煤制甲醇工艺总结十篇

时间:2023-12-18 17:58:35

煤制甲醇工艺总结

煤制甲醇工艺总结篇1

【关键词】新型煤化工;技术现状;发展思路

0.前言

煤化工可分为传统煤化工和新型煤化工。传统的煤化工主要用来发电、炼焦和作为工业燃料以及合成氨、尿素、甲醇、甲醛、乙酸、电石和乙炔衍生物(氯乙烯、醋酸乙烯、1,4-丁二醇)等。新型煤化工包括煤制油、煤制烯烃、煤制乙二醇、煤制天然气和煤制二甲醚[1]。

1.新型煤化工的技术现状

1.1煤制油的技术现状

煤液化技术在科学上称为煤基液体燃料合成技术,按合成工艺的不同,煤制油可以分为煤直接液化燃油和煤间接液化燃油2种。

(1)煤直接液化燃油:

煤直接液化燃油是指先将煤磨成煤粉,然后通过高温(400℃以上)、高压(10Mpa 以上),在催化剂的作用下加氢裂解,转化成液体燃油[2]。目前,国际上已开发出的煤加氢液化工艺有10多种,比较有代表性的有日本的NEDOL工艺、德国的IGOR工艺、美国的HTI 工艺。3 种工艺中,比较成熟可靠的是德国的IGOR工艺,其转化率能达到97%[3]。神华集团在20世纪末开始开发煤直接液化工艺,该项目引进美国碳氢技术公司煤液化核心技术,并进一步进行了调整与改进,将储量丰富的神华优质煤按照国内的常规工艺直接转化了柴油。

(2)煤间接液化燃油煤间接液化燃油是指先将煤转化成合成气(CO和H2),然后在一定温度、压力及催化剂的作用下合成生产出的煤油。目前,已经工业化的煤间接液化技术只有南非SASOL的F-T合成技术和荷兰Shell公司的SMDS技术[4]。

1.2煤制烯烃的技术现状

煤基制烯烃工艺路线为:粉煤在高温、高压条件下气化成主要成分为CO和H2的粗合成气,再经过变换及净化工序合成粗甲醇,粗甲醇精制除去水、二甲醚、甲酸甲酯等轻于甲醇的低沸点物质得到精甲醇,最后将精甲醇转化为低碳烯烃。当前,国外开发研究比较成功的甲醇制烯烃工艺主要有美国环球石油公司和挪威海德鲁公司共同开发的甲醇制烯烃(MTO)技术以及德国Lurgi公司的甲醇制丙烯(MTP)技术,而国内主要有中国科学院大连化学物理研究所(简称大连化物所)的甲醇经二甲醚制低碳烯烃(DMTO)技术、中国石油化工股份有限公司的甲醇制烯烃(SMTO)技术以及清华大学循环流化床甲醇制丙(FMTP)技术。目前,国内已建成的煤制烯烃项目主要有神华包头煤化工有限公司煤制聚烯烃项目、大唐国际发电股份有限公司煤制聚丙烯项目和神华宁夏煤业集团煤制聚丙烯项目[5]。

1.3煤制乙二醇的技术现状

煤制乙二醇技术是将煤制成合成气,再以合成气中的一氧化碳(CO)和氢气(H2)为原料制取乙二醇。目前,我国在世界上已率先实现了煤制乙二醇(CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇)成套技术的工业化应用。而国外技术未能实现工业化,其原因在于没能获得核心催化剂的关键制备技术和工业一氧化碳深度脱氢净化等系列关键工艺和技术,以及关键单元的技术集成[6]。

1.4煤制天然气的技术现状

煤制天然气的主要工艺流程为:煤气化生产合成气,合成气通过一氧化碳变换和净化后,经过甲烷化反应生产天然气。整个工艺在技术上是成熟的,现在国内外有关学者和公司将研发重心放到了气化技术的革新上[7]。煤制天然气的气化工艺[8]可分为蒸汽- 纯氧气化,加氢气化和催化蒸汽气化三种工艺。煤制天然气的另一核心技术是甲烷化工艺。目前国内还没有掌握大型合成气甲烷化工艺,主要技术要向国外公司购买。目前使用的甲烷化技术主要是托普索甲烷化循环工艺技术和DAVY 公司的甲烷化技术[9]。

1.5煤制二甲醚的技术现状

二甲醚的生产工艺路线很多,目前工业上应用的主要是甲醇脱水工艺和合成气直接合成二甲醚工艺。甲醇脱水法先由合成气制得甲醇,然后甲醇在固体催化剂作用下脱水制得二甲醚,甲醇脱水法又分为甲醇气相催化脱水法和液相催化脱水法;合成气一步法以合成气( CO+H2)为原料,合成甲醇和甲醇脱水反应在同一反应器中完成,同时伴随CO的变换反应,一步法多采用双功能催化剂[10]。

甲醇气相催化脱水法是目前国内外使用最多的二甲醚工业生产方法。合成气一步法合成二甲醚工艺主要有日本NKK 公司的液相一步法新工艺、大连化学物理研究所的固相新工艺、美国空气化学品公司浆态床一步法合成二甲醚工艺等。

2.新型煤化工产业发展思路

新一代煤化工技术是指以煤气化为龙头,以碳—化工技术为基础,合成、制取各种化工产品(和燃料油)的煤炭洁净利用技术。我国新型煤化工发展的总体思路与重点发展新型煤化工,应坚持与传统煤化工结构调整相结合,坚持提高效益与节能减排相结合[11]。

2.1 以清洁能源为主要产品

新型煤化工以生产洁净能源和可替代石油化工产品为主,如汽油、柴油、液化石油气、航空煤油、聚丙烯原料、乙烯原料、电力、替代燃料(甲醇、二甲醚)、热力等,以及煤化工独具优势的特有化工产品,如芳香烃类产品。

2.2 推进煤-电-热-化一体化发展

新型煤化工是未来中国能源技术发展的战略方向,我们要切实扭转煤化工项目生产单一产品的单纯煤化工发展模式,着力发展煤-电-化-热一体化,实现煤化工与电力、热力联产和负荷的双向调节。紧密依托于煤炭资源的开发,并与其它能源、化工技术结合,探索煤化工产品、副产物的综合利用, 如二氧化碳制绿藻、煤渣制氧化铝、合成油产品综合利用等,形成煤炭—能源化工一体化的新兴产业。

2.3 建设大型企业和产业基地

新型煤化工发展将以建设大型企业为主,包括采用大型反应器和建设大型现代化单元工厂,如百万吨级以上的煤直接液化、煤间接液化工厂以及大型联产系统等。在建设大型企业的基础上,形成新型煤化工产业基地及基地群。每个产业基地包括若干不同的大型工厂,相近的几个基地组成基地群,成为国内新的重要能源产业[12]。 [科]

【参考文献】

[1]杨卫兰.我国新型煤化工发展现状及前景分析[J].石油化工技术与经济,2012,28(5):22-26.

[2]郝剑虹,高海洋,张富兴.煤制油技术在我国的发展现状[J].北京汽车,2010(2): 43-46.

[3]钱伯章,朱建芳.对中国煤制油的冷静思考[J].炼油技术与工程,2006(7):5-9.

[4]张玉卓.中国煤炭液化技术发展前景[J].煤炭科学技术,2006(1):19-22.

[5]李丽英,田广华.煤基甲醇制烯烃技术及产业发展现状[J].合成树脂及塑料,2013,30(4):75-79.

[6]钱伯章.煤制乙二醇技术与应用[J].精细化工原料及中间体,2012(10 ):35-41.

[7]苗兴旺,吴枫,张数义.煤制天然气技术发展现状[J].氮肥技术,2010,31(1):6-8.

[8]MunishChandel,EricWilliams.SyntheticNaturalGas(SNG):Technology,Environ

mental Implications,and EconomicsClimate Change Policy Partnership Duke University,January,2009.

[9]刘志光,龚华俊,余黎明.我国煤制天然气发展的探讨[J].煤化工,2009,14(2):1-5.

[10]田广华,宋彩霞.煤化工产品工艺路线[J].现代化工,2012,32(2):6-8.

煤制甲醇工艺总结篇2

【关键词】甲醇 气化 合成 空分

1.煤气化制甲醇的重要意义

作为一种传统的化工原料,甲醇在化工行业中一直扮演着极其重要的角色。随着油价的日益上涨和甲醇应用领域的不断拓展,甲醇及其衍生品的应用也越来越受到人们的重视。在市场需求的推动下,甲醇及其衍生物的生产迎来了发展的黄金时期。甲醇作为极其重要的一种化工原料,其下游衍生品也很丰富,这也是煤基甲醇化工可以代替部分石油化工的原因。传统工艺上甲醇可以用来生产甲醛、合成橡胶、甲基叔丁基醚、对苯二甲酸二甲脂、氯甲烷、甲基丙烯酸甲脂、醋酸、甲胺等一系列有机化工产品。除了传统应用,甲醇化工应用技术近期还取得了不少新的突破。

此外,甲醇制汽油(MTG)也是甲醇燃料应用的重要领域之一。除了埃克森美孚公司的二步法MTG技术,中科院山西煤化所与化学工业第二设计院共同开发的一步法甲醇转化制备汽油技术,已在其能源化工中试基地完成中试。与埃克森美孚公司的技术相比,国产技术具有汽油选择性高,工艺流程短,单程寿命长和催化剂稳定性等优势。

2.煤制甲醇基本的工艺及设备介绍

2.1 煤炭的气化

煤气化技术是煤制甲醇工艺中的关键性。目前,国内外先进的煤气化技术主要包括:荷兰Shell公司的SCGP粉煤加压气化工艺、德国未来能源公司的GSP粉煤加压气化技术、美国Texaco公司德士古气化工艺、德国Lurgi公司的Lurgi块煤加压气化工艺等,本文以德士古气化工艺为例进行气化工艺的介绍。

2.2 煤浆制备

由输送系统送来的原料煤干基(

2.3 气化

在本工段,水煤浆与氧进行部分氧化反应制得粗合成气。

煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧嘴进入气化炉,在气化炉中煤浆与氧气发生主要反应如下:

