除湿范文10篇

时间:2023-03-22 03:31:25

除湿范文篇1

关键词:液体除湿空调系统余热利用实验性能分析

2003年国家电网公司公布的电力市场分析报告指出,华东电网、南方电网、华中电网空调制冷负荷比重均已超过了30%,开发研究新型节能、节电的空调系统显得非常紧迫。液体除湿空调系统以低值热源为供能能源,所需的热源温度可在80℃左右,不仅可以利用工业余热和废热,也可利用包括太阳能等可再生的清洁能源;而且,液体除湿空调系统中能量以化学能的形式蓄存,蓄能潜力很大,比冰这常用的蓄能材料的蓄能能力高3~5倍。因此,液体除湿空调系统越来越受到专业技术人员的重视。

近年来,国内外学者对液体除湿空调的性能做了大量的研究,取得了许多有价值的成果,但主要局限于理论模型研究、数值模拟和单体除湿器、再生器的性能分析,如H.M.Factor、P.Gandhidasan等人对液体除湿的传热传质进行数值研究[1][2],Öberg等人建立除湿塔、再生塔实验台,来研究影响单体设备工况的因素[3],较少涉及整体液体除湿空调系统的实际运行性能。本文以实际的整体液体除湿空调系统为对象,用以理论与实验结合的方法调整液体除湿空调系统的运行参数,使系统稳定运行,研究液体除湿空调系统在稳定工况下的实际运行特性。

1液体除湿空调系统实验装置

液体除湿空调系统是由除湿器、蒸发冷却器、溶液冷却器、溶液加热器、再生器、集热器及蓄能水箱等组成,其系统原理图见图1。被处理空气(新风或空调室内回风)在除湿器1内与液体除湿剂进行热质交换,被处理空气中的水蒸气被液体除湿剂吸收后成为干燥的空气,然后进入蒸发冷却器2,经历等焓加湿过程,随空气含湿量增加,空气的干球温度降低,达到空调所需的送风温度状态。同时,除湿剂溶液也进行包括吸湿和再生两个循环过程。吸湿时,溶液泵5输送的高浓度除湿剂溶液,经冷却器3降温后进入除湿器1,低温高浓度除湿剂溶液表面的水蒸气分压小于被处理空气的水蒸气分压,除湿剂溶液就从空气吸收水蒸气,使空气干燥,完成除湿过程;除湿剂溶液吸收水蒸气后,变为稀溶液,为使吸湿过程延续,除湿剂溶液需再生。再生时,稀溶液由溶液泵5送入溶液加热器6,经加热后进入再生器7,在再生器内加热的溶液与外界环境空气接触,此时除湿剂溶液表面的水蒸气分压大于再生空气的水蒸气分压,引入的环境空气将除湿剂稀溶液蒸发出来的水蒸气带走,实现除湿剂溶液的浓缩再生。

1.除湿器2.蒸发冷却器3.溶液冷却器4.集液器5.溶液泵6.溶液加热器

7.再生器8.太阳能集热器9.蓄能水箱

图1液体除湿空调系统原理图

2实验研究方案及方法

2.1实验系统结构

按图1所示的系统搭建实验装置,除湿器和再生器采用相同的结构形式,采用填料塔结构,填料为不锈钢规整材料,填料的比表面积350m2/m3,填料的平均当量直径0.01m,填料高度1.0m。

蒸发冷却器的截面尺寸0.09m2,湿膜的平均当量直径0.01m,湿膜长度0.15m,湿膜的比表面积350m2/m3。

溶液冷却器的冷却换热量在0~12kW范围内可调,溶液加热器的加热量在0~18kW之间可调。

2.2实验研究方案

根据除湿器和再生器单体实验的结果分析得到除湿器和再生器的优化运行参数,除湿器运行时的基本参数值是,溶液的入口温度30℃、入口浓度40%、入口流量900L/h,处理空气的入口温度35℃,入口湿度20g/kgDA,入口流量400m3/h。再生器运行时的基本参数值是,溶液的入口温度60℃、入口浓度40%、入口流量320L/h,再生空气的入口温度为26℃、入口湿度15g/kgDA。然后以整个液体除湿空调系统为实验对象,参照单体设备的实验结果,选择合适的工作参数,待系统进入稳定运行,测定空调系统运行参数,研究溶液浓度、热源温度与供冷量、能耗之间的相互关系。

根据实验方案要求,测量内容主要有:环境空气温度、湿度,冷却水进出水温度,进出除湿器和再生器空气的温度、湿度、流量,溶液参数测量,进出除湿器和再生器溶液的温度、流量、浓度等;能耗参数测量,溶液加热量、冷却量,风机、溶液泵的功耗等。

温度测点共15点,用0.3mm的T型热电偶作测温元件。温度测点包括温度和湿度测点。温度测点有环境空气温度、进出除湿器和再生器空气的温度、进出除湿器和再生器溶液的温度、集液器内溶液的温度、溶液冷却器进出冷却水温度、溶液加热器进出水温度。湿度采用测各点的湿球温度,结合该点的干球温度,换算出含湿量,有环境空气湿度、进出除湿器和再生器空气的湿度等。

空气流量采用毕托管与微压差计测量,根据各点空气气流的动压,换算出空气流速及管道内空气的流量。水和溶液流量采用转子流量计测量。浓度的测量采用先测溶液的密度,然后根据溶液的浓度与密度对照表,查出溶液浓度。

采用美国HUIPO公司的数据采集仪采集温度、流量等参数,用三相电测量表测量电量参数,浓度和空气动压测量采用非电信号测试手动输入。实验数据采集管理和数据处理的程序编制软件采用VB编写,通讯通道采用计算机的COM口,所有数据在计算机界面上显示并被保存在数据库内。

3实验数据与分析

液体除湿空调系统实验的目的是测试系统在稳定运行时,系统匹配的工况参数,来分析溶液浓度、热源温度与供冷量以及能耗之间的相互关系。在实验过程中,以稳定冷量的方法进行实验,即首先调节并稳定除湿、加湿部分的工况,实现送风状态的稳定,然后调节再生器的入口工况,如再生温度、再生溶液流量等参数,使除湿器与再生器实现浓度变化的平衡。浓度变化是否平衡,用检测除湿侧与再生侧单位时间内的传质量是否平衡来确定。

经80℃的热水加热的再生溶液,在以上所得出的优化的参数条件下工作,经过调节,溶液温度稳定在61℃左右,此时除湿量差在零附近波动,除湿与再生基本达到湿平衡,系统运行达到稳定。本实验系统处于稳定状态时,系统的参数值为:空气的入口温度:35℃;空气的入口湿度:20g/kgDA;除湿空气流量:386m3/h;再生空气流量:360m3/h;溶液的除湿温度温度:30℃;溶液的浓度:40%;溶液的除湿流量:950L/h;溶液的再生流量为300L/h左右,加湿水温度:15℃。稳定工况测定的部分实验参数的变化曲线见图2至图5。

从图2可见,通过调节再生溶液温度和再生溶液流量,大致经过30分钟,系统的除湿量和再生空气带走水蒸气量达到平衡。在该时间段,再生溶液的温度变化正好和除湿与再生绝对湿度的差值变化趋势相反,从图3可见,开始时热源温度较高,再生溶液温度上升,再生效果增强,再生空气带走水蒸气量增多,溶液浓度增大,将有利于除湿;同时,集液箱内的溶液温度上升,除湿器溶液入口温度也跟着上升,溶液除湿效果受到影响。综合溶液浓度增加有利于除湿和除湿溶液温度上升削弱除湿两方面的因素,当空气入口湿度20g/kgDA,要求经等焓加湿降温后温度为20℃时,从图4和图5可以发现,在系统调整时,开始加热量加大,冷却量增加,但除湿量,即制冷量,变化不大,反而系统的热力系数受到影响。因此,从实验的结果可见,在一定的处理空气入口湿度和经等焓加湿后其空气要求温度条件下,对一个液体除湿空调系统来说,有一个合适的热源加热量和一个最佳的再生溶液温度。

由实验值可见,当热源温度在80℃的条件下,再生溶液的入口温度稳定在61℃,其它入口参数基本稳定在设定工况,系统运行稳定;送风温度(即加湿后空气温度)为20℃左右,满足空调系统使用要求;系统在20℃送风温度条件下,当热源的加热量稳定在7.5kW时,可制取冷量在5kW左右,热力系数在0.6上下波动;再生空气带走大量的溶液热量,该系统的水冷却量仅是制冷量的1.3倍,在6.5kW左右,与其他的利用热源驱动的制冷方式,冷却量也较明显的减少。

图2除湿与再生绝对湿度变化差

图3部分参数测试值的变化

图4热力系数的变化(kW/kW)

图5加热量、制冷量和冷却量的变化

由实验的结果可见,液体除湿空调系统在系统达到稳定运行时,除湿器和再生器的除湿溶液循环量并不是1:1的,在本实验条件下除湿器和再生器的除湿溶液循环量3:1左右时,系统趋于稳定,当驱动热源发生变化或送风温度的限定条件不同,达到稳定的除湿器和再生器的除湿溶液循环量比也会不同;该系统驱动热源在80℃的条件下,制冷的热力系数在0.6上下,有较好的热力性能;这种空调系统用80℃左右的驱动热源是低品位热源,一般的工业废热、余热,太阳能等可再生能源均可作为驱动热源,因此,只要有一般废热、工业余热、地热、太阳能等可再生能源的场所都可以推广应用,节能空间巨大。

4结论

a.液体除湿空调系统在合适的参数下工作,空调的送风温度可达20℃,该温度基本满足一般舒适性空调送风温度的要求。因此液体除湿空调从送风状态而言,具有应用的可行性。

b.液体除湿空调系统在80℃的热源温度条件下,能提供空调系统所需的送风温度和制冷量,有较好除湿空调系统的系统热力性能,在类似的用低温热源驱动的空调系统中处于较高水平。

c.液体除湿空调系统的驱动热源是低品位热源,只要有一般废热、工业余热、地热、太阳能等可再生能源的场所都可以推广应用,应用前景广阔,节能空间巨大。

参考文献

1.H.M.FactorandGershonGrossman.Apackedbeddehumidifier/regeneratorforsolarairconditioningwithliquiddesiccants.SolarEnergy,1980:541-550.

除湿范文篇2

关键词:液体除湿空调系统除湿器实验性能分析

液体除湿空调系统对驱动热源的要求较低,一般的工业余热、废热以及地热、太阳能能可再生的低品位能源均可利用,应用研究具有广阔的前景。

除湿器是液体除湿空调系统的核心装置,常用的有“绝热型除湿器”和“内冷式除湿器”两种。对除湿器的数学分析,R.E.Treybalt用“微元控制体模型”方法,将绝热型除湿器沿高度方向划分为微元控制体,在稳定除湿状态下,推导出传热传质的控制微分方程[1],H.M.Factor、G.Grossman、P.Gandhidasan等人在数值算法上作了一些改进,使其能够较好地求解发生在绝热型除湿器中的传热传质过程[2][3][4]。由于除湿过程是放热过程,为了提高除湿效率,除湿过程需进行冷却,使除湿溶液保持较低的蒸气压力,即采用内冷式除湿器,该技术也有众多学者进行了研究,认为除湿器内除湿溶液以降膜的形式与被处理空气接触,进行传热传质[5][6][7]。实际上,除湿器内的传热传质过程是一个很复杂的过程,除湿的性能受多因素的影响,而在数值的模拟过程中,往往忽略了这些影响的因素。因此,除湿器的实际效果和理论模拟会有一定的差异。随着液体除湿空调趋于实用,分析实际运行和理论计算间工作参数的差异,对今后的系统设计和运行调整会有帮助。本文就除湿空调系统中的除湿器的性能进行实验,并将测定的数据与理论计算值进行比较。

1除湿器的数学模型

除湿器的数学模型,通常采用双膜理论进行分析。本系统采用的装置为绝热型填料塔除湿器,溶液从填料上方喷淋,空气从填料下方进入,两者在填料间进行逆向流动的传热传质,传热传质简化模型如图1所示。

图1除湿塔传热传质模型示意图

对于除湿器传热传质存在如下的关联式:

空气在各截面上的湿度变化:

(1)

空气在各截面的温度变化:

(2)

溶液在各截面上的温度变化:

(3)

图2液体除湿空调实验台系统示意

溶液在各截面的浓度变化:

(4)

式中Fa——空气的传质系数;

Y——空气含湿量,g/kgDA;

A——表面换热系数,kW/m2℃;

m——质量流量,kg/s;

t——温度,℃;

H——焓值,kJ/kg;

——导热系数,kW/m℃;

C——比容,kJ/kg℃;

——溶液浓度。

2液体除湿空调实验系统及除湿器试验方法

空气除湿空调实验系统由除湿器、再生器、加湿器和溶液冷却器等主体部件构成。各设备按溶液与空气流程依次布置,如图2所示。其中除湿器结构形式为无冷却逆流式填料塔。填料塔直径为0.3m,填料的比表面积350m2/m3;填料的平均当量直径为0.01m;填料高度1.0m。液体除湿剂采用LiCl溶液。

除湿器的实验研究主要是在空气与溶液的流量稳定时,调节空气与溶液的入口工况,研究其出口参数——空气的出口温度与湿度和理论模拟值的接近程度和变化趋势。本实验为了实验结果具有可比性,各工况参数设有参照值,具体各值为:

1环境温度35℃,大气压力1.01×105Pa;

2溶液的入口浓度40%,溶液的入口温度30℃,溶液的入口流量920L/h;

3空气的入口温度35℃,空气的入口湿度20g/kgDA,空气的入口流量390m3/h;

