光敏电阻十篇

时间:2023-04-07 19:31:51

光敏电阻

光敏电阻篇1

1、工作原理:光敏电阻的工作原理是基于内光电效应。在半导体光敏材料两端装上电极引线,将其封装在带有透明窗的管壳里就构成光敏电阻,为了增加灵敏度,两电极常做成梳状。用于制造光敏电阻的材料主要是金属的硫化物、硒化物和碲化物等半导体。通常采用涂敷、喷涂、烧结等方法在绝缘衬底上制作很薄的光敏电阻体及梳状欧姆电极,接出引线,封装在具有透光镜的密封壳体内,以免受潮影响其灵敏度。入射光消失后,由光子激发产生的电子—空穴对将复合,光敏电阻的阻值也就恢复原值。在光敏电阻两端的金属电极加上电压,其中便有电流通过,受到一定波长的光线照射时,电流就会随光强的增大而变大,从而实现光电转换。光敏电阻没有极性,纯粹是一个电阻器件,使用时既可加直流电压,也加交流电压。半导体的导电能力取决于半导体导带内载流子数目的多少。

2、结构原理:光敏电阻是用硫化隔或硒化隔等半导体材料制成的特殊电阻器,表面还涂有防潮树脂,具有光电导效应。光敏电阻的工作原理是基于内光电效应,即在半导体光敏材料两端装上电极引线,将其封装在带有透明窗的管壳里就构成光敏电阻。

(来源:文章屋网 )

光敏电阻篇2

一、二极管的单向导电性类习题

例1(2006・海淀)阅读下面短文,回答问题。

二极管的导电特性

二极管是一种电学元件,它最重要的特性就是单向导电性。图1甲所示是二极管的实物图和它的电路图符号,在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实脸说明二极管的单向导电性。

方法是:将二极管与一个小灯泡、一个开关串联在干电池两端。闭合开关后,若灯泡亮,表明二极管的连接方式是图1乙所示,这种连接方式相当于电路中的通路状态;若灯泡不亮,表明二极管的连接方式是图1丙所示,这种连接方式相当于电路中的断路状态。这个实验很直观地说明了二极管的单向导电性。

(1)把二极管、小灯泡、电池、开关分别连接成图2所示电路,请分别说明闭合开关后甲、乙电路中的小灯泡是否发光?

(2)请设计一个实验,利用二极管判断蓄电池的正负极(没有电压表、电流表,其他器材自选)。请在虚线解析:(1)由二极管的单向导电性可知:电流由二极管的正极流入,二极管相当于一根导线,电路形成通路;电流由二极管的负极流入,二极管相当于开关断开,电路形成断路。所以,图2甲中小灯泡发光,图2乙中小灯泡不发光。

(2)电路图如图3所示。判断方法:闭合开关后,若小灯泡亮,则二极管正极一端是蓄电池的正极;若小灯泡不亮,则二极管正极一端是蓄电池的负极。

二、光敏电阻的性质类习题

例2(2007・连云港)图4甲所示是某生产流水线上的产品输送及计数装置示意图。其中S为一激光源,R1为光敏电阻(有光照射时,阻值较小;无光照射时,阻值较大),R2为定值保护电阻,a、b间接一“示波器”(示波器的接入不影响电路)。光敏电阻两端的电压随时间变化的图象,可由示波器显示出来。水平传送带匀速前进,每当产品从传送带上通过S与R1之间时,射向光敏电阻的光线会被产品挡住。若运送边长为0.1 m,质量为0.6 kg的均匀正方体产品时,示波器显示的电压随时间变化的图象如图4乙所示。请回答下列问题:

(1)此产品的密度为多大?

(2)产品对传送带的压强为多大?(g取10 N/kg)

(3)已知计数器电路的电源电压恒为6 V,保护电阻R2的阻值为40 Ω,求光敏电阻在两种状态下的阻值分别为多大?光敏电阻1 h消耗的电能为多少?

(3)有光照射时

U1=2 V

U2=U-U1=4 V

光被挡住时

U1′=4 V

U2′=U-U1′=2 V

光敏电阻1 h消耗的电能

W总=W1+W2=(480+240) J=720 J

三、压敏电阻的性质类习题

例3(2007・镇江)有一种测量压力的测力计,其原理图如图5所示,电源电压为6 V,并保持不变。R是一个压敏电阻,R0是一个阻值为400 Ω的定值电阻,它能对压敏电阻R起保护作用,G是由量程很小的电流表改装成的指针式测力显示器。R的阻值可随压力F的大小变化而改变,其关系如下表所示且保持不变。

(1)根据表中数据在图6所示坐标系中画出压敏电阻R的阻值随压力F的大小变化的图象。

(2)利用表中的数据或R的阻值随压力F的大小变化的图象,归纳出R的阻值随压力F的大小变化的关系式。

(3)若电阻R0的耐压值(即能承受的最大电压)为5 V,则该测力计的最大测量值为多少牛顿?

解析:(1)用描点法作出图象,图象见图7。

式为R=kF+b,代入相关数据可得R=300-0.4F。

(3)从上式可知:当压力增大时,压敏电阻值减小;当电阻R0两端电压U0=5 V时,压敏电阻两端的电压次函数关系所以测力计显示器的刻度是不均匀的。

四、热敏电阻的性质类习题

例4(2008・苏州)小明在科技活动中,了解到有一种用半导体材料制成的热敏电阻,其电阻R随温度T变化的图象如图8甲所示。

(1)热敏电阻的阻值随温度的升高而_____________(选填“增大”或“减小”)。

(2)小明想利用热敏电阻制成温度报警器。实验室中现有两只外形完全相同的电阻R1和R2,其中一只为热敏电阻,另一只为定值电阻(阻值不随温度的变化而变化)。为了辨别它们,小明设计了如图8乙所示的电路。

①接下来小明应如何操作?

答:__________________________________________

_________________________________________________

_________________________________________________

________________________________________________。

②根据观察到的什么现象辨别出热敏电阻?

答:__________________________________________

_________________________________________________

_________________________________________________

_________________________________________________

________________________________________________。

解析:(1)由图象可知,热敏电阻的阻值随温度的升高而减小。

光敏电阻篇3

关健词:Z-元件、光敏Z-元件、磁敏Z-元件、传感器

一、 前言 

光敏Z-元件是Z-半导体敏感元件产品系列中[3]重要品种之一。它具有与温敏Z-元件相似的伏安特性,该元件也具有应用电路极其简单、体积小、输出幅值大、灵敏度高、功耗低、抗干扰能力强等特点。能提供模拟、开关和脉冲频率三种输出信号供用户选择。用它开发出的三端数字传感器,不需要前置放大器、A/D或V/F变换器,就能与计算机直接通讯。该元件的技术参数符合QJ/HN002-1998的有关规定。 

磁敏Z-元件是Z-半导体敏感元件产品系列中[3]第三个重要品种。它具有与温敏Z-元件相似的伏安特性,该元件体积小,应用电路极其简单,在磁场的作用下,能输出模拟信号、开关信号和脉冲频率信号,而且输出信号的幅值大、灵敏度高、抗干扰能力强。 

光敏、磁敏Z-元件及其三端数字传感器,通过光、磁的作用,可实现对物理参数的测量、控制与报警。 

二、 光敏Z-元件及其技术参数 

图1 电路符号与伏安特性 

1. 光敏Z-元件的结构、电路符号及命名方法 

光敏Z-元件是一种经过重掺杂而形成的特种PN结,是一种正、反向伏安特性不对称的两端有源元件。 

表1、光敏Z-元件的分档代号与技术参数 

名称 

 符号 

 单位 

 阈值电压分档代号 

 测试条件 

T=20°C或25°C 

 

10 

 20 

 30 

 31 

 

阈值电压 

 Vth 

 V 

 <10 

 10~20 

 20~30 

 >30 

 RL=5kW 

 

阈值电流 

 Ith 

 mA 

 £1 

 £15 

 £2 

 £3 

 RL=5kW 

 

导通电压 

 Vf 

 V 

 £5 

 £10 

 £15 

 £20 

 RL=5kW 

 

反向电流 

 IR 

 mA 

 £45 

 £45 

 £45 

 £45 

 E=25V 

 

允许功耗 

 PM 

 mW 

 100 

 100 

 100 

 100 

   

 

转换时间 

 t 

 ms 

 20 

 20 

 20 

 20 

   

 

阈值灵敏度 

 Sth 

 mV/100lx 

 -80 

 -120 

 -150 

 -200 

 RL=5kW 

 

阈值灵敏度温漂 

 DTth 

 %/100lx×°C×FS 

 >-4 

 RL=5kW 

 

M1区灵敏度 

 SM1 

 mV/100 lx 

 200 

 250 

 300 

 350 

 RL=Vth/Ith 

 

M1区灵敏度温漂 

 DTM1 

 %/100 lx×°C×FS 

 >-3 

 RL=Vth/Ith 

 

反向灵敏度 

 SR 

 mV/100lx 

 >800 

 E=25V 

 

反向灵敏度温漂 

 DTR 

 %/100 lx×°C×FS 

 >-1 

 RL=510kW 

 

图1(a)为结构示意图,图1(b)为电路符号。元件引脚有标记的或尺寸较长的为“+”极。 

该元件的命名方法分国内与国际两种: 

国内命名法: 

国际命名法 

响应波长代号 : 

1—0.4~1.2mm 

2—0.2~1.2mm。 

2. 光敏Z-元件的伏安特性曲线 

图1(d)为光敏Z-元件的的伏安特性曲线。在第一象限,OP段M1区为高阻区(几十千欧~几百千欧)。pf段M2区为负阻区,fm段M3区为低阻区(几十千欧~几百千欧)。其中Vth叫阈值电压,表示在T(℃)时Z-元件两端电压的最大值。Ith叫阈值电流,是Z-元件与Vth对应的电流。Vf叫导通电压,是M3区电压的最小值。If叫导通电流,是对应Vf的电流,也是M3区电流的最小值。在第三象限为反向特性,反向电流IR是在无光照时反向电压VR为25V时测量的,其值(微安级)很小。 