CmHnSr+m/2O2mCO+(n/2-r)H2+rH2S

CO+H2OH2+CO2

气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。

气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。

2.4 合成气的净化

本工段采用低温甲醇洗工艺脱除变换气中CO2、全部硫化物、其它杂质和H2O。低温甲醇洗工艺是使用物理吸收法的酸性气体净化技术,使用冷甲醇作为酸性气体的吸收液,利用甲醇在零下60℃左右的低温下对酸性气体溶解度特别大的性质,分段选择性地吸收原料气中的CO2、H2S及各种有机硫等杂质,低温甲醇洗工艺一般有林德和鲁奇两种,二者基本原理相同,并且技术都很成熟,只是在工程实施、工艺流程设计和设备设计上各有特点。

2.5 甲醇的合成

国内外使用的甲醇合成塔主要有冷管式、冷激式、固定管板列管式水管式和多床内换热式合成塔。冷激式合成塔碳转化率太低,能耗高,已基本淘汰:冷管式合成塔碳转化率较高但副产的蒸汽仅为0.4MPa,大型装置中很少采用;水管式合成塔传热系数较高,能更好地移走反应热,缩小传热面积,并能多装催化剂,同时可副产中压蒸汽,是大型化较理想的塔型,在60万t以上大型装置应用较为广泛;固定管板由于列管需用特种的不锈钢,因而造价最高;多床内换热式合成塔由大型氨合成塔发展而来,目前氨合成塔均采用三床(四床)内换热式合成塔。

2.6 甲醇的精馏

甲醇的精馏工艺,主要有ICI的两塔流程和Lurgi三塔流程两种。ICI两塔工艺虽然工艺流程简单、装置投资省,但是能耗相对较高;而Lurgi三塔精馏工艺流程虽然相对较长,但操作能耗较ICI两塔工艺流程低。从投资和能耗等方面来综合考虑,对大、中型甲醇精馏装置,三塔精馏工艺优点更加明显。主要原因在于三塔型工艺流程设置有一个加压操作(压力为0.6~0.7 MPa)的主精馏塔,加压塔塔顶甲醇蒸汽冷凝热可以用作常压精馏塔塔底再沸器热源,减少了水蒸汽和冷却水消耗,从而使得精馏过程总的能耗可比二塔流程低20%~30%。从清洁环保角度来讲,也应该采取三塔精馏工艺。

3.甲醇生产工艺的选择

甲醇的生产现已大规模连续化,生产过程中要求合成气中(H2+CO)含量高,要求煤气化工艺更成熟可靠,效率更高。结合产品的质量要求、环境友好以及不同工艺设备的技术特点,煤制甲醇工艺的选择应依据以下原则:

3.1 适用性

不同的煤气化技术适用于不同的煤种,硬根据所用煤的质量、性质、品种等选择合适的煤气化工艺及后续工艺。

3.2 可靠性

技术必须成熟可靠,在保证产品质量和生产能力的前提下,设备装置应能连续稳定运转。

3.3 先进性

先进性体现在产品质量性能、设备水平和工艺水平等方面,先进性决定项目的市场竞争力,应全面研究工艺技术的现状和发展趋势,深入探讨是否可以采用更为先进的工艺技术。安全环保性,煤化工生产过程容易产生大量煤粉、"三废"等污染物,应选用安全环保的工艺进行安全、清洁生产。

甲醇用作燃料,排放气中的一氧化碳,氮氧化物等含量降低,是一种环境友好的燃料,尤为重要的是,对于我国来说,能够降低对石油的依赖程度,优化能源结构。但是在甲醇生产工艺选择上,一定要根据实际情况,遵循适用、安全可靠、经济环保、技术先进的原则。

参考文献

煤制甲醇工艺总结篇3

关键词:低温 甲醇洗 煤化工 应用

引言

低温甲醇洗技术是通过甲醇作为有机吸收溶剂,在低温环境下完成对H2S、CO2和COS等气体的吸收,从而达到对气体的净化目的。目前低温甲醇洗技术已经在煤化工、化肥工业、石油工业等相关领域得到了广泛的应用,其具有吸收性强、选择性高、运行性稳定等特点,已经被广泛的应用于酸性气体的吸收之中。目前低温甲醇洗技术是鲁奇公司和林德公司的重要工艺流程,两个公司在低温环境下进行甲醇洗,虽然脱硫脱碳的方式不一样,但是其基本的原理却没什么区别。随着煤矿资源日益紧张,我国对于煤工业化发展投入了大量的精力,以求获得能源的安全长远发展。本文主要对煤化工生产过程中甲醇洗技术的应用情况进行研究,针对低温甲醇洗技术的主要特点进行分析,并且在使用低温甲醇洗技术存在的问题进行研究,并且对我国目前的主流煤工业应用该项技术进行了深入探讨。

一、低温甲醇洗技术特点

低温甲醇洗属于一种物理的工艺吸收方法,主要针对H2S、CO2和COS等气体进行吸收,由于这些气体的溶解度都很大,那么通过增加酸性气体的分子压可以有效的促进酸性气体吸收。甲醇会随着温度的降低其溶解度呈下降,而H2S、CO2和COS等气体在甲醇中的溶解度增长的速度很快,但是氢气、一氧化碳、氮气等组分的溶解度在甲醇中的变化很小,因此采用低温操作是该项吸收技术的最佳环境。低温甲醇洗技术在应用的过程中主要存在着下面几个特点:其一,对酸性气体的净化能力强,且气体的净化度很高,总硫可降至最低的0.1uL/L,而二氧化碳可被脱到10uL/L;其二,高选择性,甲醇对于H2S、CO2和COS等气体吸收具有很高的选择性,能够很好的完成气体的脱硫脱碳,通过在塔内进行分段和选择,回收的CO2纯度能够满足尿素的需求,从H2S中回收硫;其三,低温甲醇洗技术其化学稳定吸收能力强,吸收过程中不会起泡有利于有机溶剂稳定生产;其四,甲醇的腐蚀作用下,在生产过程中不需要防腐蚀材料,可以很大程度的节省投资。;其五,甲醇作为溶剂其造价低,且来源广泛。

二、低温甲醇洗在工业生产中的应用问题

随着甲醇洗在工业中的不断应用,以及其在工业的生产中存在着一些问题,这使得该技术在后续的发展过程中面临着很大的困难。煤化工生产过程中原材料中含了大量的硫,这些硫对机械具有腐蚀作用,因此在煤化工生产过程中对于硫含量的控制是低温甲醇洗工艺技术的重要研究问题。对于H2S的吸收只有当硫含量达标时才能够在低温甲醇洗中获得很好的吸收效果,否则就会造成吸收效果不佳。而在另外一些化工生产中,例如合成氨的过程中低温甲醇洗的净化装置的冷量会直接影响到净化的效果;煤制甲醇过程中低温甲醇洗的甲醇消耗和循环量会对净化效果造成很大的影响;如果在低温甲醇洗装置中甲醇再生塔出现积垢则会严重的影响甲醇洗的效果。

三、低温甲醇洗在煤化工中的应用情况

1.煤制甲醇中的应用

甲醇不仅是生产石油等化工工业上基础原料,而且在其他的工业生产中也是重要的化工原料。煤制甲醇过程中所涉及的化学反应很多,煤炭经过煤气化、一氧化碳转换、低温甲醇洗以及甲醇合成等即可制得甲醇,进行进一步加工时,可以值得乙酸、二甲醚、乙烯、甲醛以及丙烯等化工原料。

2.煤制合成氨中的应用

国内对于合成氨的生产随着化肥产业的不断发展而迅速发展,合成氨带给了企业良好的利润前景,因此煤制合成氨在我国得到了快速的发展。煤制合成氨的过程中主要以煤作为原料,然后经过煤气化、一氧化碳转换、低温甲醇洗以及合成氨等工艺手段,可以制备出化肥、硝酸、苯胺等产品。煤制合成氨的过程中可以通过减少换热器损失,可以有效的提升生产效率,从而达到对低温甲醇洗的工艺研究。

3.煤制天然气中的应用

由于我国对于天然气的需求日益增大,另外我国的天然气存在着严重的不足,因此这一现状促使了煤制天然气的出现。经过煤气化、一氧化碳转换以及低温甲醇洗过程净化了煤气,将其送入到固定的床的甲烷反应器之中。采用低温甲醇洗技术来净化生产原料,可以有效的进行酸性气体的脱除。

4.其他化工应用情况

低温甲醇洗技术在其他的煤化工生产过程中,利用甲醇对酸性气体的高选择作用,净化程度高等优势被用于煤化工生产之中。以煤作为原料来生产草酸酯、乙二醇等,尤其是在制备乙二醇的Pd/α-Al2O3过程中对于硫含量的要求非常高,那么通过低温甲醇洗技术来净化原料气体,为了避免催化剂失活,则选取的装置总硫出口小于0.1uL/L。

四、结语

随着低温甲醇洗技术在我国内外的快速发展,很多的厂商都利用该方法来进行酸性气体的脱碳和脱硫加工。本文主要对煤化工生产过程中对于甲醇洗技术的应用情况进行研究,针对在使用低温甲醇洗技术存在的问题进行分析,行文过程中针对低温甲醇洗技术特点、低温甲醇洗在工业生产中的应用问题以及低温甲醇洗在煤化工中的应用情况进行探讨,使得我们对于低温甲醇洗技术有了更加深刻的认识,并且在具体的生产过程中对于酸洗气体的脱碳和脱硫的操作进行了研究,希望此研究能够为低温甲醇洗技术研究者提供思路。

参考文献:

[1]汪家铭. 低温甲醇洗工艺的技术优势及应用进展[J]. 化肥设计,2013,06:1-6+10.

[2]常彬杰. 低温甲醇洗技术在神华煤制氢装置中的应用[J]. 神华科技,2009,03:80-83.