实验的主要实验内容是,分别改变溶液入口的温度、浓度和流量,以及被处理空气的入口温度和湿度条件下,观察除湿器出口空气的温、湿度变化,并和理论值进行比较。

3实验结果及讨论

实验结果经过整理,填料塔除湿器当某一参数改变时,被处理空气的温、湿度的变化趋势与模型计算值的比较见图3至图7。由图3~图7所示可见,实际结果同模型计算结果有着相同的变化趋势,实验值和理论值吻合较好。从图线的变化趋势看,除湿器的工作过程有以下特点:

a.空气除湿后的出口温度在各工况下都同溶液的入口温度非常接近,除湿后空气的湿度也与溶液的温度成正比例关系,这说明在实际运行中被除湿处理空气的出口状态受溶液入口温度的影响具有决定性,保持在除湿过程中溶液的温度将有利于空气的除湿效果;

b.在溶液流量比较小时,空气出口温度与湿度明显升高,一是因为溶液流量过小,不能保证填料充分润湿,传热传质面积减小,除湿性能下降;二是溶液流量过小,溶液热容量减小,溶液吸湿时产生的潜热使溶液的温度上升,降低了除湿剂的吸湿能力。在本文所研究的实验条件下,如图5所示,溶液流量为700L/h时,是除湿性能显著改变的转折点。由此可见,除湿器要有良好的吸湿性能,一定要有合适的溶液流量,或者说要有合适的空气溶液流量比;

c.溶液的入口浓度对空气温度变化不大,而影响着空气出口的湿度,空气的出口湿度影响着把空气绝热加湿后可达的空气状态。当空调送风温度为25℃时,溶液的浓度可以在32%,当送风温度要求为20℃时,溶液的浓度必须提高到40%。

d.进口空气所处的热力状态对空气出口参数的影响较小。

4结论

a.实验值和理论值有相同的变化趋势,双膜理论用于除湿塔热力分析可行。

b.在除湿过程中,,溶液的入口参数对处理后空气温、湿度的影响大于空气的入口参数。

c.实验值和理论值之间存在偏差,空气的出口温度实验值偏小于理论值,空气的出口湿度实验值偏大于理论值。

参考文献

1.R.E.Treybal.Adiabaticgasabsorptionandstrippinginpackedtowers.IndustrialandEngineeringChemistry.1969:61~68.

2.H.M.FactorandGershonGrossman.Apackedbeddehumidifier/regeneratorforsolarairconditioningwithliquiddesiccants.SolarEnergy,1980:541-550.

3.P.Oandhidasan,C.F.KettleboroughandM.RifatUllah.Calculationofheatandmasstransfercoefficientsinapackedtoweroperatingwithadesiccant-aircontactsystem.SolarEnergyEngineering,ASME,1986:123-127.

4.P.Gandhidasan,U.RifatUllahandC.F.Kettleborough.Analysisofheatandmasstransferbetweenadesiccant-airsysteminapackettower.JournalofSolarEnergyEngineering,1978:89-93.

5.H.L.Goff,A.Ramadance.Modelingthecoupledheatandmasstransferinafallingfilm.HeatTransfer.1986:1971-1976.

除湿范文篇3

关键词:太阳能;再生;硅胶;智能控制

随着经济的快速发展、人民生活水平的不断提高以及工业发展的迫切需要,人们对空气品质的要求也越来越高,不仅要求空气的温度和湿度合适,还要求空气中污染物浓度处在较低水平,因而对除湿机需求量越来越大。然而除湿工作还面临着一些问题,如干燥剂除湿率及机械性能问题,能源利用率及传热问题,除湿区和再生区之间、转芯和风道之间的结构、密封问题,整个装置的轻巧性、拆装性和成本问题等,实际应用中都需要加以考虑。为此,研发一种节能、环保、高效、低噪声、体积轻巧的新型除湿系统迫在眉睫。

1除湿技术研究进展

目前,常用的空气除湿方法有冷却除湿法、压缩除湿法、溶液吸收除湿法和固体吸附除湿法[1]。其中,固体吸附除湿是将固体除湿材料装载在空气流道内对流过的空气进行除湿,除湿材料经加热再生后又可继续吸附,具有处理空气量大、除湿能力强、结构简单且无污染等优点。固体除湿主要包括转轮除湿[2-4]和固定床除湿,主要能耗均为再生耗能[5]。再生耗能的来源和能源形式直接影响整个系统的运行效果和节能效果。传统的电加热存在能源利用率低、对吸附剂造成损坏等缺点[6]。为了降低再生过程中的能耗,提高再生效率,不同的研究者根据能量来源提出了各种加热再生方法,包括太阳能辐射再生、超声波再生、电渗再生以及微波再生等。有研究表明,通过太阳能系统可满足室内50%的能源消耗[7]。采用太阳能等低品位能源将显热和潜热分开处理,能实现节能和舒适性的要求[8]。

2除湿系统结构设计

2.1整体设计

除湿系统由除湿筒体、转动驱动部件、通风机与柔性连接件、电控组件、支架等组成。其中除湿筒体由太阳能加热外筒、电加热内筒(两筒内填充硅胶干燥剂)、风筒等构成;转动驱动部件主要由步进电机、加速器、轴承及相关连接与固定件等构成;电控组件主要由电机、加热等控制元件等构成。整体结构设计如图1所示。

2.2工作原理

太阳能再生式除湿系统工作原理图如图2所示。除湿系统结合了太阳能再生方式及转轮除湿和固定床除湿的优点,在结构设计上采用迎光再生侧与背光除湿侧1∶1的多层筒状结构,两侧面积越接近,均匀性越好,所需的再生温度也越低。外层为太阳能加热筒,筒中设置真空夹层以提高太阳能利用率。太阳能加热筒利用太阳能热辐射的能量加热硅胶使其再生,当夜晚或冬季太阳能不足时,内层电加热筒对硅胶进行辅助加热。通过这种多层筒状结构,可为除湿系统中的硅胶再生持续集中供热。背光侧硅胶吸附饱和后转动到迎光侧进行脱附再生,原迎光侧的硅胶则相应转动到背光侧对空气除湿,由此可实现硅胶的边吸附边脱附,从而缩短再生时间,降低能耗,减弱噪声提高除湿系统整体性能。

2.3除湿转筒

为了使太阳能利用率最大化,太阳能加热筒双层有机玻璃间为真空层,内层有机玻璃筒外壁包裹高吸收率、低发射率的太阳能热吸收膜。有机玻璃筒端设置法兰,以便与不锈钢筒连接。太阳能加热筒设计结构如图3所示。电加热筒采用不锈钢筒作为支撑,不锈钢外壁加设2块肋片将转筒分为迎光侧再生区和背光侧除湿区,同时配备智能温控仪,控温更精准。外壁包裹如图4所示硅橡胶加热带,直接加热筒间填充的变色硅胶使其再生。电加热筒结构如图5所示。特殊结构转轴(如图6所示)上两圆盘分别与电加热筒筒端采用平头螺丝连接。太阳能加热筒与电加热筒再通过筒端法兰结构连接,筒间填充硅胶干燥剂。组装出的除湿系统转筒部分如图7所示,筒端部开有通气孔,内衬托有既防漏硅胶又能通风的内丝网。

2.4控制系统设计

采用步进电机作为驱动,带动联轴器另一端的转轴旋转。通过计算机编写程序输入研控驱动器,实现转筒的间歇式旋转。计算机连接GRM200G等远程控制模块,对PLC中的数据进行收集,并通过软件远程对太阳能除湿器进行及时控制和研判。当除湿系统除湿效率达不到要求时,可通过计算机或手机更换模式和增大除湿系统功率。该情况下的大数据会反馈到控制系统,在以后出现类似情况时,除湿系统会自动加大功率。远程操控过程如图8所示。为了增加进气量,提高除湿系统除湿效率,在转筒左侧加设进风口与风机相连,为装置供风。最后综合实际性能及成本因素,对电机及风机进行优选计算。步进电机参数见表1。因为硅胶堆积,风仅能从孔隙流动,风量达不到最大,故选用JQ12032L12B型风机,其参数见表2。

2.5壳体设计

风筒固定于支架上,筒内加装分隔板将风道均分为上下两部分,与转筒再生区和除湿区位置相对应。转筒法兰上开沟槽连接风筒,采用O型密封圈进行动态密封。转轴两端靠轴承及轴承座固定于支架。在风筒下侧设置进风口和送风口,风机引流的湿空气经干燥除湿后送到室内;再生区风筒右侧开通风孔,硅胶脱附再生后释放的水蒸气由此排出。风筒通风示意图如图9所示。图9风筒通风示意图

3系统创新性

(1)采用间歇转动连续工作形式,延长单侧工作时间,使硅胶吸附脱附充分,同时保持连续工作,达到最大除湿效率。与传统转轮式除湿系统相比,该系统综合了转轮式和固定床式除湿系统的优点,在高效除湿的同时保证了连续工作。(2)除湿机体为多层筒状覆膜转筒,增加了硅胶的填充量,提高了除湿量。在有机玻璃筒中采用真空+太阳能热吸收膜集热,提高了太阳能利用率。(3)为保证除湿系统在夜间或阴天等太阳能资源少而湿度大的情况下仍高效运行,在转筒迎光侧内侧设置电加热器,辅助太阳能加热。与传统的侧边设置加热器相比,内侧设置集热器增加了传热面积,强化换热,提高了脱附效率。(4)系统各部分采用组合式安装,装配方便,拆卸灵活,便于维修,延长了使用寿命,还利于材料更换。(5)采用倾斜安装方式,使太阳能辐照角度达到最佳。通过轻巧简单的支架设计,以最低的成本获得最大的脱附效率。

4结语

除湿范文篇4

介绍了膜除湿的优点,压缩法,真空法,膜/干燥剂复合法等除湿模式,高分子聚合物膜、分子筛膜、液膜等的特性、除湿机理及有关的研究进展,并分析了除湿膜的应用前景。

关键词:空调工程除湿膜进展

Abstract

Presentstheadvantagesofmoistureremovalbymembranetechnologyovertraditionalmethods,proceduresofcompression,vacuumandmembrane/desiccantcombination,featuresanddehumidificationmechanismofmembraneofhighpolymer,molecularscreenandliquidsubstances,andrelatedadvancementsinresearch.Anticipatestheirapplications.

Keywords:airconditioningengineering,dehumidification,membrane,advancement

近年来随着膜技术研究的发展,利用膜的选择透过性进行除湿使得空气除湿方法有了重大发展,它与传统方法相比有许多优点,如表1所示。

表1空气除湿装置的性能比较

操作方法冷冻法吸收法吸附法转轮法膜法

分离原理冷凝吸收吸附吸附渗透

除湿后露点/℃0~-200~-30-30~-50-30~-50-20~-40

设备占地面积中大大小小

操作维修中难中难易

生产规模小~大型大型中~大型小~小型小~大型

主要设备冷冻机

表冷器吸收塔

换热器

泵吸附塔

换热器

切换阀转轮除湿器

换热器膜分离器

换热器

耗能大大大大小

可见,用膜法除湿具有很多突出优点:除湿连续进行,无腐蚀问题,无需阀门切换,无运动部件,系统可靠性高,易维护,能耗小。在空调应用中,对空气脱湿度的要求并不像其它领域那样高,即并不要求将空气中的湿度降到很低,因此采用膜法除湿比较合适。

膜法除湿过程实际上就是空气中的水蒸气优先通过膜而与空气中的氧气、氮气相分离的过程。

1膜法空气除湿模式

要使水蒸气透过膜,必须在膜的两端产生一个浓度差,这种浓度差既可由膜两端压力差造成,又可由膜两端温度差造成[1]。因为浓度是由温度和压力共同作用的结果。目前对膜空气除湿基本都是以膜两边的水蒸气分压差作为驱动势,因此为了强化传湿,应尽量增大膜两侧的压力差。具体在系统方案上,有压缩法[2]、真空法[3]、吹扫气法[4]及膜/除湿剂混合系统[5]。

1.1压缩法

这种系统是靠压缩输入气流来造成传质势差,如图1所示。

图1原料气加压空气除湿系统

从外界来的新鲜空气经压缩机加压后进入膜组件,由于进气侧总压提高,其中水蒸气的分压也相应提高,水蒸气在膜进出侧压力差的作用下优先透过膜而散发到环境中去,被干燥的空气进入室内。

为了将渗透侧的水蒸气及时带走,可以在渗透侧引入吹扫气,如图2所示。

图2引入吹扫气的加压空气除湿系统

当原料气体中水蒸气会含量较高时,增大压力易使水蒸气在膜的表面凝结而形成的一层水珠,影响水蒸气向膜内的溶解扩散作用,降低膜的除湿效果。另外,提高气体压力,必然导致对膜强度以及组件设备耐压力性能的要求相应提高,从而对实际应用造成某些局限。

1.2真空法

此方法主要是将降低渗透侧压力来传递水蒸气,它从渗透蒸发流程演变而来,靠一个真空泵降低渗透侧的空气压力,产生一个传湿驱动势。系统如图3所示。

图3渗透侧抽真空的空气除湿系统

1.3膜/干燥剂复合法

此方法主要是将膜空气除湿跟固体吸湿剂结合起来,新鲜空气首先用膜进行预处理,然后流经固体吸湿剂,这样充分利用膜在高湿段的除湿能力和固体吸湿剂在低湿段的吸湿能力,能将空气除湿到很干燥状态。空气中水蒸气含量较高时,水蒸气透过膜的速率较高,膜除湿的效率较高;当空气中水蒸气含量很少时,水蒸气透过膜的速率急剧下降,导致膜面积成倍增长,此进采用固体吸湿剂除湿效率最高。系统如图4所示。

