航测遥感技术十篇

时间:2023-12-18 18:00:14

航测遥感技术

航测遥感技术篇1

【关键词】高科技;航测遥感;勘测;发展

航测遥感技术很好的应用于铁路方面、地图测绘方面、工程布置及水文地质勘探方面。在这些方面的应用更好为地质发展服务。它的发展更好的运用了高科技、航空摄影和航测测图技术,采用航空测量、遥感、物探、全球定位系统、试验数据为基础的技术,采用智能化系统、一体化系统和灾害防范系统。这些高科技的加入使航测遥感技术更好为人类服务。

1 对航测遥感技术的看法是在不同领域的应用,做出不同的贡献

航测遥感技术在铁路方面的应用。航测遥感技术在铁路航测上得到了应用。在铁路的发展中它起到了巨大的作用。它使对铁路的航测进入了数字化时代,让铁路的发展与高科技相联系,让高科技带动铁路链。在铁路的运营系统中采用数字化的测绘方法,使测绘的结果更加精准更加清晰明了,让计算者在好的方法下工作,起到了加速运算的效果。同时对信息的管理采用综合所得信息的方式,缩减了信息的管理难度。在综合信息中这些技术的应用使信息管理的准确度得到提高,在合理的运营和科技的方法中为铁路的发展做出了卓越的贡献。同时加强对铁路的绘制和勘测,用图像、数据和航测让勘测更加简易,使铁路的运营范围得到扩展,使铁路以更大的数量投入到运营,做到为运输业为人们的出行服务,同时针对恶劣地形可以用技术代替实际探测,用眼睛的观测和脑子的计算代替用脚步通过实地行走去勘测复杂地形,用最简单的途径去完成最复杂的勘测。在以后的发展中,我国会更加加强它的作用,用更多的知识库、数据和地形模拟做到更加专业化和准确化,让它的发展体现我国的科技实力,让航测遥感技术同我国的高科技紧密联系,共创高科技时代。

航测遥感技术在地图测绘中的应用。在当今航测遥感技术的发展中为地图测绘的发展做出贡献。地图的测绘需要通过不同的地理环境和不同的地形。而此技术的开展方便了地图测绘。利用空中摄影,对勘测的内容运用缩小比例的方法。在航测遥感技术发明以前人们必须克服地形的困难对地形加以勘测,既费时又费力还会对勘测人员带来危险,而如今仅需掌握相应的技术就可以完成,让科技带动了地图测绘的发展,在未来的发展中,我国研究专家还会投入更多的精力和资金去完成对地图测绘的研究,让地图测绘更加简易和准确,让复杂的地形成为不了我们研究的障碍,让比例更加细小,让研究更加深入,让地质的每一个特征都能被我们了解,用发现的双眼去完成航测遥感技术的每一个步骤。同时要加强勘测经验的积累,只有有丰富的经验才能使记录不出现错误,更好为勘测服务,地图的比例一定要找准,切记差之毫厘谬以千里,让航测遥感技术更好为地图测绘服务。

航测遥感技术在工程布置及水文地质勘测中的应用。在工程布置中应用到了航测遥感技术,它可以使我们对工程大抵有一定的了解,了解工程的原貌和施工中的困难。在进行工程布置前就有了标准和方法。针对工程的难点采取相应的措施,对工程的地形进行勘测,让地形的成功布置体现新型高科技。同时水文地质勘测中也应用了航测遥感技术,在打井的过程中需要对周围的地形进行了解同时还要对水质和水的总量进行了解,在最优的环境中进行凿井。同时打井的地点还要方便周围群众,不能出现危险的地形,而航测遥感技术可以帮我们发现这一点,这对工程和水文地质勘测来说是相当关键的。而在未来的发展中,此技术会得到更多的应用,在西部干旱地区,在国家的西部大发展政策的运用中,更多的工程投入生产,而航测遥感技术会更广泛的应用,在更多艰险的地形中,在更多缺水的地区中。相信在航测遥感技术的发展中更好造福于生活在不同地质中的人群。

2 对航测遥感技术的看法是运用了不同的高科技

航测遥感技术中运用航空摄影和航测测图技术。在此技术应用中加强了航空摄影技术,它使勘测人员在空中进行航测遥感技术勘测,把图像拍摄下来,通过计算比例的方法进行测量。它要求拍摄人员有很好的技术同时必须进行精密的计算。而航测测图技术通过对图形的计算测出数据。它使我们面对艰难地形有了克服它的能力,使环境成为不了制约我们探测自然的阻力。在技术的运用中我们可以克服气候和不好天气的影响可以克服拍摄周期的过长,通过激光扫描技术,让测试结果更加准确,同时经过对三维数据的掌握使设计更符合地形,通过对坐标的精准计算和绘制为人类各种活动服务,为土地的开发,水文地质的勘测做出应有的贡献。以航空摄影和航测测图技术为基础的引领下发展更多关于摄影和航测技术,让航测遥感技术走进更多的领域中。

采用航空测量、遥感、物探、全球定位系统、试验数据为基础的技术。在航测遥感技术中加强航测技术与遥感的结合,让它们相辅相成更好的合作,遥感技术可应用于制地形图,航空测量是遥感技术的分支,通过近些年广泛的编制仪器让航空测量和遥感技术合二为一,很多工作地点把两种技术共同开发,共同潜质。在物探技术应用中通过探索对地形和环境进行精确的了解,使工作人员的探索变成安全探索,使复杂的地点能够被勘测者记清楚,并使危险地点被人们所掌握,对于出现危险的人群和迷失在危险地点的人来说可以化解危机,使探测更好的为人们所用。试验数据的技术的研发使数据更加准确,使得到的数据通过试验的方法更好的应用于航测遥感技术中,通过实验可以更加符合地形。通过这些技术的研发和应用,通过高科技手段服务于艰难的勘测中,让勘测不再艰难。

采用智能化系统、一体化系统和灾害防范系统。在航测遥感技术中将广泛应用智能化系统,通过智能的技术把勘测技术存入计算机,要掌握计算机的应用,通过正确的程序把结果存进去。同时要做到一体化,对采集的内容要符合相应的内容,既要有操作系统的科技含量又要符合各自的标准,区分的看相同点和不同点。一定不要混淆了勘测对象,通过精密的计算和研究掌握各自的特点,使每一次勘测都能成功完成。在新的航测遥感技术中采用了灾害防范系统,在勘测过程中出现的危险地质中使得预测工作较薄弱,只有出现危险才会发现,而灾害防范系统可以在有危害征兆的时候就提醒我们灾害要到来,从源头上制止了灾害的到来。同时在勘测中出现不清楚哪些是危害地质,出现了发现一处地质灾害整治一处地质灾害,缺乏科学地调查和有利的监测。在勘测中要加强预防,并且通过智能的手段紧抓一体化,让航测遥感技术更安全更方便更智能的为我们服务。

3 总结

在当今航测遥感技术的应用中更好的同科技紧密联系,用最优的方法、最好的仪器、最新的科技、最优秀的勘测人员完成一次又一次的勘测任务。为我国地质事业的发展做出应有的贡献。为我国的科技勘探同国外的接轨奉献着力量,相信在以后的应用中会更加加强技术改革,使更多人对航测遥感技术的看法更加积极和稳妥,为勘测事业的发展奠定更高的基础,为我国的政治经济文化的发展更尽突出贡献,让航测遥感技术创出更多的辉煌。

航测遥感技术篇2

关键词:遥感;航测技术;地图测绘;应用

Abstract: The authors combine a city Metro survey area instance, describes the use of IMU / DGPS auxiliary digital aero photo grammar try technology inside and outside the industry, the integrated system digital topographic map of the process.Keywords: remote sensing; aerial technology; mapping; application

中图分类号:P237文献标识码:A文章编号:2095-2104(2012)

IMU/DGPS辅助空中三角测量突破传统航空摄影测量需在测区实地逐一测量地面像控点的作业模式,仅需在航摄区域施测一个或几个基准站点和少量的对空地标点,利用安装在飞机上的GPS接收机与地面上一个或几个基准站点上的GPS接收机同步连续观测GPS卫星信号,连续采集GPS数据,同时获取航空摄影像片瞬间航摄仪快门开启脉冲,通过GPS载波相位测量差分定位技术,处理解算机载GPS轨迹,从而获取航摄仪曝光瞬间摄站的三维坐标,直接测定每张像片的6个外方位元素。这项技术应用于某市新城测区1∶1 000航测项目,其技术、经济指标优于预期,与传统航空摄影测量作业模式相比,外业地面控制的工作量大幅减少,作业效率极大提高,优势十分突出。

1 项目设计的基础与工艺特色

1.1 项目概况

测区位于某市新城,属丘陵地貌,最低高程约28m,最高高程约110m,平均高程约50m,摄区总面积414 km2。测量面积350 km2。

1.2 航摄种类

IMU/DGPS辅助数码航空摄影,使用UCXp数码航摄仪,镜头焦距为100・5mm, CCD像幅尺寸为103・86mm×67・86mm(17 310像元×11 310像元),像元尺寸为6μm。相对飞行高度为1 300m,航摄比例尺1∶12 200,摄影地面分辨率0・078m。水平能见度5 km,拍摄间隔6・5 s,航速180 km/h。航线敷设方向为东西方向,旁向重叠率按29%设计,航向重叠率按65%设计。定位定向设备使用APPLANIX POSAV510型高精度系统及TRACK′AIR飞行管理系统。