煤制甲醇工艺总结篇4

近年来,中国炼焦、煤气化制合成氨、甲醇等煤化工业呈现快速发展,煤炭液化、甲醇制烯烃、二甲醚、煤化工联产等新型煤化工技术研究与工业化正在启动发展。煤炭能源化工工业是今后20年的重要发展方向,引进和开发自主知识产权技术将成为中国煤化工业发展的重要支撑,中国将成为世界最大的煤化工业国家。这对于我国减轻燃煤造成的环境污染、减缓我国对国外石油的依赖,均将起到重要作用。

新型煤化工在中国正面临新的发展机遇和长远的发展前景。当前,中国炼焦工业技术已进入世界先进行列,新建的大部分是技术先进、配套设施完善的大型焦炉,炭化室高6米的大容积焦炉已实现国产化,2008年机械化焦炉生产的焦炭约占焦炭总产量的70%;干熄焦、地面除尘站等环保技术已进入实用化阶段;化学产品回收能力加强;改造装备简陋、落后的小型焦炉,淘汰土焦及改良焦炉的进展加快。

注重煤焦油化学产品,集中深加工和增强焦炉煤气的有效利用,是焦化工业综合发展、提升竞争能力的重要方向。对布局较为集中的大型炼焦企业,应在焦油深加工、剩余煤气的利用方面统筹规划,以实现规模化生产和高效、经济生产。

煤变油是大家都广泛关注的项目。煤直接液化、间接液化的产品以汽油、柴油、航空煤油以及石脑油、烯烃等为主,产品市场潜力巨大,工艺、工程技术集中度高,是中国新型煤化工技术和产业发展的重要方向。近年来,两种技术在研究开发和大规模工程示范方面均得到发展。

煤直接液化于50年前已实现工业生产,新工艺研发在国外已有近30年,积累了从基础工艺研究到中间试验的大量经验,中国国内研究已有20多年。国内已完成高分散、直接液化、加氢液化催化剂的实验室开发,该催化剂具有添加量低、催化效果好、生产成本低、显著提高油收率等优点,达到国际先进水平。在开发形成“神华煤直接液化新工艺”的基础上,建成了投煤量6t/d的工艺试验装置,于2008年10~12月进行了溶剂加氢、热油连续运转和23小时投料试运转,打通了液化工艺,取得开发成果。适合中国煤种、煤质的CDCL直接液化新工艺的基础研究和工艺开发已启动进行。

目前,国内一些产煤省区和能源企业结合技术引进和开发,已经或正在进行建设煤直接液化工厂的研究和前期工作。

同时,我国煤间接液化技术开发和工业化发展速度在加快。到2008年底,国内分别建成了低温浆态床合成油(间接液化)中试装置,并进行了长周期试验运行,完成了配套体系催化剂的开发,完成了示范工厂的工艺软件包设计和工程研究。低温浆态合成油可以获得约70%的柴油,十六烷值达到70以上,其它产品有LPG(约5%~10%)、含氧化合物等。间接液化中试装置开发、运转是自主知识产权煤基合成油技术的标志性成果,对推动技术国产化和工业化发展有重要作用。

煤间接液化的大规模商业化生产在国外是成熟的,引进技术建设每年300万吨级工厂的可行性研究正在进行中。

煤间接液化技术有较宽的煤种适应性,工艺条件相对缓和,可以通过改变生产工艺条件调整产品结构,或以发动机燃料为主,或以化工品为主,因此将会成为未来煤制油产业发展的主要途径。

生产甲醇等化学物质,是煤化工的又一重要方向。煤炭是国内生产甲醇的主要原料,煤基甲醇产量约占总产量的70%以上。今后甲醇消费仍然以化工需求为主,需求量稳步上升;作为汽油代用燃料,主要方式以掺烧为主,局部地区示范和发展甲醇燃料汽车,消费量均有所增加。预计几年后中国国内甲醇生产、消费量将达到平衡,国内生产企业之间、国内甲醇与进口甲醇之间的竞争将日趋激烈,降低生产成本对市场竞争显得更为重要。

发展甲醇下游产品是未来发展方向。甲醇是重要的基础化工原料,其下游产品有:醋酸、甲酸等有机酸类,醚、酯等各种含氧化合物,乙烯、丙烯等烯烃类,二甲醚、合成汽油等燃料类。结合市场需求,发展国内市场紧缺、特别是可以替代石油化工产品的甲醇下游产品是未来大规模发展甲醇生产、提高市场竞争能力的重要方向。

通过煤气化-合成氨制造化肥,是煤化工的又一途径。受国内石油和天然气资源制约,以煤为原料生产合成氨是今后发展的方向,预计占到60%以上。与建设大中型合成氨建设配套,煤气化技术也取得较大进步和发展。新建煤气化技术有:水煤浆、干煤粉气流床气化,用于中小型化肥厂改造的流化床煤气化,加压固定床煤气化。中小型固定床间歇煤气化技术所占比例正在逐步减少。

国内先进煤气化技术研究开发近年来也有进展,四喷嘴水煤浆气流床气化技术正在进行工业示范,预计2008年完成Kt级工业运行试验;干煤粉气流床气化技术正在进行试开发中;加压流化床气化技术正在进入工业开发。国内煤气化技术的发展将为煤基合成氨产业提供国内知识产权的技术支持,推动合成氨产业技术的全面进步。

煤制甲醇工艺总结篇5

关键词:醋酸工艺 技术分析 甲醇

甲醇是基础有机化工生产的原料和产品,而且在变压吸附制氢、情节燃料和生物技术等领域有着非常广阔的应用前景。醋酸是一种非常重要的化工产品和化学中间体,可以用于生产多种下游的有机产品,与此同时也可以用作非常好的溶剂。发展大型煤制甲醇并且进行深度的加工,是煤化工业发展的必经道路之一。本文将以国内某个公司的实际生产流程为例子,对于所涉及的气化、净化、甲醇合成、醋酸合成、空分和CO分离技术进行细致的讨论和分析。

一、生产流程概述

煤和空分的氧气在气化炉中制造得出了一氧化碳、氢气和含量很高的粗煤气。出气炉中的粗煤气的成为有三种:第一种是经过水蒸气的变换,将部分的一氧化碳转化成氢气,合成甲醇合成时需要的氢碳比。第二种是和另一种粗煤气混合,经过加热和回收以后进入到净化的程序中,将多出来的二氧化碳和硫化物脱除以后,就可以得到今春合成原料气,合成后的粗甲醇精制过后就是甲醇产品。第三种是粗煤气经过加热回收和净化之后,将分离出来的一氧化碳作为合成醋酸的原料气,然后一氧化碳和精甲醇在催化剂的作用下合成了醋酸的原型,精制以后就可以得到醋酸产品。

二、关键技术的分析

1.气化工艺的分析

目前一些大型的煤气化技术中,最具代表性的有Shell粉煤加压气化、Texaco水煤浆气化、Lurgi移动床加压气化和国内多喷嘴对置式水煤浆气化技术四种。Texaco气化技术和多喷嘴对置式新型气化技术单台炉的处理煤量很大,合成气中的有效气体(一氧化碳和氢气)含量非常高,惰性组的成分很少,非常适合生产甲醇的原料气,而且煤种的只用范围非常宽泛,环境污染很小,投资的资金也很低廉。假如说我们按照年产20万吨的醋酸汁和20万吨的甲醇,那么合成气中的氢气和一氧化碳的比例为1.50。而Texaco及多喷嘴技术约为0.80,Shell的比例为0.50,因此采用Texaco和多喷嘴新型气化技术可以很好的减少变化的负荷,而且可以避免氮气含量过高对后系统的影响。

多喷嘴对置式水煤浆气化技术是世界上最先进的气流床气化技术之一,多年来,经过科研、设计和生产等多个环节的技术攻关,技术日臻成熟,在国内已大量应用于工业化生产,同时该技术已走出国门,为美国一家石化公司提供气化技术。该技术将城市煤气、洁净发电和供热、液体燃料等清洁能源产品的生产与碳化学深加工相结合,尤其适用于生产开发甲醇、甲醛、甲胺等碳一系列产品,以及醋酸、二甲醚、DMF、DMC、合成油等一系列产品,从而形成以水煤浆气化为树干的产品树。

2.净化工艺的分析

采用水煤浆气化生产的粗煤气当中,除了含有一氧化碳、二氧化碳和氢气之外,还有少量的氮气、二氧化氢以及微量的氨、氯等成分。氯、重金属和硫化物等都是必须去除的有毒气体。从国内外煤气化装置采用的脱除酸性气体的工艺技术来看,低温甲醇洗工艺和NHD工艺是较为常见的工艺技术。两种工艺技术都属于物理吸收法。低温甲醇洗工艺在国外主要有鲁奇和林德两种工艺流程,而且两者在基本的原理上没有太大的差别,而且技术方面都已经成熟,但是专利技术和设备的设计方面还是各具特色的。国内大连理工大学经过将近25年的研究,研究出了具有自主知识产权的低温甲醇洗工艺。这项技术采用的是六塔流程,和林德的工艺非常相近。但是设备的投资量和冷负荷都比林德工艺低13%左右。所以,采用国内的低温甲醇工艺技术将合成气净化,更加经济

3.甲醇合成工艺的分析

甲醇合成工艺的核心技术是甲醇合成反应器,国外合成的反应器多种多样,已经形成了适应各种要求的系列产品。国内自主研发方面,主要负责的公司是杭州林达化工技术工程公司的低压均温合成甲醇反应器,和华东理工大学的低压甲醇反应器两种。目前国内外在建的和生产的甲醇装置大部分采用的是低压法技术。低压法和中高压法相比较,具有耗能低、成本低和产品质量优秀等特点。上海的焦化有限公司在20万吨的甲醇设备中,运用的工艺技术就是华东理工大学设计的合成塔,而且已经建成投产使用数十年之久,设备的运行状况一切正常。所以,选用低压法的绝热-管壳外冷复合型列管式合成塔(华东理工大学设计方案)进行甲醇的合成,是非常适合、经济的工艺技术。