图4膜/干燥剂复合系统

2除湿膜的种类

除湿膜一般是采用亲水性膜,膜的种类可以是有机膜、无机膜和液膜;膜的形态可以是平板式,也可以是具有很高装填密度的中空纤维式。

2.1高分子聚合物膜

复合膜、均质膜、非对称膜都曾被应用于空气除湿。

均质膜为致密膜,通过均质膜的推动力为压力梯度、浓度梯度或电势梯度。这种膜的分离作用是由于各种化学物质在膜中的传递速度和溶解度不同而产生的,主要是扩散率的影响,因此,一般渗透率较低,制图时应使膜尽可能薄,可制成平板式和中空纤维式。均质的高分子膜多用于气体分离或渗透汽化,如硅橡胶膜就是用于气体分离(氮氧分离)中渗透率很高的均质膜。

非对称膜具有物质分离最基本的两种性质,即高传质速率和良好的机械强度。它有很薄的表层(0.1~1um)和多孔支撑层(100~200um),这非常薄的表层为活性膜,其孔径和表层的性质决定了分离特性,而厚度主要决定传递速度。多孔的支撑层只起支撑作用,对分离特性和传递速度影响很小,甚至几乎没有。连续性的非对称膜在同样的压力差推动下,其渗透速率与相似性能的对称膜相比为10~100倍。现在醋酸纤维素和多种高分子材料都可以用相似的方法制成非对称膜。

复合膜是将选择性膜层(或称活性膜层)沉积于具有微孔的支撑层(底膜)表面上,就像非对称性膜的连续性表皮,只是表层与底层的材料不同。复合膜的分离性能主要是由表层决定的,但也要受到微孔支撑层的结构、孔径、孔分布和孔隙率影响[6]。复合膜的结构如图5所示。

图5复合膜结构示意图

多孔膜结构的孔隙率愈高愈好,可以使膜表层与支撑层接触部分最小,而有利于物质传递。然而,孔径应愈小愈好,可使高分子层不起支撑作用的点间距离减小。此外,交联和未反应的高分子渗透作用的点间距离减小。此外,交联和未反应的高分子渗透入支撑层的情况,也是决定复合膜总体传递特性的重要因素。已制成的复合膜中,常用聚砚做多孔支撑,因其化学性能稳定,机械性能良好。现在也有用其它高分子化合物,如聚丙烯脯偏氟乙烯等。最近也有试用无机物,如石英玻璃和硅酸盐类做多孔支撑层。无机膜的一般分离系数小,但渗透率高,且可耐高温。

作为复合膜极薄的皮层,要求其有效厚度小于1um,一般为0.2~1um,因为渗透速率与其厚度成反比。

用膜进行空气除湿,首先考虑的是采用亲水膜[7~15],如聚乙烯醇膜,赛璐玢膜,藻酸膜,壳聚糖膜,芳香聚酰亚胺,聚丙烯腈和醋酸纤维素膜。另一类值得注意的膜是浸渗剂改性膜。所谓"浸渗剂"是指填充在膜中的高吸水性物质,常用CsF、LiBr、季胺盐等盐类。在空气除湿过程中只有蒸汽与膜接触,浸渗剂可长期保留在膜内不被洗脱,增加了膜对水蒸气的溶解和扩散能力。据报道,添加CsF的聚乙烯醇复合膜处理乙醇-水蒸气时,在保持相当高分离系数的情况下,渗透通量提高一倍多;添加CsF的纤维素膜处理丙醇-水蒸气时,渗透通量增加10倍数。

Cussler等人[3]应用聚醚砚复合膜,Pan等人[10]应用非对称三醋酸纤维素中空纤维来对空气进行除湿。他们的研究都表明这些膜具有较高的水蒸气透过度和选择度。但是,聚醚砚复合膜比较昂贵,而三醋酸纤维素膜则很容易被液态水破坏,所以应避免接触液态水。复合膜的表层的任何小洞将严重影响复合膜的分离性能。Bonne等人[11]采用多孔均质纤维素膜来对空气除湿,但是这种膜只适用于相对湿度较大的空气除湿。因为相对湿度较小时,膜中空隙的存在将使空气很容易渗透通过,从而影响膜对水蒸气的分离性能。而当空气湿度较大时,水会在这些空隙中冷凝,从而使氮气、氧气难以通过,达到水和空气分离的目的。

非对称三醋酸纤维素中空纤维在35℃,渗透侧压力2.3kPa条件下,水在标准状态时的透过度为7.2×10-10g/(Pa·cm2·s)。纤维内径70um,外径225um,纤维的外表面是较厚的选择性活性层。实验采用的除湿器单元类似于管壳式换热器,每个单元由32根14cm长的纤维组成。经过对膜透水结果的分析可知,膜的有效活性层厚度是1.1um。

Wang等人[2]研究了中空纤维膜除湿的传质过程。实验中使用的中空纤维膜单元参数如下:每个单元类似于一个管壳式换热器,外壳由尼龙做成,外径1.0或2.5cm,分别内含30根和400根纤维,每根纤维长94cm,外径600um,纤维由充满微孔的聚砚做支撑层,内壁覆盖一层界面交联的硅氧烷酰胺做选择性活性层。这种膜的水蒸气与空气的选择性可以高达4000:1;水在单位膜厚的透过度也很高,达5cm/s。所以,传质过程不仅与膜本身的阻力有关,而且膜两侧的边界也有很重要的影响。通过对实验与模型对比的分析,他们认为:对于分离空气和水的膜过程,空气穿过膜的传质阻力主要由膜本身的扩散阻力组成;而水蒸气穿过膜的传质阻力主要由膜本身的扩散阻力构成。所以可以认为膜本身对水的透过度有无穷大。另外,水蒸气与空气的选择性并非越大越好,合理选取选择性,可以增加除湿气产量,减小膜面积。引入吹扫气,或使部分空气渗透流过膜,可降低渗透侧的膜厚度,降低水蒸气传质阻力,增加水蒸气的透过。实验表明,多孔聚砚中空纤维在操作压力0.7MPa时,除湿率85%,干燥气露点可达-20℃以下。

与纤维素膜不同,同样为有机高分子膜的凝胶膜具有不同的除湿机理。Cha等人[12]研究了凝胶膜空气除湿的过程。他们使用由再生的纤维素经过铜铵化处理获得的被称为Cuprophan的膜,这种膜具有强烈的亲水性,并且膜分子与水分子接触时,能立刻生成水凝胶,进一步将分子链撑大。这样,当膜与很湿的空气接触时,聚合物分子链遇水发生膨胀,膨胀后的分子链之间充满水,成为透水的良好通道。而由于空气在水中的溶解度很小,所以分子链间的这些水又成为使空气难以透过的屏障。当这种膜与较为干燥的空气接触时,聚合物分子链失水发生收缩,分子间距减小,空气同样难以从膜分子链之间透过去。

Cha等人通过实验测定了这种凝胶膜的透湿性,结果表明,在真空除湿模式下,该膜的透湿率对空气的相对湿度非常敏感,膜的透湿率是膜进口空气相对湿度的指数函数。水蒸气与氮气的分离系数随相对湿度的不同而在20~250之间变动,水蒸气的透过度在(1.1~9.5)×10-11g/(Pa·cm2·s)之内。

这种膜的缺点是在低相对湿度时,膜的除湿能力不强,与空气的分离系数不高。

2.2无机膜

2.2.1分子筛膜的性质

与有机高分子膜相比,无机膜具有许多突出的优点如:耐热、耐化学腐蚀和良好的机械强度,特别适合于高温气体分离和化学反应过程。目前实际使用的无机膜孔径多在0.1~1um,由于陶瓷膜多孔,其渗透选择性较差[16]。

沸石具有规则孔道,孔径(0.3~1.2nm①)可调,其表面吸附性能、酸碱性能及催化性能可因此而发生显著变化,已广泛用于吸附制冷、催化、气体分离和净化。如果将分子筛以膜形式加以利用,将其用来调整多孔材料的孔道结构和尺寸,使之能获得孔径小于1nm的无机膜,并能用于高温气体分离、空气除湿、渗透蒸发等分子水平的分离过程,可以实现气相分离的连续进行。因此分子筛膜成为近年来研究的热点。

分子筛膜的渗透性能取决于渗透温度压力和处理介质的性质,当然膜厚也是一个重要因素。由于分子筛对某些组分具有强烈的吸附性,因此分子筛膜的渗透过程既要考虑其分子选择性又要考虑其吸附性能对渗透性能的影响。

2.2.2分子筛膜的传湿机理

对分子筛膜分离气体的机理的研究已有许多报道,其中Asaeda等人认为多孔固体膜分离气体的历程一般分为4种类型[17~19];①Knudsen扩散。在有压差条件下膜孔径5~10nm,无压差条件下膜孔径5~50nm时,Knudsen扩散起主导作用,其分离系数为被分离气体相对分子质量②之比的平方根;②表面扩散。膜孔壁上吸附分子通过吸附分子的浓度梯度在表面上进行扩散,这一历程中被吸附状态对膜分离性能有一定影响。被吸附组分比不被吸附组分扩为1~10nm时表面扩散起主导作用。对于气体分离,表面扩散比Knudsen扩散更为有用;③毛细管冷凝。在温度较低的情况下(如接近0℃时),每一孔道都有可能被冷凝物组分堵塞而阻止了非冷凝物组分的渗透,当孔道内的冷凝物组分流出孔道后又蒸发时,就实现了分离;④分子筛效应。这是一个比较理想的分离历程,分子大小不同的气体混合物与膜接触后,大分子被截留,而小分子则通过孔道,从而实现了分离。

2.2.3分子筛膜的应用

沸石膜具有均一的孔径,优良的化学稳定性、热稳定性和再生性。沸石晶穴内部存在着强大的库仑电场和极性作用,使它对水有极大的亲和力。因此,在沸石膜脱水过程中,水分子在其上优先吸附形成的表面扩散及毛细凝聚现象,将使水蒸气与气体的分离系数很大,是一种很好的气体脱水膜材料。

Asaeda等人[17]使用铸浆法制得了分子筛陶瓷膜来分离醇水的混合物蒸气,膜的支撑层是孔较大的陶瓷片,厚度0.001m,空隙率50%,平均孔径1um,表面活性层是由硅铝溶胶铸成的,其厚度10um,平均孔径3nm。实验表明,在25℃,50%的温度和相湿度下,空气的透过率非常小,小于2mol/(m2·h),而水的透过率可高达15mol/(m2·h)。水蒸气与空气选择性是460:1。这些结果显示,空气和不在这种陶瓷膜的分离机理是由于毛细管冷凝后的液体流。

王金渠等人[20]对用水热液相合成法制备的A型沸厂膜的研究发现,所制备的膜虽然对N2和O2的分离系数不高,但对气体中微量水蒸气的脱除仍表现出较好的分离效果。分析原因认为,无机多孔膜进行气体分离时,筛分机理限于目前的制膜水平,尚不能占据主要地位;努森扩散和表面扩散机理是众多研究者注目的焦点。当易凝聚气体存在时,发生在膜孔中的毛细凝聚现象将显得十分重要,成为最主要的分离机理。当气体中存在易吸附的气体时,表面扩散机理将起主导作用。王金渠等人在平板式膜气体渗透装置中测试了A型沸石膜的除湿性能,发现在0~0.6MPa的空气压力范围内,随着压力的升高和温度的降低,水蒸气的渗透速率增大,与空气的分离系数增加,这是由沸石对水蒸气的吸附性能决定的。但文献并没给出具体的水蒸气渗透速度。

2.3液膜

液膜有两种形式,一种是乳状液膜,以表面活性剂稳定薄膜。另一种是带支撑层的液膜,即将液膜填充于微孔高分子结构中。后者比前者稳定。

Deetz[21]研究了将液体LiBr溶液浸渍于醋酸/硝酸纤维膜中形成的液膜的透湿性能,他主要研究了该膜的稳定性,发现,当将此膜置于相对湿度小于3%的干燥氮气中时,薄膜中的LiBr液相会蒸发,氮气会在多孔的膜分子晶格间自由渡过,导致气体分离失败。如果渡过的是相对湿度较大的空气,由于水会连续不断地在膜的微孔中冷凝,冷凝后的水向低压侧渗透,又补低压侧的真空作用抽走,空气中的水会继续在微孔中冷凝,膜中的液相LiBr会稳定下来,使空气除湿过程连续进行。

2.4VOC去除膜

VOC意为挥发性有机化合物,是英文VolatileOraganicCompound的缩写。这些物质在封闭环境的空气中达到一定浓度后,会对人的健康造成不良影响,引起疲劳、头疼、恶心等反应。此外,VOC还有致癌作用。所以在对室内送风进行除湿的同时,还应去除其中的VOC。

PoddarTK等人[5]使用微孔憎水性对称或非对称中空纤维膜来去除空气中的VOC,在这种中空纤维的外表面涂有一层超薄致密VOC的选择性膜(经过等离子聚合化)。工作时,被处理空气流过纤维内部,VOC渗过多孔的基膜,被活性膜选择性吸附,在纤维外侧真空的驱动下脱除。实验表明,使用30cm长的中空纤维,当VOC的体积分数较高如(30000~40000)×10-6时,VOC的脱除率可高达98%~99%,如果再与吸附法结合起来,VOC的体积分数可以降得更低。

3除湿膜的形态和特性

除湿膜的形态基本有两种:平板式和中空纤维式。平板式膜的制备工艺比较简单,适宜于在实验室手工制作;用在工艺上时对流体的阻力小,结构简单,维护方便。目前在实验室制备的大部分膜都是平板膜。

