强大的网络化、程序化、远程化功能实现了五防闭锁的“三遥”,为无人值班后五防的“集控化”以及今后实现完全由远方进行的遥控式倒闸操作提供了技术保障。

三、展望

无人值班变电所实施后,设备选型趋于高档、少维,变电所设计趋于简单化、典型化,操作模式也逐步发生变化。设备的自动化程度、集成度高,自身的防误能力强,加上在“强网”理念指导下的变电所设计大量采用桥接线和单母线分段,使得原来那种双母分段带旁路的接线方式越来越少,间隔层的电磁、电气闭锁的实现也非常方便,因此,江苏省35kV~220kV变电所设计技术导则将变电所电气设备防误闭锁设置原则定为“站级控制层应具备变电所各电气单元间的相互闭锁功能;间隔级控制层应具备本电气单元间的电气闭锁功能”。而AAN-2000微机防误系统在实现变电所各电气单元间的相互闭锁功能以及变电所与变电所之间的联锁功能将发挥更为出色的作用。

防误系统本身的发展还需要依赖于这方面理论研究以及应用研究,以新思想、新技术、新方法提高防误管理系统的现代化:

1、提高管理系统的智能化,其智能化的开发主要在以下几个方面:

(1)防误闭锁规则生成的智能化,根据不同结线、不同类型的设备自动生成相应的闭锁规则表,既可避免人工编写过程中的错误,又大大提高了系统初始化的效率。

(2)系统执行操作开放的智能化,操作人员操作执行操作时,不必过多地先完成防误系统中的有关操作,由系统自动完成对操作过程的防误规则判断,减少操作人员对防误系统的干预操作,甚至做到零干预,使防误系统达到真正意义上的智能化。

(3)加强系统的人性化设计,使之更符合操作人员的遥控及现场操作需求以及运行管理运行维护的需求,使系统更趋于自动化、智能化。

2、充分发挥网络管理功能,提高与各监控系统的接口性能,使之更好地实现网络化防误管理的功能。

3、提升闭锁锁具的功能及性能,其中将进行一项重要的突破,就是即使锁具失灵需进行解锁操作时,使解锁操作必须在满足防误条件时方可进行,使解锁操作仍在系统防误规则的控制之下,避免了解锁操作过程中的误操作。