4.醋酸工艺的分析

甲醇低压羰基合成醋酸技术是当前最先进的醋酸生产工艺,主要工艺路线包括:美国孟山都公司的甲醇低压羰基合成醋酸工艺技术、英国BP公司的Cativa甲醇羰基合成醋酸工艺技术、美国塞拉尼斯公司的AO工艺、我国西南化工研究设计院开发的蒸发流程等。自主知识产权的醋酸生产工艺技术已经在国内兖矿、天碱等企业成功使用,目前国内企业正着力于新工艺的技术改造,单套装置产能不断提升,消耗与成本有效降低,生产技术日趋完善提升。

5.CO分离工艺的分析

粗煤气的净化中有部分需要分离出一氧化碳成为合成醋酸的原料气,而目前的分离方法有深冷分离法和变压吸附法两种。第一种:深冷分离法。这项工艺可靠、成熟,而且工艺极其简单,占地面积小,可以同时制造两种以上的高纯度气体,非常适合高压环境下对一氧化碳的分离。但是唯一的缺点就是必须去除原料气中二氧化碳和水,而且要求的密度标准非常苛刻。第二种:变压吸附法。可以在环境温度下面进行,但是缺点非常明显。第一,分离过程非常复杂,需要两套PSA的设备,才可以把一氧化碳的纯度提高到95%,而且回收率是65%,因为装置PSA设备规模受到一定的限制。第二,对原料气的要求也很高。当原料气中体积分数达到1.2%的时候,一氧化碳的纯度最多达到95%。如果原料气中的一氧化碳浓度很低的话,那么相对应的回收率也会降低。两种方法相比较,如果粗煤气采用的是低温甲醇洗法净化的话,而且采用深冷法进行一氧化碳的分离,效果会更加显著

总结:煤制甲醇联产醋酸是煤用作清洁剂的重要途径之一,在煤炭及其丰富的地区建立这个项目,不单单可以合理的利用现有的资源,还可以带动地方经济的高速发展。本文通过对气化、净化、甲醇合成、醋酸合成、空分和CO分离等一些关键技术分析,以及国内外相互对比的结果可以看出来,国外的技术远早于国内的技术,而且已经相当成熟。但是国内的发展也非常迅速,许多关键性的技术已经成熟,而且得到了工业化应用的认可。所以,在选择相关工艺技术的时候,建议企业结合地区资源的实际情况和特点,除了引进国外的先进设备以外,尽可能的使用国内已经成熟的工艺技术。

参考文献

[1]张新庄,杨天华.煤制甲醇联产醋酸关键工艺技术选择分析[J].煤化工,2011,39(1):42-44.

[2]王建国、李永旺、韩怡卓等.煤经气化制液体燃料及其高温煤气净化研究过程[J].催化学报,2009,(11):107-117.

[3]汪家铭.低温甲醇洗净化工艺的技术进展及应用概况[J].化肥设计,2010,(11):125-128.

[4]胡召芳、陈荔、宋宇文等.变压吸附气体分离技术在高硫煤气制取cO中的应用[J].化肥工业,2009,(10):111-114.

煤制甲醇工艺总结篇6

一、甲醇发展状况

1、甲醇生产工艺的发展

1923年德国basf公司首先用合成气在高压下实现了甲醇的工业化生产,直到1965年,这种高压法工艺是合成甲醇的唯一方法。1966年英国ici公司开发了低压法工艺,接着又开发了中压法工艺。1971年德国的lurgi公司相继开发了适用于天然气-渣油为原料的低压法工艺。由于低压法比高压法在能耗、装置建设和单系列反应器生产能力方面具有明显的优越性,所以从70年代中期起,国外新建装置大多采用低压法工艺。世界上典型的甲醇合成工艺主要有ici工艺、lurgi工艺和三菱瓦斯化学公司(mcc)工艺。目前,国外的液相甲醇合成新工艺具有投资省、热效率高、生产成本低的 显著优点,尤其是lpmeohtm工艺,采用浆态反应器,特别适用于用现代气流床煤气化炉生产 的低h2/(co+co2)比的原料气,在价格上能够与天然气原料竞争。

我国的甲醇生产始于1957年,50年代在吉林、兰州和太原等地建成了以煤或焦炭为原料来生产甲醇的装置。60年代建成了一批中小型装置,并在合成氨工业的基础上开发了联产法生产甲醇的工艺。70年代四川维尼纶厂引进了一套以乙炔尾气为原料的95 kt/a低压法装置,采用英国ici技术。1995年12月,由化工部第八设计院和上海化工设计院联合设计的200 kt/a甲醇生产装置在上海太平洋化工公司顺利投产,标志着我国甲醇生产技术向大型化和国产化迈出了新的一步。2000年,杭州林达公司开发了拥有完全自主知识产权的jw低压均温甲醇合成塔技术,打破长期来被ici、lurgi等国外少数公司所垄断拥的局面,并在2004年获得国家技术发明二等奖。2005年,该技术成功应用于国内首家焦炉气制甲醇装置上。

南京国昌化工科技有限公司研发的gc型轴径向低压甲醇合成塔技术,通过了中国石油和化学工业协会组织的鉴定。专家认为该甲醇合成塔结构新颖、设计合理,属国内首创,填补了我国轴径向低压甲醇合成塔的空白。该项目为我国甲醇工业提供了一种技术先进、造价低且易于大型化的新型合成装置。该技术已于2003年底在山东久泰化工科技有限公司5万吨/年低压甲醇装置上首次运用成功。

2、甲醇原料的发展

自1923年开始工业化生产以来,甲醇合成的原料路线经历了很大变化。20世纪50年代以前多以煤和焦碳为原料;50年代以后,以天然气为原料的甲醇生产流程被广泛应用;进入60 年代以来,以重油为原料的甲醇装置有所发展。对于我国,从资源背景看,煤炭储量远大于石油、天然气储量,随着石油资源紧缺、油价上涨,因此在大力发展煤炭洁净利用技术的背景下,在很长一段时间内煤是我国甲醇生产最重要的原料。

二、甲醇应用状况

近年来,我国甲醇需求增长平稳,一部分来自于传统应用领域,如甲醛生产等,而新应用领域如醋酸及mtbe等则支撑着甲醇需求的增长。广义地说,甲醇应用可分为两大应用领域,即mtbe和化工应用,mtbe曾经是甲醇需求快速增长的主要带动者,但现在也有逐年减弱的趋势。

甲醇的主要应用领域是生产甲醛,甲醛可用来生产胶粘剂,主要用于木材加工业,其次是用作模塑料、涂料、纺织物及纸张等的处理剂,其中用作木材加工的胶粘剂约占其消费总量的80%。甲醛需求的增长速度和国民生产总值的增长速度密切相关。甲醛还用来生产缩醛树脂和特种化学品的1,4-丁二醇,其增长速度很快,但不会显著改变甲醛的总体需求状况。

醋酸消费约占全球甲醇需求的7%,可生产醋酸乙烯、醋酸纤维和醋酸酯等,其需求与涂料、粘合剂和纺织等方面的需求密切相关。

甲基丙烯酸甲酯约占全球甲醇需求的2%~3%,主要用来生产丙烯酸板材、表面涂料和模塑树脂等,预计发达国家的增长速度比较适中,而亚洲地区的增长速度较快。

甲醇不仅是重要的化工原料,而且还是性能优良的能源和车用燃料。甲醇与异丁烯反应得到mtbe,它是高辛烷值无铅汽油添加剂,亦可用作溶剂。自1973年第一套100 kt/a装置建成投产以来,它已成为世界上仅次于甲醛的第二大甲醇消费大户。甲基叔戊基醚(tame)也是重要的汽油含氧添加剂,由于历史原因,总产量还不大。

在寻求汽油替代燃料的过程中,醇醚燃料具有较大的应用潜力。醇醚燃料是指甲醇和二甲醚按一定比例配制而成的新型液体燃料,燃烧效率和热效率均高于液化气。由于二甲醚的挥发性好,该燃料有效地克服了甲醇燃料不易点燃、需空气充压、外加预热器及安全运输等方面的缺点。甲醇也可以直接作为汽车燃料使用。

三、甲醇市场状况

自2002年年初以来,我国甲醇市场受下游需求强力拉动,以及生产成本的提高,甲醇价格一直呈现一种稳步上扬走势。甲醇市场价格最高涨幅超过100%,甲醇生产的利润相当丰厚,效益好的厂家每吨纯利超过了1000元/吨,因而甲醇生产厂家纷纷扩产和新建,使得我国甲醇的产能急剧增加。

目前在建或拟建的大型甲醇项目主要有:中海石油化学有限公司在海南建设的年产180万吨甲醇项目,其中第一期工程为年产60万吨甲醇;山西焦化集团有限公司年产12万吨的甲醇技术改造项目;内蒙古鄂尔多斯市华建能源化工有限公司的年产100万吨甲醇项目,其中第一期工程年产40万吨甲醇;我国陕西榆林天然气化学工业公司在陕西榆林的30万吨/年甲醇装置,建成后,甲醇生产能力将增加到73万吨/年;山东兖州煤业股份有限公司在陕西榆林投资建设年产230万吨甲醇工程,其中一期工程为年产60万吨甲醇;哈尔滨气化厂的年产25万吨的新建甲醇装置,新装置建成后,该厂的甲醇生产能力将接近40万吨/年;香港建滔化工集团与重庆长寿化工园合资建造的年产75万吨甲醇项目,重庆化医控股(集团)公司与日本三菱化工合资兴建的年产85万吨甲醇项目,届时重庆的甲醇总产量将达到200万吨,长寿化工园也将成为全国最大的天然气化工基地。据粗略统计,这些新建甲醇装置如果全部建成投产,新增加的年产能至少在500万吨以上,将对我国甲醇市场供求关系产生明显的影响。

四、甲醇发展方向

甲醇是极为重要的有机化工原料,在化工、医药、轻工、纺织及运输等行业都有广泛的应用,其衍生物产品发展前景广阔。目前甲醇的深加工产品已达120多种,我国以甲醇为原料的一次加工产品已有近30种。在化工生产中,甲醇可用于制造甲醛、醋酸、氯甲烷、甲胺、甲基叔丁基醚(mtbe)、聚乙烯醇(pva)、硫酸二甲酯、对苯二甲酸二甲酯(dmt)、二甲醚、丙烯酸甲酯、甲基丙烯酸甲醇等。

以甲醇为中间体的煤基化学品深加工产业:从甲醇出发生产煤基化学品是未来c1化工发展的重要方向。比如神华集团发展以甲醇为中间体的煤基化学品深加工,利用先进成熟技术,发展“甲醇-醋酸及其衍生物”;利用国外开发成功的mto或mtp先进技术,发展“甲醇-烯烃及衍生物”的2大系列。?