1.3IMU/DGPS基准站布设

DGPS工作的基本原理是利用参考站计算出误差或误差对定位结果的影响,供运动站修正自己的观测值或定位结果。DGPS工作模式如图1所示。

图1DGPS工作模式示意图

为了通过差分处理GPS数据解算得到精确航摄飞行轨迹,飞行期间,利用GPS连续跟踪站进行同步数据观测,GPS连续跟踪站采样间隔设置为1 s。飞行完毕,及时下载及备份每个GPS基站的观测数据,并通过约定的传输方式发送至航摄处,以检查DGPS数据质量是否满足精度要求。UCXp数字影像的预处理工作主要是采用UCXp配套软件对影像进行几何纠正、多波段配准、辐射纠正、影像融合(真彩色影像、彩色红外影像分别与全色波段的影像融合),将摄影得到的原始图像转换整合成标准的中心投影的数字图像。

1.4 控制点布设

1.4.1 检校场控制点:位于检校场每条航线的第3、6、9张航片处各布设一个平高控制点。同时,在检校场内布设两个检查点以用于对检校场空三的精度进行检查。

1.4.2 基准站坐标:提供GPS连续跟踪站的精确WGS-84坐标成果。

1.4.3 精度验证区检查点:根据实际情况,在测区内选定精度较弱区域作为验证区,布设适当的控制点作为检查点,抑或利用已有的在该区域的控制点成果和其他成果作为精度验证检查点。

1.5 坐标转换

差分GPS解算基准是WGS-84坐标系,而测图所需坐标系为1980西安坐标系。因此,需对WGS-84成果进行坐标转换。转换方式有两种:

1.5.1 由覆盖该区域的准确坐标转换七参数进行坐标转换;

1.5.2由覆盖该区域的最少5个控制点进行坐标转换,每个控制点有WGS-84和1980西安坐标系的两套坐标成果。

1.6 外方位元素解算

采用集成传感器定向方法进行外方位元素解算,IMU/DGPS数据处理的基本流程为:

1.6.1 IMU/DGPS数据预处理;

1.6.2 载波相位差分GPS测量解算,得到每个采样时刻的GPS准确坐标;

1.6.3 引入DGPS结果,进行IMU/DGPS数据后处理;

1.6.4 对检校场进行计算,得到相机安装时候的安装偏心角结果;

1.6.5 利用安装偏心角结果和IMU/DGPS数据后处理得到的检校场外方位元素,进行系统检较得到系统差改正参数,对测区外方位元素进行改正;

1.6.6 根据测区大小将测区进行加密分区划分,以加密分区为单元,将检校后的外方位元素作为带权观测值,同时引入加密分区四角控制点进行区域网联合平差,得到每张像片的高精度的外方位元素;

1.6.7 利用上述解算得到的外方位元素进行前方交会,量测地物点物方坐标,与实测坐标比较,进行精度评定。

1.7 三加密

1.7.1 在进行像控点布设及测量之前,从测区中任选8航线14基线作为一个区域,先采用2航线进行像控点测量,采用静态GPS测量,高程采用2005年湖南省似大地水准面精化成果应用插值软件进行高程内插,高程系为1985国家高程基准,最后得到像控点平面坐标及正常高。

1.7.2 通过采用自动空中三角测量软件Geolord-AT,进行各基线与各航线搭配的空三加密实验,自动空三加密实验结果显示,当采用6航线6基线时,经检测,航线航空摄影精度、数字化影像内定向、航线相对定向精度、测区多项式整体平差精度、测区光束法整体平差精度、各模型绝对定向残差、测区加密点大地坐标较差及每个区域网接边精度均达到了《1∶500、1∶1 000、1∶2 000地形图航空摄影测量内业规范》的要求。

1.8“内外业一体化”成图

1.8.1 利用GPS辅助航空摄影时获取的航空像片影像数据,采用Geolord-AT空中三角测量软件,导人摄站的外方位元素、其他参数及控制点的平面坐标和高程,完成框标量测自动内定向、加密点自动匹配、旁向连接点自动转点、加密点和地面控制点输入定位,人工选刺观测、自动相对定向模型连接、多项式区域网整体平差、光束法区域网整体平差计算测区加密点平面坐标及高程,得到这16个加密分区的空三加密成果。

1.8.2 利用一体化地理信息影像综合判调软件Geo-MapUpdateV3・0测制数字化地形图。

2 成果的技术、经济指标分析

某市航测项目采用IMU/DGPS辅助数码航测技术及“内外业一体化”成图,总计用时约90天,与传统航测、全野外数字化测绘比较,内外业工作量减轻、减少,特别是外业工作大量压缩,人、财、物配置得到充分合理优化,工作效率、项目利润较大幅度提升。

3 结束语

采用IMU/DGPS辅助数码航测新技术,工艺流程自动化程度高,工作量较大幅度减少,成图周期短,生产成本低,测绘成果精度好,在未来测绘领域具有广阔的应用前景。

参考文献:

[1] 袁修孝. GPS辅助空中三角测量原理及应用.北京:测绘出版社. 2009.

航测遥感技术篇3

关键词: 遥感;原理;分类;制图;应用

遥感,从广义来讲,就是指遥远的感知,非接触远距离的探测技术。从狭义来讲,指借助于专门的探测仪器(传感器),把遥远的物体所辐射(或反射)的电磁波信号接收记录下来,再经过加工处理,变成人眼可以直接识别的图像,从而揭示出所探测物体的性质及其变化规律。遥感技术指从高空到地面各种对地球观测的综合性技术系统总称。它由遥感平台、探测传感器以及信息接受、处理与分析应用系统等组成,周期性地提供监测对象数据和动态情报。遥感技术(Remote Sensing)是一门建立在空间科学、电子技术、光学、计算机技术、信息论等新的技术科学以及地球科学理论基础上的综合性技术,为现代前沿科学技术之一,具有宏观、动态、综合、快速、多层次、多时相的优势。在新技术迅猛发展的今天,遥感技术伴随着航空、航天技术的发展而不断提高与完善,服务领域因之而不断扩展,受到普遍重视,显示出极其广泛的应用价值、良好的经济效益和巨大的生命力。

一、遥感的基本原理

振动的传播称为波。电磁振动的传播是电磁波。电磁波的波段按波长由短至长可依次分为: γ-射线、X-射线、紫外线、可见光、红外线、微波和无线电波。电磁波的波长越短其穿透性越强。遥感探测所使用的电磁波波段是从紫外线、可见光、红外线到微波的光谱段。 太阳作为电磁辐射源,它所发出的光也是一种电磁波。太阳光从宇宙空间到达地球表面须穿过地球的大气层。太阳光在穿过大气层时,会受到大气层对太阳光的吸收和散射影响,因而使透过大气层的太阳光能量受到衰减。但是大气层对太阳光的吸收和散射影响随太阳光的波长而变化。通常把太阳光透过大气层时透过率较高的光谱段称为大气窗口。大气窗口的光谱段主要有: 紫外、可见光和近红外波段。 地面上的任何物体(即目标物),如大气、土地、水体、植被和人工构筑物等,在温度高于绝对零度(即0°k=-273.16℃)的条件下,它们都具有反射、吸收、透射及辐射电磁波的特性。当太阳光从宇宙空间经大气层照射到地球表面时,地面上的物体就会对由太阳光所构成的电磁波产生反射和吸收。由于每一种物体的物理和化学特性以及入射光的波长不同,因此它们对入射光的反射率也不同。各种物体对入射光反射的规律叫做物体的反射光谱。遥感探测正是将遥感仪器所接受到的目标物的电磁波信息与物体的反射光谱相比较,从而可以对地面的物体进行识别和分类。这就是遥感所采用的基本原理。

二、遥感的分类

为了便于专业人员研究和应用遥感技术,人们从不同的角度对遥感作如下分类:

1、按搭载传感器的遥感平台分类 根据遥感探测所采用的遥感平台不同可以将遥感分类为地面遥感和航天遥感。

2、按遥感探测的工作方式分类 根据遥感探测的工作方式不同可以将遥感分类为主动式遥感和被动式遥感。

3、按遥感探测的工作波段分类根据遥感探测的工作波段不同可以将遥感分类为紫外遥感、红外遥感、微波遥感、多光谱遥感。

4、按遥感探测的应用领域分类根据遥感探测的应用领域,从宏观研究角度可以将遥感分类为外层空间遥感、大气层遥感、陆地遥感、海洋遥感等; 从微观应用角度可以将遥感分类为: 军事遥感、地质遥感、资源遥感、环境遥感、测绘遥感、气象遥感、水文遥感、农业遥感、林业遥感、渔业遥感、灾害遥感及城市遥感等。

三、遥感资料的制图应用

1、航天遥感制图

所谓航天遥感是指以航天器为传感器承载平台的遥感技术。航天遥感实践中,针对具体应用需求,选择不同的传感器如:成像雷达、多光谱扫描仪等,通过卫星地面站获取合适的覆盖范围的最新的图像数据,利用遥感图像专业处理软件对数据进行辐射校正、增强、融合、镶嵌等处理,同时,借助应用区域现有较大比例尺的地形数据,对影像数据进行投影变换和几何精纠正,并从地形图上获得境界、城市、居民点、山脉、河流、湖泊以及铁路、公路等典型地貌地物信息和相应地名信息,进行相应的标注和整饰,制作数字正射影像图。

航天遥感制图不仅在国土资源调查、土地利用监测、城市规划监测、重点风景名胜区监测中有了典型应用,而且,国家863计划信息获取与处理技术主题重大课题还开展了利用分辨率为0.61m的QUICKBIRD卫星影像进行城市大比例尺地形图的更新研究。此外,高分辨率卫星遥感影像还可提供立体像对,可用于直接生成DEM数据,甚至可以进行大比例尺地形图的获取与更新测绘。