3. 光敏Z-元件的分档代号与技术参数 

光敏Z-元件的分档代号与技术参数见表1。其分档代号按Vth值的大小排列。型号分二种,按其响应波长分。目前产品波长代号皆为1。 

三、 光敏Z-元件的光敏特性 

1. 无光照时光敏Z-元件正、反向伏安特性的测量 

用遮光罩把光敏Z-元件罩上,即在无光照的情况下,利用图1(c)特性测量电路测量其正、反向伏安特性,测量电路与方法与温敏Z-元件相同 [6] 。 

2. 光敏Z-元件正向光敏特性 

把Z-元件接在正向特性测量电路上,Z-元件放置在可变照度的光场中。测量时照度由小到大,每次递增100lx,用数字照度计校准,然后测量Z-元件的正向特性,记录不同照度时的Vth、Ith、Vf 。从测试可知,光敏Z-元件的阈值点P(Vth,Ith)随着照度的增加,一直向左偏上方向移动如图2(a),Vth随光照增加而增大,Vf变化较小。Vth、Ith与照度L的关系参看图3。 

光敏Z-元件的正向特性还具有光生伏特现象,Z-元件的“正”极即光生伏特的“+”极。目前,光生伏特饱和电动势为200mV左右,短路电流随光照增强而增大。当照度为100lx~5000 lx时短路电流为几微安至几十微安。 

3. 光敏Z-元件反向光敏特性 

把Z-元件连接在反向特性测量电路中,并把Z-元件置于可变光场中。改变光场照度,用数字照度计校准,测量其反向特性,即反向电压VR与反向电流IR的关系。其特性如图2(b)。可以看出其反向电阻随照度增加而减小,反向电流随光照增强而变大。

四、 光敏Z-元件的应用电路 

光敏Z-元件有与温敏Z-元件相似的正、反向伏安特性,温敏Z-元件的应用电路,在理论上都适用于光敏Z-元件。考虑到光敏Z-元件的Vth、Ith、IR有一定的温漂,因此在光开关电路中,应当有抗温度干扰的余量,在模拟应用电路中,应采用具有抗温漂自动补偿电路。

 

 

1. M1M3转换,输出负阶跃开关信号电路[3],[4] 

负阶跃开关信号输出电路示于图4(a),工作过程的图解示于图4(b)。在无光照时,OP1为光敏Z-元件M1区特性,阈值点为P1(Vth1,Ith1),E为电源电压,以负载电阻值RL和电源电压E确定的直线(E,E/RL)交电压轴为E,交电流轴为E/RL。Q1为无光照时的工作点其坐标为Q1(VZ1,IZ1),输出电压VO1=VZ1=E-IZ1RL 。我们选择合适的电路参数,使在照度为E2时,阈值点P1移至P2,并刚好在直线(E,E/RL)上,这时Q2与P2重合。光敏Z-元件开始进入了负阻M2区,Q2点在几微秒之内即达到了f点[5],其坐标为f(Vf,If)。此时输出电压为VO2=VOL=Vf,输出端输出一个负阶跃开关信号。为了得到一个负阶跃开关信号,在照度为L2时,工作点Q2与阈值点Vth2重合,电路中各参数必须满足的条件可用下述状态方程描述: 

E=Vth2+Ith2RL (1) 

其中,负载电阻值RL一般为1~2kW,选择原则是,当在照度L2时,Z-元件工作在M3区,工作点Q2的电压为VZ2=Vf,电流为IZ2=If,电压与电流之积为VfIf=P,并且P≤PM≤50mW。即在功耗不大于50mW的情况下,选择较小的RL,这个开关信号的振幅为DVO: 

DVO=Vth2-Vf (2) 

公式(1)告诉我们为了要得到负阶跃开关信号,E、Vth2、Ith2三者之间的关系。这时还要考虑以下几个问题: 

(1)从图3(a)知道照度L越大,Vth越小,Ith越大,IthRL也越大,DVO将下降,以至会发生因振幅过小满足不了要求的情况;另一方面,过大的照度也是不经济的。也就是说,照度选择要适当。 

(2)在应用的范围内,在无光照不输出负阶跃开关信号的情况下,工作点Q1选择应尽量偏右,这样有利于减小监控或报警照度。 

(3)供电的直流电源应是一个小功率可调电源。在照度L2监控或报警时,其值应与(1)式计算值相等。 

2. 反向应用输出模拟电压信号 

Z-元件反向电流极小,呈现一个高电阻(1~6MW),这个电阻具有负的光照系数,并在较高电压(30~40V)下,不发生击穿现象。图5 为反向应用电路及工作状态解析图。可以看出在无光照时,L1=0,工作点为Q1(VZ1,IZ1),输出电压为VO1,则: 

VO1=E-VZ1=E-IZ1RL 

当光照为L2时,伏安特性上移,工作点由Q1移至Q2(VZ2,IZ2),输出电压为VO2,则: 

VO2=E-VZ2=E-IZ2RL 

反向光电压灵敏度用SR(mV/100lx)表示:

 (3) 

3.M1M3,M3M1相互转换,输出脉冲频率信号 

该电路仅需三个元件,用一个小电容器与Z-元件并联,再串联一负载电阻RL,即可构成光频转换器,如图6所示,达到了用光敏Z-元件实现光控脉冲频率的目的。与温敏Z-元件脉冲频率电路相同,在无光照时,电源通过RL对电容器充电,当VC<Vth时,Z-元件工作在M1区,当VC≥Vth时,Z-元件迅速由M1区经M2区工作在M3区。M3区是低阻区,电容器迅速通过Z-元件放电,当放电至VC≤Vf时,Z-元件脱离M3区回到M1的高阻区,电源通过RL重新对电容器充电,如此周而复始重复上述过程,由输出端输出后沿触发的脉冲频率信号。信号频率用f表示: 

 (4) 

t≈RL C 

从式(4)可以看出,光照越强,Vth越小,而Vf基本不变,因而频率上升的越高。在弱光和强光下,Vth灵敏度较低,所以频率灵敏度也较低,在300~1000lx有较高频率灵敏度。RL值选择范围是8.2kW~20kW,C选择范围是0.01mF~0.22mF,E应为(1.5 ~1.8) Vth。数值小的电容器振荡频率较高,也有较高的频率灵敏度,电源电压的范围较窄;数值较大的电容器振荡频率较低,频率灵敏度也较低,但电源电压范围宽。 

五、 光敏Z-元件特性与应用电路总结 

光敏Z-元件的伏安特性与温敏Z-元件的伏安特性是极为相近的,前者的光特性与后者的温度特性也非常相似[6]。 

Z-元件的特性及应用电路可以概括为:一个特殊的点,即阈值点P(Vth,Ith),该点的电压灵敏度为负,电流灵敏度为正。有二个稳定的工作区,即高阻M1区,和低阻M3区。在VZ<Vth时,工作在高阻M1区,在VZ≥Vth时,迅速越过负阻M2区,工作在低阻M3区,当VZ≤Vf时,又恢复到高阻M1区。有三个基本应用电路,即开关电路,反向模拟电路和脉冲频率电路。有四个主要参数:即Vth、Ith、 Vf、IR。 

上述三个基本应用电路参看表2-1、表2-2、表2-3。表2-4是表2-1中RL与Z-元件互换位置后构成的正阶跃开关电路与输出信号波形;表2-5是表2-2中RL与Z-元件互换位置后构成的NTC电路。 

光敏Z-元件的电参数中Vf的温度系数稍小,Vth、Ith、IR三个参数的温度系数稍大。在要求较高的场合,应当采用电路补偿或元件补偿,使之满足设计要求。 

六、 光敏Z-元件应用示例 

1.有温度补偿的光开关电路 

该电路使用两个光敏Z-元件,并做反向应用,要求两个Z-元件的反向电流相等,且反向温度灵敏度温漂DTR相近。其中V2避光、V1用于光照。图7(b)为解析图,无光照的伏安特性为V1(0lx,T1℃)和V2(0lx,T1℃)有温度变化的伏安特性为V1(0lx,T2℃)和V2(0LX,T2℃),V2受光照的伏安特性为V2(Llx,T2℃)。VR为电位器R两端电压,VR1 (VR2)为T1℃(T2℃)时R两端电压,输出电压VO取自R的二分之一阻值点。在缓慢变温的场合,VO始终等于电源电压的二分之一。只有在V2受光照后,其反向电阻变小,IR增大,但是V1、R1、V2串联电路中流过三个元件中的电流相等,电位器R中点电位上升,输出电压VO2升高。达到设定照度后,D1输出由低电平变成高电平,V3导通,继电器吸合触点用于控制其它电路。

 

光敏电阻篇4

一、工作原理

通过固定在输液瓶或输液管上的光电传感器,利用液面下降到预定位置时对光的反射或折射情况的变化判断药液是否输完。

将特制的红外光电传感器紧靠输液瓶口卡于输液管上,当瓶内液体未输完时,管内充满液体,光电传感器发光管发出的光线可直接射于对面的光敏接收管上,接收管处于导通状态。

当瓶内液体输完、液面下降到输液管中时,由于毛细现象及管内液体层流作用,液面向下凹陷,发光管发出的光线在弯曲液面上发生折射,致使光敏接收管失去光照而停止工作。

当液面通过光电传感器后,光线又可直接照射光敏接收管,接收管恢复导通状态。瓶内药液输完后,液面通过光电传感器时,光敏接收管将经历一次导通-停止-导通的状态,即输液完成的信息。

输液时一般使用透明塑料管, 当管内有液体时, 管壁和管内柱形液体相当于一个柱形透镜,如图1所示,光线不仅能通过, 而且还能聚集到某一片区域。

管内无药水时,管内气体使光线形成散射, 光线主要集中在管壁内, 仅有很少一部分溢出。光敏器件能把这种光信号的变化转变成电信号的变化,再经控制电路处理使装置在无药水的情况下发出警报。

光敏电阻的阻值随光照强度的减小而变小,而且在光照强度较小时,电阻阻值的变化更明显,所以使用光敏电阻作报警装置的光敏器件在管内有液体时阻值小,无液体时阻值大。利用在两种情况下光敏电阻阻值的不同,就可以判断输液是否完成。电路设计框图如图2。

二、测试过程

最初测试时,发现电路并没有按预期的模式工作,LED灯一直处于工作状B。经过分析,可能是电阻阻值不合适导致的。重新调试后装置依旧不能正常工作,检查分析电路板后发现,电路管脚接点不正确,导致电路的功能受影响。

接着我又调试了PCB板,并使用备用的面包板重新搭线,安装模型,调节电阻阻值等参数,在接通电源后最终达到了理想的效果。

三、结论分析

实验成品可准确判断输液是否完成,具有较高的灵敏度。同时,在外界光线强度不大的情况下亦可正常工作,具有一定的抗干扰能力。如果要求不高,还可直接将LED接入比较器,有利于节约成本,扩大适用范围。

光敏电阻篇5

传感器是把非电学物理量(如位移、速度、压力、温度、湿度、流量、声强、光照度等)转换成易于测量、传输、处理的电学量(如电压、电流、电容等)的一种组件,起自动控制作用。一般由敏感元件、转换器件、转换电路三个部分组成,如:

二、传感器的分类

1.力电传感器

力电传感器主要是利用敏感元件和变阻器把力学信号(位移、速度、加速度等)转化为电学信号(电压、电流等)的仪器。力电传感器广泛地应用于社会生产、现代科技中,如安装在导弹、飞机、潜艇和宇宙飞船上的惯性导航系统,以及安装在汽车上的ABS(防抱死制动系统),等等。

例1:演示位移传感器的工作原理如图1所示,物体M在导轨上平移时,带动滑动变阻器的金属滑杆p,通过电压表显示的数据,来反映物移的大小x。假设电压表是理想的,则下列说法正确的是()。

A.物体M运动时,电源内的电流会发生变化

B.物体M运动时,电压表的示数会发生变化

C.物体M不动时,电路中没有电流

D.物体M不动时,电压表没有示数

答案:B。

2.热电传感器

热电传感器是利用热敏电阻的阻值会随温度的变化而变化的原理制成的,如各种家用电器(空调、冰箱、热水器、饮水机、电饭煲等)的温度控制、火警报警器、恒温箱等。

例2:广泛应用于室内空调、电冰箱和微波炉等家用电器中的温度传感器,是利用热敏电阻随温度变化而变化的特性工作的。在图2甲中,电源的电动势E=9.0V,内电阻不可忽略;G为内阻不计的灵敏电流表;R为保护电阻;R为热敏电阻,其电阻值与温度变化关系如图乙的R-t图像所示。则热敏电阻R与摄氏温度t的关系为R=;闭合电键S,当R的温度等于40℃时,电流表示数I=2.25mA,则当电流表的示数I=3.6mA时,热敏电阻R的温度是摄氏度。

答案:R=-1.875×10t+4.25;120。

解析:因为图像是直线,用斜截式求热敏电阻R与摄氏温度t的关系,设为R=kt+b,则根据t=0时,R=4.25kΩ(此处易误读为R=4.5kΩ,要小心),得b=4.25,再根据t=120°时,R=2kΩ,得k==-0.01875,所以得R与t的关系为R=1.875×10t+4.25。

从图甲,有E=I(R+R),从图乙读出,当t=-40°时,R=3.5kΩ,代入得9=2.25×(3.5+R),可求出R=0.5kΩ,又有9=3.6×(0.5+R),解得R=2kΩ,查图乙得t=120℃。

3.光电传感器

光电传感器中的主要部件是光敏电阻或光电管。如果是光敏电阻的阻值随光照强度的变化而变化的原理制成的。如自动冲水机、路灯的控制、光电计数器、烟雾报警器等都是利用了光电传感器的原理。

例3:如图3所示为光敏电阻自动计数器的示意图,其中A是发光仪器,B是传送带上物品,R为光敏电阻,R为定值电阻,此光电计数器的基本工作原理是()。

A.当有光照射R时,信号处理系统获得高电压

B.当有光照射R时,信号处理系统获得低电压

C.信号处理系统每获得一次低电压就记数一次

D.信号处理系统每获得一次高电压就记数一次

解析:光敏电阻自动计数器原理图如上,当传送带上没有物品挡住由A射出的光信号时,光敏电阻阻值变小,由分压规律知供给信号处理系统的电压变低;当传送带上有物品挡住由A射出的光信号时,光敏电阻的阻值变大,供给信号系统的电压变高并记数一次。这种高低交替变化的信号经过信号处理系统的处理,就会自动将其转化为相应的数字,实现自动计数的功能。故上题应选A、D。

4.声电传感器

例4:唱卡拉OK用的话筒内有传感器。其中有一种是动圈式的,它的工作原理是在弹性膜片后面粘接一个轻小的金属线圈,线圈处于永磁体的磁场中,当声波使膜片前后振动时,就将声音信号转变为电信号。下列说法正确的是()。

A.该传感器是根据电流的磁效应工作的

B.该传感器是根据电磁感应原理工作的

C.膜片振动时,穿过金属线圈的磁通量不变

D.膜片振动时,金属线圈中不会产生感应电动势

答案:B。

5.电容式传感器

电容器的电容C决定于极板的正对面积S、极板间距离d与极板间的电介质这几个因素。如果某一物理量(如角度、位移、深度等)的变化能引起上述某个因素的变化,从而引起电容的变化,则通过测定电容器的电容就可以确定上述物理量的变化,起这种作用的电容器称为电容式传感器。

图4甲是测量角度θ的电容式传感器,原理是由于C∝S,动片与定片间的角度θ发生变化时,引起S的变化,通过测出C的变化,测量动片与定片间的夹角θ。

图4乙是测量液面高度h的电容式传感器,原理是由于C∝S,h发生变化,金属芯线和导电液体组成的电容发生变化,通过测定C的变化,可以测量液面高度h的变化。

图4丙是测量压力F的电容式传感器,原理是由于C∝1/d,压力F作用在可动电极上,引起极板间距d的变化,通过测出C的变化,测量压力F的变化。

图4丁是测量位移x的电容式传感器,原理是由于C随着电介质进入极板间的长度发生变化,通过测出C的变化,测量位移x的变化。

6.电感传感器

电感式传感器是利用线圈的自感或互感的变化来实现测量或控制的一种装置,一般要利用磁场作为媒介或利用磁体的某些现象。

例5:下面是动圈式话筒的原理图,请你根据图5说出具体原理。

光敏电阻篇6

光敏传感器的物理基础是光电效应,即光敏材料的电学特性都因受到光的照射而发生变化。光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应。大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都是内光电效应类传感器。

1光电传感器的应用现状

1.1 电影发声系统

拍摄电影时的配音是把声音信号转换为光信号,用明暗不同的条纹记录在胶片边缘的声带上。放映电影时,光源发出的光通过移动声带后发生了强弱的变化,并被光电管所接收,光电管把强弱变化的光相应地转变为强弱变化的电流,经放大器放大后,由扬声器放出声音。

1.2 光控大门

干簧继电器由干簧管和绕在干簧管外的线圈组成,为了易于识别电路,通常在电路图中把线圈和干簧管分开来画。当线圈内有电流时,线圈产生的磁场使密封在干簧管内的两个铁质

簧片磁化,在磁力作用下由原来的分离状态变成连接状态,线圈内没有电流时,磁场消失,磁片在弹力的作用下,回复到分离状态。把光敏电阻装在大门上汽车灯光能照到的地方,带动大门的电动机接在干簧管的电路中。夜间,当汽车开到大门前,灯光照射光敏电阻时,干簧继电器接通电动机电路,带动大门打开。

1.3 天亮叫醒服务

蜂鸣器内装有发声电路,外边有负极和正极两极引线。使用时正极接电池正极。负极揍电池负极。当有电流通过时,能自动发出蜂鸣声。

1.4 包装充填物高度检测

用容积法计量包装的成品,除了对重量有一定误差范围要求外,一般还对充填高度有一定的要求,以保证商品的外观质量。当充填高度偏差太大时,光电接头没有电信号,即由执行机构将包装物品推出进行处理。

1.5 转速测量

将转速变换成光通量的变化,再经过光电元件转换成电量的变化即可得到转速。被测转轴上装有调制盘(带孔或带齿的圆盘),其一边设置光源,另一边设置光电元件。调制盘随轴转动,当光线通过小孔或齿缝时,光电元件就产生一个电脉冲。转轴连续转动,光电元件就输出一列与转速及调制盘上的孔(或齿)数成正比的电脉冲数。在孔(或齿)数一定时,脉冲数就和转速成正比。电脉冲输入测量电路后经放大整形,再送入频率计的计数显示。

1.6光电传感器在变电站通信控制系统中的应用

光电传感器作为一种新型的电压电流测量装置,与传统电磁式互感器相比较,具有绝缘强度高、动态范围、大频带宽、抗干扰能力强、不会产生磁饱和及铁磁谐振、体积小、重量轻、造价低等一系列优点。自20世纪60年代以来,光电传感器经历了原理性研究、试验样机和现场挂网运行等阶段。目前国外已经有部分实用化产品投入市场,但真正得到大规模的应用还有一个过程,而且国内变电站自动化系统的应用水平不一,如何让光电传感器在变电站自动化系统中得到应用并提高变电站自动化系统的水平,成为光电传感器研究的重点。变电站通信控制系统是变电站自动化系统的重要组成部分,其技术水平直接关系到变电站自动化系统的性能。随着电子技术和通信技术的飞速发展,变电站通信系统也经历了集中式、功能分布式和分散分布式等阶段。而通信系统的发展变化总是与变电站的测控、保护装置的发展变化相适应的。随着光电传感器在变电站中的应用,将对变电站通信控制系统产生深远的影响,并提高其自动化应用水平。

2光电传感器的发展趋势

近年来,由于传感器的广泛应用以及在日常生活中所起的越来越重要的作用,人们对传感器提出越来越高的要求。21世纪初期(2010前后)。敏感元件与传感器发展的总趋势是小型化、集成化、多功能化、智能化、系统化。传感器领域的主要技术将在现有基础上予以延伸和提高。并加速新一代传感器的开发和产业化。 纵观几十年传感技术领域的发展,不外乎分为两个方面:一是提高与改善传感器的技术性能;二是寻找新原理、新材料、新工艺及新功能等。

2.1 传感器改善性能的途径

一般常采用下列技术途径:差动技术,平均技术,补偿和修正技术,屏蔽、隔离与干扰抑制,稳定性处理。

2.2传感器的发展动向

2.2.1 开发新型传感器

a.采用新原理;

b.填补传感器空白;

c.仿生传感器等诸方面。

2.2.2开发新材料

a.从单晶体到多晶体、非晶体;

b.从单一型材料到复合材料;

c.原子(分子)型材料的人工合成。

2.2.3智能材料

是指设计和控制材料的物理、化学、机械、电学等参数,研制出生物体材料所具有的特性或者优于生物体材料性能的人造材料。

2.2.4新工艺的采用

新工艺的含义范围很广,这里主要指与发展新型传感器联系特别密切的维系加工技术。

2.2.5集成化、多功能化与智能化

3光敏传感器的基本特性及实验原理 3.1伏安特性 光敏传感器在一定的入射光强照度下,光敏元件的电流I与所加电压U之间的关系称为光敏器件的伏安特性。改变照度则可以得到一组伏安特性曲线,它是传感器应用设计时选择电参数的重要依据。光敏电阻类似一个纯电阻,其伏安特性线性良好,在一定照度下,电压越大光电流越大,但必须考虑光敏电阻的最大耗散功率,超过额定电压和最大电流都可能导致光敏电阻的永久性损坏。光敏二极管的伏安特性和光敏三极管的伏安特性类似,但光敏三极管的光电流比同类型的光敏二极管大好几十倍,零偏压时,光敏二极管有光电流输出,而光敏三极管则无光电流输出。

3.2光照特性

光敏传感器的光谱灵敏度与入射光强之间的关系称为光照特性,有时光敏传感器的输出电压或电流与入射光强之间的关系也称为光照特性,它也是光敏传感器应用设计时选择参数的重要依据之一。

4 实验仪器

光敏电阻篇7

关键词:太阳能;单片机;自动追光

中图分类号:TP273文献标识码:A文章编号:1009-3044(2012)13-3212-02

1功能方案

我们的整套装置集成了多项功能,其中包括初始寻光功能。在采光板上,五个光敏电阻成十字状。

我们首先采用调用电机旋转一圈,旋转的同时不断采及中心光敏电阻的AD数值,记录最强点,然后翻转回最强点,此种方案将能很好的判断多个光源时的光强最强点判断。此时水平方向已经对准,然后进入竖直方向修正,我们不断采集竖直方向两个光敏电阻的AD数值,进行比较,然后转动以减小二者的数值差。循环此过程直至上下两个光敏的数值相等,初始追光结束,进入时时追光功能。逻辑控制单片机不断调用底层驱动单片机采回位于边缘的四个光敏电阻的AD数值,比较水平向是否有差值,若有则根据差值大小调整相应角度,同理调整竖直向,以使竖直向两光敏数值趋于相等,不断循环进行采数,比较,调整过程,以保证采光板一直对准光强最强点。对于根据时间预设追光功能,首先我们需要一个万年历,我们通过外部信号给逻辑控制单片机每秒发送一个脉冲,然后单片机定时通过计数,模拟出时钟,然后我们通过对逻辑单片机的编成,实现了年月日时分秒的存储以及时时显示。有了万年历后,我们根据日照规律计算出采光板位置关于日期时间的函数,然后通过用程序在逻辑控制单片机端实现此函数,根据函数的到相应的追光动作,控制电机转至相应位置,从而实现预设追光。

2设计原理

2.1光强采集

光敏电阻通电时会两端电压因所接受的光强不同而改变,光强越强,电压越大,光强减弱,电压值减小。在整个装置的设计当中这是我们的最根本原理根据,我们不断的通过AD将光敏电阻值取回,通过逻辑判断进行相应操作。

2.2追光判断

为了追光,我们必须确定临界条件,我们在采光的板水平以及竖直方向放置了四个电阻,这样一旦水平方向的两个光敏电阻反映的光强值相等,则表示水平方向采光板以对准光强最强点。同理,当竖直两光敏电阻反应的光强值相等时,则竖直方向已对准光强最强方向。从而实现了二维追光。

2.3日照规律

为了更好的完成预设追光功能,我们研究了日照规律,并据此得到了相应的采光板位置关于时间的函数,并用此函数得到相应的追光动作。

2.4 AD芯片采数

为了更好的进行逻辑控制,我们需要精确的数值来反映光强大小,所以我们采用AD芯片采回光敏电阻两端的电压值,供计算使用。

2.5单片机控制

为了实现更多的追光策略,我们引入单片机,利用其可计算,可编成,可完成复杂控制逻辑的功能,更好的为装置提供控制策略,调用硬件运转完成我们所需的功能。

3程序说明

功能控制策略实现如图1所示。

4制作调试

为了使此设备能很好的运行,我们对其进行了多次测试。我们的原则是:迭代型开发过程。即首先设计出总体思路以及原理图、电路图,然后按照这些材料,针对每个部件进行开发测试,首先让每个部件设计制作完成,测试调通后进行组装测试。同时,由于我们的作品当中既有软件部分又有硬件部分,因此我们采用并行开发过程,然后将单片机电路制作完成后,用仿真器进行模拟逻辑正确性测试。由于有串行通讯,所以我们两块单片机分开制作,分别先和电脑相连通,借助串口精灵软件进行单独测试,完成后进行连通测试。软件模拟测试后,等待硬件开发结束后,用仿真器进行实际测试。基本功能实现后将程序烧入芯片进行最终测试。

图1

5测试纪录

非正常试验结果记录如表1所示:

表1

光敏电阻篇8

关键词:Z-元件、敏感元件、温度补偿、光敏、磁敏、力敏

一、前言

半导体敏感元件对温度都有一定的灵敏度。抑制温度漂移是半导体敏感元件的常见问题,Z-元件也不例外。本文在前述文章的基础上,详细介绍Z-元件的温度补偿原理与温度补偿方法,供光、磁、力敏Z-元件应用开发参考。

不同品种的Z-元件均能以简单的电路,分别对温、光、磁、力等外部激励作用输出模拟、开关或脉冲频率信号[1][2][3],其中后两种为数字信号,可构成三端数字传感器。这种三端数字传感器不需放大和A/D转换就可与计算机直接通讯,直接用于多种物理参数的监控、报警、检测和计量,在数字信息时代具有广泛的应用前景,这是Z-元件的技术优势。但由于Z-元件是半导体敏感元件,对环境温度影响必然也有一定的灵敏度,这将在有效输出中因产生温度漂移而严重影响检测精度。因而,在高精度检测计量中,除在生产工艺上、电路参数设计上应尽可能降低光、磁、力敏Z-元件的温度灵敏度外,还必须研究Z-元件所特有的温度补偿技术。

Z-元件的工作原理本身很便于进行温度补偿,补偿方法也很多。同一品种的Z-元件,因应用电路组态不同,其补偿原理与补偿方法也不同,特就模拟、开关和脉冲频率三种不同的输出组态分别叙述如下。

二、模拟量输出的温度补偿 对Z-元件的模拟量输出,温度补偿的目的是克服温度变化的干扰,调整静态工作点,使输出电压稳定。

1.应用电路

Z-元件的模拟量输出有正向(M1区)应用和反向应用两种方式,应用电路如图1所示,其中图1(a)为正向应用,图1(b)为反向应用,图2为温度补偿原理解析图。

2.温度补偿原理和补偿方法

在图2中,温度补偿时应以标准温度20℃为温度补偿的工作基准,其中令:

TS:标准温度

T:工作温度

QS:标准温度时的静态工作点 Q:工作温度时的静态工作点

QS¢:温度补偿后的静态工作点

VOS:标准温度时的输出电压

VO:工作温度时的输出电压

在标准温度TS时,由电源电压E、负载电阻RL决定的负载线与TS时的M1区伏安特性(或反向特性)相交,确定静态工作点QS,输出电压为VOS。当环境温度从TS升高到T时,静态工作点QS沿负载线移动到Q,相应使输出电压由VOS增加到VO,且VO=VOS+DVO,产生输出漂移DVO,。若采用补偿措施在环境温度T时使工作点由Q移动到QS¢,使输出电压恢复为VO,则可抑制输出漂移,使DVO=0,达到全补偿。

(1)利用NTC热敏电阻

基于温度补偿原理,在图1(a)、(b)中,利用NTC热敏电阻Rt取代负载电阻RL,如图3(a)、(b)所示,温度补偿过程解析如图2所示。

在图3电路中,标准温度TS时负载电阻为Rt,当温度升高到工作温度T时,使其阻值为Rt¢,可使静态工作点由Q推移到QS¢,由于Rt.<Rt¢,故应选NTC热敏电阻。当温度漂移量DVO已知时,只要确定标准温度时的Rt值及合适的温度系数(即B)值,使得在工作温度时的阻值为Rt¢,即可达到全补偿。