作为替代燃料:近几年,汽车工业在我国获得了飞速发展,随之带来能源供应问题。石油作为及其重要的能源储量是有限的,而甲醇燃料以其安全、廉价、燃烧充分,利用率高、环保的众多优点,替代汽油已经成为车用燃料的发展方向之一。我国政府已充分认识到发展车用替代燃料的重要性,并开展了这方面的工作。

随着c1化工的发展,由甲醇为原料合成乙二醇、乙醛和乙醇等工艺正日益受到重视。甲醇作为重要原料在敌百虫、甲基对硫磷和多菌灵等农药生产中,在医药、染料、塑料和合成纤维等工业中都有着重要的地位。甲醇还可经生物发酵生成甲醇蛋白,用作饲料添加剂,有着广阔的应用前景。

五、甲醇行业存在的问题

甲醇作为基础原料产品近年来全球消费稳定增长,据统计2004年全球甲醇消费量超过了3350万吨。从2001年到2004年的年平均增长速度在3.6%。在近两年强势的能源价格支撑下,全球石化产业处于景气周期,甲醇行业也处在健康良性的发展轨道上,但是我们也不能忽视了潜在的不利因素。

1、成本增加 隐患渐现

有资料显示,近几年来,我国国内甲醇产量逐年提高,从2000年的近200万吨增长到了2004年的约430万吨,其中最近3年增速尤为明显。与产量增长相对应,我国甲醇进口量已从2002年最高的180万吨减少到了2004年的136万吨。也就是说,中国甲醇市场对进口产品的依赖度在减小,国产甲醇越来越占主导地位,然而这并不意味着我国的甲醇市场是游离于国际甲醇市场之外的一个封闭市场。事实上,国际甲醇市场的变化对我国甲醇市场有着很明显的影响--国内外甲醇的价差会影响进出口的方向,外盘的价格波动也会对国内市场产生联动影响。

六、甲醇行业的发展建议

在世界基础有机化工原料中,甲醇消费量仅次于乙烯、丙烯和苯,是一种很重要的大宗化工产品。作为有机化工原料,用来生产各种有机化工产品。虽然目前世界甲醇市场已供大于求,而且新建装置还将继续建成投产,但是根据专家对汽车代用能源的预测,甲醇是必不可少的替代品之一。另外,甲醇下游产品的开发也会进一步促进甲醇工业的发展,因此,甲醇工业的发展前景还是比较乐观的。

1 生产装置大型化

我国甲醇工业目前还在一定程度上面临着进口产品的冲击,原因是国内大部分装置规模小、技术落后、能耗高,造成生产成本高,无法与国外以天然气为原料的大型或超大型甲醇装置抗衡;另一方面,通过多年来技术引进及国内科研院所、高校的研究开发,目前我国甲醇工业已基本使用了国外各种类型的传统低压气相法反应装置;催化剂研制也达到国际最高水平;新工艺的研究也有较大的进展,主要问题在于装置的大型化。

2 重视新技术 加大基础研究工作

液相甲醇合成工艺具有技术和经济双重优势。在不远的将来会与气相合成工艺在工业上竞争,并会趋于完善,循着类似低压法代替高压法的历程逐渐取代气相合成工艺。因此,应加大对液相合成工艺研究开发力度,一定要开发出自主的先进成套技术。co2加氢合成甲醇、甲烷直接合成甲醇是甲醇工业的热点开发技术,一方面要跟踪国外先进技术;另一方面应加大基础研究工作,尤其是催化剂的研究开发。

3 谨慎投资 避免盲目建设

煤制甲醇工艺总结篇7

中国的资源禀赋是油、气短缺,煤炭相对丰富。中国煤炭工业协会统计数据:2007年,全国煤炭产量25.23亿t;2008年,产量为27.16亿t,同比增加1.93亿t,同比增长7.65%。2007年我国原油产量18665.7万t,2008年原油产量达1.89亿t,海关总署统计数据:2008年我国净进口油品近2亿t,其中原油进口17472万t,成品油进口2182万t,原油对外依存度已达48.5%,逼近50%的警戒线水平。2007年,我国天然气产量693亿m3,进口量39亿m3,表观消费量732亿m3;2008年,天然气产量达761亿m3。据中国煤炭工业协会预计,2010年我国煤炭需求量将达30亿t以上;另据有关资料介绍,2009年至2011年的3年内,我国原油目标产量分别是1.92亿t、1.96亿t和1.98亿t;天然气目标产量分别为860亿m3、1050亿m3和1200亿m3。在我国这样一个煤炭资源大国,其主要化工产品完全由石油作原料生产是不现实的。尽管我国煤化工产业的发展目前面临一系列问题,例如结构不合理,行业的中小企业较多而大型现代化高新技术企业较少;布点太多,造成产业结构雷同;产品附加值较低,有些后续应用技术没有跟上等,但发展煤化工符合我国国情,且国家政策总体上持支持态度。

一、我国煤化工现状及分类

(一)我国煤化工现状

我国煤化工发展速度相对较慢,同世界先进水平相比,我国的煤焦油工业较落后,主要表现为设备加工能力小,工艺水平低,产品品种少,能耗高,环境污染严重等。造成这种现象的主要原因是煤焦油分散加工,形不成规模。目前上海正着手筹建国内一流的煤焦油蒸馏装置,必将大大提高技术水平和生产能力。代表煤化工技术水平的煤气化技术也落后于一些发达国家。我国是一个农业大国,合成氨产量居世界第一,无烟煤或焦碳合成氨的生产能力约占全国合成氨生产能力的65%左右,但生产工艺落后,能耗高,污染严重。我国甲醇的现有生产能力为300万t/a,其中规模最大的装置有上海太平洋集团公司以煤为原料的生产装置,年产20万t甲醇;齐鲁石化公司第二化肥厂引进的10万t/a生产装置。其余的装置年生产能力为几千吨到几万吨不等,且技术落后、规模小、能耗高。另外,以煤为原料合成碳酸二甲酯、甲酸甲酯等可望实现工业化。

(二)分类

1.传统产品领域

要对与石油化工路线相比具有比较优势的煤化工的产品领域大力进行技术改造,并促使企业改制、改组,设法做强做大,增强国际竞争力。加大产品结构的调整力度:对与石油化工路线相比具有劣势的产品领域宜加速淘汰、关闭或转产;降低高能耗煤化工产品在行业的比重,收紧、缩减高能耗产品的出口;限制和淘汰一批能耗高,污染重的企业。

2.能源替代品

这一部分是煤化工的潜在市场,市场前景广阔是发展的重点。以煤制油(直接液化、间接液化)。甲醇的主要潜在市场是作燃料:燃料甲醇(掺烧或全烧);甲醇转化为二甲醚(替代液化石油气和柴油)中型燃气轮机发电的燃料;燃料电池;甲醇制烯烃(MTO);甲醇制丙烯(MTP)。

二、现代煤化工产业技术发展的方向

传统的煤化工技术包括焦油化工、煤合成气化工及电石乙炔化工等等。煤的气化技术在煤化工的发展中占有重要的地位,先进的催化合成技术、分离技术、生物化工技术、节能减排技术、环保技术与大型工业装备制造技术是现代煤化工的发展基础,新型煤化工技术就是以煤气化为龙头组合应用现代先进的化工生产技术,生产可替代石油的洁净能源和各类化工产品为成品油、甲醇、二甲醚、乙烯、丙烯等,进而发展为煤气化技术为核心的多联产系统。已经形成煤炭——能源——化工一体化的新兴产业。

世界上目前拥有的新型煤化工技术主要有——煤气化技术,以煤为原料生产甲醇的技术,煤路线合成烃类的技术。最令人关注的是煤制油合成气生产烯烃的技术,IGCC技术在国外也是煤气化技术发展的一个热点。我国从上世纪80年代起开始引进国外煤气化技术,但国产化的煤气化技术与国外相比还有较大差距,可以预见以生产可替代石油的洁净能源和化工产品为主的现代煤——能源——化工一体化产业,即将在我国兴起并得到可持续发展。

现代煤化工是属于技术密集型和投资密集型的产业,应采取最有利于提高经济效益的建设及运行方式。现代煤化工的发展要坚持一体化、基地化、大型化、现代化和集约化,真正转变经济增长方式。

坚持一体化。就是把大型煤化工装置和煤矿结合起来(当然亦可以采取煤—电—化一体化联产模式)。把煤气化装置建在矿上(或临近矿区),力求减少煤炭运耗及费用,实施资源优化配置,合理使用煤炭资源(按煤质资源优质优用,劣质劣用,各得其所)。只有形成煤化工与煤矿一体化的利益机制,才能减少日后的价格、运输和布局的风险。

坚持基地化。化学工业内在的固有特性适宜于综合利用和深加工。基地是企业群体的集称。基地内集中布置相关企业,可以充分、高效、合理利用各种资源,提高资源配置效率和效益,发挥企业的集聚效应。总之,煤化工发展实施基地化布局最重要的目的是实施以市场为基础的高度资源优化配置,谋求集约化经营。

坚持大型化、现代化。只有采用一流的技术、一流的设备、一流的管理,建设大型规模效益的装置才能形成一流的煤化工基地,谋求跨越式发展,具备国际竞争力。煤化工如不具备国际竞争力,则无法忍受国际油价波动,和经济全球化带来高度的市场竞争的冲击。