一般来讲,膜分离过程的传质速率较小,尤其是在反渗透、气体分离及渗透汽化过程中,由于膜中致密活性层的存在,传质速率非常低。为了满足实际工业过程中处理大量物料的需要,发展了中空纤维,与平板膜相比,中空纤维具有如下优点[22]:

①膜呈自支撑结构,无需另加其它支撑体,可大大简化组装成膜组件时的复杂性;

②中空纤维组件具有很高的装填密度,它可以提供很大的比表面积。如0.3m2的中空纤维组件可以提供500m2的有效膜面积,而同样条件下的平板膜组件为20m2,管式膜组件为5m2。

③重现性好,放大容易。一般情形下,对于中空纤维膜组件,实验室规模的膜组件与工业规模的膜组件相比,其中的流动形式与分离效果差别不大。

所以,采用中空纤维膜时,可以用很大的膜面积抵消膜过程中传质速率低的弱点,从而给膜分离技术在工业生产中的推广应用提供了有利条件。它的缺点是制备工艺复杂,如果是液体还要对料液进行预处理,以防堵塞。

4结论

膜法除湿作为一种新的除湿方法,具有传统除湿方法的不具有的许多优点,如除湿过程连续进行,无腐蚀问题,无需阀门切换,无运动部件,系统可靠性高,易维护,能耗小,维护费用低等。

有机强化传湿,应尽量增大膜两侧的压力差。具体系统方案可采用压缩法、真空法、吹扫气法及混合法。这些方法都必须在膜两侧产生一个很大的压力差,将对膜的强度提出很高要求。另外,对泵等设备也有较高要求。如果能在膜两侧产生一个温差,靠膜造成的浓度差来实现传湿,则将克服这些不利因素,这将是一种新型的除湿模式。

有机高分子聚合物膜、无机膜和液膜都能用来除湿。有机高分子聚合物膜具有较高的水蒸气透过度和选择度。无机膜具有耐热、耐化学腐蚀的优点和良好的机械强度,特别适合于高温气体分离和化学反应过程。目前实际使用的无机膜孔径多在0.1~1um。陶瓷膜由于多孔,渗透选择性较差。

沸石具有规则孔道,孔径(0.3~1.2nm)可调,其表面吸附性能、酸感性能及催化性能可因此而发生显著变化,如果将分子筛以膜形式加以利用,将其用来调整多孔材料的孔道结构和尺寸,使之能获得孔径小于1nm的无机膜,并能用于高温气体分离、空气除湿、渗透蒸发等分子水平的分离过程,可以实现气相分离的连续进行。因此分子筛膜成为近年来研究的特点。

总的说来,除湿膜还存在透湿率低、强度差、成本高的缺点。今后随着膜材料和制膜工艺的研究进展,膜空气除湿必将研究会调及其它领域取得更大的发展。

5参考文献

1TasakaM,FutamuraH.Theeffectoftemperatureonthermoosmosis.JMembraneSci,1986,28:183-190.

2WangKL,etal.Hollowfiberairdrying.JMembraneSci,1992,72:231-244.

3CusslerEL,etal.Airdryingwithhollowfiber.AICHESepDivTopicalConference,Miami,FL,November,1992:866.

4JansenAE,etal.Methodstoimprovefluxduringalcohol/waterazeotropeseparationbyvaporpermeation.JMembraneSci,1992,68:229-239.

5PodderTKandSirkarKK.Ahybridofvaporpermeationanmembrane-basedabsorption-strippingforVOCremovalandrecoveryfromgaseousemissions.JMembraneSci,1997,132:229-233.

6许中强,陈庆龄,渗透蒸发膜及其在酯化反应过程中的应用,化工进展,1996,(55):41-44

7PinnauI,ToyLG.Transportoforganicvaporsthroughpoly(1-trimethylsily-1-propyne).JMembraneSci,1996,116:199-209.

8OkunoH,etal.Sorptionandpermeationofwaterandethanolvaporsinpoly(vinylchloride)membrane.JMembraneSci,1995,103:31-38.

9QiuMM,HwangST.Continuousvapor-gasseparationwithaporousmembranepermeationsystem.JMembraneSci,1991,59:53-72.

10PanCY,etal.Permeationofwatervaporthroughcellulosetriacetatemembranesinhollowfiberform.JAppliedPolymerSci,178,22:2307-2323.

11BonneU,etal.Membranedehumidification,USPat,4915838,10Apirl1990.

12ChaJS,etal.RemovalofwatervaporandVOCsfromnitrogerninahydrophilichollowfibergelmembranepermeator.JMembraneSci,1996,119:139-153.

13刑丹敏,等,聚砚中空纤维膜法空气除湿的研究,膜科学与技术,1997,17(2):38-42。

14彭曦,等。碘化聚芳醚砜与可溶性聚酰亚胺共混材料制备气体除湿膜。膜科学与技术,1997,17(1):42-46。

15王安来,等。脂肪醛与聚乙燃醇缩合膜透湿透气性的研究。膜科学与技术,1990,10(2):32-36。

16徐南平,时多,无机膜的发展现状与启示,化工学报,1998,49:58-63。

17AsaedaM,DuLD.Separationofalcohol/watergaseousmixturesbythinceramicmembrane.JChemEngng,Japan,1986,19:72-77.

18ChenSH,etal.Sorptionandtransportmechanismofgasesinpolycarbonatemembranes.JMembraneSci,1997,134:143-195.

19ArandaP,etal.Watertransportacrosspolystyrene-sulfonate/aluminacompositemembranes.JMembraneSci,1995,99:185-195.

20王金渠,李铮,A型沸石膜的制备及其在气体脱湿中的应用。膜科学与技术,1998,18(2):54-58。

除湿范文篇5

1.1一般资料本组所选85例均系我院门诊病例,患儿均为1岁内的婴儿。其中男50例,女35例,年龄<2个月5例,2~3个月28例,3~6个月19例,>6个月33例。病程<1周62例,1周~1个月11例,2~3个月8例,>6个月4例。病变部位发于头面部58例,肢体屈侧12例,泛发全身15例。全部病例均符合国家中医药管理局颁发的《中医病证诊断和疗效标准》。

1.2治疗方法用清热除湿汤为主治疗(本方来源于北京中医院皮肤科)。基本方:龙胆草、白茅根、生地、大青叶、车前草、生石膏、黄芩、六一散。随症加减,便干者加重生地用量,同时也可加熟军;便溏者加茯苓、苍术、白术、生薏米;消化不良者加焦三仙、鸡内金;渗液多者加茯苓、苦参;痒甚者加白鲜皮、刺蒺藜;皮疹以头面为主者加蝉衣、野菊花,下肢重者加黄柏;血虚者可加当归、鸡血藤。头两煎分2次服,第三煎外洗,每日1剂。同时注意,用牛奶喂养的患儿,自己服用,药量较轻,用母乳喂养的患儿,母亲服药,药量同时也要加大,而且也可以随母亲的体质辨证施治,随证加减。

1.3结果

1.3.1疗程以服药2周为1个疗程,一般治疗2个疗程。

1.3.2疗效判定标准痊愈:经2个疗程治疗后,皮损及症状消失,无反复;显效:经2个疗程治疗后,皮损及症状明显减轻;无效:经2个疗程治疗后,皮损及症状无好转。

1.3.3治疗结果痊愈65例,占76.5%;好转12例,占14.1%;无效8例,占9.4%。总有效率为90.6%。

2典型病例

患儿,男,37天,母乳喂养。因头面部起疹1周,泛发全身3天就诊。1周前患儿满月,母亲高兴过食肥甘厚味,加之饮酒后喂哺婴儿,第二天后发现婴儿头面部散在红色丘疹,家长自认为是婴儿只是因热起疹,未在意。3天后,头面部皮疹增多,前胸及双下肢可见粟粒大小红色丘疹,遂来我院皮肤科就诊。查体:患儿营养中等,面红,颜面头部、前胸及双下肢可见粟粒大小红色疱疹,尤以头面部为主,部分有水疱,皮肤潮红,部分皮损露出鲜红色糜烂面,渗出液较多,呈黄色,有黄色痂皮,烦躁哭闹,纳可,二便可。同时检查患儿母亲,营养中等,精神可,纳可,大便干,小便黄,舌红苔白厚,脉弦细。西医诊断为婴儿湿疹,中医诊断为奶癣。中医辨证为热重于湿,治法以清热为主兼以化湿,给予清热除湿汤去黄芩、六一散,加蝉衣、野菊花、熟军,水煎服日2次,母亲服用,每天2次,第三煎煎汤给婴儿外洗。服药2周后,头面部渗出液减少,前胸及双下肢皮疹消退,已不再哭闹。再服药2周后,前胸及双下肢已恢复正常皮肤,头面部渗出、皮损已逐渐消退。嘱其母亲及婴儿以后注意禁食辛辣,少食鱼虾等海鲜品,母亲禁饮酒。

3讨论

婴儿湿疹是由多种因素引起的一种具有明显渗出倾向的皮肤炎症反应,体胖婴儿多发。婴儿湿疹在中医文献中称为胎、奶癣、胎风、胎赤等。《外科正宗》记载:“奶癣,儿在胎中,母食五辛,久餐炙,遗热与儿,生后头面遍身为奶癣,流脂成片,睡眠不安,瘙痒不绝”。《医宗金鉴》记载:“此证生婴儿头顶,或生眉端,又名奶癣。痒起白屑,形如癣疥,由胎中血热,落草受风缠绵,此系干;有误用烫洗,皮肤其粟,瘙痒无度,黄水浸淫,延及遍身,即成湿”。本病多因胎中遗热遗毒,或饮食失调,脾失健运,内蕴湿热,外受风湿热邪所致,或因乳母过食辛辣食物,致使脾为湿热所困,运化失职,更兼婴儿为稚阳之体,元气未充,湿热之邪袭于腠理,则内外之湿热相搏结即成本病。急性湿疹红肿显著,产生针尖大小的丘疹和水疱,成群地局限于某一发病部位,边缘呈弥漫性,炎性继续发展时,水疱有时融合形成较大的疱,疱破后形成糜烂面,有或多或少的珠状渗液,浆液干燥后形成痂屑,如有继发感染则产生脓疱或脓液。分泌多时,可以从痂缝中流出,甚至将厚痂冲掉。久后炎症逐渐减轻,红肿减退,分泌物减少,丘疱疹不再发生,糜烂愈合,鳞屑消失而愈。部位病例由于不断搔抓,皮肤显著浸润变厚,形成或多或少的苔藓样变,急性湿疹已向慢性湿疹转化。一般认为,婴儿湿疹分三型,有热重于湿的,有湿重于热的,有湿热俱盛的。若湿热之邪与风邪相兼,则善行而数变,瘙痒明显,此伏彼起;若湿热化火,蒸腾津液,则又表现为溃疡流水;患处皮色鲜红,病深日久,病程迁延,湿郁化火,耗伤津血,以致血虚生风化燥,肤失濡养,则成为现代医学所说的慢性湿疹[1~3]。

婴儿湿疹的治疗,首先应祛除病因。湿疹虽形于外而实发于内。乳母必须禁食辛辣刺激食物,少吃或不吃牛羊肉、鱼虾等。患儿穿着应以纯棉织品为宜,使娇嫩的皮肤免受不良刺激。现代医学治疗本病首选外用药,一类是类固醇霜剂,如氢化可的松,地塞米松;一类是非皮质类固醇油膏、糊剂;如黄连膏、雷锌膏等。但笔者在临床中发现,这两类药适合年长儿,如类固醇霜剂长期反复应用于婴儿,且应用面积大,时间久,大量吸收后,会出现不同程度的不良反应,轻者局部皮肤萎缩、毛细血管扩张,重则引起全身性副作用;且不能防止复发[4]。油膏糊剂的透皮吸收较差,治标不治本,疗效也不尽如人意。而纯中医疗法,内服外洗相结合,标本兼治,疗效显著,且未发现不良反应。尤其是母乳喂养的婴儿由母亲服药,克服了婴儿服药的困难,同时也可调整母亲的体质来调节婴儿的体质,收到双方面的效果。方中龙胆草、生石膏既能清热,同时也能起到抗过敏的作用。白茅根、生地清热凉血,加重生地用量也可帮助通大便。大青叶清热凉血解毒,车前草清热利水,黄芩清热燥湿,六一散(滑石、甘草)清热利湿止痒。诸药配伍,主要是清热利湿凉血。

[参考文献]

1杨国亮.现代皮肤病学.上海:上海医科大学出版社,1996,357-358.

2安家丰,张.张志礼皮肤病医案选萃.北京:人民卫生出版社,1994,128.

3陈凯.皮肤病中医特色治疗.沈阳:辽宁科学技术出版社,2001,161.

4赵炳南,张志礼.简明中医皮肤病医学.北京:中国展望出版社,1983,172.