(2)改变电源电压

基于温度补偿原理,补偿电路如图4(a)、(b)所示,图5为补偿过程解析图,其中负载电阻RL值不变,当温度由TS升到T时,产生输出漂移DVO,为使DVO=0,可使ES相应增大到ES¢,若电源电压的调整量为DE,且DE= ES¢-ES,要满足DE=-KDVO的补偿条件,可达到全补偿。其中,K为比例系数,“负号”表示电压的改变方向应与输出漂移方向相反,比例系数K与负载线斜率有关,可通过计算或实验求取,且:

为了得到满足补偿条件的按温度调变的电源电压,实际补偿时可采用缓变型 PTC热敏电阻、NTC热敏电阻或温敏Z-元件来改变电源电压E,达到补偿的目的:

①采用缓变型PTC热敏电阻

采用缓变型PTC热敏电阻的补偿电路如图6所示。

在图6中,Z-元件与负载电阻RL构成工作电路,工作电路的直流电源电压E由集成稳压电源LM317电路供电,Rt为缓变型热敏电阻,采用热敏电阻Rt的LM317电路的输出电压为:

按温度补偿要求,当温度增加时,电源电压E应该增加,Rt应该增加,故Rt应选缓变型PTC热敏电阻。R2用于设定电压E的初始值,合理选择PTC热敏电阻Rt的初始值及其温度系数,使之满足DE=-KDVO的补偿条件即可达到补偿的目的。

②采用NTC热敏电阻

因缓变型PTC热敏电阻市售较少,而且补偿过程中温度系数也难于匹配,多数情况应采用NTC热敏电阻。

若采用NTC热敏电阻进行补偿时,也可采用图6所示电路,但要把R1与Rt互换位置。

当采用NTC型热敏电阻时,为了便于热敏电阻的补偿匹配,可利用运算放大器,实际补偿电路如图7所示。

 

在图7中,Rt为NTC热敏电阻,A为由单电源VCC供电的反相输入运放构成的比例放大器,通过该运放的反相作用,使LM317的输出电压EO适合工作Z-元件工作电压E的补偿极性要求。例如,温度升高时,EO下降,E增加;反之温度降低时,EO增加,E减少。该补偿电路的另一优点是,可通过运放比例系数的附加调整便于NTC热敏的补偿匹配。

(3)差动补偿

①并联差动补偿

运放的第一级几乎没有例外均采用差动电路,并利用差动电路的对称性和元器件特性的一致性来补偿温度漂移。Z-元件也可采用这种方法,补偿电路如图8所示。其中,图8(a)为正向应用,图8(b)为反向应用,图8(c)为实际补偿电路。其中Z为工作Z-元件,ZC为补偿Z-元件,RL与RC为相应的负载电阻。

补偿原理:对差动对称电路,当左右两侧工作Z-元件Z与补偿Z-元件ZC的静态伏安特性与动态温度系数完全一致,以及电阻RC与R阻值及其温度系数也完全一致时,采用浮动输出,因始终保持VO=VOC,当环境温度改变时,也不会产生温漂,而工作Z-元件有其它外部激励作用(如光、磁、力等)时,则可产生有效输出。

理论上,若左右元器件完全对称,在标准温度TS时,浮动输出DVO=VO-VOC=0,当温度升高到工作温度T时,因左右两支路电流同步增加,DVO=VO-VOC=0仍然成立。实际上,左右两支路元器件不可能完全对称,特别是Z-元件有一定的离散性,使DVO不可能完全为0。因而,除按补偿精度要求,对Z-元件的一致性进行严格筛选外,在电路上应采用辅助调整措施,如图8(c)中利用电位器RW。

②串联差动补偿

并联对称补偿的缺点是浮动输出,为变成单端输出还需要一个双端输入到单端输出的转换电路。采用串联对称补偿可克服这一缺点。

串联对称补偿的原理电路如图9所示。其中图9 (a)为正向应用,图9 (b)为反向应用,图9 (c)和(d)为实用化补偿电路。

补偿原理:该补偿电路为“上下对称”结构,元器件的一致性要求与并联对称补偿的要求相同。在标准温度TS时,工作电流流过上下分压支路,使输出电压VO=E/2。温度升高到工作温度T时,工作电流虽然增加,但输出电压VO仍为E/2,不产生温度漂移。而工作Z-元件当有其它外部激励作用时,可产生有效输出。  

该补偿电路的缺点是静态输出电压不为零,为使静态输出电压为零,需附加电平位移电路。

三、开关量输出的温度补偿

开关量输出电路示于图10,(a)为电阻接地,(b)为Z-元件接地。开关量输出的温度补偿与模拟量输出的温度补偿相比,两者的补偿目的不同。后者是模拟信号,当温度改变时,引起静态工作点偏移,通过补偿调整静态工作点,使输出电压恢复稳定。前者是数字信号,数字信号的温度稳定性及其补偿技术是一个新问题。在研究开关量输出补偿原理与补偿方法之前,必须先引入有效跳变与跳变误差的新概念。

1.有效跳变与跳变误差

温、光、磁、力四种Z-元件均可相应构成温控、光控、磁控、力控开关,提供开关量输出,用于对物理参数的监控与报警。其中,除温控开关外,对这些控制开关的基本要求是应具有温度稳定性。也就是说,在光、磁或力等外部激励作用下,并达到设定值时,应准确地产生输出跳变,称为有效跳变。而不应受环境温度影响产生跳变误差。由于开关量输出是数字信号,其跳变误差也必然是两种极端的情况,为研究方便分别定义为超前跳变误差和滞后跳变误差。实际上,由于Z-元件的Vth值是温度的函数,当环境温度改变时,因受Vth变化的影响,超前与滞后两种跳变误差都有可能发生。

若环境温度升高,使Vth下降,当满足状态转换条件VZ3Vth时,外部激励虽未达到设定值,可能产生“不该跳也跳”的超前跳变误差;反之,若环境温度降低,使Vth增加,这时外部激励虽已达到设定值,但由于不能满足状态转换条件VZ3Vth,则可能产生“该跳不跳”的滞后跳变误差。

为克服这两种跳变误差,在电路设计时必须考虑温度补偿技术。因此,对光、磁、力敏Z-元件构成控制开关的设计原则是:在外部激励作用下,必须能够满足状态转换条VZ≥Vth,而产生有效跳变;而当环境温度变化时,则不应满足转换条件VZ≥Vth,不致产生跳变误差。前者通过合理地选择静态工作点来达到,后者则应采用温度补偿技术加以保证。

2.温度补偿原理

上面已经分析过,因为Z-元件的Vth、Ith对温度有一定的灵敏度,所以Z-元件的开关量(光、磁和力敏)输出会产生超前跳变和滞后跳变误差。

使用者在设计电路时,是依据有效激励(光、磁和力等)的大小来确定静态工作点QS,这时Z-元件两端的电压为VZS,并具有下述关系:

Vth -VZS=DV (1)

当T(℃)升高时,因Vth减小,DV就减小。当减小到DV=0时,即VZS =Vth时,就产生了超前跳变误差;同理,当T(℃)下降时,因Vth增大,DV就增大,以至于大到有效激励作用时,也不产生跳变,这就产生了滞后跳变误差。当我们选定负载电阻RL值和电源电压ES后,静态工作点QS就确定了。因此,Z-元件开关电路设计的着眼点应在于DV 的取值。既要保证Z-元件在有效激励时,能产生有效跳变;而通过温度补偿又能保证DV的初始设计值不随温度变化,即可消除超前跳变误差和滞后跳变误差。

3.温度补偿方法

(1)负载电阻的确定

图11(a)是开关信号电路的工作解析图,图11(b)是开关信号的波形图。开关量输出的输出低电平VOL不是直线,其变化规律以及跳变幅值与M1区特性和静态工作点的设置有关,这是Z-元件开关量输出的特有问题。为保证应用中有足够大的跳变幅值,输出低电平不致太高,必须合适的设置静态工作点,因而当电源电压一定时,合理的选择负载电阻RL的值十分重要。

Z-元件在没有输出开关信号,即工作在M1区时,其功耗是很小的,只有工作 在M3区时,其功耗才增大。从图11(b)可知,开关信号的低电平不是常数,因VOL=IZRL,当温度升高时,IZ增大使VOL增大,而且负载电阻RL越大,低电平增大值也越大,因此,为了降低VOL,要求RL越小越好。由于受Z-元件功耗的限制,RL不能无限制的减小,为了Z-元件安全工作和降低电源的耗电,可选择Z-元件的工作功耗为额定功耗的1/5,即PZ=0.2PM,PZ=0.2PM=IZVZ=IfVf。通过下述计算即可求出合适的负载电阻RL值:

按照产品标准的规定:

Vf≤Vth/3

取:VZ=Vf=Vth /3,

If=(E-Vf)/RL=(Vth-Vf+IthRL)/RL

因为IthRL很小,忽略不计,所以: ,

所以: (2)(2)电源电压ES的确定

由图12可知

ES=VZS+IZSRL

= Vth –DV+ IZSRL

 

 

因为IZSRL很小,只有0.1~0.2V,所以将其忽略不计,常温下电源电压ES为:

ES ≈Vth –DV

考虑到电源电压调变时,可能存在误差,初始设计的DV值不能过小,其最小值建议为(5~10°C) SP (SP为阈值点的温度灵敏度)。所以:ES= Vth +(5~10°C) SP (3)

(3)同步改变电源电压

从图12我们知道,当温度上升到T1时,阈值点P将左移至P1点,若通过补偿能自动将电源电压由ES调整到E1,使工作点从QS左移至Q1,并使(1)式成立,DV即可保持不变,此时Vth1 –VZ1 =DV;当温度下降到T2时,P点将右移至P2点,若将电源电压ES由ES自动调整到E2,并使(1)式成立,DV仍可保持不变,此时Vth2 –VZ2 =DV即可消除跳变误差,达到补偿。

在T1时,电源电压为E1: E1= Vth1+(5~10℃) SP = Vth +(T1-T) SP+(5~10℃) SP

在T2时,电源电压为E2:E2= Vth2+(5~10℃) SP = Vth +(T2-T) SP+(5~10℃) SP

在工作温度范围T2~T1间电源电压的调变量为DE:

DE=E2-E1=(T2-T1) SP (4)

从(4)式可以看出,该开关量输出电路的电源,应该是具有负温度系数的直流电源,该电源可选用图6中的电源E,只需把Rt换成NTC电阻,或用图7中电源EO。

四、脉冲频率输出的温度补偿

1.应用电路

Z-元件的脉冲频率输出有不同的电路组态,其应用组态之一如图13所示。该电路当电源电压E恒定时,在光、磁或力等外部激励作用下,输出端VO可输出与外部激励成比例的脉冲频率信号,称为有效输出,波形为锯齿波,如图14所示。作为半导体敏感元件,由于环境温度对有效输出也具有一定灵敏度,这将严重影响有效输出的检测精度,当环境温度变化较大或检测精度要求较高时,必须通过温度补偿对温漂加以抑制。

2.温度补偿原理

Z-元件的输出频率f与工作电压E有关,与电路结构以及参数有关,也与使用环境温度有关。当电路结构以及参数一定时(C=0.1mF,RL=15kW)输出频率f仅与工作电压E和工作温度T有关。为研究温度补偿原理,确定合适的补偿方法,特列出三者的隐函数关系:f = F ( T , E )

如果把Z-元件构成的频率输出电路看成是一个线性系统或者可进行线性化处理时,可利用叠加原理对该隐函数求其偏微分:

当电源电压改变DE,并恰好克服由温度变化DT对输出频率的影响时,输出频率将保持不变,即Df = 0,则:

若设: 为温度灵敏度, 为电压灵敏度,

进而得:STDT= - SE DE

光敏电阻篇9

关键词:热敏电阻,掺金γ-硅热敏电阻,Z-元件,力敏Z-元件,V/F转换器

一、前言

Z-半导体敏感元件﹙简称Z-元件﹚性能奇特,应用电路简单而且规范,使用组态灵活,应用开发潜力大。它包括Z-元件在内仅用两个﹙或3个﹚元器件,就可构成电路最简单的三端传感器,实现多种用途。特别是其中的三端数字传感器,已引起许多用户的关注。

Z-元件现有温、光、磁,以及正在开发中的力敏四个品种,都能以不同的电路组态,分别输出开关、模拟或脉冲频率信号,相应构成不同品种的三端传感器。其中,仅以温敏Z-元件为例,就可以组合出12种电路结构,输出12种波形,实现6种基本应用[3]。再考虑到其它光、磁或力敏Z-元件几个品种,其可供开发的扩展空间将十分可观。为了拓宽Z-元件的应用领域,很有从深度上和广度上进一步研究的价值。

本文在前述温、光、磁敏Z-元件的基础上,结合生产工艺和应用开发实践,在半导体工作机理上和电路应用组态上进行了深入的扩展研究,形成了一些新型的敏感元件。作为其中的部分实例,本文重点介绍了掺金g-硅新型热敏电阻、力敏Z-元件以及新型V/F转换器,供用户分析研究与应用开发参考。这些新型敏感元件都具有体积小、生产工艺简单、成本低、使用方便等特点。

二、掺金g-硅新型热敏电阻

1.概述

用g-硅单晶制造半导体器件是不多见的,特别是用原本制造Z-元件这样的高阻g-硅单晶来制造Z-元件以外的半导体器件,目前尚未见到报导。Z-元件的特殊性能,主要是由掺金高阻g-硅区﹙也就是n-i区﹚的特性所决定的,对掺金高阻g-硅的性能进行深入地研究希望引起半导体器件工作者的高度重视。

本部分从对掺金g-硅的特性深入研究入手,开发出一种新型的热敏元件,即掺金g-硅热敏电阻。介绍了该新型热敏电阻的工作原理、技术特性和应用特点。

2.掺金g-硅热敏电阻的工作机理

“掺金g-硅热敏电阻”简称掺金硅热敏电阻,它是在深入研究Z-元件微观工作机理的基础上,按新的结构和新的生产工艺设计制造的,在温度检测与控制领域提供了一种新型的温敏元件。

为了熟悉并正确使用这种新型温敏元件,必须首先了解它的工作机理。Z-元件是其N区被重掺杂补偿的改性PN结,即在高阻硅材料上形成的PN结,又经过重金属补偿,因而它具有特殊的半导体结构和特殊的伏安特性。图1为Z-元件的正向伏安特性曲线,图2为Z-元件的半导体结构示意图。

由图1可知,Z-元件具有一条“L”型伏安特性[1],该特性可分成三个工作区:M1高阻区,M2负阻区,M3低阻区。其中,高阻的M1区对温度具有较高的灵敏度,自然成为研制掺金g-硅热敏电阻的主要着眼点。

从图2可知,Z-元件的结构依次是:金属电极层—P+欧姆接触区—P型扩散区—P-N结结面—低掺杂高补偿N区,即n-.i区—n+欧姆接触区—金层电极层。可见Z-元件是一种改性PN结,它具有由p+-p-n-.i-n+构成的四层结构,其中核心部位是N型高阻硅区n-.i,特称为掺金g-硅区。掺金g-硅区的建立为掺金g-硅热敏电阻奠定了物理基础。

Z-元件在正偏下的导电机理是基于一种“管道击穿”和“管道雪崩击穿”的模型[2]。Z-元件是一种PN结,对图2所示的Z-元件结构可按P-N结经典理论加以分析,因而在p-n-.i两区中也应存在一个自建电场区。该电场区因在P区很薄,自建电场区主要体现在n-.i区,且几乎占据了全部n-.i型区,这样宽的电场区其场强是很弱的,使得Z-元件呈现了高阻特性。如果给Z-元件施加正向偏压,这时因正向偏压的电场方向同Z-元件内部自建电场方向是相反的,很小的正向偏压便抵消了自建电场。这时按经典的PN结理论分析,本应进入正向导通状态,但由于Z-元件又是一种改性的PN结,其n-.i型区是经重金属掺杂的高补偿区,由于载流子被重金属陷阱所束缚,其电阻值在兆欧量级,其正向电流很小,表现在“L”曲线是线性电阻区即“M1”区。这时,如果存在温度场,由于热激发的作用使重金属陷阱中释放的载流子不断增加,并参与导电,必然具有较高的温度灵敏度。在M1区尚末形成导电管道,如果施加的正向偏压过大,将产生“管道击穿”,甚至“管道雪崩击穿”,将破坏了掺金g-硅新型热敏电阻的热阻特性,这是该热敏电阻的特殊问题。

在这一理论模型的指导下,不难想到,如果将Z-元件的n-.i区单独制造出来,肯定是一个高灵敏度的热敏电阻(由于半导体伴生着光效应,当然也是一个光敏感电阻),由此可构造出掺金g-硅新型热敏电阻的基本结构,如图3所示。由于掺金g-硅新型热敏电阻不存在PN结,其中n-.i层就是掺金g-硅,它并不是Z-元件的n-.i区。测试结果表明,该结构的电特性就是一个热敏电阻。该热敏电阻具有NTC特性,它与现行NTC热敏电阻相比,具有较高的温度灵敏度。

3.掺金g-硅热敏电阻的生产工艺

掺金g-硅热敏电阻的生产工艺流程如图4工艺框图所示。可以看出,该生产工艺过程与Z-元件生产工艺的最大区别,就是不做P区扩散,所以它不是改性PN结,又与现行NTC热敏电阻的生产工艺完全不同,这种掺金g-硅新型热敏电阻使用的特殊材料和特殊工艺决定了它的性能与现行NTC热敏感电阻相比具有很大区别,其性能各有优缺点。

4.掺金g-硅热敏电阻与NTC热敏电阻的性能对比

从上述结构模型和工艺过程分析可知,掺金g-硅层是由金扩入而形成的高补偿的N型半导体,不存在PN结的结区。它的导电机理就是在外电场作用下未被重金属补偿的剩余的施主电子参与导电以及在外部热作用下使金陷阱中的电子又被激活而参与导电,而呈现的电阻特性。由于原材料是高阻g-硅,原本施主浓度就很低,又被陷阱捕获一些,剩余电子也就很少很少。参与导电的电子主要是陷阱中被热激活的电子占绝对份额。也就是说,掺金g-硅热敏电阻在一定的温度下的电阻值,是决定于工艺流程中金扩的浓度。研制实践中也证明了这一理论分析。不同的金扩浓度可以得到几千欧姆到几兆欧姆的电阻值。金扩散成为产品质量与性能控制的关健工序。

我们认为,由于掺金g-硅热敏电阻的导电机理与现行的NTC热敏电阻的导电机理完全不同,所以特性差别很大,也存在各自不同的优缺点。掺金g-硅热敏电阻的优点是:生产工艺简单,成本低,易于大批量生产,阻值范围宽(从几千欧姆到几兆欧姆),灵敏度高,特别是低于室温的低温区段比NTC热敏电阻要高近一个量级。其缺点是:一批产品中电阻值的一致性较差、线性度不如NTC,使用电压有阈值限制,超过阈值时会出现负阻。

掺金g-硅新型热敏电阻与NTC热敏电阻的电阻温度灵敏度特性对比如图5所示。

在不同温度下,温度灵敏度的实测值对比如表1所示。

掺金g-硅热敏电阻是一种新型温敏元件。本文虽作了较详细的工作机理分析,但现在工艺尚未完全成熟,愿与用户合作,共同探讨,通过工艺改进与提高,使这一新型元件早日成熟,推向市场,为用户服务。

三、力敏Z-元件

1.概述“力”参数的检测与控制在国民经济中占有重要地位。力敏元件及其相应的力传感器可直接测力,通过力也可间接检测许多其它物理参数,如重量,压力、气压、差压、流量、位移、速度、加速度、角位移、角速度、角加速度、扭矩、振动等,在机械制造、机器人、工业控制、农业气象、医疗卫生、工程地质、机电一体化产品以及其它国民经济装备领域中,具有广泛的用途。

在力参数的检测与控制领域中,现行的各种力敏元件或力传感器,包括电阻应变片、扩散硅应变片、扩散硅力传感器等,严格说,应称为模拟力传感器。它只能输出模拟信号,输出幅值小,灵敏度低是它的严重不足。这三种力敏元件或力传感器,为了与数字计算机相适应,用户不得不采取附加的数字化方法(即加以放大和A/D转换)才能与数字计算机相连接,使用极其不便,也增加了系统的成本。

Z-元件能以极其简单的电路结构直接输出数字信号,非常适合研制新型数字传感器[1],其中也包括力数字传感器。这种力数字传感器输出的数字信号(包括开关信号和脉冲频率信号),不需A/D转换,就可与计算机直接通讯,为传感器进一步智能化和网络化提供了方便。

我们在深入研究Z-元件工作机理的基础上,初步研制成功力敏Z-元件,但目前尚不成熟,欢迎试用与合作开发这一新器件,实现力检测与控制领域的技术创新。

2.力敏Z-元件的伏安特性

如前所述,力敏Z-元件也是一种其N区被重掺杂补偿的改性PN结。力敏Z-元件的半导体结构如图6(a)所示。按本企业标准电路符号如图6(b)所示,图中“+”号表示PN结P区,即在正偏使用时接电源正极。图6(c)为正向“L”型伏安特性,与其它Z-元件一样该特性也分成三个工作区:M1高阻区,M2负阻区,M3低阻区。描述这个特性有四个特征参数:Vth为阈值电压,Ith为阈值电流,Vf为导通电压,If为导通电流。

M1区动态电阻很大,M3区动态电阻很小(近于零),从M1区到M3区的转换时间很短(微秒级),Z-元件具有两个稳定的工作状态:“高阻态”和“低阻态”,工作的初始状态可按需要设定。若静态工作点设定在M1区,Z-元件处于稳定的高阻状态,作为开关元件在电路中相当于“阻断”。若静态工作点设定在M3区,Z-元件将处于稳定的低阻状态,作为开关元件在电路中相当于“导通”。在正向伏安特性上P点是一个特别值得关注的点,特称为阀值点,其坐标为:P(Vth,Ith)。P点对外部力作用十分敏感,其灵敏度要比伏安特性上其它诸点要高许多。利用这一性质,可通过力作用,促成工作状态的一次性转换或周而复始地转换,就可分别输出开关信号或脉冲频率信号。

3.力敏Z-元件的电路结构

力敏Z-元件的应用电路十分简单,利用其“L”型伏安特性,在力载荷的作用下,很容易获得开关量输出或脉冲频率输出。力敏Z-元件的基本应用电路如图7所示。其中,图7(a)为开关量输出,图7(b)为脉冲频率输出。其输出波形分别如图8和图9所示。

在图7所示的应用电路中,电路的结构特征是:力敏Z-元件与负载电阻相串联,负载电阻RL用于限制工作电流,并取出输出信号。Z-元件应用开发的基本工作原理就在于通过半导体结构内部导电管道的力调变效应,使工作电流发生变化,从而改变Z-元件与负载电阻RL之间的压降分配,获得不同波形的输出信号。

(1)力敏Z-元件的开关量输出

在图7(a)所示的电路中,通过E和RL设定工作点Q,如图6﹙c﹚所示。若工作点选择在M1区时,力敏Z-元件处于小电流的高阻工作状态,输出电压为低电平。由于力敏Z-元件的阈值电压Vth对力载荷F具有很高的灵敏度,当力载荷F增加时,阈值点P向左推移,使Vth减小,当力载荷F增加到某一阈值Fth时,力敏Z-元件上的电压VZ恰好满足状态转换条件[1],即VZ=Vth,力敏Z-元件将从M1区跳变到M3区,处于大电流的低阻工作状态,输出电压为高电平。在RL上可得到从低电平到高电平的上跳变开关量输出,如图8(a)所示。如果在图7(a)所示电路中,把力敏Z-元件与负载电阻RL互换位置,则可得到由高电平到低电平的下跳变开关量输出,如图8(b)所示。无论是上跳变或下跳变开关量输出,VO的跳变幅值均可达到电源电压E的40~50%。

开关量输出的力敏Z-元件可用作力敏开关、力报警器或力控制器。

(2)力敏Z-元件的脉冲频率输出

由于力敏Z-元件的伏安特性随外部激励改变而改变,只要满足状态转换条件,就可实现力敏Z-元件工作状态的转换。如果满足状态转换条件,实现Z-元件工作状态的一次性转换,负载电阻RL上可输出开关信号;同理,如果满足状态转换条件,设法实现力敏Z-元件工作状态的周期性转换,则负载电阻RL上就可输出脉冲频率信号。

脉冲频率输出电路如图7(b)所示。在图7(b)电路中,力敏Z-元件与电容器C并联。由于力敏Z-元件具有负阻效应,且有两个工作状态,当并联以电容后,通过RC充放电作用,构成RC振荡回路,因此在输出端可得到与力载荷成比例变化的脉冲频率信号输出。其输出波形如图9(a)所示。输出频率的大小与E、RL、C取值有关,也与力敏Z-元件的阈值电压Vth值有关。当E、RL、C参数确定后,输出频率仅与Vth有关,而Vth对力作用很敏感,可得到较高的力灵敏度。初步测试结果表明:电容器C选择范围在0.01~1.0mF,负载电阻在5~20kW,较为合适。

同理,若把力敏Z-元件(连同辅助电容器C)与负载电阻RL互换位置,其输出频率仍与力载荷成比例,波形虽为锯齿波,但与图9﹙a﹚完全不同,如图9(b)所示。

4.力敏Z-元件的机械结构与施力方式

光敏电阻篇10

关键词 气体传感器;气敏元件;发展趋势

中图分类号:TP212.11 文献标识码:A 文章编号:1671-7597(2013)11-0000-00

二十世纪六十年代Wickens和Hatman利用气体在电极上的氧化还原反应研制出了世界上第一个气体检测器,而后八十年代年英国Persaud等人提出了利用气体检测器模拟生物嗅觉,这是气体传感器的雏形。

如今气体传感器持续发展,在环境检测和安防领域都有了广泛的应用。随着各种天然气、煤制气、液化气的开发和使用,国内外科研人员开始深入研究可燃气体的检测方法和控制方法,并产生了多种用于气体检测与分析的传感器、仪器仪表等,并大量应用于生产生活中的气体检测与成分分析中。

1 气体传感器概述

气体传感器是气体分析与检测系统的重要组成部分。气体传感器可简述为感知气体并确定其浓度的器件,该器件能够把气体的成分和气体的浓度等信息由非电量转换为电量,从而实现气体的测量。

考量气体传感器的主要指标有以下几个方面。

1.1 稳定性

气体传感器的稳定性是指在整个工作时间内其由被测气体所产生的响应的稳定性,它与零点漂移和区间漂移密切相关。这里的零点漂移是指在被测气体中不含油目标气体的情况下,在规定的时间内气体传感器输出的信号波动;而区间漂移则指在被测气体始终存在的情况下传感器的输出信号波动。理想情况下,气体传感器每年的零点漂移不大于10%

1.2 灵敏度

气体传感器的灵敏度通常是指其输出变化量与被测输入变化量的比值,该指标取决于传感器原理及其内部结构。

这里要提到一种交叉灵敏度,它是测量在干扰气体被引入时,传感器的信号输出变化,这种灵敏度也被称为选择性。这项指标对于多种气体环境下的气体测量是一项重要指标,交叉灵敏度会降低气体检测的可靠性。

1.3 抗腐蚀性

抗腐蚀性主要描述的是气体传感器在高体积分数的待测气体中长期曝露或是在某一气体组分骤然增加时,传感器能够承受的预期的气体体积分数,同时,在回归到常规工况后,传感器能仍然回归到零点附近一定范围值。

以上的传感器指标,基本依赖传感器自身材料的选择和制造工艺来保障。

2 气体传感器分类及其原理

气体传感器主要有电阻和非电阻型半导体式、绝缘体式、电化学式、红外式、石英振荡式、光纤式、声表面波以及气相色谱原理的气体传感器。气体传感器分类方式较多,本文将气体传感器从原理上分为三大类,分别是电化学型、电学型和光学型。

2.1 电化学型

电化学型气体传感器利用了电化学性质的气体传感器,这种气体传感器是生产生活中较为常见的气体感知元件,其中较为常见的是电化学型一氧化碳传感器,其工作原理可表征多数电化学气体传感器,即:通过恒定电位作电化学性氧化还原这一方式,使得气体浓度数据可被电学方法检出。电化学型气体传感器有工作电极与对电极组成,两组电极构成一个电极对,工作时发生放电的电化学反应,工作电极与对电极之间就会产生微弱电流。在其他参数固定的情况下,这个微弱电流值与气体浓度成正比。

电化学方法可以检出含氧元素的气体,如氧气、一氧化碳、二氧化硫等,并被制备成其他形式的传感器、检测器以及各类仪器,如火灾报警器、医学血氧量传感器等。

电化学类气体传感器检测气体时选择性好,灵敏度高,成本较低,这是它的主要优势。而其存在的主要局限有两点,一是在电化学原理致使这种传感器对干扰气体的响应仍然存在,一定程度上造成检测的偏差,所以在实际应用中必须针对传感器所处环境的其他干扰气体进行详细的考虑并进行抗干扰设计;二是这种气体传感器的寿命较短,并不是指校正周期,而是在两年左右旧的传感器探头需要被直接由新制备的传感器探头替换。