由于煤本身的固有的特性(碳多氢少,矿物杂质多,固态且难以溶化、溶解等),要把从不清洁的能源转为清洁的化工原料,所经过的流程长、环节多、技术要求高、难度大,因而必然导致投资大。煤化工的投资高亦是发展的制约因素之一。为此,一方面应积极采用先进技术,发展规模装置,谋求减少单位投资成本,另一方面依靠优质低价煤的稳定供应以及先进的节能降耗技术,谋求降低生产原料成本。经济效益是考核煤化工能否发展的最基本因素之一。

三、新型煤化工

新型煤化工是以煤炭为基本原料(燃料),C1化工技术为基础,以国家经济发展和市场急需的产品为方向,采用高技术,优化工艺路线,充分注重环境友好,有良好经济效益的新型产业。它包括了煤炭液化(直接和间接),煤炭气化、煤焦、煤制合成氨、煤制甲醇、煤制烯烃等技术,以及集煤转化、发电、冶金、建材等工艺为一体的煤化联产和洁净煤技术。其中煤炭焦化、煤气化-合成氨-化肥已经是我国主要的煤化工产业,随着科学技术的快速发展和市场的巨大需求,煤炭焦化、煤气化-甲醇、煤制油、烯烃及下游化工产品也得到了快速发展。新型煤化工实际上是建立在传统煤化工基础上的,与传统煤化工密不可分。其特点如下。

(一)以清洁能源为主要产品。新型煤化工以生产洁净能源和可替代石油化工产品为主,如柴油、汽油、航空煤油、液化石油气、乙烯原料、丙烯原料、替代燃料(甲醇、二甲醚)、电力、热力等以及煤化工独具优势的特有化工产品,如芳香烃类产品。

(二)煤炭-能源化工一体化。新型煤化工是未来中国能源技术发展的战略方向,紧密依托于煤炭资源的开发,并与其它能源、化工技术结合,形成煤炭-能源化工一体化的新兴产业。

(三)高新技术及优化集成。新型煤化工根据煤种、煤质特点及目标产品不同,采用不同煤转化高新技术,并在能源梯级利用、产品结构方面对工艺优化集成,提高整体经济效益,如煤焦化-煤直接液化联产、煤焦化-煤气化合成联产、煤气化合成-电力联产、煤层气开发与化工利用、煤化工与矿物加工联产等。同时,新型煤化工可以通过信息技术的广泛利用,推动现代煤化工技术在高起点上迅速发展和产业化建设。

(四)建设大型企业和产业基地。新型煤化工发展将以建设大型企业为主,包括采用大型反应器和建设大型现代化单元工厂,如百万吨级以上的煤直接液化、煤间接液化工厂以及大型联产系统等。在建设大型企业的基础上,形成新型煤化工产业基地及基地群。每个产业基地包括若干不同的大型工厂,相近的几个基地组成基地群,成为国内新的重要能源产业。

(五)有效利用煤炭资源。新型煤化工注重煤的洁净、高效利用,如高硫煤或高活性低变质煤作化工原料煤,在一个工厂用不同的技术加工不同煤种并使各种技术得到集成和互补,使各种煤炭达到物尽其用,充分发挥煤种、煤质特点,实现不同质量煤炭资源的合理、有效利用。新型煤化工强化对副产煤气、合成尾气、煤气化及燃烧灰渣等废物和余能的利用。

(六)经济效益最大化。通过建设大型工厂,应用高新技术,发挥资源与价格优势,资源优化配置,技术优化集成,资源、能源的高效合理利用等措施,减少工程建设的资金投入,降低生产成本,提高综合经济效益。

四、对发展新型煤化工产业关键技术的建议

(一)煤炭液化技术

无论是引进技术还是自主开发,建设煤直接液化或间接液化工厂都需要国内有大量技术配套方面的研究和工程。另外,一次性投资较大也是其共有的特点。因此,现阶段国家部署在少数条件适合的企业和地区进行工程化和商业化示范项目,可以在技术开发、工程化推进以及商业化运作等方面积累丰富的经验,为今后大规模产业化发展奠定扎实的基础。同时,开发具有自主知识产权的煤液化技术也是当前和未来几十年产业化持续发展的客观需求。目前,国内拟建的煤液化项目多采取跨行业、多元化联合投资和多渠道融资的方式解决资金筹措问题,这是今后煤液化项目建设的发展方向。

(二)甲醇和二甲醚合成技术

目前,国内已经建设或拟建设的甲醇生产项目很多,据不完全统计,新上项目的总生产能力不低于1000万t/a。国外的研究认为,甲醇和二甲醚作为代用发动机燃料(不是少量掺烧),到达用户的全成本大于煤基合成油(煤间接液化),同时二甲醚代替柴油也有相关技术问题需要进一步研究。因此,今后新建甲醇、二甲醚工程项目应充分重视市场需求和供求变化。

(三)煤炭焦化

新建煤炭焦化工程项目应立足煤炭企业原料煤特点,采用大型焦炉和能够提高焦炭质量的先进技术以及必要的环保技术,以应对未来优质炼焦煤不足、焦炭市场变化和日益严格的环保政策带来的更加激烈的竞争。

(四)煤化工多联产

煤制甲醇工艺总结篇8

1煤制气技术的发展

煤化工是以煤为原料,经过化学加工使煤转化为气体、液体、固体燃料以及化学品的过程。煤化工分为传统煤化工和现代煤化工,传统煤化工产品主要包括合成氨、甲醇、焦炭和电石等。目前,我国现代煤化工明确了把煤制油、煤制烯烃、煤制二甲醚、煤制天然气、煤制乙二醇作为现代煤化工的代表。

1.1煤炭气化

煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。气化过程发生的反应包括煤的热解、气化和燃烧反应。煤炭气化工艺可按压力、气化剂、气化过程供热方式等分类,常用的是按气化炉内煤料与气化剂的接触方式区分,主要有固定床气化、流化床气化和气流床气化。虽然煤的气化是发展时间较长的一种技术,但仍然存在许多问题未解决,如煤品种的适应性、转化率、装置稳定运行等。

1.2煤制甲醇

煤制甲醇即以煤为原料生产甲醇。我国利用高硫、劣质煤生产甲醇的技术处于世界前列,且原料来源稳定可靠,已初步形成了4000万t/a的生产能力。化工产业的蓬勃发展拉动我国甲醇消费量快速增长。随着甲醇下游产品的开发和甲基叔丁基醚(MTBE)、农药、醋酸、聚甲醛等新装置的建设,以及甲醇燃料的推广和应用,甲醇的需求市场进一步扩张。国内煤炭企业为增强核心竞争力、调整产品结构、延长产业链,注重上下游一体化发展,有效带动了大型煤制甲醇装置的建设。

1.3煤制烯烃

煤制烯烃分为煤气化、合成气净化、甲醇合成及甲醇制烯烃四项技术。煤制烯烃即煤基甲醇制烯烃,是指以煤为原料合成甲醇后再通过甲醇制取乙烯、丙烯等烯烃的技术。甲醇制烯烃技术已日趋成熟,具备工业化条件,存在的主要问题不在工艺上,而在催化剂上。目前,催化剂的长周期运转的数据并没有出来,催化剂的单程转化率、收率、副产物的组成,催化剂、原材料和公用工程的消耗定额、催化剂衰减的特性曲线、废催化剂的毒性和处理、催化剂制备的污水组成和数量、整个装置单程和年连续运行的时间、废液废气的排放等多项重要数据目前没有公布。因此,大规模工业化尚需时日。

2天然气的消费量

天然气是埋在地下的古生物经过亿万年的高温和高压作用下形成的可燃气体。天然气的主要成份是甲烷,是最简单的烷烃,也是有机物中最简单的稳定化合物。是一种无色、无味、无毒、可燃气体、洁净环保的优质能源。微溶于水、乙醇、乙醚等有机溶剂。天然气按其形成可分为:油田气、煤层气、生物气和水合物气四种。油田气是石油烃类天然气,煤层气是成煤过程中有机质产生的甲烷气,生物气是有机质在70℃以下遭厌氧微生物分解产生的甲烷气,水合物气是在低温高压下,甲烷等气体分子渗入水分子晶隙中缔合的气体。表1详细的说明我国天然气生产量从1995年的179.5亿m3到2011年1130亿m3增长了6倍,天然气的生产量满足不了消费量。可见要用先进的工艺技术来满足工业以及生活需求天然气。天然气按用途分类,可分成燃料和化工两大类,其中燃料包括燃气发电、民用燃料、工业燃料、车用燃料等,从图1中可以看出随着我国天然气利用政策的出台,以及能源价格改革方案的推进,天然气利用结构正在由化工、发电为主逐渐转向城市燃气用气比例的提高。

3煤气化工艺技术

3.1煤气化炉介绍

煤气化被誉为煤化工产业的龙头技术,目前可作为大型工业化运行的煤气化技术,可分为固定床气化技术、流化床气化技术、气流床气化技术以及熔融床气化技术当实际没应用开发,各种煤气化炉的模式见图2。煤气化炉又称煤气发生炉(gasproducer)典型的工业化煤气化炉型有:UGI炉、鲁奇炉、温克勒炉(Winkler)、德士克炉(Texaco)和道化学煤气化炉(DowChemical)。固定床气化炉是最早开发出的气化炉,如图2(a)所示,炉子下部为炉排,用以支撑上面的煤层。通常,煤从气化炉的顶部加入,而气化剂(氧或空气和水蒸气)则从炉子的下部供入,因而气固间是逆向流动的。特点是炉内煤处理量小,大规模化困难。流化床气化炉如图2(b)所示,在分散板上给予粉煤,在分散板下送入气化剂(氧气和水蒸气),将粉煤在悬浮状下气化。缺点是流化床气化炉不能用灰分融点低的煤,副产焦油少,碳利用率低。