2、航空遥感制图

所谓航空遥感是指以航空器如飞机、飞艇、热气球等为传感器承载平台的遥感技术。根据不同的应用目的,选用不同的传感器:如:航空摄影机、多光谱扫描仪、热红外扫描仪、CCD像机等,获取所需资料包括:航摄像片和扫描数据。其制图应用一般包括两大方面:

(1)摄影测量制图

在测绘领域中,摄影测量学已经是一门从理论到实践都非常成熟的学科。在我国应用摄影测量的原理和方法测绘地形图有相当长的历史。目前,1:5000及其以下小比例尺地形图的测绘,基本上都采用摄影测量方法施测。计算机技术的发展给摄影测量制图带来了新的发展和变化,不仅在内业测图仪器上实现由测绘线划图到直接测绘数字地形图的转化,而且诞生了抛开了传统的摄影测量仪器设备,以软件实现地形数据采集与处理的数字摄影测量技术,这无疑是摄影测量技术发展史上的一次革命。

(2)正射影像图制作

正射影像图是一种既具有地物注记、图面可量测性等常规地形图的特性又具有丰富直观的影像信息的一种图件,是将航摄像片的中心投影经过机械式的或数字式的纠正转变为正射投影形式而生成的影像图件。正射影像图制作的优势在于,生产周期短、成本低。正射影像图分为“常规正射影像图”和“数字正射影像图”两大类,前者是通过影像拷贝和正射投影仪纠正工艺,以纸基或胶片基承载的平面型影像图件。后者则是应用数字摄影测量技术和工艺制作的以数字形式存在的影像图件,可以方便地输出成纸基或胶片基图件。目前,由于计算机技术和影像处理技术的发展,以数字形式存在的影像图件在生产技术上日趋成熟并不断完善,已经占据主导地位,并与方兴未艾的城市 GIS 技术相得益彰,应用广泛。特别是数字影像图在色彩处理方面的优越性,使其更具应用价值。

航测遥感技术篇4

进入二十一世纪以来,数字航空遥感技术将很快逐步取代传统胶片航空遥感技术,航空遥感项目数据获取技术、后续作业模式将彻底变革已由有争议到国内外业界达成了的共识。原先限制数字航空遥感传感器的相关技术如计算机技术、电子技术等发展较快,突破了原有的瓶颈,提高了航空遥感数据获取的可靠性。如计算机技术的新大存储量高速传输、并行处理技术不断应用到航空遥感传感器上,经过几代数字传感器的技术革新,近几年已经开发出可靠性较高的面阵数字航空遥感仪。如UCXp 、UCE、 DMC II等型号,这些面阵数字航空遥感设备都具有幅面大、CCD尺寸小、成像精度高、多波段色彩融合好的特点。

IMU/DGPS(简称为POS)技术辅助航空遥感技术开始于90年代,成熟于2000年左右。机载POS系统是由GPS接收机和惯性测量装置组合而成的高精度定位定向系统,它集差分GPS(Differential GPS)技术和惯性导航(Inertial NavigitionSystem,INS)技术于一体,可用于获取移动物体在选定坐标系中的空间位置和姿态,广泛应用于汽车、轮船、飞机、导弹等得导航定位中[1]。直接获取航空遥感影像的外方位元素,无需大量的野外控制测量,实现了航空遥感后直接进入内业成图工序,没有或极少地面控制工作,缩短了工期[5];该新技术的完善已经推进我国现有测绘项目工序流程生产组织变革,大大减少了生产成本,缩短成图周期,促进测绘事业的更快发展[2] [3]。

所以数字航空遥感项目的管理要从项目技术目标、实施影响因素分析到实施方案设计、过程管理、质量安全控制以及成果检查和移交等方面全流程来分析。在其执行过程前制定合理、有效、可行的实施方案是非常重要的环节,国内很多航空遥感项目由于在制定实施方案时对技术方案没有考虑周全,仅从航空遥感专业技术方面来考虑,没有考虑到实施过程中其它因素的影响,致使航空遥感项目不能得到有效、快速的实施。实施方案的制定不仅要考虑到行业、国家的技术规范和甲方的特定技术要求,还要考虑到项目方案的可行性,尤其在国内空域管理复杂的情况下,需要把在执行项目的过程中可能遇到的影响因素如空域划分、空中走廊、气象条件、地理条件等都要考虑在内,优化处理,这样才可以制定出最优的方案[4],尽量保证尽快的完成航空遥感项目,大大提高航空遥感成果的质量。

以下就从航空遥感项目的全流程各环节采用闭合式管理系统的思维来分解项目合同谈判、项目可行性分析、项目实施和项目成果质检和移交等环节应该注意的事项。

项目合同谈判

航空遥感项目合同谈判因为涉及的技术因素较多,所以在谈判过程中尤其要注意客户的最终成果用途,依据成果的用途不同采用不同的实施方案,则后续执行过程中的各项工作就会完全不同;其二,要明确合同中的技术要求,对于模糊不清的条款,尽可能的采用双方都可以理解的文字来确认,笔者就曾遇到因合同甲方技术要求前后矛盾,按照实施方案获取的最终项目成果不合格,导致项目失败、补测的后果。第三,合同谈判中尽量多考虑实施项目中可能遇到的问题,如天气和空域的问题,考虑好之后就可以项目的可行性有一个初步的判断。把握了以上三点后就可以初步确认合同的标的、执行期限和成果移交标准等主要合同文本事项。

项目可行性分析

航空遥感项目的实施可行性分析可以从项目执行要素人、机、料、法、环、技等几个方面来分析。“人”的因素主要考虑飞行、导航、遥感和基站人员的合理配置,考虑各个专业人员是否能够达到项目的预定要求,那些人员的要求可以略微放松,那些必须严格要求;“机”即机器和设备,在航空遥感项目中的“机”指的是飞机平台、航空遥感仪器、地面基站仪器以及其它辅助设备的选择、性能是否满足要求,在这个方面最重要的是飞机、航摄仪及其辅助设备,尤其是特殊技术要求的航空遥感项目,选择好了这些硬件设备可以事半功倍,并确保项目成果质量;“料”指的是项目中可能用到的各种原料,传统航空遥感项目的感光材料用的是航空胶卷和相纸,现在采用数字技术后主要的耗材是硬盘和感光相纸,硬盘也已经由机械硬盘向固态硬盘转变,要尽可能选择安全的材料,在材料的使用、储存和运输中确保其安全;“法”即法律、法规和技术规程等,在航空遥感项目实施中既要考虑到航空飞行中的航空类法规也要考虑到国家国土测绘部门颁布的各项专业技术、行政管理、成果保密等测绘类法规,尽量规避执行过程中可能导致的严重法律后果;“环”指的是环境,航空遥感中的环境考虑的不仅仅是航空作业机舱内环境也要考虑到空域管制和大气条件的人为或客观环境因素,经过对历史气象数据的统计和预测分析以及空域管制环境的调查,可以最大限度的避开不理想的作业期限和作业方式。“技”即技术,要把项目管理、专业技术和质量管理的技术结合使用,以利于提高效率,降低成本,缩短周期。

通过对以上要素的分析,就可以制定合理的实施方案。

项目实施

航空遥感项目的实施可以分为方案制定及前期准备、现场实施和后期整理移交三部分,其中方案制定分为技术方案和实施方案两个部分。

技术方案要以合同技术要求为准,综合考虑技术方案的可行性,在条件允许时,准备多套技术方案,以便在实施过程中灵活使用,从技术上提高效率,缩短工期。需要说明的一点是,该技术方案必须获得甲方审核认可。实施方案项目实施的预定方案,其中要考虑到计划制定、进度控制、质量控制与反馈、项目协调与实施以及突况处置等方面,不可控因素越少越好。实施方案制定的好坏直接影响到项目执行过程是否顺利,需要既满足专业要求,又考虑到克服实际困难的备案措施,即对项目实施的风险有全面的分析;这样的话,在实施过程中遇到的问题往往是偶发的小问题,只需要随机处置即可。

项目实际实施过程中,按照既定方案执行时往往沟通会比较重要。因为按照技术要求,实际可升空作业的机会非常少,满足升空条件时,空域限制也会很多,这种条件下,以备选方案与飞行管制和指挥的军民航有效沟通往往会有机会完成作业。举个例子,如果某个项目设计飞行最高高度为4000米,那么我们飞行方案可以在作业量增加不大的情况下,多增加3700,3400米飞行高度的备选方案。这样的话,如果按照历史气象资料,作业期间云底高平均为3900米时,我们还可以有2套备选方案可供与飞行管制和指挥方协调,便于双方制定和调整整个飞行计划。

除以上作业预案外,还可以采用灵活申请作业区、变更作业时间段以及改变装备的方法来综合考虑并处置。总之,在项目实施时,是考验前期工作和实施团队是否得力的时候,也是各种因素相互发生作用,使困难矛盾突出的时候,要以预案为基础,灵活处置。

项目成果质检和移交

项目的质量控制实际上涵盖在项目全部流程中的,每个环节都对成果质量有很大的影响,必须按照质量体系的要求在每个环节重视起质量控制,把产品品质的观念灌输到具体工作中。

首先,项目合同谈判中协商确定的技术方法、路线、精度要求,使用的飞行平台、设备,作业期限和时间等都是从开始时就对项目最终成果质量有了总体的框架设定;所以负责合同谈判的团队必须有对整个作业流程熟悉且对合同涉及的具体项目收集了详尽的气象、空域管制、地理和作业资源资料,否则很容易有大的纰漏,在项目的制定实施方案时或进场作业时凸显出来,需要和甲方再沟通协商,这样容易导致甲方对公司整个执行能力的质疑。