【关键词】,清热除湿汤;皮炎,特应性;治疗

除湿范文篇6

关键词:水工构筑物结露除湿

1问题提出

我国是一个贫水国,为了防止长期大规模超采地下水,引起地层压密产生地面下沉现象,城市在建设水厂时,主要选择地面水(水库水)为水源。在处理地面水的工艺设计中多采用:原水-混合-絮凝-沉淀-过滤-碳吸附-消毒-配水流程。在我国南方,这些工艺水处理设施均敞露放置室外,而在北方地区,为了冬季防冻,这些设施一般放置在加盖的建筑物内。北京市一座日处理量150万吨超大型自来水水厂,为了减少占地面积,把整个处理工艺及其设施集中布置在一座建筑面积为15000m3大型网架厂房彩板屋顶内。

该水厂为了控制水中的总藻量,使用密云水库潮白河库区深层水,水库的取水点设在深度40米处,原水水温常年保持在1~10℃。

当该工程正式通水投入运行时,正值夏季高温高湿天气,室外的空气通过门、窗缝隙进入室内,遇到低温的水面和管道壁面马上结露并产生大量雾气迷漫整个室内空间,用“伸手不见五指”来形容一点不过分,厂房内能见度不超过1m,这种现象持续了整个夏季。夏季过后,经检查发现许多设施表面出现霉变,有些管道及电力线桥架锈蚀等。降低了电气设备的可靠性,给安全生产造成威胁。

2设计方案和设备的选定

在工艺水处理池进行处理的过程中,房间内的大面积低温水面和管壁等像一个大型的辐射供冷地板,水面和管壁表面通过辐射换热和自然对流换热的形式将室内空气的热量吸附。此时,室内空气温度和含湿量较高,空气露点也较高。水面和管壁降温较快而室内空气降温较慢,且室内空气露点在无除湿设备时维持不变。当水面、池面和管壁温度降到室内空气露点以下时,其表面就会结露,严重时产生雾气。故在外界空气焓值高于大型综合池空气焓值时,必须减少室外空气的进入量,同时要考虑对室内空气进行除湿。

除湿方法主要有通风除湿、冷却除湿、液体除湿机、转轮除湿机和吸湿剂除湿等。

2.1设计方案的选择

当外界空气焓值低于或等于厂房内空气焓值时,首先优选通风除湿,该方法简单易行,但当外界空气焓值高于厂房内空气焓值时,必须要减少室内外空气流通量,采用除湿设备,使厂房内的相对湿度控制在50%左右。

2.2通风除湿

由于综合池结露位置在水面、池面和管壁表面,而此时室内空气的温度依然较高,空气湿度也远远未达到饱和状态,如果能对管廊和池面进行置换送风,不断输送低露点空气,使池面附近空气露点低于池面温度,则解决了结露问题。因此,将置换通风应用于有大面积水面的综合池的大型厂房中可以取得较好的除湿效果,且置换通风的高换气效率也使室内环境的空气品质提高,同时使运行能耗降低。

2.3除湿设备的选择

除湿设备的除湿方法从原理上可以概括为两类,第一类是冷冻除湿,第二类是化学除湿。常用有冷冻除湿机、液体除湿机、转轮除湿机,它们都可以用来除湿,但又有各自的特点,下面比较这三种除湿机的性能、空气处理过程、适用场合等。具体比较见下表。

除湿机综合性能比较表三甘醇液体除湿机冷冻除湿机转轮除湿机

除湿机型号SC-0.5CF20HDC-5000

生产厂家江西长林南京五洲广州华工泰

机组估价(万元)17.04.510.0

处理风量(m3/h)500055005000

再生风量(m3/h)1650--1700

进风工况32℃、65%(19.4g/kg干)

处理空气出风参数15℃、60%(6.2g/kg干)45℃、25%(15.2g/kg干)60℃、10%(7.0g/kg干)

再生空气出风参数65℃、58g/kg干--70℃、35g/kg干

除湿量(kg/h)80.02842.0

输入功率(kW)10.3+50119+54

单位功率除湿量(kg/kW·h)1.332.50.67

冷冻水耗量(t/h)17.0----

从上表中比较可以看出,三甘醇液体除湿机的除湿量最大,但是单位功率除湿量最小,价格最高,还需要另外配置冷源和热源。冷冻除湿机的价格最低,单位功率除湿量最大,使用最方便,不需另外配置冷源和热源。转轮除湿机的价格比较高,单位功率除湿量居中。如果改用蒸汽加热再生空气,同规格除湿机需蒸汽(0.4Mpa)90kg/h。

由于以上三种方法的除湿原理不同,对空气的处理过程和适用场合也不一样。现在假设把空气从32℃、65%处理到某一范围,三种方法的空气处理过程如图1所示。

液体除湿机直接把空气处理到所需要的人体舒适区,湿度处理、温度处理在同一个过程由同一个设备同时完成。液体除湿机以湿度处理为主,温度处理为辅。

冷冻除湿机先把空气温度降低到露点温度以下,处理空气中的水汽在蒸发器表面凝结成小水滴,从处理空气中分离出来,含湿量随着露点温度的降低而减小,直至含湿量达到要求。然后再对所处理的空气进行等湿加热,直至温度也达到要求。处理过程分步完成,降温之后再升温。升温靠制冷系统的冷凝热,不再增加耗电。

转轮除湿机先吸收处理空气的水汽,降低处理空气的含湿量,使其达到要求,但是经过转轮处理后的空气温度升高较多,需再加一个后冷却装置,对转轮处理后的空气进行降温。处理过程也分步完成,除湿、降温由不同的装置来完成。

图1空气处理过程比较

通过以上综合比较,冷冻除湿机价格低、能耗低,适合处理出风含湿量大于6.5g/kg干的空气。转轮除湿机用电加热再生空气时能耗大,在能使用冷冻除湿机的情况下,尽量不使用转轮除湿机,如果转轮除湿机改用蒸汽来加热再生空气,将节约80%左右的电能;转轮除湿机不但可以用于处理出风含湿量大于6.5g/kg干的空气,而且也可以用来处理出风含湿量小于6.5g/kg干的低湿空气,但是出风温度较高,适合于对出风含湿量有要求而对出风温度没有要求的场合。对于有低温低湿要求的空气应采用联合式除湿机来处理。液体除湿机使用在地下场所较为经济,对所处理的空气有一定的洁净度要求;除湿量大,但液体除湿机价格较高。

大型综合池的厂房虽然因来水温度低,使得室内出现低温高湿的环境,比较适合使用转轮除湿机,但考虑其初投资较大,需要再生热源,且厂房内部高低错落,池面大,走道板窄,又有大量管廊,布置设备和管道比较困难。我们选择使用了价格便宜;体积小;除湿效率高;不需要另外配置冷源和热源,也不需要再生装置,只要接上相应的电源和处理风管道即可运行的冷冻除湿机,并且把它分布在需要降低湿度的不同地点。

在选型时考虑到冷冻除湿机对进风温度有一定的要求,普通型除湿机的进风温度在18~32℃左右,低温型除湿机的进风温度在5~32℃左右;对于低温型除湿机,当进风温度低于18℃时,还要间断性地融霜,影响除湿效率的缺点,选用了升温型除湿机。

升温型除湿机即让制冷系统的冷凝热全部经过风冷冷凝器传给经蒸发器除湿后的空气,处理空气被加热升温,出风温度比进风高15℃左右。空气处理过程为C→L→A。升温除湿适合于ε<0的场合。把图3中的风冷冷凝器和蒸发器串联在同一个风系统中,就是升温型除湿机原理图。

3室内设计湿负荷的确定

房间内的总湿负荷包括:通风换气带来湿量、池面散湿、池壁和管壁的产湿等。

3.1室内设计参数

为防止结露保证设备的使用寿命,夏季池面温度最好高于16℃,现按来水温度取值10~12℃,设将设计室内露点控制在14℃。室内设计温度可参照普通空调设计参数,定为23℃,而相对湿度应根据对应的控制露点确定,约为50%。

初始状态的室内空气露点,可根据北京城市气象资料推算的最热月平均露点取值。

3.2厂房内设计湿负荷的计算

根据室内设计参数,可以计算出不同条件下厂房内的湿负荷。

厂房内设计湿负荷由两部分组成:一是房间通过通风换气和门窗缝隙渗透得到的湿负荷,一是水面、池壁和管壁的散湿量。

通风量一般按夏季最大散湿量计算,其计算公式如下:

Q=1000W/ρ(dg-ds)⑴

式中Q为按散湿量计算的通风量,m3/h;

W为厂房内空气散湿量,可以计算或查有关手册求得,kg/h;

dg为厂房内空气含湿量,g/kg;

ds为送风的空气含湿量,g/kg;

ρ为空气密度kg/m3。

水面、池壁和管壁的散湿量是按散湿量计算选择:

W=Sω⑵

式中S为散湿表面积,m2;ω为单位面积散湿量,g/(m2.h)。

4除湿机组处理过程的核算

当选用升温型除湿机时,空气调节过程如下:该过程在i-d图上表示见图4

根据文献[4],对应于风量7590m3/h的除湿机型号为CF32型,其制冷量为56.9kW,

kJ/kg干,

根据文献[1]推荐,取蒸发器出口处(即L点)相对湿度为95%,则L2点参数为:tL2=13.9℃,dL2=9.7g/kg干

根据文献[2]推荐,取冷凝器负荷系数ψ=1.25,则冷凝负荷Q2=1.25×56.9=71.1kW,送风点O2的参数为:

kJ/kg干

tO2=39.8℃,dO2=9.8g/kg干

kJ/kg<0,

计算表明升温型除湿机只能消除室内余湿量,另外不但不能消除余热,反而增加了室内的余热量,会使室内的温度升高,只能满足湿度的要求,不能达到温度的要求。

5结论

该水厂有大型综合池的厂房在设备安装好后,经过一年的跟踪调查,实践证明,这种综合除湿方法在厂房内低温高湿的环境下应用是完全成功的。

5.1在低温高湿的环境下选择使用冷冻除湿机时,必须考虑该机组的特点,选用了升温型冷冻除湿机是一种最佳方案。具有其它机组所无以伦比的优势,既达到节能,又降低了设备的一次性投资和运行管理费用。

5.2置换通风应用于大型综合池的厂房除湿在原理上是可行的,而且能够减少除湿负荷,改善室内空气环境,同时可以与除湿技术结合,成为一套完整的系统体系,值得进行深入探讨。

参考文献

[1]电子工业部第十设计研究院.空气调节设计手册.中国建筑工业出版社.1995.11

[2]彦启森,主编.空气调节用制冷技术(第2版).北京:中国建筑工业出版社.1985.

除湿范文篇7

关键词室内空气品质新风预处理判据适用性

1前言

为改善室内空气品质,美国国家标准研究院(ANSI)标准委员会和ASHRAE颁布了《ASHRE标准62-1989》,提出了一系列改进措施。其中对空调系统设计影响最大的两点是:1.将设计新风量增大到原来的2倍~4倍;2.建筑物相对湿度保持在30%~60%[1]。随后的《ASHRE标准62-1989R》进一步提出了同时考虑人员和建筑物污染的最小新风量计算方法[2]。我国有关部门也正在对国家标准GBJ19-87"采暖、通风空气调节设计规范"进行修改(简称国标修改稿),其中明确包括增大最小新风量一项,其结果将增大空调系统的设计冷负荷和湿负荷。为使原有空调系统满足国标的新要求,大量建筑必须进行改造,笔者曾针对如何以经济有效的方式对原有建筑中的传统空调设备进行最少的改建,从而改善室内空气品质,满足新标准的要求问题,提出了热回收式、蒸发冷却和除湿式新风预处理系统[5]。商业建筑的特点是室内人员较多,热湿比较少,机器露点低,为满足室内温湿度要求(尤其是湿度),国外及国内高档商业建筑多采用一次回风再热式空调系统。本文主要介绍为满足增大最小新风量的要求,对高档商业建筑中的一次回风再热式空调系统。本文主要介绍为满足增大最小新风量的要求,对高档商业建筑中的一次回风再热式空调系统。本文主要介绍为满足增大最小新风量的要求,对高档商业建筑中的一次回风再热式空调系统,采用新风预处理系统对其进行改建的技术措施在全国主要城市的不同室外气象条件下的适用情况。

2新风预处理系统的适用性判据

由于国标修改稿没有明确对相对湿度作出修改,所以室内设计相对湿度、设计温度仍取原标准值,新风量增大为原来的两倍,来确定各种新风预处理系统适用性的判据。

2.1热回收式新风预处理系统的适用性判据

对于夏季工况,若设定室内空调设计状态N,通过N点的等温线和等焓线可以把工程所在地的室外气象包络线范围分隔为Ⅰ、Ⅱ、Ⅲ和Ⅳ四个气象区,如图1。第Ⅰ区室外空气温度和焓值都低于室内设计值,显然不适合用热回收;第Ⅱ区室外空气温度高于室内设计值,焓值低于室内设计值,显然只适合用显热回收;第Ⅲ区室外空气温度和焓值都高于室内设计值,适合用全热回收;第Ⅳ室外空气温度低于室内设计值,焓值高于室内设计值,适合用热回收。

一次回风再热式空调系统在焓湿图上的处理过程如图2所示。实线表示的为原系统的空气处理过程,W、N、C、L、O分别为室外空气状态点,室内空气状态点,在原新风量的新、回风混合点,机器露点和送风状态点;如附设热回收式新风预处理系统,则虚线表示为按国标修改稿规定的新风量设计的一次回风再热式系统空气处理过程,W1,C1分别为室外空气经热回收后的状态点,在国标修改稿规定的新风量下的新、回风混合点。为使原空调系统仍能满足要求,即新系统所需的冷量小于等于原系统能提供的冷量,则应使新风热回收后与回风的混合点C1的焓值小于等于原系统C的焓值,即:ic1≤ic。

由上述条件可得热加收式新风预处理系统的适用性判据为:

显热回收式:

全热回收式:

2.2蒸发冷却新风预处理系统适用性判据

对于夏季工况,若设定室内空调设计状态N,通过N点的等含湿量线等湿球温度线可以把工程所在地的室外气象包络线范围分隔为Ⅰ、Ⅱ、Ⅲ和Ⅳ四个气象区,如图3。第Ⅰ区室温外空气湿球温度和含湿量都低于室内设计值,这表明直接蒸发冷却和间接蒸发冷却都可以使用,甚至可以不用机械制冷,而直接处理到送风状态点;第Ⅱ区室温外空气湿球温度高于室内设计值,含湿量低于室内设计值,显然只适合用间接蒸发冷却;第Ⅲ区室温外空气湿球温度和含湿量都高于室内设计值,适合用间接蒸发冷却对新风进行预处理;第Ⅳ区室温外空气湿球温度低于室内设计值,含湿量高于室内设计值,不适合用蒸发冷却技术。对于区Ⅰ、Ⅱ可用直接蒸发或间接蒸发直接供冷的技术国内外已有大量研究,这里仅讨论在Ⅲ区应用间接蒸发冷却对新风进行预处理的技术适用性。

图3蒸发冷却式新风预处理系统的气象范围

图4附设间接蒸发冷却新风预处理的一次回风再热式系统

附设蒸发冷却式新风预处理的空调系统工程焓湿图上的表示如图4。与热回收式新风预处理系统相同,为保证原空调系统仍能满足要求的条件为:ic1≤ic

则在Ⅲ区间接蒸发冷却式新风预处理系统的适用性判据为:

2.3除湿式新风预处理系统的适用性判据

对于夏季工况,若设定室内空调设计状态N,通过N点的等含湿量线可以把工程所在地的室外气象包络线范围分隔为Ⅰ、Ⅱ两个气象区,如图5。第Ⅰ区室外空气含湿量低于室内设计值,这表明该区域不仅不需要除湿反而要加湿;第Ⅱ区空气含湿量高于室内设计值,显然可以采用除湿技术。

图5除湿式新风预处理系统的气象范围

图6附设新风与回风混合预冷除湿热回收(蒸发冷却)式预处理的一次回风再热式系统

为使除湿机在高效率下运行,通常先将新风预冷,再除湿;为充分利用排风冷量,常将除湿以后的高温干空气通过热回收或蒸发冷却设备,进行降温;根据除湿量的大小,可采用仅对新风除湿和对新风与部分中全部回风的混合风除湿的方式。这里新风与回风混合预冷除湿热回收(蒸发冷却)式为例,介绍其适用性判据的确定方法。室外空气状态点W与N按国标修改稿规定的新风量混合至C4,预冷至C3,然后全部除湿至C2(或部分除湿)再与未除湿的混合风混合至C1,通过热加收或蒸发冷却至C11,最后由原空调系统冷却至送风状态点O。为使原空调系统仍能满足要求,即新系统所需的冷量不于等于原系统能提供的冷量,则应使混合风的预冷量与由C11冷却至O点所需冷量之和小于等于原系统的冷量,即:

全部除湿:

部分除湿:

则除湿式新风预处理系统的适用性判据为:

全部除湿:

部分除湿:

其他几种附设除湿式新风预处理的空调系统在焓湿图上的表示及适用性分析的判据见表1。由于除湿热回收式与除湿蒸发冷却式的示意图相似,判据相同,故放在一起讨论,但由于热回收与蒸发冷却设备的效率不同,所以得到的C11点参数实际是不同的。

除湿式新风预处理系统的适用性判据表1

原空调系统(实线)及附设新风预处理的空调系统(虚线)在i-d图上的表示

适用性分析的判据

附设新风预冷除湿热回收(蒸发冷却)式新风预处理系统

附设新风与回风混合除湿热回收(蒸发冷却)式预处理系统

全部除湿:

部分除湿:

附设新风与回风混合预冷除湿热回收(蒸发冷却)式预处理系统

全部除湿:

部分除湿:

3新风预处理系统适用范围

根据上述分析及具体判断条件,应用C语言进行编程计算,将全国主要城市的空调室外设计气象参数,原有空调建筑物的室内设计温湿度,新风比,热湿比,采用的热回收装置的热回收效率,国标修改稿规定的新风比,室内设计温湿度作为输入文件,通过空气状态参数计算公式,编写计算程序OAPS(OutdoorAirPreconditioningSystem),可以用于判断全国主要城市不同条件下原一次回风再热式空调系统中,各种机关预处理系统的适用范围。

下面以对上海市某一次回风再热式空调系统(按旧标准设计)的改造为例,说明新风预处理系统的应用。室内设计条件为:原系统(旧标准):tN=26℃,φN=65%,新风比:15%;新系统(GBJ19-87国标修改稿):tN=26℃,φN=65%,新风比:30%;室外设计条件为:tW=34℃,tWS=28.2℃;送风量为2000m3/h;室内热湿比ε=6100,要求的送风状态:原系统:tO=34℃,dO=12.3g/kg;新系统与原系统一样,转轮式全热交换器的效率为:ηZ=70%;间接蒸发冷却器的热交换效率为:E1=70%,以排风为二次风。对不更换原有空调系统的冷源、末端装置,仅附设上述新风预处理系统进行改建的方法在全国范围的技术适用性作一分析计算。

计算结果见表2。其中"·"表示适用;"-"表示不适用。表中只列出适用城市的新风预处理系统形式。

新风预处理系统的技术适用范围表2

城市名称热回收式蒸发冷却式除湿式

新风预冷除湿热回收混合预冷除湿热回收

(蒸发冷却)混合预冷除湿热回收新风预冷除湿热蒸发冷却混合预冷除湿蒸发冷却

北京·-··-··

天津·-··-··

石家庄····-··

太原····-··

呼和浩特·------

沈阳····-··

长春····-··

哈尔滨·······

上海··-·-·-

南京··-·-·-

杭州··-·-·-

合肥··-·-·-

福州·--·-·-

南昌·--·-·-

济南·-··-··

郑州·-··-·-

武汉··-·-·-

长沙·--·-·-

广州·--·-·-

南宁····-·-

成都····-·-

重庆·-··-·-

贵阳····-·-

昆明-·-----

拉萨-·-----

西安····-··

兰州··-----

西宁-·-----

银川··-----

乌鲁木齐··-----

台北····-··

香港····-·-

4结论

(1)针对GBJ19-87国标修改稿的要求,对原有高档商业建筑中常用的一次回风再热式空调系统的改建问题,确定了各种新风预处理系统的技术适用性判据。

(2)几种新风预处理系统的适用范围基本可以覆盖全国各直辖市和省会城市,即任何一个城市中的原一次回风再热式空调系统都至少可以采用一种新风预处理系统进行改造。

(3)热回收式、蒸发冷却式和除湿式中的新负预冷除湿蒸发冷却式、混合除湿热回收式(蒸发冷却)新风预处理系统的适宜和范围最广;新风预冷除湿热回收式和混合预冷除湿蒸发冷却式新风预处理系统的适用范围较小;混合预冷除湿热回收式新风预处理系统只适用于一个城市。

(4)如GBJ19-87国标修改稿正式颁布,全国各地将有大量建筑的空调系统要改建,新风预处理系统是一种很的解决方法,本文提出的适用性判据将有助于业主和设计方的选择与决策。

参考文献

1ANSI/ASHRAEStandard62~1989.Ventilationforacceptableindoorairquality.Atlanta,GA:ASHRAEInc.

2ASHRAEPublicReviewDraft62~1989R.Ventilationforacceptableindoorairquality.

3ANSI/ASHRAEStandard62~1989.Ventilationforacceptableindoorairquality.Atlanta,GA:ASHRAEInc.

除湿范文篇8

关键词:温湿度独立控制新风高温冷源

1引言

从热舒适与健康出发,要求对室内温湿度进行全面控制。夏季人体舒适区为25ºC,相对湿度60%,此时露点温度为16.6ºC。空调排热排湿的任务可以看成是从25ºC环境中向外界抽取热量,在16.6ºC的露点温度的环境下向外界抽取水分。目前空调方式的排热排湿都是通过空气冷却器对空气进行冷却和冷凝除湿,再将冷却干燥的空气送入室内,实现排热排湿的目的。现有的热湿联合处理的空调方式存在如下问题。

(1)热湿联合处理的能源浪费。由于采用冷凝除湿方法排除室内余湿,冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差,实现16.6ºC的露点温度需要约7ºC的冷源温度,这是现有空调系统采用5~7ºC的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5ºC的原因。在空调系统中,占总负荷一半以上的显热负荷部分,本可以采用高温冷源排走的热量却与除湿一起共用5~7ºC的低温冷源进行处理,造成能量利用品位上的浪费。而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求,但温度过低,有时还需要再热,造成了能源的进一步浪费与损失。

(2)难以适应热湿比的变化。通过冷凝方式对空气进行冷却和除湿,其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内变化。一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协,造成室内相对湿度过高或过低的现象。过高的结果是不舒适,进而降低室温设定值,通过降低室温来改善热舒适,造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。

(3)室内空气品质问题。大多数空调依靠空气通过冷表面对空气进行降温除湿,这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表面就成为霉菌繁殖的最好场所。空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。另外,目前我国大多数城市的主要污染物仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题。然而过滤器内必然是粉尘聚集处,如果再漂溅过一些冷凝水,则也成为各种微生物繁殖的最好场所。频繁清洗过滤器既不现实,也不是根本的解决方案。

(4)室内末端装置的问题。为排除足够的余热余湿同时又不使送风温度过低,就要求有较大的循环通风量。例如每平方米建筑面积如果有80W/m2显热需要排除,房间设定温度为25ºC,当送风温度为15ºC时,所要求循环风量为24m3/hr/m2,这就往往造成室内很大的空气流动,使居住者产生不适的吹风感。为减少这种吹风感,就要通过改进送风口的位置和形式来改善室内气流组织。这往往要在室内布置风道,从而降低室内净高或加大楼层间距。很大的通风量还极容易引起空气噪声,并且很难有效消除。在冬季,为了避免吹风感,即使安装了空调系统,也往往不使用热风,而通过另外的暖气系统通过采暖散热器供热。这样就导致室内重复安装两套环境控制系统,分别供冬夏使用。

(5)输配能耗的问题。为了完成室内环境控制的任务就需要有输配系统,带走余热、余湿、CO2、气味等。在中央空调系统中,风机、水泵消耗了40~70%的整个空调系统的电耗。在常规中央空调系统中,多采用全空气系统的形式。所有的冷量全部用空气来传送,导致输配效率很低。

此外,随着能源问题的日益严重,以低品位热能作为夏季空调动力成为迫切需要。目前北方地区大量的热电联产集中供热系统在夏季由于无热负荷而无法运行,使得电力负荷出现高峰的夏季热电联产发电设施反而停机,或者按纯发电模式低效运行。如果可以利用这部分热量驱动空调,既省下空调电耗,又可使热电联产电厂正常运行,增加发电能力。这样即可减缓夏季供电压力,又提高能源利用率,是热电联产系统继续发展的关键。由于空调负荷在一天内变化显著,与热电联产电厂提供热能并不是很好匹配,如何实现有效的蓄能,以协调二者的矛盾也是热能使用当中存在的问题。

综上所述,空调的广泛需求、人居环境健康的需要和能源系统平衡的要求,对目前空调方式提出了挑战。新的空调应该具备的特点为:

加大室外新风量,能够通过有效的热回收方式,有效的降低由于新风量增加带来的能耗增大问题;

减少室内送风量,部分采用与采暖系统公用的末端方式;

取消潮湿表面,采用新的除湿途径;

不用空气过滤式过滤器,采用新的空气净化方式;

少用电能,以低品位热能为动力;

能够实现高体积利用率的高效蓄能;

从如上要求出发,目前普遍认为温湿度独立控制系统可能是一个有效的解决途径。

2温湿度独立控制空调系统

空调系统承担着排除室内余热、余湿、CO2与异味的任务。研究表明:排除室内余热与排除CO2、异味所需要的新风量与变化趋势一致,即可以通过新风同时满足排余湿、CO2与异味的要求,而排除室内余热的任务则通过其他的系统(独立的温度控制方式)实现。由于无需承担除湿的任务,因而可用较高温度的冷源即可实现排除余热的控制任务。对照前言中现有空调系统存在的问题,温湿度独立控制空调系统可能是一个有效的解决途径。温湿度独立控制空调系统中,采用温度与湿度两套独立的空调控制系统,分别控制、调节室内的温度与湿度,从而避免了常规空调系统中热湿联合处理所带来的损失。由于温度、湿度采用独立的控制系统,可以满足不同房间热湿比不断变化的要求,克服了常规空调系统中难以同时满足温、湿度参数的要求,避免了室内湿度过高(或过低)的现象。

温湿度独立控制空调系统的基本组成为:处理显热的系统与处理潜热的系统,两个系统独立调节分别控制室内的温度与湿度,参见图1。处理显热的系统包括:高温冷源、余热消除末端装置,采用水作为输送媒介。由于除湿的任务由处理潜热的系统承担,因而显热系统的冷水供水温度不再是常规冷凝除湿空调系统中的7ºC,而是提高到18ºC左右,从而为天然冷源的使用提供了条件,即使采用机械制冷方式,制冷机的性能系数也有大幅度的提高。余热消除末端装置可以采用辐射板、干式风机盘管等多种形式,由于供水的温度高于室内空气的露点温度,因而不存在结露的危险。处理潜热的系统,同时承担去除室内CO2、异味,以保证室内空气质量的任务。此系统由新风处理机组、送风末端装置组成,采用新风作为能量输送的媒介。在处理潜热的系统中,由于不需要处理温度,因而湿度的处理可能有新的节能高效方法。

图1温湿度独立控制空调系统

在温湿度独立控制空调系统中,采用新风承担排除室内余湿、CO2、室内异味,保证室内空气质量的任务。一般来说,这些排湿,排有害气体的负荷仅随室内人员数量而变化,因此可采用变风量方式,根据室内空气的湿度或CO2浓度调节风量。由于仅是为了满足新风和湿度的要求,如果人均风量40m3/hr,每人5平方米面积,则换气次数只在2~3次/hr,远小于变风量系统的风量。这部分空气可通过置换送风的方式从下侧或地面送出,也可采用个性化送风方式直接将新风送入人体活动区,参见图2。