流床气化炉如图2(c)所示,将粉煤与气化剂(氧气和水蒸气)一起从喷嘴高速吹入炉内迅速气化。特点是不副产焦油,生成气中甲烷含量少。气流床气化是目前煤气化技术的主流,代表着今后煤气化技术的发展方向。气流床按照进料方式又可分为湿法进料(水煤浆)气流床和干法进料(煤粉)气流床。

3.2三种煤气化工艺的比较

我国引进并被广泛采用的三种先进煤气化工艺———鲁奇气化炉、壳牌气化炉、德士古气化炉,三种煤气化工艺的对比如表2所示。

4鲁奇碎煤加压气化装置流程

由于各种煤气化工艺复杂多样,目前世界上还没有万能的气化炉,各种煤气化工艺技术都有其优缺点,具有一定的适应范围。因此,在煤气化工艺选型时,要结合实际情况,选择适合自己的煤气化技术。我公司中的煤制天然气工程用煤为为伊南煤田长焰煤,无粘结性,采用鲁奇公司的固定床加压气化技术,炉型选用MARK-Ⅳ,单台装置日处理煤量约750t。需要说明的是,鲁奇固定床气化技术是最早实现工业化生产的技术,国内已有多套生产装置。“鲁奇”在这里已紧紧是个代号,代表了加压固定床这一煤气化技术,该技术的工艺设计、设备制造、工程施工、工业生产等已全部可以国产化,同时也不存在与德国鲁奇公司或南非SASOL公司的知识产权问题。鲁奇碎煤加压气化装置由气化炉、加煤煤锁和排灰灰锁组成并与气化炉相联接。气化用煤经过破碎及筛分,装置运行时,合格的煤加入气化炉上部之煤斗。对煤锁进行充压,从常压充至气化炉的操作压力。在向气化炉加完煤之后,煤锁再卸压至常压,以便开始下一个加煤循环过程。

用来自煤气冷却装置的粗煤气和来自气化炉粗煤气使煤锁分两步充压;煤锁卸压的煤气收集于煤锁气气柜,并由煤锁气压缩机送往变换冷却工号。减压后,留在煤锁中的少部分煤气,用引射器抽出。经煤尘旋风分离器除去煤尘后排入大气。气化剂—蒸汽、氧气混合物,经安装在气化炉下部的旋转炉篦进入灰渣层,气化剂温度提高,灰渣温度降低。在燃烧区燃烧一部分煤,为吸热的气化反应提供所需的热。在气化炉的上段,刚加进来的煤向下移动,与向上流动的气流逆流接触。在此过程中,煤经过干燥、干馏和气化后,在与入炉氧进一步燃烧,最后只有灰残留下来,灰由气化炉中经旋转炉篦排入灰锁,再经灰斗排至水力排渣系统。气化所需蒸汽的一部分在气化炉的夹套内产生,从而减少了中压蒸汽的需求。为此向气化炉夹套中加入中压锅炉给水,气化炉中产生的蒸汽,经汽/液分离器送往气化剂系统,蒸汽/氧气在此按比例混合好喷射入气化炉。离开气化炉的粗煤气以CO、H2、CH4、H2O和CO2为主要组分。离开气化炉的煤气首先进入洗涤冷却器,在此,煤气用循环煤气水加以洗涤并使其饱和。洗涤冷却器的用途首先是将煤气温度降至200℃左右,其次是除去可能夹带的大部分颗粒物。饱和并冷却后的煤气进入废热锅炉,通过生产0.5MPa(g)低压蒸汽来回收一部分煤气中蒸汽的冷凝热。在废热锅炉下部收集到的冷凝液的一部分,用洗涤冷却器循环泵送出。多余的煤气水送往煤气水分离装置。离开气化工段的粗煤气在压力3910kPa(g)、温度185℃饱和状况下,通过粗煤气总管进入煤气变换、煤气冷却工段。煤锁气回收系统供所有气化炉系列所用。

5煤制天然气应用前景

我国目前是世界上天然气需求增长最快的国家之一,我国87%以上的天然气用于化工、城市燃气和发电等工业部门,其中化肥生产就占38.3%。居民用气在天然气消费总量中所占11%。随着我国经济建设持续稳定发展,对天然气的需求量将继续增加,城市燃气、工业用气和发电等消费需求都将快速增长。我国城镇的发展导致了天然气需求的增长。在经济高速增长的今天,随着广东珠江三角洲、上海长江三角洲地区、环渤海地区城市的发展已率先进入了工业化时代,也率先进入了城市天然气时代。中国大城市人口的聚集和小城市的增加以及经济的增长日益敦促人们重视环境保护。在这些城市及周边地区,煤炭的使用和机动车的迅速增加产生了污染问题,这个问题日趋明显而且正在影响着中国大部分的人口。

煤制甲醇工艺总结篇9

【关键词】整体煤气化联合循环;净化;合成气

引言

整体煤气化联合循环发电 (Integrated Gasification Combined Cycle,IGCC),是将煤炭气化和燃气―蒸汽联合循环发电系统有机集成的一种洁净煤发电技术。IGCC发电技术因其高效环保等众多优点代表了未来煤电的发展方向,是“国家中长期科学和技术发展规划纲要(2006―2020年)”明确的优先项目之一,有着良好的发展前景。但是以煤为原料的IGCC生产工艺中,粗合成气中含有大量多余的CO2、少量的H2S、COS等酸性气体,这些酸性气体不仅会污染环境,而且会直接对下游工艺及设备造成危害,必须将其脱除和回收,因此IGCC合成气净化技术核心就是酸性气脱除。目前,IGCC合成气常用的净化技术包括低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(NHD)以及MDEA法等。本文通过对上述三种净化工艺进行比选研究,提出了适合我国国情的IGCC合成气净化工艺路线,为我国IGCC电站净化工艺路线选择提供了参考。

1 IGCC合成气净化常用工艺分析

1.1 低温甲醇洗法

低温甲醇洗工艺于50年代初由德国林德公司和鲁奇公司联合开发,该工艺以冷甲醇为吸收溶剂,利用甲醇在低温下对酸性气体溶解度极大的优良特性,脱除原料气中的酸性气体。低温甲醇洗工艺属于冷法物理吸收工艺,吸收原理基于软硬酸碱理论,具体反应如下:

CH3OH+H2S+CO2=CH3---OH(1)

||

H-HSCO2

如上所示,甲醇吸收了二氧化碳以后,不影响对硫化氢的吸收,这就是低温甲醇装置吸收了二氧化碳的甲醇仍能用来吸收硫化氢的理论依据。同时,通过查询不同气体在甲醇的溶解度:CS2>H2S>COS>CO2>CH4>CO>N2>H2,溶解度越高的气体越容易吸收。因此,低温甲醇溶液可以选择性的吸收H2S和CO2。

图1 低温甲醇洗法工艺流程简图

低温甲醇洗工艺气体净化度高,选择性好,技术成熟,在工业上有着很好的应用业绩,被广泛应用于国内外合成氨、合成甲醇和其他羰基合成、城市煤气、工业制氢和天然气脱硫等气体净化装置中。在国内以煤、渣油为原料建成的大型合成氨装置中也大都采用这一技术。

1.2 MDEA法

MDEA法属于典型的化学吸收法,经过近30多年的发展,目前已经形成了多种MDEA的改进配方溶液,可以实现MDEA溶液与H2S、CO2、COS等酸性气体的反应速度与程度的控制,该方法具备反应热较低、腐蚀倾向小、蒸气压较低、对H2S选择性强等优点。

MDEA脱除H2S和CO2的反应方程式如下:

2CH3R2N+H2S(CH3R2NH)2S(2)

(CH3R2NH)2S +H2S2(CH3R2NH)HS(3)

2CH3R2N+H2O+CO2(CH3R2NH)2CO3(4)

(CH3R2NH)2CO3+H2O+CO22(CH3R2NH)HCO3(5)

图2 MDEA法工艺流程简图

国内外MDEA法的推广应用都取得了显著成就,遍及天然气、炼厂气、合成气和克劳斯尾气,产生了相当可观的经济效益。目前含MDEA的各种体系几乎覆盖了整个气体净化领域,如选择脱硫、酸气提浓、同时脱硫脱碳、脱碳及脱有机硫等。目前国外正在的运行IGCC电站大多都是采用的MDEA脱硫工艺,如西班牙Puertollano IGCC示范电站,美国Wabash River IGCC示范电站等。

1.3 NHD法

1965年,美国Allied公司首次采用聚乙二醇二甲醚做为物理溶剂,开发了NHD净化工艺,广泛应用于合成气、天然气、燃料气和城市煤气净化。目前,NHD法已成功应用于中国30多个合成氨厂、醋酸厂等工业装置的合成气净化。

图3 NHD法工艺流程简图

NHD气体净化技术经过国内外多年的工业推广,技术成熟可靠,在化肥厂、合成氨厂、甲醇厂等有着广泛的应用。国外IGCC电厂也有应用NHD法的案例,如美国Cool Water IGCC示范电站采用该工艺,在连续五年的运行中表现良好。另外,加拿大Genesee IGCC电站、英国Hatfield Colliery IGCC电站等项目已决定采用NHD法进行碳捕集。

2 低温甲醇洗、MDEA和NHD工艺比选

2.1 工艺分析与初投资比较

由于低温甲醇洗工艺是在低温下运行,其操作温度也在-40℃以下,对气体中H2O和NH3等组分以及溶剂中水含量提出较高要求,当气体及溶剂进入低温甲醇吸收塔之前必须彻底脱除。此外,为了有效地回收和维持系统内的冷量,其换热及制冷设备数量较多,换热设备结构又较为复杂,使得工艺流程冗长而复杂。由于在低温下操作,对设备材质要求较高,诸如低温钢材以及缠绕管式换热器等费用较高。

NHD法在仅需脱硫的场合时,操作温度为常温(20~40℃),设备材质一般用普通碳钢即可,只有脱硫塔、再生塔、闪蒸槽、高压闪蒸分离器等少数需耐高压或耐腐蚀的设备,采用16MnR低合金钢。国外对相同规模大型氨厂低温甲醇洗法与NHD法脱硫脱碳的技术经济比较表明,用低温甲醇洗脱碳时需用主要设备48台,而NHD法则只需30台,且NHD法总消耗费用和装置费用均较低,运行费用也只是低温甲醇洗的88.6%,表明NHD法流程简单,投资省,消耗低。经初步估算,低温甲醇洗的基建投资是NHD法的1.8倍。