其次,在项目实施阶段,前期制定技术方案和实施方案过程中,会把项目执行的技术文件和作业文件编写出来,其中技术文件是项目执行的纲领性文件,必须是考虑了所有影响因素后的最优方案,是考虑了项目的效率、成本和周期的综合性方案[15]。不同的项目有不同的特点,制定的质量保证措施也由所不同,在实施过程中,项目执行人员必须严格控制又要灵活把握,明白客户对成果的质量要求才能把项目高效的执行下来,仅靠项目后期的成果整理是不能保证项目的质量的。项目质量控制人员自检时必须与项目实施过程中现场执行人员提交的飞行成果有效反馈和沟通,既要反馈质量问题同时要提出对出现问题的预防措施。

最后,在后期成果整理和移交环节可以有较多的时间对影像反复调校和处理,达到很好的效果;其次,对同时移交的定位定姿成果数据要采取不同的测算方案,提交客户的结果必须是各种方案的最优成果[6] [10] [13] [14],且在项目技术总结中阐述清楚。最后在制作移交文件时完整、清晰、条理,与验收代表对质量问题有良好的沟通。

总之,近年来国内航空遥感项目已经完全由模拟胶片时代转变到数字时代,数字航空遥感项目呈现出来一些与以往不同的特点,这对航空遥感项目的管理也提出一些新的要求,需要在综合管理上对其特点详细研究和分析,制定有针对性的综合解决方案。本文从数字航空遥感项目的特点和项目谈判、可行性分析、项目实施和成果质量控制与移交等执行环节谈起,详细阐述了项目综合管理的一些思路和方法,也对以往出现的问题提出了改正措施建议,这都在实际工作中有很好的借鉴作用,希望对国内同行有一定的参考价值。

参考文献

[1] 郭大海,吴立新,王建超等.机载POS系统对地定位方法初探[J]. 国土资源遥感,2004, 60(2):26-31.

[2] 李学友. IMU/DPGS辅助航空摄影测量原理、方法及实践[D],博士学位论文,中国人民信息工程大学,2005.

[3] 郭大海、吴立新等.IMU/DGPS辅助航空摄影新技术的应用[J]. 国土资源遥感, 2006, 3(1): 52-54.

[4] 于海斌. 航空摄影技术设计优化初探[J],飞行试验,2006(3)

[5] 董绪荣等. GPS/INS组合导航定位及其应用[M].长沙.国防科技大学出版社.1998.

[6]国家测绘局,《数字航空摄影资料整理说明(试行)》,2007年11月

[7] 李斐等.遥感技术中GPS/INS组合系统的应用[J].测绘通报.2004(12)

[8] 王仁谦.GPS动态定位的理论研究[D],中南大学,2004年

[9] 龚学安,周群强.GPS精密单点定位技术在中小比例尺控制测量中的应用.测绘技术装备,2010(3)

[10] 苗小利等. IMU/DGPS在大比例尺数码航空摄影测量中的试验与分析,《测绘通讯》测绘科学前沿技术论坛摘要集.2008

[11] 李寿兵,航空摄影新技术推动数字摄影测量的发展[J],铁道工程学报,2005(4)

[12] 刘硕,基于POS系统的航空摄影测量实验研究[D],昆明理工大学2010.

[13] 袁修孝,季顺平,谢酬.基于已知定向参数影像的光束法区域网平差[J],武汉大学学报(信息科学版)2005(11)

[14] 袁修孝,付建红等.POS系统用于航空遥感直接对地目标定位的精度分析[J]. 武汉大学学报(信息科学版)2006(10)

航测遥感技术篇5

关键词:航空遥感;无人机;信息平台

我国的科学技术和经济水平都有了非常明显的提升,同时我国对遥感数据的需求量也在不断的增加,遥感数据方面出现了非常明显的供需不平衡状态,在发展的过程中需要投入大量的资金,所以在实际的工作中也遇到了非常大的困难,在技术的推广和普及方面也出现了非常明显的不足。

1 系统结构

无人机遥感系统所采用的无人机是按照有人机的标准设计,并且其研制的目的主要是作为遥感平台.主要性能指标有:作业高度5km,巡航速度170km/h,最大续航时间30h,导航精度50m,有效载荷100kg等.在该型无人机上预定装载的遥感设备包括机载可更换SAR系列/红外/可见光CCD成像设备。

2 关键技术

2.1 无人机遥感平台

无人机遥感平台的性能和成本会直接对系统运行的稳定性和运行的效率产生重大的影响,所以在无人机航空遥感技术发展的过程中,不断提高无人机遥感平台的性价比是非常关键的一个要素,另外系统运行过程中所需要的成本对整个系统也有着十分关键的作用与影响,所以应该在工作中努力的研制性价比更高的系统平台,这样才能更好的体现出系统运行的经济性。在研究的过程中,应该将重点放在以下几个方面:

首先是在现有的无人机的基础上,根据航空遥感系统运行的相关要求对其进行更加有效的改进和优化,在设备的选择和系统平台的建设方面也应该保持在一个相对较为合理的范围之内。其次是在现有的导航系统基础上要不断对导航的方式进行优化,最好要使用组合式的导航方式,这样对提高导航的准确性有着十分重要的影响。再次是对下一代设备进行研制,在研制的过程中要对成本进行严格的控制,通常成本增加的数额不应该超过原系统总成本数额的15%,在这样的资金条件下,最高的高度应该上升到18米,作业的高度也应该到达16米,载荷能力也应该在100kg以上,运行时间上也应该有所提高,正常运行的时间最好要超过30小时。最后一点就是在现有的自动起降设备基础上,在更高的范围和更高的精度上实现起降功能。

2.2 无人机遥感设备集成与接口

在遥感设备的选择方面应该充分的考虑到整个系统的应用需求和具体特点,同时还要使用标准的设备接口,这对于提高安装调试的效率有着不容忽视的作用,在该项内容的研究上主要包含以下几个方面:

首先是设备应用在不同领域的时候,应该对其性价比进行仔细的研究,之后选择综合效益相对较高的遥感设备。其次是在完成遥感数据的获取和污染往哪寄平台设备之间应该设计出完全相适应的接口形式,这样对于不同型号的SAR和不同的设备都能实现顺利快捷的更换。最后一点就是应该重视无人机遥感设备的安装和调试工作。

2.3 遥感数据实时处理与下传

无人机航空遥感系统可以有效的对遥感的数据进行处理和下传,但是以往的系统中,数据的精度存在着明显的不足,同时在其他方面也有着自身的问题,所以研究的重点就应该是在减少消耗的基础之上,改善图像的成图质量,具体说来,主要包含以下几项内容。

首先是要能够高效的将遥感的图像数据和定位数据以及无人飞行过程中的运行状态和航拍过程中的数据信息进行有效的融合,这样就可以生成更加生动、清晰和具体的图像。其次是提高现有的景象匹配算法的实际作用,它也可以有效的为无人机组合导航系统的数据处理和修正提供更好的条件,从而使得无人飞行过程中的控制精度也有了非常明显的提升。其次是提高所有景象匹配算法的时效性,这样也为整个无人机导航系统位置的确定创造非常坚实的基础。再次是采用小波变换的技术,让数据压缩过程中的能源消耗不断减少。

2.4 遥感数据地面接收与处理

分布式的海量无人机遥感数据接收和处理网络是提供业务化遥感应用服务的前提条件.具体研究内容包括:

(1)根据应用需求,建立固定和移动地面数据接收站(地面站同时具有无人机遥控功能)。

(2)在现有的基础上,建立有海量数据存储、管理和分发能力的数据中心,建立图像数据库,包括快视图的生成以及图像查询系统的建立;进行遥感数据共享的权限限定、安全认证、数据格式、下载速率、预处理规范、数据加密与打包等方面的标准化,以便更好地利用和开发遥感数据。

(3)进行图像增强,包括反差调整和邻域增强等。

2.5 无人机航空遥感系统典型应用

无人机航空遥感系统具有全天候、全天时、低成本等技术优势,其所获得的高分辨率遥感数据可应用于多种领域,适合于我国信息化发展的需要.目前无人机遥感业务化运行系统在国内外尚无先例,因此开展对无人机遥感系统典型应用的可行性研究是顺利进行业务化推广的关键技术,具体包括:

(1)SAR测绘应用可行性研究

应用可见光设备的航空摄影技术在多云多雨或大气能见度低的地区无法有效地完成测绘工作,是遏制我国测绘发展的主要技术问题.SAR由于其对云雨的良好穿透能力,有实现全天候测绘的潜力,但由于SAR图像有明显的斑点噪声(speckle)和复杂的几何变形(尤其在地形起伏较大的地区),目前还不太适合进行地形图的制作和生产。

(2)无人机遥感系统用于大比例尺基础测绘更新与建库的可能性研究

研究采用无人机遥感数据进行1:10000地形图的更新,进行部分地区1:10000和重点城市l:2000比例尺地理信息数据库的建设和更新,按照有关测绘法律法规的规定,形成定期数据更新维护机制,实现地理空间基础数据与应用信息的结合。

(3)土地利用动态监测

利用无人机高分辨率影像数据进行土地利用动态变化监测和资源与生态环境监测,探索利用无人机高分辨率的遥感影像数据进行土地利用现状调查、矿产资源监测、地质灾害的巡查与防治和地质遗迹保护等工作的新方法

结束语

当前,我国的无人机遥感技术日渐成熟,同时其也使用到了更为广阔的领域当中,在发展的过程中,如果要让其关键技术能够进一步的提升,就必须要加大科研的力度,只有这样,才能推动技术的创新和发展,同时也为该系统在更广的范围内得以应用奠定坚实的基础,促进我国科技水平的不断发展和提升。

参考文献

[1]刘荣科,张晓林.无人机载图像实时传输方案的研究[J].北京航空航天大学学报,2002(2).

航测遥感技术篇6

关键词:遥感 森林资源 调查

遥感作为获取地球表面时空多变要素的先进方法,是地球系统的科学研究的重要组成部分,是对全球变化进行动态监测不可替代的手段。利用遥感技术进行森林资源管理、抽样调查、航片判读、监测森林火灾和病虫害有十分重要的意义。20世纪70年代末至80年代初,许多林业先进的国家把航天遥感用于森林资源调查和森林灾害监测。林业遥感具有宏观性、获取信息快、重复周期短和成本低等特点。航空遥感已成为森林调查和灾情监测的必要手段。航天遥感已在全国性或大面积林区的森林资源清查和灾情监测得到应用,都具有广阔的发展前景。

1、遥感技术的分类

按遥感平台的高度和特点,一般分为航天遥感、航空遥感、近地遥感。①航天遥感。又称卫星遥感。指轨道高度在100000米以上的人造卫星、航天飞机和天空实验室等遥感。由于轨道高度和遥感对象不同,遥感器的地面分辨率和可能识别的地物大小也不同。例如,用于监测大气活动的气象卫星所获取的遥感图像的地面分辨率为1.1~1.4公里;用于资源勘测与环境监测的陆地卫星或资源卫星为20、30、80米不等;适用于资源详查和城市、海岸带研究的回收型卫星或航天飞机一般可达 5~10米。②航空遥感。利用飞机携带遥感仪器的遥感,包括距地面高度600~10000米的低、中空遥感和10000~25000米的高空、超高空遥感,可获取分辨率很高、波谱信息很丰富的照片或扫描图像。由于航空遥感继承并发展了航空摄影测量学的原理和方法,因而具有较高的定位精度和编制大比例尺系列专题地图的功能。但是,航空遥感覆盖的地区较小,技术处理过程较复杂,生产周期较长,主要适用于城市管理、工程设计、污染监测和灾情调查等方面。③近地遥感。指距地面高度在1000米以下的系留气球(500~1000米)、遥感铁塔(30~400米)、遥感长臂车(8~25米)等的遥感,主要用于对大气辐射订正和光谱特性测试,以辅助高空遥感器的波谱选择、辐射订正和为图像判读分析提供参考。遥感铁塔还可用于海面污染和森林火灾监测。另外,有火箭和高空气球遥感,这些一般只作为一种辅助手段,以快速获取短暂的局部性的大气或地面信息。

按电磁波的波谱范围,遥感可分为可见光遥感、红外遥感、紫外遥感、微波遥感、超短波遥感和多谱段遥感。①可见光遥感。用分波段照相机或用多波段扫描仪采集0.34~0.76微米波段的信息。主要用于立体摄影测量、资源调查、军事侦察等。②红外遥感。指利用波长0.76~3.0微米的近红外和波长3.0~15微米的远红外波段的遥感。红外遥感对地表热力场和植物叶绿素含量特别敏感,温度分辨率可达0.1~0.2℃。用于城市热岛、温泉、海面温度、埃尔尼诺现象、海洋中的淡水涌泉、海冰、积雪、冰川和湖泊的观测,以及森林、草场、作物长势的分级和湖泊富营养化、海面赤潮、海洋初级生产力的估算等。③紫外遥感。利用波长0.3~0.4微米的紫外波段的遥感,主要用于大气和海洋温度场的探测。④微波遥感。利用 1~1000毫米波段的遥感。具有全天候工作和穿透云层、干冰、沙漠和植被的功能,但空间分辨率低。可用于地质勘探、资源调查等。⑤多谱段遥感。利用几个不同波段范围,同时对某一地物或地区进行遥感,对获得的信息加以组合,以获取有关物体的更多的信息。⑥超短波遥感。利用超短波的 α射线和X射线的遥感。如拖曳于海底的α射线探测仪,用于海底沉积和基岩剖面的探测。⑦激光遥感。用于大地测量的卫星定位、活动断层地形变化和 40~200米以内水下地形的测绘等。

2、林业遥感的应用范围

20世纪20年代开始试用航空目视调查和空中摄影;30年代采用常规的航空摄影编制森林分布图;40年代航空像片的林业判读技术得到发展,开始编制航空像片蓄积量表;50年展了航空像片结合地面的抽样调查技术;60年代中期,红外彩色片的应用促进了林业判读技术的进步,特别是树种判读和森林虫害探测;70年代初,林业航空摄影比例尺向超小和特大两极分化,提高了工作效率,与此同时,陆地卫星图像在林业中开始应用,并在一定程度上代替了高空摄影;70年代后期,陆地卫星数据自动分类技术引入林业,多种传感器也用于林业遥感试验;80年代,卫星不断提高空间分辨率,图像处理技术日趋完善,伴随而来的是地理信息,森林资源和遥感图像数据库的建立。抽样调查中,观测和调查的单位是单元。单元的集合体称总体。总体的范围可以大至全国,小至一个林分。总体和单元的划分关系到调查成本,乃至调查的成效。为了获得部分单元的观测值,用以推断总体,先要抽取部分单元组成样本。这些组成样本的每个单元称样本单元。样本单元的基本形式有样地、样木、样线和样点,常被用作调查方法的名称,如带状样地调查,点抽样等。

2.1 森林经理调查

运用航空像片按调查因子判读(见航空像片森林判读)勾绘小班轮廓,估测小班蓄积量。常用的方法有:①典型选样法。在像片上选取足够数量有代表性的样点,然后持像片到样点实测各项林分调查因子,计算出小班各因子的平均值和蓄积量;②样地实测法。在勾绘的小班内设置带状或方形样地,进行每木检尺,然后计算样地和每公顷蓄积量;③分层抽样法。根据航空像片上林分影像特征进行分层(即分类型),判读勾绘分层小班,应用分层抽样法(见森林抽样调查)估测总体森林蓄积量;④像片判读与实测回归法。即利用航空像片判读蓄积量与地面实测蓄积量进行回归估计;⑤多元回归估测法。选择影响森林蓄积量并能在航空像片上判读的各种数量因子,建立多元线性回归方程,然后根据小班判读因子估测小班蓄积量。

2.2 森林火灾和病虫害探测

利用遥感技术可以观察火灾发生条件,有利于尽早发现火情,以便及时采取预防救灾措施。主要包括下列内容:①森林火灾等级划分。即为调查森林火灾在地域上分布的特点而进行的大区域宏观分类。可根据森林植被、气候状况及火源分布,利用卫星图像目视判读划分;也可利用近红外波段影像对林区水热分布状况反应比较灵敏的特性,应用电子计算机数字图像处理,提取植被、气候和火源分布的信息划分火险区。最后根据所获得的有关森林植被易燃性能、燃烧环境的和火源密度等信息,综合确定火险等级,编绘森林火灾危险分类图。②森林火灾探测。应用分辨率较高的双通道红外扫描探测仪探测火情,仪器上采用3~4微米和8.5~11微米两个波段探测装置,可从5000米高空探测到0~50℃森林背景中0.09平方米的600℃火场目标,既能探测林火,又能扫描成图显示火情图像。将仪器安装在森林防火巡逻的飞机上,可以监视森林火灾的蔓延发展情况,能够发现地面上直径6米的火情,以至地表下腐殖层里的火情。③森林火灾损失调查。森林植被火烧以后,地被波谱发生变化,在陆地卫星多光谱图像上就会发生与正常林地不同的异常反映。火烧迹地吸收红光不反射红外光,因此在0.5~0.6微米波段的图像上偏淡变浅,而在近红外0.7~1.1微米波段的图像上又比正常林地偏黑。在实际工作中使用这两个波段图像配合判读分析,不但可以正确识别火烧迹地的位置和轮廓,还能估计火烧迹地年龄,绘制火场和森林火灾强度图。

森林病虫害探测 受害林木和正常生长林木比较,在光谱反射率和温度方面都会发生异常现象。因此可用航空光谱辐射计和红外辐射计加以探测。如松树病虫为害中期的针叶内部结构被破坏,叶绿素减少、针叶变黄,或因叶肉含水减少,针叶干枯萎缩,在可见光波长范围里(0.45~0.55微米)针叶的光谱吸收就减少,而光谱反射率增加。这样,从不同长势的松树光谱反射曲线图上(见图),就可发现受害和健康树反射特性曲线的明显差异。在病虫害初期,针叶内部和叶绿素含量发生变化,则会在近红外波段里(0.7~1.3微米)发现受害松树的光谱反射率较低,也可在彩色片或彩色红外片大比例尺和特大比例尺航空像片上,早期探测到病虫灾害,甚至可从这种影像上统计受害株数,划分受害程度。现在已可利用卫星上安装的高分辨率红外扫描仪和多光谱扫描仪对同一地区进行重复探测以比较灾情发展情况,可比目测提前几天至十几天发现病虫害。

航测遥感技术篇7

关键词:航空摄影测量;地理信息系统;GPS测量技术;遥感技术;测绘

中图分类号:P228文献标识码: A

随着现代人造卫星技术、微电子技术及计算机技术的飞速发展,建立在这些技术基础上的甚长基线干涉测量(VLBI)、卫星激光测距(SLR)、全球定位系统(GPS)等空间大地测量技术,已可以精度测定地球的整体运动(地球的自转和极移等)和局部运动(板块运动和区域性地壳形变等),这些同惯性测量、卫星重力梯度仪、卫星测高等新技术的研制和应用一起,推动了整个测绘的发展,使之从单一学科的封闭状态向着与天文、地质、海洋、大气、地球物理等学科互相渗透、交叉、综合发展的方向前进。目前在测绘工程中常用的航空航天测绘技术有:航空摄影测量技术、地理信息系统技术、GPS测量技术以及遥感技术。现简要分述如下。

1航空摄影测量技术在测绘中的应用

随着科技进步,航空摄影测量技术广泛应用于城市测绘、复杂地形及国界等测绘区域。目前,航空摄影测量技术发展迅速,测绘技术向数字化转变,出现了数字航摄仪DMC、IMU/DGPS新技术、LIDAR激光测高扫描系统等摄影测量新技术。

1.1数字航摄仪DMC

数字航摄仪DMC是一种用于高精度、高分辨率航空摄影测量的数字相机系统。DMC数字航空相机由四个全色传感器和四个多波段传感器组成。DMC航空相机通过四个多波段传感器分别捕捉红色、蓝色、绿色及近红外数据;而四个全色传感器分别捕捉的影像,依靠少量的重叠区域生成一个大的镶嵌影像。DMC能够满足小比例尺和高分辨率大比例尺航摄业务的需要。该系统在不同的光线条件下,通过改变曝光时间,确保影像质量,其对地面分辨率可达到5 cm。

低空数字航空摄影测量以2000万像素以上的小像幅数码相机为传感器,采用无人飞机进行低空航摄,具有机动、快速、经济等优势。该技术能够在短时间获取局部区域的较高精度的高分辨率数字影像,且天气及机场的依赖性小,已广泛应用于应急保障、防灾减灾、地形测绘等领域。

1.2 IMU/DGPS辅助航空摄影测量技术

GPS,即全球定位系统 ,应用于航空摄影测量后,通过空三的方法获取角元素,部分实现了直接获取投影光束。IMU/DGPS,即惯性测量单元/差分GPS,应用与航空摄影后,可直接获取三个线元素和三个角元素,无需或只需极少数的地面控制点就可进行航空摄影测量,简化和加速航片定向乃至整个测图工作。

IMU/DGPS辅助航空摄影测量是通过联合IMU、DGPS数据联合处理后,从而获得高精度外方位元素相片的航空摄影测量理论、技术和方法。其首先通过飞机上的GPS接收机和地面或基站上的 GPS接收机连续而同步地观测GPS卫星信号,然后经过GPS载波相位测量差分定位技术从而获取航摄仪的位置参数,进而应用于航摄仪紧密固连的高精度惯性测量单元直接测定航摄仪的姿态参数。IMU/DGPS辅助航空摄影测量方法主可以分为IMU/DGPS辅助空中三角测量法和直接定向法。IMU/DGPS技术可以直接获得每张像片的外方位元素,将其作为带权观测值参与摄影测量区域网平差,从而获得更高精度的像片外方位元素成果的测量方法为IMU/DGPS辅助空中三角测量方法;高精度差分GPS和惯性测量单元获取航空摄影曝光时刻影像确定空间方位,而后对其进行误差的校正,从而获得每张像片的高精度外方位元素的测量方法为直接定向法。

1.3 LIDAR激光测高扫描系统

LIDAR激光测高扫描系统利用GPS辅助空中三角测量技术,可以减少地面控制点,缩短作业周期,降低成本,可以真正应用于困难地区、无图区及边境区的基础测量。利用该种测量技术,在有地面控制点的四角带,完全可以满足1∶10000比例尺的地图精度要求;在地面特征丰富、影像较好时,可以达到1∶50000比例尺的精度要求。这种测量技术对于实施西部大开发战略、完善国家基本地形图有重要意义。

2地理信息系统技术在测绘中的应用

2.1 数据采集

为了在数据存储中得到栅格和矢量两种形式的连续对象实体,测绘初期便要对自然界监测对象施以不同的离散和抽象。决定栅格数据集的分辨率和矢量的存储方式分别为地面单位网格宽度和利用点线面三要素来表示监测对象。当然除了这一方式,还有其他方式来存储非空间数据。传统的数据采集方法是对人工测量数据进行数字化或扫描来得到数字数据,而比较先进的方法则是通过GPS 全球定位系统检测出相应坐标,接着将坐标输入到GIS 系统中进行相关处理。当然,这一过程也可以通过遥感技术来完成。

2.2 数据处理

属性特征、时间特征和空间特征并称为地理数据三大基本特征。属性特征又分为主观属性和客观属性,城市测绘中需要测量的设施最主要的便是城市建筑和道路。主观属性主要体现为城市道路和道路交叉口的交通量,客观属性主要为城市道路名称和道路交叉口形状。地理特征专题属性得到的信息不仅可以存在FAT表中,也可以存储在其他表中,其他表中的数据通过对象标志码与FAT形成联系。

2.3数据管理

在城市测绘中,城市道路、交叉口以及桥梁等设施,一般通过点来表示;城市道路中线及边线,通讯线的走向等则用线来表示;城市建筑物(如学校、企事业单位、商场、医院等)则通过面表示。这些数据集中起来,合理组织,则会形成一个地理数据库。在这一数据库中,所有诸如道路线、道路交叉口等则会构成城市测绘要素集;同样的,通讯线路、电力设备等则会构成数据库中的管线要素集。

2.4 数据显示

一般来说,单一值地图、单一的符号、相关多重属性和相应字段属性数量表达表示等图形表达方式构成了地图特征。其中,相应字段属性数量表达则包括符号分级、颜色分级和密度值分级。在地图上,单一符号展示可以直观地看到相应对象分布的密集程度。如用点来表示城市居民的居住情况,那么就可以直观地从地图上得到相应区域居民分布情况;同样的,用线可以直观地表达相应区域的道路网密集程度。

3 GPS测量技术在测绘中的应用

GPS 是由美国最先研发的一种全球性的卫星定位系统,现在已经普及到全球并得到广泛应用。GPS 拥有高精度、高效益、全天候等优点,可以准确、高效、快速的提供要素的三维坐标和相关的其他信息,目前主要应用的领域包括地质测量、农业发展、军事领域摄影测量等。

3.1 GPS控制网在地质测绘工作中的建立

新地区进行测绘时,地质测绘人员会对该地区建立一个相应的测绘控制网。为了减小测绘的误差,测绘人员可以分级别的应用GPS 技术建立测绘网,并且还可以分阶段的对布设进行跟踪改变,此外对数据的核算也可以分阶段进行,这样做简单方便。

3.2 野外地质测绘

在地质测绘的野外测绘工程中GPS 也发挥着巨大的作用。在野外地质测绘过程中应用GPS 技术可快速进行选址,特别是对于那些山区等复杂的地质测绘选址中GPS 技术更具有明显的优势。即使是应用GPS 技术进行选址,也需要测绘工作人员的慎重考虑,目的是确保测绘工作得以顺利进行。此外,GPS 技术不仅应用于选址定点,还可以静态监测野外地质的测绘工作。对于地面上的一些情况,GPS 技术可利用遥感技术和卫星对其实施监测。野外地质测绘所使用的一些参考数据也是应用GPS 技术获得的,GPS 技术监测到地面上的数据,然后对这些数据进行分析,结果可为野外地质测绘服务。

3.3 对数据文件进行处理

GPS 测量数据处理的主要内容有 GPS 网平差和基线解算。只有解算基线,详细分析检验数据文件,修复数据中出现的误差与漏洞,才能把详细精确地数据提供给地质测绘。地质测绘所用的数据主要是先通过GPS 技术获取,接着对获取的数据进行整体分析,数据的这种一系列分析不仅为数据的精确性提供保障,还优化了地质测绘的效率。

3.4 GPS实时动态定位技术的应用

新的坐标转换模型可在控制网解算之后建立。要想对测绘区域内的地形图进行测量,首先,确定基本控制点,基本控制点就是应用GPS 实时动态定位技术在测绘区域内对控制点加密,然后,就可以应用GPS 实时动态定位技术对区域内地形图进行测量。GPS 实时动态定位技术的应用不仅保证了地形图的精准度,而且还在很大程度上节约了户外作业时间。在地质测绘中应用GPS 实时动态定位技术使测绘工作变得更加容易,GPS 实时动态定位技术在测绘工作中发挥着不可替代的作用。

3.5 测量勘探线剖面选址

为了确定施工地点的高程和坐标,可应用GPS技术对于地质测绘中的各个地点进行有效测定,测定结束后可获得一系列的数据,获得数据后就可以很快的整理资料,紧接着就可以绘制出所测地形的剖面图。剖面图绘制好以后,就可以根据它选择视野开阔地势平坦的地区进行施工。

4遥感技术在测绘中的应用

遥感是由空基系统、地基系统和研究技术支持系统组成,利用各种非接触的、远距离的探测技术,根据地面上空的飞机、飞船、卫星等飞行物上的遥感器收集地面数据资料,获取信息,经记录、传送、分析和判读识别他物。

遥感技术具有获取数据资料范围大、获取信息速度快、周期短、受条件限制少、手段多、信息量大等特点。

遥感对地观测技术是当代高新技术的重要组成部分,具有时效性好、宏观性强、信息量丰富等特点。利用 GPS 监测地质灾害体的形变与蠕动情况,从卫星遥感图像上可实时反映灾时情况,监测重点灾害点的发展趋势,增强地质灾害发生的预见性。遥感技术在地质测绘中广泛应用,在大比例尺地质测绘和地质制图中,遥感与地质的符合程度和可兼容程度有了很大的改进,真实地反映地质事实,有利于促进地质矿产持续发展。

此外,地质图上对岩浆岩、变质岩等地质结构的描述比较粗略,常规地质图则记述简单。由于遥感地质资料在各类钻井、物探资料等运用过程中表现出了较强的可靠度,如利用遥感资料将各种各样的隐伏地质信息、隐蔽地质界限等,补充到这类地区的地质图上去,可大大改善其地质研究程度,所以将遥感技术应用于地质测绘,开展大比例尺地质填图,也必将大幅度提高大比例尺地质图件的精度和专业水平,加快详细地址测绘、专业勘测的进度。