2.2 电学型

电学型气体传感器的主要原理是利用了材料的电学特征与气体浓度存在一定关系,这种关系可以直接通过电学方法检出。

电学型气体传感器从大范围上可分为电阻型和非电阻型。其中,电阻型气体传感器包括接触燃烧型、热导型和半导体型气体传感器;非电阻型主要是指利用电流或电压与某种气体浓度存在比例关系的类型,可分为MOS型、场效应管型以及结型二极管型气体传感器。

接触燃烧型电阻气体传感器的测量对象通常为可燃性气体,这些气体在气敏元件的表面进行氧化反应,反应使得元件热量增加,产生电阻阻值变化,通过测量阻值变化即可检出不同浓度的气体。传感器工作温度在400℃左右,待检气体中含有可燃性成分时,由催化剂致使燃烧可在工作温度下发生,此时传感器电阻值增加,因此测量电阻即可实现环境中可燃气体浓度的检测。这种传感器的主要优势是不容易被外界温度影响,其稳定性较高,同时由于电阻值与气体浓度之间的关系几乎呈线性,因此其测量效果好,数据处理方面也不必做太多工作。而接触燃烧型气敏元件的寿命在1年左右,不仅如此,传感器内的催化剂可能会和其他气体发生化学反应使得催化剂失效,因此传感器稳定性也较差。

热导型气敏元件也是用来测量可燃气体的。由于不同的可燃气体,其导热系数与空气存在一定的差异,热导型气敏元件通过电路把导热系数非电量转化为电量来测量,通常是转化为电阻。热导型气体传感器需要气室、热敏电阻和加温器等组成部分,待检气体进入气室后,加温器将热敏电阻加热到某一特定温度,待测气体的热导系数高时,热量在热敏元件上被带走,热敏电阻阻值变小,通过检测电阻来测量气体浓度。

半导体型气体传感器也是一种测量可燃气体的传感器,它的原理是利用半导体材料的表面对气体分子的吸附和脱离作用使得其电导率发生改变这一性质来实现气体检测的。这种传感器应用较为广泛,由于其敏感元件灵敏度、响应速度以及可靠性能方面的指标相比其他气敏元件更优,被作为可燃气体检测的主流传感器。

电阻型半导体气体传感器利用电阻阻值与气体浓度的关系实现气体的检测;非电阻型半导体气敏元件则利用其他电学量,如电流、电压与气体浓度的关系实现气体的检测。半导体气体传感器具有灵敏度高、寿命长、成本低等优点。目前在全世界范围产量巨大,2011年度已经超过了200亿美元。半导体型气体传感器存在的主要问题有三点:一是其对气体的选择性较差,因此扰和错误报警的情况较为常见;二是其输出呈非线性,因此想提高精度并不容易,标定也存在一定困难;三是其长时间放置会发生氧化反应,从而使传感器自动休眠,导致传感器再次遇到被测气体时没有信号输出。

2.3 光学型

光学型气体传感器主要利用了气体的光学特性,主要有直接吸收式和光反应式两种。

红外线原理的气体传感器是最为常见的光吸收式气体传感器,这种传感器利用气体的特征红外吸收光谱来确定气体的组分和浓度,由于不同气体的特征红外吸收光谱存在差异性,且同一气体不同浓度下红外吸光度将随气体浓度的增加而成正比的上升。不同种类的气体具有其各不相同的光谱吸收谱检测气体成分,非分散红外吸收光谱对硫化和碳化气体具有较高的灵敏度。另外紫外吸收、非分散紫外线吸收、相关分光、二次导数、自调制光吸收法对氮、硫化气体和烃类气体具有较高的灵敏度。红外气体传感器较为典型的应用就是七十年代早期的多组分红外线气体检测器,该设备的广泛使用使得光学原理的气体检测在当时备受重视,从而促进了气体传感器的发展。

光离子化法是一种化学分析方法,到今天已经有六十多年的历史。在20世纪五十年代就出现了这种仪器研制成功的相关报道。我国中科院也在20世纪末完成了我国第一台光离子化气体传感器。光离子化传感器由紫外灯和离子室组成,由紫外灯作为光源,透过氟化锂窗作用到被测气体上,此时被测气体在离子室,气体在离子室由于光的作用变为蒸气态,分子吸收光子能量,实现了光离子化作用。光离子化作用发生时产生能量流动(即离子流),该离子流与被测气体的浓度呈线性关系。

光离子化气体传感器种,紫外灯光源在使用过程中对清洁度有较高要求,因此该仪器不适合作为长期在线监测使用。

光离子化气体传感器目前主要应用在微量有机化合物的分析工作中,其中多数应用于有毒有害气体的检测。美国一些化学分析仪器制造公司研制了多款数显光离子化检测器来测量空气中苯系物的浓度,而我国目前只有中国电子科技集团49所拥有有自主知识产权的光离子化气体检测器,相比发达国家其发展速度仍较为缓慢。

3 气体传感器发展趋势

3.1 气敏材料

气敏材料的研究进展对气体传感器发展影响非常大,可以说,气敏材料的研究成果是气体传感器技术进步的基石。近年来,对于新型的气敏材料研究很多,其中,对半导体、陶瓷以及高分子材料的研究颇多。尤其在半导体气敏材料研究方面,各国在大量研究金属氧化物的同时,对一些复合金属氧化物以及混合金属氧化物也进行了大量的研究,取得了一定的进展。

对半导体气敏元件的研究及其主要技术指标的优化,可通过在材料中加入可优化气体传感器灵敏度和响应时间参数的元素来实现,也称为掺杂工艺;同时,还尝试多种催化剂以提高气敏元件的交叉灵敏度;工艺水平的提高也为气体传感器的灵敏度、选择性、稳定性等指标提供了可提升的空间。

目前,应用了催化技术实现的CH4传感器以及半导体PN型气体传感器,很大程度上提高了传感器的各项技术指标。值得一提的是,目前压电晶体和光纤材料已经成为了加工气体传感器的常用材质。

3.2 气体传感器结构及其智能化

气体传感器在结构方面,借助于半导体技术的发展,其传感器结构逐渐由单元件、单一功能发展到了多元件、多功能,例如实现了多个传感器与信号采集与处理电路的整合,使其以小体积芯片的形式封装;同时随着计算机技术的发展,智能气体传感器例如机器嗅觉系统,可完整的实现从识别气体种类、浓度乃至循迹、循源等功能。

机器嗅觉技术结合了传感器技术、数字信号和模拟信号处理技术以及计算机技术,通常机器嗅觉是通过多个气体检测单元有机结合来实现的,能够有效检测气体组分。机器嗅觉技术在二十世纪六十年代年被首次提出,到八十年代美国率先将多个气体传感器组成形成阵列,成功地测量出气体种类和组成,由此开始了机器嗅觉领域的篇章,使得这种综合性气体传感器迅速在多个领域展开应用。

到今天为止,美国、德国、英国等发达国都已经拥有自主研发的机器嗅觉产品,其中,美国IST公司生产的多参数气体检测装置目前已经达到了仅用一台机器即可检出近百种的气体成分的能力。而目前从可获得的资料来看,我国机器嗅觉技术仍处于试验期。

3.3 新型传感器工艺

近年来基于微电子和微机械的快速发展,MEMS技术也取得了较多的研究成果,而对于新型微结构气体传感器的研究虽然有但并不深入,目前主的研究主要针对硅基微结构气体传感器展开。

硅基微结构气体传感器的衬底是硅而敏感层则为非硅材料,主要有金属氧化物半导体、固体电解质型、电容型、谐振器型。MEMS技术将传感器与集成电路结合起来,使其具有体积小、重量轻、结构可靠、准确度高、互换性好和低功耗等优势,尤其是其生产可以完全自动化实现,大大提高了生产效率并降低了制作成本。MEMS是传感器工艺的发展方向,大多数的传感器都能够通过MEMS技术来实现。而近年来纳米技术的发展与MEMS技术同样带给气体传感器更理想的技术支持,给气体传感器更广阔的发展空间,是气体传感器技术革命的重要支撑。

4 结束语

随着环境检测与安全领域对气体检测与分析要求的不断提高,气体传感器也随之不断发展。近年来,随着测试测量技术的发展及传感器智能化技术的发展,基于电化学、电学与光学原理的气体传感器在其自身原理的基础上取得了一定的发展,但是从根本上来讲,推进气体传感器发展的核心还是取决于新材料、新结构和新工艺的发展,如今MEMS技术的发展推进了气体传感器的飞跃发展,相信不久的将来,伴随其他高新技术的发展,气体传感器的发展也将谱写新的篇章。

参考文献

[1]潘小青,刘铁成.气体传感器及其发展[J].华东理工学院学报,2004,27(1):89-91.

[2]刘崇进,郑大日,陈明光,等.气体传感器的发展概况和发展方向[J].计算机自动测量与控制,1999,7(2):54-56.

[3]吴孔宝.物理原理在气体检测中的应用[J].物理,1994,123(11):685-690.

[4]何道清.传感器与传感器技术[M].北京:科学出版社,2003:377-396.

[5]陈艾.敏感材料与传感器[M].北京:化学工业出版社,2004:177-212.

[6]Madnudhara Redy MH. Chandrkaran.1992.Response Study of Electron-Beam Evaporated Thin Film Oxdegas Sensors. Sensors and Actuators,B.9:1-8.

[7]Srczurek A, Szecowka P.M., Licmmki B.W. .Application of sensor amy and neural networks for quantification of organic solvents vapors in air[J].Sensors and Actuators B,1999(58):427-432.