图2个性化送风

而室内的显热则通过另外的系统来排除(或补充)。由于这时只需要排除显热,就可以用较高温度的冷源通过辐射、对流等多种方式实现。当室内设定温度为25℃时,采用屋顶或垂直表面辐射方式,即使平均冷水温度为20℃,每平米辐射表面仍可排除显热40W/m2,已基本可满足多数类型建筑排除围护结构和室内设备发热量的要求。由于水温一直高于室内露点温度,因此不存在结露的危险和排凝水的要求。此外,还可以采用干式风机盘管通入高温冷水排除显热。由于不存在凝水问题,干式风机盘管可采用完全不同的结构和安装方式,参见图3。这可使风机盘管成本和安装费大幅度降低,并且不再占用吊顶空间。这种末端方式在冬季可完全不改变新风送风参数,仍由其承担室内湿度和CO2的控制。辐射板或干式风机盘管则通入热水,变供冷为供热,继续维持室温。与变风量系统相比,这种系统实现了室内温度和湿度的分别控制。尤其实现了新风量随人员数量同步增减。从而避免了变风量系统冬季人员增加,热负荷降低,新风量也随之降低的问题。与目前的风机盘管加新风方式比较,免去了凝水盘和凝水排除系统。彻底消除了实际工程中经常出现问题的这一隐患。同时由于不再存在潮湿表面,根除了滋生霉菌的温床,可有效改善室内空气品质。由于室内相对湿度可一直维持在60%以下,较高的室温(26℃)就可以达到热舒适要求。这就避免了由于相对湿度太高,只得把室温降低(甚至到20℃),以维持舒适要求的问题。既降低了运行能耗,还减少了由于室内外温差过大造成的热冲击对健康的危害。

3新风处理方式

温湿度独立控制空调系统中,需要新风处理机组提供干燥的室外新风,以满足排湿、排CO2、排味和提供新鲜空气的需求。前言已阐述了现有的低温露点除湿的热湿联合处理方式所带来的问题,如何采用其他的处理方式排除室内的余湿,如何处理出非露点的送风参数,如何实现对新风有效的湿度控制是新风处理机组所面临的关键问题。

图4转轮除湿方式

采用转轮除湿方式,是一种可能的解决途径,参见图4。用硅胶、分子筛等吸湿材料附着于轻质骨料制作的转轮表面。待除湿的空气通过转轮的一部分表面,空气中的部分水分被吸附于表面吸湿材料,实现除湿。吸了水的转轮部分旋转到另一侧与加热的再生空气接触,放出水分,使表面吸湿材料再生,再进行下一个循环。吸湿过程接近等焓过程,减湿加热后的空气可进一步通过高温冷源(18℃)冷却降温,从而实现温度与湿度的独立控制。但转轮除湿的运行能耗难以与冷凝除湿方式抗衡。从热能利用效率看,图4所示的转轮除湿机除掉的潜热量与耗热量之比一般难以超过0.6,同时高温冷源还要提供1.1~1.2倍于空气除热总量的冷量。这样就无法与采用低温热源(约90℃)、COP可达0.7,冷却温度可达30℃的吸收制冷机相比。即使采用多级热回收方式,热能利用效率仍难以提高到与吸收制冷机抗衡。此外,还有转轮的除湿空气与再生空气间的渗透问题,这似乎是很难解决的工艺问题。转轮除湿机热能利用效率低的实质是除湿与再生这两个过程都是等焓过程而非等温过程,转轮表面与空气间的湿度差和温度差都很不均匀,造成很大的不可逆损失,这可能是由转轮结构本身决定的很难克服的缺陷。

再一种除湿方式是空气直接与具有吸湿的盐溶液接触(如溴化锂溶液、氯化锂溶液等),空气中的水蒸气被盐溶液吸收,从而实现空气的除湿,吸湿后的盐溶液需要浓缩再生才能重新使用。因此,溶液式除湿与转轮式除湿机理相同,仅由吸湿溶液代替了固体转轮。由于可以改变溶液的浓度、温度和气液比,因此与转轮相比,这一方式还可实现对空气的加热、加湿、降温、除湿等各种处理过程。改善吸湿式空气处理方式的关键就是变等焓过程为等温过程,吸收或补充空气与吸湿介质间传质产生的相变潜热,从而减少这一过程的不可逆损失。由于转轮是运动部件,很难在转轮内部接入能够吸收热量或提供热量的换热装置,这种方法实现起来在工艺上有很大困难。采用溶液吸湿,可以使空气溶液接触表面同时作为换热表面,在表面的另一侧接入冷水或热水,实现吸收或补充相变热的目的,从而实现接近等温的吸湿和再生过程;还可以采用带有中间换热器的溶液空气热湿交换单元,参见图5。由溶液泵作为动力使溶液循环喷洒在塔板上与空气进行湿交换,同时溶液的循环回路中还串联一个中间换热器,吸收湿交换过程中产生的热量或冷量。通过控制调节中间换热器另一侧的水温水量,就可使空气在接近等温状态下减湿或加湿。溶液和水之间是交叉流,不可能实现真正的逆流,但如果单元内溶液的循环量足够大,空气通过这样一个单元的湿度变化量又较小时,其不可逆损失可大大减少。

图5热湿交换单元模块图6自带热泵的溶液热回收型新风机组

可以将图5所示的多个单元模块构建各种不同的空气处理流程,图6为热泵驱动的溶液热回收型新风机[1],热泵的制冷量用于降低除湿溶液的温度从而提高其除湿性能,热泵的排热量用于溶液的浓缩再生。图7给出了一种以热源作为驱动能源的溶液除湿新风处理系统[2],由再生器统一制备的浓溶液送入各个新风机组中,利用溶液的吸湿性能实现新风的处理处理过程。溶液的蓄能密度很大(高于冰蓄冷),从而降低了对于持续热源的需求,除湿与再生可以分别运行。由于在除湿过程中,采用室内排风蒸发冷却等冷却手段,可以降低对溶液浓度的要求,因此可以采用低品位的热能作为驱动能源,如城市热网的热水、热泵冷凝器的排热、热电联产系统的排热等等。溶液具有杀菌、除尘作用,可以起到净化空气的作用。除了消除冷凝表面,避免霉菌滋生外,采用溶液式空气处理方式还可以有效解决空气中可吸入颗粒物的消除[3]。使用溶液式空气处理方式,粉尘颗粒却可以被有效地带入溶液中。通过合理的设计溶液与空气接触的塔板形式,就可在获得优良的传热传质效果的同时获得好的除尘效果。溶液中的灰尘可通过溶液过滤器捕捉收集,更换和清洗溶液过滤器远比更换和清洗空气过滤器容易。对于大颗粒粉尘,进入溶液式空气处理器后会导致堵塞,因此应在入口安装粗效过滤器进行捕捉收集。这一般比较容易并不易造成对空气的二次污染。

a.溶液热回收新风机b.再生器

图7热水再生的溶液除湿新风处理系统

4高温冷源的制备

由于潜热由单独的新风处理系统承担,因而在温度控制(余热去除)系统中,不再采用7ºC的冷水同时满足降温与除湿的要求,而是采用约18ºC的冷水即可满足降温要求。此温度要求的冷水为很多天然冷源的使用提供了条件,如深井水、通过土壤源换热器获取冷水等,深井回灌与土壤源换热器的冷水出水温度与使用地的年平均温度密切相关,我国很多地区可以直接利用该方式提供18ºC冷水。在某些干燥地区(如新疆等)通过直接蒸发或间接蒸发的方法获取18ºC冷水。

即使采用机械制冷方式,由于要求的压缩比很小,根据制冷卡诺循环可以得到,制冷机的理想COP将有大幅度提高。如果将蒸发温度从常规冷水机组的2~3ºC提高到14~16ºC,当冷凝温度恒为40ºC时,卡诺制冷机的COP将从7.2~7.5提高到11.0~12.0。对于现有的压缩式制冷机、吸收式制冷机,怎样改进其结构形式,使其在小压缩比时能获得较高的效率,则是对制冷机制造者提出的新课题。图8是三菱重工(MHI)微型离心式高温冷水机组[4]的工作原理,采用“双级压缩+经济器”的制冷循环形式和传热性能优异的高效传热管,优化设计离心式压缩机叶轮和轴承,不仅突破了离心式冷水机组难以小型化的误区,而且还具有非常高的性能系数COP。图9示出了利用该微型离心式冷水机组制备高温冷水时的性能计算值。从图中可以看出:当冷冻水进、出水温度为21/18ºC、冷却水进、出水温度为37/32ºC时,其COP=7.1,在部分负荷条件下或冷却水温度降低时,其性能则更为优越。

图8微型离心式高温冷水机组图918ºC高温冷水机组的性能曲线

5温湿度独立控制系统工程案例

采用溶液式空调系统去除潜热负荷的温湿度独立控制空调系统安装在北京某办公楼[2],如图10(a)所示。该工程2003年3月开始施工,至10月工程竣工。建筑面积约2000m2,共5层,建筑高度18.6m。该示范工程的温湿度独立控制空调系统由溶液除湿/再生系统、电压缩制冷机及城市热网组成,参见图10(b)。溶液系统处理新风,承担新风负荷和室内潜热负荷,夏季电压缩制冷机制备的18ºC冷冻水承担室内显热负荷,城市热网的热水夏季供给溶液系统用于溶液的浓缩再生,冬季供给室内采暖。空调系统的全年运行测试结果表明:该系统可提供健康、舒适的室内环境;夏季,溶液系统的综合能效比可达1.5,再生效率0.85;冬季,溶液式新风机的全热回收效率约为50%。在现有的电价和热价水平下,该温、湿度独立控制空调系统的运行费仅为常规电压缩制冷空调系统的60~70%,具有很好的节能潜力与应用前景。同时,溶液式空调系统可采用低温热源驱动,为低品位热源的利用提供了有效途径,对降低空调电耗,改善城市能源供需结构,解决楼宇热电联产系统的负荷匹配问题都可起到重要作用。

a.建筑照片b.温湿度独立控制空调系统原理

图10示范工程概况

在清华大学超低能耗示范建筑[5]中,采用热电联产废热驱动的溶液除湿系统处理新风承担建筑的潜热负荷,处理后的干燥新风通过置换通风方式与个性化送风方式送入室内;采用电动制冷机制备18ºC冷水去除建筑的显热负荷,冷水送入室内辐射板与干式风机盘管中。此外,这种系统还在上海建研院的节能示范楼[6]中试运行。新疆某办公楼、南京某住宅小区的空调也是温湿度控制的空调形式。更多的试点工程的不断尝试,将为我国的建筑环境控制探索出一条新的更完美的解决方式。

6结论

本文分析了现有热湿联合处理方式的空调系统存在的问题,继而提出热湿分开、独立处理的空调运行策略:采用新风去除室内的余湿、承担室内空气质量的任务,采用高温冷源去除室内的余热。分析了温湿度独立控制空调方式对室内末端装置、制备高温冷源的要求与影响,并重点介绍了基于溶液除湿的新风处理机组,给出了温湿度独立控制系统的应用实践工程。与目前普遍使用的风机盘管加新风方式或全空气方式相比,基于溶液除湿方式的温湿度独立控制系统的特点可总结如下:

适应室内热湿比的变化。温湿度独立控制系统分别控制房间的温度和湿度,能够满足建筑热湿比随时间与使用情况的变化,全面控制室内环境。并根据室内人员数量调节新风量,因此可获得更好的室内环境控制效果和空气质量。

末端方式不同。可采用辐射式末端或者干式风机盘管吸收或提供显热,采用置换通风等方式送出干燥的新风去除显热,冬夏共用同样的末端装置。

不再需要低温冷冻水。整个系统只需要18℃的冷水,这可通过多种低成本的和节能的方式提供,降低了运行能耗。

采用溶液除湿方式处理新风,可有效的控制室内湿度。溶液采用低温热量(60℃)驱动。使利用城市热网夏季供应热量驱动空调,也可使制冷用热泵的热端排热得到应用。同时,浓溶液还可以高密度蓄存,从而使热量的使用与空调的使用不必同时发生。这对降低空调电耗,改善城市能源供需结构,解决热电联产系统的负荷匹配问题都可起到重要作用。

采用溶液吸湿完成空气除湿。无论在新风处理机还是风机盘管处,都不存在凝水,根除了霉菌,军团菌等病菌的滋生条件,溶液本身具有杀菌除尘作用,增强了系统健康安全性。采用溶液与空气直接接触,由溶液捕捉空气中的可吸入颗粒物,再通过溶液过滤器去除,避免了中效过滤器清洗,更换的一系列问题。

参考文献

1.刘晓华,李震,江亿.溶液全热回收装置与热泵系统结合的新风机组.暖通空调,2004,34(11):98-102

2.陈晓阳.溶液式空调系统的应用研究,硕士学位论文,清华大学,2005

3.张伟荣,曲凯阳,刘晓华,常晓敏.溶液除湿方式对室内空气品质的影响的初步研究.暖通空调,2004,34(11):114-117

4.MitsubishiHeavyIndustries,LTD.Highefficientchiller"MicroTurbo"isthebestsuitedforbuildingenergyefficiency,TheFirstBuildingenergyefficiencyForuminTsinghuaUniversity.Mar22-25,2005,TsinghuaUniversity,Beijing,China

除湿范文篇9

1.12010年前建造的游泳馆,作为热能使用的能源主要有:燃气(油、煤)锅炉、电锅炉(电加热器)、市政蒸汽等。由于市政蒸汽供热局限性较大,而电锅炉对整个项目的电容量要求太高,所以这两个热源一般运用很少。这类能源的最大问题是能耗高、运行成本高;环境污染大;室内湿度大、环境差,对装修腐蚀严重,往往3~5年就产生巨额的二次装修改造费用。

1.22010年后建造的游泳馆,随着技术不断发展和国家对新能源的进一步开发利用,热源以前的,更多的泳馆开始采用空气源热泵、太阳能、地源热泵等,泳馆专用除湿热回收空调也被广泛使用,但大多数游泳还主要是一种或二种的组合,节能效果还不够完善。

1.3以上几个能源的对比如下

1.3.1燃气锅炉。燃烧天然气提供热量稳定性好,效率高相对来说不太经济,运行费用较高。

1.3.2空气源热泵。与空气进行换热提供热量。用少量电源提供大量热量,能效比高,节能效果明显。能效比受周围空气温度的影响较大。

1.3.3太阳能。吸收太阳光照射的热量。绿色能源,节能,运行费用低。受光照影响较大,使用有区域限制.

1.3.4地源热泵。与地下土壤或地下水换热提供热量。具有空气源热泵的优点,同时比其供热的稳定性高很多。对热平衡的要求很高,不太适用于单体泳馆这种高耗热量低耗冷量的建筑,同时对土壤环境有一定影响。

1.3.5泳池除湿热泵。回收空气中热量给池水或空气加热。回收热量,降低泳馆能耗,有效降低运行费用,只是热量的回收利用,不能作为独立热源单独供泳馆使用,需要其他热源辅助。各种热源都有自身的优缺点,那么怎样通过几种热源的组合使用,使各热源之间优劣互补,达到既能保证泳馆稳定运行,又能最大程度降低运行费用的目的,就是目前游泳馆节能控制的重点。

2“碧浪科技”在泳馆节能技术与新能源的应用

江苏碧浪水科技有限公司专业从事游泳馆节能机电设备的工程,集设计、生产、施工为一体,近几年结合自身设计施工特长,运用到实际工程中,在行业内最早将“水处理”+“除湿热回收”+“地采暖”+“热水锅炉”+“空气源热水”或“太阳能热水”的组合热源系统配置应用到游泳馆机电设备系统中,一步解决游泳馆水体恒温、空气调节、除湿热回收、淋浴热水、组合能源等技术工作。根据春夏秋冬季节来分别组合使用,从而达到全年节能、泳馆不亏、多盈利的目的。

2.1系统组合基本概念

2.2系统工艺流程图及简要说明

2.2.1水处理+除湿热回收系统工艺流程图

2.2.2组合热源系统工艺流程图(热水锅炉/空气源热泵/太阳能)

“江苏碧浪”结合各个系统各自的优缺点,在不同的季节各系统进行转换,将每一个系统的特点扬长避短。

3实际案例分析

无锡某游泳馆为独立建筑,泳池池水面积50×21=1050m2,设计平均水深1.5m设计水量1540m3,设计水温27±1℃。泳池池厅面积为1650m2,池厅有效高度6.9m,总有效体积约11500m3,建筑屋顶采用钢网架保温顶结构,建筑墙体围护。

3.1设计参数及热源设备选型

根据规范要求,本工程池水温度设定为27℃,室内空气温度取29℃,泳池水设计初次加热时间为48h。根据无锡地区气象资料,游泳馆四季运行模式持续时间及参数见表2。根据《游泳池给水排水技术规程CJJ-2008》计算,维持泳馆日常运行的热功率见表3。综合上述数据可知:泳馆的最大耗热量初次加热为733kW,日常用热为751kW,取两者大的751kW作为泳馆的设计热负荷。本工程最终选用两台300kW燃气热水锅炉,六台20HP空气源热泵,23套SLL4715-50-D/H太阳能真空管集热器作为热源。系统运行操作说明:(1)夏季运行时,20HP空气源热泵供热量为95kW(已考虑热效率),6台空气源热泵系统设计时考虑分组,恒温热量由空气源热泵分组完成,淋浴热水由太阳能提供,除湿热泵开启夏季模式,除湿及为泳馆提供空气制冷负荷,锅炉系统停用。(2)春秋季运行时,当采用通风除湿时(50%时间),由四台空气源热泵给泳池水恒温,两台空气源热泵和太阳能供淋浴用水;当采用除湿热泵除湿时(50%时间),由两台空气源热泵给泳池水恒温,两台空气源热泵和太阳能供淋浴用水,两台备用,除湿热泵提供除湿及空气温度热负荷,锅炉在特殊日期(连续阴雨模式)提供备热负荷作为后备设备。(3)冬季运行时,两台燃气锅炉供池水恒温、地暖供热及空气辅助加热负荷,六台空气源热泵供淋浴热水,太阳能在光照好时对淋浴进行补充。(4)初次加热运行时,二台锅炉满足池水初次加热的需要。

3.2泳馆运行费用分析(能耗部分)

泳馆常年运行,每春秋季度有两天对场馆进行检修清洗消毒,两天对池水进行加热,做营业准备,其余时间正常运行。锅炉热水系统换热效率按92%计算,燃气热值按8500KCA/Nm3计算,每立方售价以2.9元/Nm3计,电费按0.81元/度计。现按季节进行如下的运行费用分析:(1)初次加热春秋季空气源热泵提供457kW费用约:8000.00元夏季冬季不产生。(2)水体恒温及空气温度维护①春秋:50%时间采用通风除湿工况时泳池恒温费用约100000.00元50%时间采用冷凝除湿工况时泳池恒温费用约35000.00元。②夏季:2台空气源热泵提供初夏水体恒温费用约:38000.00元;后续由除湿热泵回收热量提供恒温。③冬季:由锅炉提供所有热量,天气好时空气源热泵可辅助一部分,费用约366000.00元。(3)淋浴系统①春秋季:先由太阳能提供,热量不足时2台空气源热泵提供,费用约38000.00元。②夏季:全部由太阳能提供,无补充加热运行费用。③冬季:由锅炉提供所有热量,天气好时太阳能为水箱提供部分热量,费用48000.00元。(4)小计:春季:181000.00元,夏季:38000.00元,秋季:181000.00元,冬季:414000.00元。(5)全年热负荷费用合计:181000.00+38000.00+181000.00+414000.00=814000.00。

3.3与常规单一热源运行对比

如果泳馆采用单一燃气热水锅炉作为热源,需要两台600kW的燃气热水锅炉,经计算,全年的运行费用约为1150000.00元,与本工程采用组合型热源相比运行费用要多336000.00元。单一燃气热水锅炉系统总造价约80~100万元,组合型热源系统总造价约150万元,造价要高50~70万元,但是节约的运行费用在2~2.5年左右就可以完全回收这部分的造价,而设备的运行年限都在15年以上,省下的运行费用相当可观。

4结论

除湿范文篇10

关键词:冷却顶板结构对流辐射

1.概述

冷却顶板空调系统主要靠冷辐射面提供冷量。目前国外已有许多专家学者对冷却吊顶空调系统进行了大量的理论和实验研究,主要包括该系统的设计方法、室内热环境及其控制方法、系统的能耗指标等。而且,在德国和北欧已有很多应用冷却吊顶空调系统的工程实例,冷却吊顶设备也不断地更新换代,该系统大有替代传统全空气空调系统的趋势。本文从理论上对冷却吊顶空调系统的结构、换热计算及空气处理过程进行了分析,并依据换热分析结果对冷却吊顶的结构设计提出了一些改进意见。

2.冷却顶板的结构分析

冷却顶板水管与金属顶板可以制作成一体,直接形成一顶板单元(见图1a),或者通过传热片把水管和金属顶板联结起来,形成一吊顶单元(见图1b),另外水管也可以以毛细管的形式镶嵌在顶板内,组装成一安装单元(见图1c)。

一体式结构复杂,工期较长,不能保证质量;镶嵌式需要较高的机械工艺成本较大另外对水质要求较高;而单元式可以以产品的形式在工厂内部进行组装,效率较高质量有保证,所以建筑业和现代工业的不断发展,单元式应该是今后发展的趋势。图2即为笔者曾经参与设计的冷却顶板结构形式,图3为其正视图放大图。

该系统水管紧贴顶板,为了保证水管与顶板紧密结合,每根管分别由管槽压紧,管槽与顶板之间的连接方式采用闪光对焊形式的点焊机点焊,不影响顶板外表面美观,这些工艺都在工厂内进行。

顶板单元之间的联结方式可以采用两端带接头的柔性软管连接,或者根据水管材料不同,若水管为塑料管,如PR、PR-T等管材,采用电热熔焊方式较好;若水管为铜管,采用直接焊接方式也可接受,为满足防火需要,可采用无明火的高频焊机焊接方式。

3.冷却顶板系统换热分析

冷却顶板的传热有两种形式,即辐射和自然对流。两者的传热比例取决于顶板的物理特性以及顶板附近的空气流动形式,其比值大小很难通过仪器测量直接得出,但是我们可以通过所建模型的分析估计该比值的范围,为空调系统的设计提供参考。

在同样的供水温度下,由于冷却顶板结构不同,传热效果不同。不同形式的冷却顶板表面温度是不一样的,显然,相比较来说,供水到冷却顶板表面的热阻小时,具有更强的优势,这样在顶板表面温度相等的情况下,供水温度可适当提高,提高了制冷机组的COP值,同时减轻结露的危险,一般情况下当供水温度为16°C时,表面平均温度为17.5°C,是可以接受的。

现取一模型房间,已知条件如下:

辐射顶面ts=17.5°C,室内tN=26.0°C,周围墙壁温度tq=29°C,地面温度td=29°C。取模型空间几何尺寸:长×宽×高=3.3m×6.6m×2.9m。

3.1单位面积顶板辐射换热量计算:

其冷却顶板表面发射率ε1=0.9,墙体和地面发射率ε2=0.8,组成封闭腔的表面间的辐射换热量计算公式为:

式中:

F1=21.78m2,F2=79.2m2

所以:

3.2单位面积顶板对流换热量计算:

对流采用水平放置冷面朝下的自然对流计算公式。

特性尺度

由定性温度tm确定空气的物性值:tm=(17.5+26)/2=21.8°C

查得空气的物性参数:

λf=2.6×10-2W/(m.°C);ν=15.26×10-6;Pr=0.703;

,属于紊流状态。

由文献(1)查表7-6,得下式中的C=0.15,n=1/3,则:

3.3计算结果分析:

由以上计算,可知总换热效率为:

其中,辐射换热约占总换热的65%,对流换热约占总换热的35%。由于冷却顶板具有噪音很少,舒适度高等优点,可以适用于高档住宅及高档写字楼等场所。

4.空气处理过程分析

冷却顶板只能除去显热负荷,无法除去湿负荷,因此冷却顶板设计中有一点是不容忽视的,即在一定的空气状态下,当整个制冷系统处于温度最低点时,冷却顶板表面温度可能会降到室内空气露点温度以下,从而出现结露的危险。因此,为避免结露,应通过调节水系统或空气系统,使供水温度高于空气露点温度。出于此种考虑,供水温度一般为16℃左右,对相对湿度较高的送风进行除湿处理,使其露点温度低于14℃。

空气的除湿过程有两种方式,一是采用传统的空调方式,即送风由冷水盘管或制冷剂直接蒸发进行冷却除湿,盘管表面温度必须低于送风露点温度以进行除湿处理,空气经过此处理过程后会过冷,因此在送入室内之前往往需要进行再热处理;另一种方法是采用转轮硅胶除湿器进行除湿处理,因而比较适用于送风温度相对而言比较高时需要去湿的场合。单独采用第一种方式,由于空气处理后过冷,还需要进行热处理,显然不是节能之举。对于第二种方式,由于除湿时潜热转换为显热,送风温度过高,也不适用于一般空调系统。因此,可以采用两种方式的综合,其空气处理过程及焓湿图如图4、图5所示。

空气通过转轮硅胶除湿器后,温度上升,一部分进入供水为16°C的冷水盘管,由感温器控制其开启程度,然后与旁通的一部分混合。达到送风状态点O,送风温度和室内温度相同取26°C。冷却顶板承担建筑冷负荷等所有的显热负荷,冷水盘管承担新风负荷和其它的潜热负荷。具体送风方式可以采用侧送风或孔板送风,以便在顶板表面形成一层相对干燥的空气贴附保护层,阻止下部吸收了热量特别是潜热而对流上升的空气与顶板的直接接触,促使顶板一直在干燥状态下运行,减少细菌滋生的机会,延长吊顶的使用寿命。

5.结论

通过以上的分析,我们可以得出以下结论:

5.1进行冷却顶板结构设计时,尽量减少供水与顶板表面之间的热阻,采用单元式冷却顶板,可以减少安装时间保证顶板质量。

5.2根据算例,在自然对流的情况下,单位面积换热量大约为88.98W/m2其中辐射换热约占总换热的65%,对流换热约占总换热的35%,采用强制对流,增大顶板表面和内墙表面发射率,其换热效率增加是显而易见的。

5.3对于送风方式应采用先由转轮硅胶除湿器除湿,然后通过冷却盘管的一部分和旁通的另一部分混合达到与室内等温的送风状态,并且保证在顶板表面形成一层干燥的空气保护层,这样具有较高的舒适度,可以有效解决顶板的结露问题,减少细菌滋生的机会。

参考文献:

1.陆耀庆.实用供热空调设计手册.北京:中国建筑工业出版社,1994

2.章熙民,任泽霈,梅飞鸣.传热学(第二版).北京:中国建筑工业出版社,1993

3.姚仲鹏,王瑞君,张晖.传热学.北京:北京理工大学出版社,1995