参考文献

[1]卢国明.遥感技术在测绘科学中的应用[J].企业导报,2011,11

航测遥感技术篇8

[关键词]摄影测量 遥感技术

[中图分类号] P23 [文献码] B [文章编号] 1000-405X(2014)-3-102-1

1摄影测量与遥感技术概述

1.1摄影测量技术

摄影测量学的方法很多,其中航空摄影测量的理论是最常用的。航空摄影测量是利用飞机上摄取的地表相片为依据进行量测判断拍摄的地面上物体大小、形状、空间位置关系,从而建立被摄取的地区的地形图信息数据资料。航空摄影是在一定的高度按规定的时间间隔对要测绘的区域进行连续重叠摄影。要求所拍摄的图片能够覆盖整个待测区,并且有一定的重叠度。摄影测量的主要任务是对地观测,因此测绘各种比例尺的地形图和专题图,建立地形图数据库,并贮备各种地理信息系统的建立与更新时需要的基础数据。

1.2遥感技术

遥感技术系统由空间信息采集系统,地面接收、传输和预处理系统,地面实况调查系统,信息提取与分析应用系统几部分组成。空间信息采集系统由遥感器和遥感平台组成,遥感平台是遥感器的载体为其提供工作平台。遥感器是用来收集、记录被测目标的特征信息并发送到地面接收站的设备。地面接收站主要是接受、处理、存档和发散各类卫星传输的数据,并把数据记录在高密度磁带、光盘上。保存和记录数据后地面工作站依靠计算机进行图像预处理。地面实况调查系统主要是进行在空间遥感信息获取前所进行的地物波谱特征测量,还有在空间遥感信息获取的同时进行与遥感有关的各种遥测数据的收集。最后将收集的遥感图像信息有针对性的提取,进行具体领域的应用或辅助研究。

2摄影测量与遥感在铁路测量中的应用

2.1选线应用

线路一般应尽量采用直线以及较大半径的曲线连接,以缩短线路的长度,节省造价及营运消耗。在纵断面上则应尽量减小坡度,以提高车速。同时,铁路线路还应绕避不良地质和水文地段,并尽量绕避重要建筑物以及少占农田等,以保证线路工程的质量。为了满足上述要求,必须利用铁路沿线的地形、地貌、地质、等资料,而摄影测量与遥感技术是提供这些资料有效的技术手段。摄影测量与遥感技术在选线中的应用主要有两方面:一是摄影测量与遥感所获得的地形图以及数字高程模型是线路设计的主要资料;二是航空或者卫星遥感影像可直接或间接提供大量的有关各种地物属性的信息,为解译各种地质现象和水文要素创造良好的条件。航空或卫星影像反映地表地物宏观、逼真,借助遥感图像处理软件处理解译,并根据影像所反映出来的纹理、色调、图形等特征,可以判释区域内地层、地质构造等现象。

2.2既有线路测量应用

既有线路摄影测量与遥感技术是以航空像片或卫星遥感影像为测绘基础,配以一定的野外工作获取大比例尺地形图。其应用可归纳为:加速既有线路复测工作,加快获得完整的既有铁路技术基础资料。大比例尺地形图可满足多方面的使用要求。采用摄影测量与遥感技术测绘大比例尺地形图的优点:一是采用了国家统一的平面坐标系和高程系,与国家基本图或其他部门的地形图可以沟通使用。二是航测图片和遥感卫星图片覆盖面积大、表达现场逼真,可获得精度较高的大比例尺地形图。

2.3沿线环境动态监测

利用遥感技术可以对铁路的运行状况、沿线地质环境变化等进行动态的监测。由于遥感图像视野开阔、影像逼真,不受地形、交通的限制,获取资料快,可在室内条件下全天候开展影像判释。此外,遥感技术为从宏观背景研究地质灾害的形成与地形、地质构造等提供了方便,从而有利于揭示其产生原因和分布规律。可随时获取铁路沿线地形地层构造、地质灾害及环境变化等情况,还可提供DTM,各种比例尺地形图、透视图、各种地质专题图、各种统计数字等资料。

3遥感新技术在铁路测量中的应用

3.1SAR干涉测量

雷达干涉测量是利用复雷达图像的相位差信息来提取地面目标地形三维信息的技术。获取数据的方式,分别是沿轨道向、与轨道交叉向、重复飞行干涉测量。雷达干涉测量有特定的数据处理技术流程,与传统遥感影像数据处理完全不同,主要包括:用轨道参数法或控制点法测定基线,图像粗配准和精配准;随后进行相位解缠,其中最常用的方法有:枝切法、条纹检测法、最小二乘法、基于网络规划的算法。差分干涉测量技术是在雷达干涉测量的基础上发展起来的,它是利用复雷达图像的相位差信息来提取地面目标微小地形变化信息的技术。根据消除地形效应所采用的方法不同,差分干涉测量可分为基于DEM模拟条纹和基于生成的从干涉纹图的差分测量。

3.2高分辨率卫星遥感

航空遥感、卫星遥感等,虽然已经得到较多的应用,但在反映细节构造、精细信息、局部特征时,由于分辨率的限制而不能提供详实而全面的信息。而高分辨率卫星遥感影像既提供高几何分辨率的全色波段,又提供多光谱数据,通过一定的数据融合方法,就可提供分辨率更高的多光谱数据。高分辨率卫星遥感可应用为:提供充分、丰富、精确的信息,保证了进行科学合理的新线的选线工作;将为建立3S地质灾害信息立体防治系统和铁路管理系统提供多源、多平台、多时相、多层次、多领域的实时、丰富、准确、可靠的信息。

3.3高光谱遥感

高光谱遥感与常规遥感技术不同之处主要是窄波段、多通道,具有图像与光谱合二为一的优点,它以纳米级的超高光谱分辨率和几十或几百个波段同时对地表地物成像,能够获得地物的连续光谱信息。这样,在传统的二维遥感的基础上增加了光谱维,形成了一种独特的三维遥感。通过获取图像上任何一个像元或像元组合反映的地球表面物质的光谱特性,经过计算机图像处理就能达到快速区分和识别地表地物的目的。利用高光谱数据与专题图结合,可以全面对感兴趣区域地质进行研究并进行细分,判释区域内地层、地质构造等,给铁路选线提供可靠的依据。还可充分利用高光谱图像中丰富的纹理细节进行信息提取。

在铁路建设中,摄影测量与遥感作为一种先进的勘测技术手段,在提高选线质量和勘测资料质量;提高勘测设计效率;改善勘测工作条件;节省基建投资等方面,具有明显的经济效益和社会效益,是工程勘测设计和现代化管理的重要内容。

参考文献

航测遥感技术篇9

关键词:无人机;摄影测量技术;数字化地形测量

中图分类号:C35 文献标识码: A

一、无人机航摄系统平台

1、无人机低空航空摄影测量系统的定义

无人机遥感是利用先进的无人驾驶飞行器技术、遥感传感器技术、遥测遥控技术、通讯技术、GPS差分定位技术和遥感应用技术,自动化、智能化、专用化快速获取国土、资源、环境等空间遥感信息,完成遥感数据处理、建模和应用分析的应用技术。

无人机遥感系统由于具有机动、快速、经济等优势,已经成为世界各国研究的热点课题,现已逐步从研究开发发展到实际应用阶段,成为未来的主要航空遥感技术之一。

2、无人机航空摄影测量系统的组成

无人机航摄系统包括无人机飞行平台、数码相机系统、飞行控制系统、地面监控系统、地面保障系统、配套软件系统6部分(见图1)。

3、无人机低空航空摄影的优势

4、无人机航空摄影测量的成果及其应用

无人机航测成图的成果种类与传统航空摄影测量基本一致,主要有DOM、DEM、DLG以及相关组合成果和衍生成果(如数字影像地图等)。

二、无人机航摄成图

1、像控点布设

2、航空拍摄

2.1航线设计

航线网布点应按航线每分段布设六个平高点;

航线首末端上下两操控点应布设在通过像主点且垂直于方向线的直线上,艰难时相互违背不大于半条基线;上下对点应布在同一立体相对内;

航线中间两操控点应布设在首末操控点中线上,艰难时可向两边违背一条基线摆布,其间一个宜在中线上;应尽量防止两控制点一起向中线同侧违背,呈现同侧违背时,最大不该该超越一条基线。

依照摄区范围、划定的分区和供给的分区均匀基准面高程进行航线设计。尽量确保一致航摄区域高差不大于设计航高的1/6,确保测区之间有堆叠度,航向堆叠60%―70%、旁向堆叠30%―40%。

2.2航摄

在规则的航摄期限内,挑选地表植被及其它掩盖物对成图影响较小、云雾少、无扬尘(沙)、大气透明度好的时节进行拍摄,并依据地势条件的不一样,严厉按标准规则的太阳高度角需求挑选拍摄时间。

3、空三加密

3.1工作流程

解析空中三角丈量,为纠正和测图供给了定向点和注记点,以及工作时所需求的仪器安顿元素数据,空三加密前需获得以下各种材料:航摄质量鉴定书,涤纶片,图历表,野外操控、调绘图像,布点略图,各种观测核算手簿,前一工序的技术设计书等。空中三角丈量工作流程如下图:

4、内业数字化测图―DLG出产

它包括精细立体测图仪测图和解析测图仪联机测图。精细立体测图仪适用于各种比例尺及各种地势种类的测图,解析测图仪适用于各种摄像材料的测图。该文首要介绍精细立体测图仪测图。

4.1测绘地物地貌

通过像片准备工作和定向后能够进行地物地貌测绘。立体测图可采用全野外凋绘后测图和内判测图后外业对照、补测和补调的办法。在运用内判测图后外业对照、补测和补调的办法时应留意:①航摄像片的现势性要好;②必要时需求编制测区室内判读样片③对有把握判准的地物地貌元素,按图饰需求直接测绘在图板上,对无把握判准的地物地貌元素,内业只测绘外括作为疑点留给外业处理。④外业进行查看、核对、补测和补调工作。对内业测绘有把握的部分应作抽查,对内业标明的疑点应作核对、补测,对内业无法判绘的地势元素应进行补调。

4.2接边和结束

测绘地物地貌时,应在仪器上与已描图边进行接边;像对间的地物接边差不大于地物点平面方位中差错的两倍,等高线接边差应不大于1个根本等高距;每像对测完后应经查看才能从仪器上取下,每幅图测完后应认真进行自校和材料收拾。

三、无人机航摄效率影响因素分析

无人机航摄效率的影响因素主要包括以下4方面:①摄区面积;②无人机续航时间;③相机续航时间;④相机的像幅大小。公式为: N=Int(PArea/FArea)+1(1)

式中,N为摄区飞行架次数;PArea为摄区面积;FArea为单架次航摄面积;Int()表示将数字向下舍去到最接近的整数。

由式(1)可知,航摄架次与摄区面积成正比,与单架次航摄面积成反比。因此,在保障摄区任务的前提下,要提高航摄效率,只有提高单架次的航摄面积。而单架次的航摄面积与以上的②③④因素直接相关。如果把单架次的航摄面积分摊到每张有效的像片上,那么每张像片的有效面积可以近似认为是单像片扣除单次重叠后的面积,即单架次航摄面积=单像片有效面积×片数=单像片长×(1-航线重叠)×单像片宽×(1-旁向重叠)×飞机和相机续航时间的最小值内拍的片数根据投影关系:

可得到单片贡献面积SArea:

式中,f为焦距,单位为mm;H为相对航高,单位为m;u为像元大小,单位为mm;GSD为地面分辨率,单位为m;Row和Col分别为像片行数和列数;Oc为航向重叠度;Or为旁向重叠度。以上推理基于固定地面分辨率的情况,而这也是生产中常用的情况。由公式(3)的分析得出结论为:①单架次航摄面积与相机像元大小以及航高的平方成正比,与焦距的平方成反比;②单架次航摄面积与像幅大小成正比;③单架次航摄面积与航摄时间成正比。要提高无人机的航摄效率,可以采取如下措施:①选择较高的航高和短焦相机;②减少影像重叠度;③选择大容量的相机电池;④增大无人机的载油量;⑤减少单位时间消耗的油量。实际作业中,相机的焦距是固定的,影像重叠度必须得到保证,因此增大油箱容量和减少单位时间油耗是最可行的办法。

单位时间的油耗,实际体现的是无人机螺旋桨的效率问题。在空气动力学理论中,一般用以下公式来表示:

式中,η为螺旋桨的效率;r为桨叶上任一剖面到旋转轴的距离;θ为剖面角(螺距);V为前进速度;D为螺旋桨直径;P为旋转阻力。

由式(4)可以得出,在机型一定的情况下(此时P为定值),η与tanθ成正比,即其他条件确定的情况下,螺距越大则螺旋桨效率越高;同时,桨尖处螺距角的影响比靠近旋转轴处的角度影响更大。

因此,在其他条件不变的情况下,通过用砂纸打磨螺旋桨,修改螺旋桨桨叶翼面与旋转平面的交角(重点是桨尖处的角度)的方法,增大螺旋桨的螺距,可提高无人机的效率,减少油耗。

航测遥感技术篇10

关键词:彩色大面阵;数字;航空遥感;技术

进入21世纪后,我国科技技术发展越来越快,而且数字航空遥感相机拍摄的质量越来越高,应用彩色大面阵数字航空遥感相机技术,可以进行动态拍摄,相机动态分辨率比较高,而且可控制曝光的时间,将这项技术应用在我国国土资源监测系统中,可以提高拍摄画面的质量,对国土资源的分析与利用提供准确的参考数据。本文对彩色大面阵数字航空遥感相机技术进行了研究,希望可以拓宽这项技术的应用范围,保证技术操作的简便性。

1 彩色大面阵CCD的工作原理

相机主要由光学镜头、叶片式中心快门、面阵CCD、前向像移补偿系统、存储控制系统等组成。相机垂直安装在Y-S,Y-12等遥感飞机上,面阵CCD平行于地面放置,来自地面景物的光线经大气、光学镜头及中心快门会聚在面阵CCD上;相机工作时像移补偿系统推动面阵CCD沿飞行方向微量移动,达到补偿前向像移的口的;同时中心快门根据光照条件选择合适的曝光时间,并且保证拍照周期能够实现相邻两次成像区域所需的重叠率。原理如图1所示。

2 彩色大面阵数字航空遥感相机技术

2.1 大视场高分辨率摄影光学系统

相机采用4k×7k的全帧彩色大面阵CCD,根据彩色CCD光谱曲线的特点,相机光学系统的光谱范围设计为450-650nm。

根据面阵CCD的幅面、光谱曲线及相机横向视场75°的要求,采用Russar型光学系统,因其结构完全对称,消除了慧差、畸变的影响,并且进一步复杂化光学系统的结构形式,优化出了满足系统要求的光学系统,各种像差也得到了很好的校正。光学系统设计图如图2所示,通过计算光学系统的视场角可达到83°,全视场畸变不大于0.04%。

2.2 前向像移补偿技术

航空遥感相机技术是一种空中摄影技术,需要利用飞行设备,而飞行设备向前运动时,在曝光的瞬间会产生影像位移,这影响了图像的清晰度以及分辨率,为了保证成像的质量,必须对传统的遥感相机技术进行改进,采用彩色大面阵数字航空遥感相机技术,可以解决前向像移补偿问题。数字摄影相机有一定特点,考虑到曝光补偿问题,必须设计出精密度比较高的位移传动系统,该系统需要驱动彩色大面阵CCD,这样可以保证面阵CCD运动与像移速度保持一致,可以避免出现前向像移现象。

像移补偿系统是保证彩色大面阵数字航空遥感相机拍摄质量的前提,其工作的原理是:精密传动机构、离合器与凸轮连接后,可以保证CCD探测器的性能。离合器在运行的过程中,凸轮可以接收到电机传输的运动能量,并且产生一定的推动力,是CCD探测器可以正常移动,并且进行对前向像移的补偿。凸轮的运动具有一定规律,当其旋转一周后,CCD探测器又会回到初始的位置,离合器不再与凸轮连接,凸轮机也不会推动探测器向前移动。另外,在像移补偿系统中,编码器也发挥中重要的作用,其可以精确测量出探测器的位置,还可以测试出其运动速度。

2.3 中心式快门技术

快门是彩色大面阵数字航空遥感相机发挥作用的重要机构,在给定的时间内,利用CCD探测器感光层,可以感受到落到被拍摄物体上的光线。数字遥感设备有着不同的结构,所以,快门形式也有不同的类型,常见的主要是中心式、百叶窗式以及帘幕式。其中中心式快门形式应用比较广,在数字相机系统中有着良好的应用效果,下面笔者对中心式快门技术进行简单的介绍。中心式快门一般会放在光学镜头光束最细的位置,这样可以提高快门效率。在为了保证拍摄图像的清晰度,必须结合光照度以及图像重叠率优化快门技术。技术人员在优化的过程中,研究出了快速共轴双叶片中心式快门技术,而且有效的控制了曝光的时间,可以保证探测器曝光的均匀程度。

数字相机快门系统是由多个部件构成的,其中比较重要的有叶片、电机、离心器等,数字相机快门的工作原理是:在数字相机快门系统中有两个叶片,每个叶片都有一个传动系统,而且属于转轴同心,两个叶片有着不同的转速,其中快叶片转速是慢叶片转速的4倍,两个叶片中都有扇形孔。

相机摄影一次,慢叶片和快叶片同时转动,慢叶片通过光学系统的光栏孔径时,其上的扇形孔将光栏孔径打开,此时,快叶片也快速通过光栏孔径,控制光栏孔径开关的时间,使相机曝光成像一次,通过改变快门电机的转速实现曝光时间的连续可调。叶片的启动和停止依靠离合器控制,快门的有效曝光时间范围为1/100-1/1000s。

快门效率是快门参数中一项重要的指标,快门必须具有较高的效率才能保证相机的图像质量,对彩色数字相机来说尤为如此。快门的工作分为三个阶段:光栏孔径被逐渐打开阶段;光栏孔径被完全打开阶段;光栏孔径被逐渐打开阶段;光栏孔径被逐渐关闭阶段。

快门效率计算公式如下:

η为快门效率;t效为有效曝光时间;t总为实际曝光时间。经计算,数字摄影相机快门效率为72%。

结束语

彩色大面阵数字航空遥感相机技术是一项新型的技术,将其应用的地质监测中,可以提高相机拍摄的质量以及清晰度。彩色大面阵数字技术有着良好的发展前景,应用这项技术可以改善传统遥感技术的缺陷以及漏洞,还可以解决传统遥感相机曝光补偿前向像移的问题,可以拍摄到清晰的彩色画面,对地质研究提供着重要的参考信息。随着科技的不断发展,我国数字摄影技术还在不断的改进与完善,可以实现空中动态测量,而且利用定位系统,可以对设备进行远程控制,从而保证拍摄范围的精确性。

参考文献

[1]常凌颖,杨建峰,赵葆常,陈立武.一种新型面阵CCD航天立体摄影测量光学系统[J].光子学报,2005(8).