MDEA法的设备要求与NHD法基本相似,吸收段为常温(20~45℃)操作,设备材料用普通碳钢即可,只有再生塔,闪蒸槽等少数设备需要用耐高温或耐腐蚀设备。如前文所述,MDEA法的工艺系统比NHD法更加简洁,特别是脱硫脱碳同时脱除,因此,设备费和建设初投资更低。

2.2 能耗比较

由于低温甲醇洗工艺采用低温吸收,常温解吸收方式,包含了较为庞大的制冷系统,而MDEA工艺和NHD工艺采用常温吸收,高温解吸收方式,因此,在其他条件相同的情况下,低温甲醇洗工艺的能耗最高。

MDEA工艺和NHD工艺相比,NHD工艺相对复杂,特别是NHD工艺的脱硫脱碳是分别布置,因此,NHD工艺的能耗较MDEA工艺高一些。

综上所述,从能耗上讲:低温甲醇洗法>NHD法>MDEA法。

2.3 优缺点综合比较

表1为低温甲醇洗、MDEA和NHD法工艺优缺点对比。

表1 低温甲醇洗,MDEA和NHD法工艺优缺点对比

低温甲醇洗 MDEA法 NHD法

溶剂稳定性 稳定 稳定 稳定

溶剂腐蚀性 低 低 无

溶剂消耗 较高 低 低

溶剂毒性 较高 低 无

溶剂价格 低 较高 较高

溶剂起泡 不起泡 起泡 不起泡

溶剂选择性 高 高 高

吸收塔压力 ~7.0MPa ~4.0MPa ~7.0MPa

运行温度 -40℃ 常温 常温

酸气净化度 高 高 高

能耗 高 低 低

初投资 高 低 较高

国产化水平 完全国产化 完全国产化 完全国产化

如表1所示,通过三种工艺的优缺点比较分析,低温甲醇洗工艺的初投资最高,且溶剂毒性较强,不符合环保的要求,而NHD工艺的运行能耗和初投资均高于MDEA法,因此MDEA工艺是最优的选择。

3 结论

通过对低温甲醇洗工艺、MDEA工艺和NHD三种工艺的吸收-解吸原理、工艺流程和经济型分析,总结了三种工艺的优缺点,得到以下结论:

(1)三种工艺都技术成熟可靠,实现了国产化,都能够实现高选择性和高吸收率。

(2)低温甲醇洗工艺的吸收剂毒性大,不适合绿色环保的要求,且初投资高,操作复杂,应当不予采用。

(3)MDEA工艺的初投资最低,运行能耗也低于NHD工艺,从经济性上讲是比NHD工艺更优的选择,因此,IGCC合成气净化应当采取MDEA工艺作为技术路线。

参考文献:

[1]段立强,林汝谋.等.整体煤气化联合循环(IGCC)技术进展.燃气轮机技术,2000(1).

[2]焦树建.IGCC技术发展的回顾与展望.电力建设,2009(1).

[3]王俊友,李太兴.等.IGCC环保特性的研究,2007(2).

[4]李现勇,孙永斌.等.国外IGCC项目发展现状概述.电力勘测设计,2009(3).

[5]许世森,危师让.等.分析评价大型IGCC电站中煤气净化工艺的设备和技术特点.洁净煤技术,1999(1).

[6]汪家铭.低温甲醇洗工艺技术进展及应用.石化技术,2007(4).

煤制甲醇工艺总结篇10

【关键词】焦炉气 脱硫 NHD 溶液 惰性气体 甲醇

一、发展焦炉气制甲醇工艺的意义

我国的煤炭储藏量比较大,和煤炭相关的附属产品种类也比较丰富。其中,煤焦炭的生产量占世界生产总量的一大部分。但是,现在很多生产焦炭的厂家对其生产过程中产生的煤气的处理方法不太科学,需要我们加以研究进行改进。目前,我国厂家对煤气一般采取直接燃烧的方法,不但造成能源的消耗,还对空气带来了严重污染。因此,如何改造煤气处理方式,变废为宝,是我国焦炭生产行业亟需解决的一个重大课题。把焦炉煤气当做原材料制作甲醇,是目前国内处理这些煤气的主要手段,其技术运用已经比较成熟。由于其可以实现资源的二次利用同时还可以减少污染,国家能源使用中心和环保部门对这项技术的研究和发展都比较重视,因此,在我国将会有比较光明的发展前景。

想要对焦炉煤气进行处理,首先要弄明白它的主要构成成分,其中CO 6.20%、CO2 2.2%、H2 58.48%、CH2 26.49%、惰性气体 4.0%、O2 0.60%、H2S2 50/m3、COS 250/m3、CmHn 2.0%,从上面的构成成分来看,焦炉煤气中氢元素含量比较大而碳元素含量较小,而且惰性气体难以转化,H2S及 COS转化过程中会有有害气体产生,因此,在生产甲醇的过程中,我们需要把惰性气体和这些有毒气体排除出去。CH4是我们生产甲醇必须要合成的气体。

同时在焦炉煤气中还具有少量的不饱和烃、焦油、萘、硫化物、氰化物、氨、苯等物质。这些物质在生产甲醇的时候,都需要加以排除。因此,使用焦炉煤气生产甲醇的关键就在于如何把这些物质排除以及CH4气体的转化。这里我们把排除焦炉煤气中杂质的过程称之为焦炉煤气的净化。

对CH4气体的转化主要借助纯氧强大的氧化功能,对这种气体实现部分氧化。这种操作方式主要具有氧气耗费少,而焦炉煤气利用率高的特点。可以实现大部分CH4气体的转化。

二、焦炉气制甲醇装置工艺运行情况分析及处理

(一)焦炉气压缩机

使用焦炉气压缩机对焦炉煤气进行压缩,经常出现焦炉气压缩机温度过高影响性能稳定的问题。这种现象一般由两种原因引起:一方面是由于氮气分子过多;另一方面是压缩过程中发生了化学反应。在煤气构成中煤粉、焦油、苯、萘、氨、硫化物等物质在进行压缩的时候会发生化学变化,从而引起各级分离器中需要分离的物质大幅度上升,导致排液管道常常出现拥堵现象。

在上面这些现象频繁发生的情况下,焦炉气压缩机的运转时间大幅度缩短,同时在使用过程中需要多次倒车,容器中的气体容量不能保证,影响压缩效果。因此,在使用过程中对焦炉气压缩机进行了一定的改造和升级:在三四级活门处使用了新型活门,同时换掉气柜上的焦炭过滤器,在气柜上安装两台焦油捕捉器,进一步减少煤气中的焦油。

(二)湿法脱硫系统

在对煤气进行净化的过程中,会产生很多的杂质。这些杂质在使用湿法脱硫的过程中,会对NHD溶液造成很大的污染。在脱硫操作刚刚开始的时候,由于溶液中的杂质还比较少,还看不出来污染;但是由于时间的推移,脱硫操作过程不断重复,溶液中的杂质变得越来越多,溶液污染现象就会越来越明显。随着污染程度的逐渐增加,NHD溶液的颜色也会产生一定的改变:由于杂质性质的不同,溶液逐渐分为三层:最下层是杂质,大概占十分之一左右;最上层是一些油状物,大概占二十分之一;而中间部分是NHD溶液,大概占五分之四左右。

随着污染物的逐渐增多,NHD溶液的成分也会逐渐改变。最上层和最下层的成分会逐渐增加,而中间部分的比例会逐渐减少。随着污染现象的加重,其脱硫效果也会逐渐减小。

因此,要对这一环节进行改造,就要在NHD溶液处增加一个备用槽,不断对NHD溶液进行分离,过滤到其中的杂质,延长其使用时间。

(三)干法脱硫系统

湿法脱硫环节的脱硫效果不好,直接导致进入干法脱硫环节的尾气中硫含量过高。这在一定程度上增加了干法脱硫环节的工作量,导致这一环节达不到预期的处理效果。

同时,尾气中氧元素过高,也会对这一环节的脱硫效果造成了一定的干扰。

(四)合成系统

对焦炉煤气的处理,还要对一部分气体进行合成操作,这就是我们通常说的“两高三低”,高是指 CO 和 H2含量高;低是指 N2、CO2、总硫含量低。生成甲醇的主要成分是CO、H2和 CO2。从理论上来说,氢碳元素的含量比需要控制在二比一上下。这和实际情况存在一定的出入,这就导致废气生产的甲醇总量比较低。氮气是最主要的惰性气体,氮元素不属于生产甲醇的成分,但是其会对甲醇的生产带来严重的影响:首先会加重焦炉气压缩机的运转负荷;其次会加大尾气排放量;最后也会影响焦炉气压缩机的运转速度。这些都会最终影响焦炉煤气生产甲醇的速度和质量。

三、提高焦炉气制甲醇工艺运行质量的思路

(一)减少氮气含量

这一方式必须从生产的第一个环节开始,在炼焦的过程中,减少焦炉煤气中的氮气含量。在炼焦、生产、甲醇生产等环节抓起,降低整个环节中的氮气含量。

(二)做好脱硫环节的工作

在生产甲醇的过程中,做好各个环节的脱硫工作,这样就可以减少总过程中的硫含量,增加脱硫剂、催化剂的使用时间。

(三)对NHD溶液的成分仔细分析

针对湿法脱硫环节,做好NHD溶液的成分解析工作。不断调整溶液的成分,保证NHD溶液的脱硫效果,从而保证本环节和下一环节的脱硫效果。

四、结束语

想要保证整个生产甲醇过程的操作效果,就要掌控好各个环节的运行标准,减少对甲醇生产产生不利影响的各种因素,提高甲醇生产的生产效率,减少整个过程中废气的排放量,真正实现环保和节能的双重目标。

参考文献: