氯化钠废水处理方法十篇

时间:2023-11-17 17:46:49

氯化钠废水处理方法

氯化钠废水处理方法篇1

关键词:湿法乙炔;废次氯酸钠;循环利用;经济效益

湿法乙炔生产工艺主要是以煤炭和电力为主的,干法乙炔生产工艺主要是以石油为基础的,基于我国煤炭资源丰富而石油资源较为少的局面,现今我国很多企业都是采用湿法乙炔生产工艺。而湿法乙炔工艺生产中的用水、排水量都比较大,因此,在生产中对废水的管理是一项重中之重的重要任务,且废水的防治任务本身就十分艰巨,因此必须采取合理有效的工艺回收手段有效的回收废液,实现废液的回收循环利用,既可以降低化工企业生产成本,同时有效的解决了废液的处理难题,减少其对环境的破坏,实现了企业长久的发展。

1.清净废液的回收利用流程方案

在我国大部分化工企业在湿法乙炔工艺处理中,在水洗塔上层使用一次水,当其与乙炔气逆向接触时喷淋冷却,此时,一部分则自行循环使用,其它的外排,每当夏季水温较高时,大量的一次水补充会造成大量的水外排,造成水资源的极大浪费,同时严重污染了环境。两级清净塔都是填料塔,先进入一级清净塔中的乙炔气会与来自二级清净塔中浓度较低的次氯酸钠逆向接触,在接触过程中会将其中的硫、麟等物质部分清除,然后进入二级清净塔中与浓度较高的新鲜次氯酸钠彻底接触,从而彻底将硫、磷等杂志去除,一级清净塔中的次氯酸钠废水会进入到水塔中,然后与一次水一起外排。

清净废液的回收利用方案是将清净外排的废次氯酸钠溶液经过:凉水塔――曝气池――板式冷却器后,一部分补入清净水洗塔中当冷却水,而另一部分则是与一次水经过混合后用于配置次氯酸钠,然后剩余的上清液则进入发生器内。

2.保证配置次氯酸钠的安全性

经过清净系统排出的废次氯酸钠经过凉水塔和曝气池后,其温度约为45℃,经过冷却水的冷却换热后温度为18℃,在夏季高温天气时,一次的水温大约为18℃,所以经过冷却降温后的废次氯酸钠水是可以代替一次水作为水洗塔的降温冷却。那么,经过曝气、降温后的废次氯酸钠与一次水混合后会有一定的安全隐患,是否可以在保证安全的前提下配置次氯酸钠溶液,通关相关的实验证明,在保证安全的前提下,可以考虑一次水与废次氯酸钠的配置比例为1:1进行配置次氯酸钠的生产。

3.清净废液回收利用后的效果

在我国传统的湿法乙炔生产工艺中,乙炔清净产生废次氯酸钠溶液中的部分会用于冷却塔中或者发生器内,但这样的处理方式会使清净液的总量呈现不断增多的趋势,那么,就需要将多余不用的清净液外排,在污水装置处理设备中进行污水处理。在外排的清净液中所含的硫、磷等物质严重超过了国家污水的排放标准,从而导致企业对污水的处理费用需要极大的资金投入。有的企业采用的回收工艺是将清净过程产生的废次氯酸钠溶液中的部分输送到发生器中当生产用水,剩余的则外排,这种工艺可以实现一部分废次氯酸钠的循环利用,产生一定的经济效益,但仍有很大一部分的废液当污水排放掉,没有实现废液的全部回收利用[2]。

通过实验证明,通过清净废液回收利用的新工艺方案,废次氯酸钠水经过曝气、冷却降温以后,在可以当作冷却水使用的同时还可以有效的去除乙炔中一部分的硫、硫等杂质,产生的酸性水还可以有效的除去塑料填料上的氢氧化钙污垢,从而使水洗塔不容易结垢延长水洗塔的使用寿命,可以有效代替一次水配置新的次氯酸钠,还可以与上清液混合后进入发生器内,有效的去除上清液中的硫化氢及磷化氢,即使上清液中仍有残余的杂志,仍可以在后面的工序中被清除,不会产生杂志的积累,从而影响乙炔的质量。所以,新的清净废液回收利用工艺可以对废次氯酸钠实现全面的回收综合利用,实现循环利用的目标,这样不仅可以有效的降低企业的排污成本,实现清净废水的零排放量,同时还可以有效的节约水资源,保护生态环境。[3]

清净废液回收利用工艺改进以后,在方案的实施过程中可以发现随着废次氯酸钠溶液的闭路循环使用后,水质会相应的发生一定的变化,变化后的水质不适合进行再次的回收利用。而为了使废次氯酸钠溶液的回收利用程序能够正常的运行,需要专门人员对其换水,换的这一部分水用作发生器内的生产用水,从而保证发生器的正常使用。

4.结语

清净废液的回收利用工艺是对废次氯酸钠首先进行曝气、冷却后与一次水进行混合,然后用混合后的溶液去配置新鲜非次氯酸钠,工艺流程比较简单,采用正确的方法、配置比例保证配置的安全性。通过过技术的创新,有效的提高了废次氯酸钠的经济效益,有利于节能减排的目标的实现,实现废次氯酸钠全面综合的利用,有效的降低了水资源的浪费,实现废水的零排放,有利于环境保护的实现,保证企业经济效益与社会效益的全面实现。

参考文献

[1]秦龙、徐素霞.湿法乙炔生产中清洁废液的回收利用[J].中国氯碱.2013(1)

氯化钠废水处理方法篇2

1乌海市氯碱行业现状及特点

截止目前,乌海市建成投产氯碱项目4个,产能为106万吨,在建氯碱项目1个,产能为50万吨,总生产能力达156万吨/年。目前我市已投产和在建PVC项目全部采用电石法生产PVC,乙炔气清净普遍采用次钠清净工艺,全部采用离子膜法生产烧碱,VCM聚合除一家采用本体法聚合外全部采用悬浮法聚合,乙炔气发生有的采用干法乙炔生产工艺,有的采用湿法乙炔工艺。

2乌海市PVC行业工艺废水处理现状

调查乌海市近几年建成投产的和在建的PVC企业的工艺废水处理措施及去向,分析PVC行业工艺在经济可行的前提下目前是否能够做到废水零排放。通过对乌海市现有及在建氯碱项目废水处理工艺及废水去向的调查可知:

1)我市PVC行业氯碱界区工艺废水(包括酸碱废水、含盐废水)所采取的处理工艺相同,全部是经中和、絮凝、沉淀处理后用于化盐,在氯碱界区实现了废水零排放。

2)固碱蒸发工段的蒸汽冷凝水已建企业中有的进行了回收利用,有的直接排入大气,未进行回收利用;固碱蒸发冷凝水实现零排放在乌海有运行实例。

3)已建PVC项目离心母液处理工艺虽然不相同,工艺较完善、处理效果较好的工艺为两级生化+絮凝沉淀+过滤+次钠消毒工艺,最简单的工艺为沉淀池沉降+纤维过滤器工艺,但去向全部是补入循环冷却水系统,不外排;目前在乌海最好的工艺为加药絮凝沉淀+BAF+臭氧氧化+曝气还原+BAF+双膜工艺+混床处理工艺对离心母液进行处理,处理后60%回用于聚合系统,40%回用于循环冷却水系统,不外排,实现了离心母液零排放。

4)含汞废酸全部采用盐酸解析技术处理后,用做VCM酸洗用水,不外排。

5)其它含汞废水全部经处理达标后回用于VCM碱洗或水洗用水,不外排。含汞废水处理工艺较先进的为硫化钠-氯化铁沉淀+三级活性炭+三级离子交换器处理工艺,处理后废水蒸发结晶处理,产生的结晶盐送有资质单位处理,实现含汞废水零排放。

6)次钠废水的处理:有的送至全厂综合废水处理系统经生化处理后用于乙炔发生和自备电厂冲灰,有的单独设置一套处理装置,采用汽提+冷却+加药混凝沉淀工艺,处理后部分回用于乙炔发生,部分回用至次钠配置单元,少量进入综合处理单元处理后排入园区污水处理厂,有的采用加药混凝沉淀+次钠氧化工艺处理后用于乙炔发生,但乙炔发生产生的电石渣浆有部分排到渣场。

7)电石渣浆:有的采用沉淀+浓密池澄清+板框压滤工艺处理后用于乙炔发生和排至自备电厂灰场降尘,有的采用沉淀+浓密池澄清+板框压滤工艺,处理后部分回用于乙炔发生,有的采用沉淀+板框压滤工艺处理后部分用于乙炔发生,部分随电石渣一起排到渣场,有的因采用干法乙炔发生工艺不产生电石渣浆废水;由以上分析可以看出,采用干法乙炔生产工艺,不产生电石渣浆,采用湿法乙炔生产工艺,少数企业做到了电石渣浆不外排,多数企业均有电石渣浆排至灰渣场,故电石渣浆实现零排放有待进一步探讨。由以上分析可以看出,由于项目筹备和建设时间不同,乌海市PVC项目废水治理工艺出不同,总之,随着建设时间的推移,在总结已投运的PVC企业的经验教训的基础上,废水处理工艺和回用途径的设置也越趋合理,在废水分类处理、废水分质使用方面也采取了一些较好的措施,如乌海市君正化工40万吨PVC及40万吨烧碱项目在废水分类处理、废水分质使用方面做的相对较好,对次钠废水进行了单独处理,并采取了蒸发装置的蒸汽冷凝水回用纯水站;纯水站浓水回用乙炔清净;干燥蒸汽冷凝液回用聚合热水槽入聚合釜等废水回用措施但仍未实现工艺废水零排放。

3与国内当前较成熟氯碱行业废水处理工艺及排放水平的对比分析

目前国内氯碱界区产生的工艺废水(包括酸碱废水、含盐废水)普遍采用中和、絮凝、沉淀处理工艺处理酸碱和含盐废水,处理后全部用于化盐;对固碱蒸发产生的蒸汽冷凝水收集回用于化盐系统和电解槽。PVC界区产生的含汞酸采用共沸解析技术和加盐解析技术处理后,用做VCM酸洗用水;产生的其它含汞废水采用硫化钠-氯化铁沉淀+三级活性炭+三级离子交换器处理工艺,处理后废水有的回用于VCM碱洗用水,有的回用于VCM水洗用水,有的直接排放;离心母液普遍采用两级生化+絮凝沉淀+过滤工艺处理后补入循环冷却水系统;采取加药絮凝沉淀+BAF+臭氧氧化+曝气还原+BAF+双膜工艺+混床处理工艺处理离心母液目前主要处于中试阶段,处理后母液60%回用于聚合系统的企业尚未实现长期稳定运行;次钠废水单独设置处理装置,采用汽提+冷却+加药混凝沉淀工艺,也逐步开始在各大企业中推广应用;电石渣浆普遍的处理方法是沉淀+浓密池澄清+板框压滤工艺,处理后回用于乙炔发生,或采用干法乙炔生产工艺杜绝电石渣浆的产生。由此可见,乌海市PVC项目废水治理基本上全部采用了国内较为成熟的治理工艺,君正化工40万吨PVC及40万吨烧碱项目经内部挖潜,在某些方面还优于国内普遍水平,但次钠废水仍做不到零排放,有少部分需处理达标后排至园区污水处理厂,工艺废水做不到零排放。

4乌海市现有PVC及烧碱项目存在的问题及解决办法

4.1存在的问题乌海市现有PVC及烧碱项目废水治理主要存在以下问题:

1)有的企业固碱蒸发工段的蒸汽冷凝水直接排入大气,未进行回收利用。

2)离心母液部分企业采用的处理工艺达不到循环水补充水水质要求,造成循环冷却水系统排水水质不能满足环保要求。

3)含汞废酸共沸解析技术和加盐解析处理装置运行不稳定。

4)其它含汞废水处理工艺参差不齐,有些企业处理工艺较简单落后,实现达标有一定的难度。

5)次钠废水经处理后普遍做不到零排放。

6)有些企业有部分电石渣浆随电石渣一起排到渣场或灰场,未实现零排放。

4.2解决方法

1)针对部分企业固碱蒸发工段的蒸汽冷凝水直接排入大气,未进行回收利用这一问题,因乌海当地已有成功经验,对现有企业可以通过技术改造回收利用这部分蒸汽冷凝水,实现固碱蒸发冷凝水的回收利用,针对新建项目,可通过环保三同时要求实现蒸汽冷凝水零排放。

2)针对部分企业离心母液采用的处理工艺达不到循环水补充水水质要求,要求部分企业学习先进经验,改进离心母液处理工艺,保证处理后水质能够满足循环冷却水系统对水质的要求,全部补入循环冷却水系统,不外排;

3)含汞废酸共沸解析技术和加盐解析处理装置运行不稳定,积极寻求技术支持,做好设备防腐蚀工作,保证处理装置稳定运行。

4)改进含汞废水处理工艺,以保证含汞废水实现稳定达标。

5)次钠废水做不到零排放,主要原因有两个:一是部分企业未对这部分废水进行有效的处理,不能满足回用于乙炔发生用水要求;二是即使对这部分废水单独进行了处理,能够满足乙炔发生用水水质要求,但由于乙炔发生产生的电石渣制水泥对氯根的要求,不能全部回乙炔发生,剩余次钠废水又找不到合适的去向及用途,只能外排。最好的解决办法是改变乙炔清净工艺为硫酸清净,但又出现固废硫酸处理问题,在我市及周边硫酸处理企业几乎没有,故改次钠清净为硫酸清净不现实,着眼于实际,解决办法是次钠废水单独设置处理系统,处理后废水在满足水泥生产要求的前提出尽可能回用,剩余部分立足于其它对水质要求不高的用水单位及项目进行回用。

6)针对电石渣浆有部分外排这一问题,因我市已有成功实例,立足于加强管理,废水分质使用,学习先进经验,来实现零排放。

5乌海市现有PVC及烧碱项目及新建氯碱项目发展方向初探

目前乌海市已投产和在建PVC项目普遍采用电石法生产PVC,采用离子膜法生产烧碱,乙炔气发生正在由湿法乙炔向干法乙炔转变,乙炔气清净普遍采用次钠清净工艺。一方面,PVC项目产生的大量废水外排,得不到综合利用,造成环境污染。另一方面,我市处于缺水地区,用水量不足已成为制约企业发展的一个重要因素。故本论文立足于节约用水,提高水资源利用率,按照废水分质使用、梯级利用的原则,希望乌海市PVC及烧碱项目将来的发展方向应为:从生产工艺角度分析,希望乙炔发生采用干法乙炔生产技术以彻底解决电石渣浆外排的问题;采用低汞触媒,改进含汞废水处理工艺,处理后含汞废水采取蒸发结晶的办法实现含汞废水的零排放;在引进废硫酸处理工艺及项目的前提下改次钠清净为硫酸清净,以期彻底解决次钠废水外排问题和电石渣氯含量高影响水泥质量的问题。从废水处理方面分析,希望根据废水特点,分别设置废水处理系统。对电石渣浆,经厢式压滤机压滤后,采用多级冷却技术进行降温,通过加药沉淀处理后解决水温高、易结垢的问题全部回用;对离心母液,采用两级生化+絮凝沉淀+过滤+次钠消毒工艺处理后水质能够满足循环冷却水系统对水质的要求,全部补入循环冷却水系统,并将最终回PVC聚合釜作为以后探索、试验及发展的方向;对次钠废水,应单独设立废水处理系统,处理后部分回用,剩余寻求其它利用途径或处理达标后回用。

6几点建议

为节约用水,提高水资源利用率,逐步达到PVC及烧碱项目工艺废水零排放的目标,提出以下几点建议:

1)由于PVC及烧碱项目循环冷却系统排污水和自备电站水处理及锅炉排污水的量也很大,采取反渗透处理工艺将这部分水进行处理回用于生产。

2)开展部分废水处理课题研究,如次钠废水脱氯、高含盐废水脱盐等课题的研究。

氯化钠废水处理方法篇3

关键词:ADC发泡剂 介绍 废水来源

1.ADC发泡剂简介

ADC即偶氮二甲酰胺,英文名称为Azodicarbonamide,分子式为C2H4N4O2,外观呈淡黄色的结晶粉末,分解温度在195~220℃,因分解温程短且是放热反应,反应敏感,发气量在210~230ml/g,比重是1.66。分解时放出大量的氮气,适量的一氧化碳和少量的二氧化碳及氨气等其它气体,ADC无毒、无臭、不易燃,并具有发气量大,气泡均匀,对制品无污染,所产生的气体无毒,对模具不腐蚀,容易控制温度,不影响固化或成型速度等特点[1]。目前该产品广泛用作聚氯乙烯、聚丙烯、聚乙烯、聚酰胺、氯丁橡胶、天然橡胶、丁腈橡胶、硅橡胶等塑料和橡胶加工过程中的发泡剂。

2. ADC生产过程

ADC的生产方法主要有拉希法(也称氯氨法)、酮连氮法、尿素法等。国内主要采用尿素法,生产工艺流程如图1.1所示。该法采用烧碱、氯气、硫酸、尿素为主要原料的工艺路线,主要包括次氯酸钠合成、肼合成、缩合、聚合、ADC干燥等工段[2]。其生产过程及反应式如下[3]:

⑴在次氯酸钠反应中,按一定比例加入碱和水,通入氯气制成次氯酸钠溶液:

⑵尿素加水配置成尿素溶液,用泵送至尿素高位槽备用。两者由次氯酸钠和尿素泵及转子流量计按一定比例进入立管式反应器,反应生成水合肼。生成的水合肼溶液经气体分离器排出氮气后,再冷却至-5℃,送入离心机进行固液分离,液体为精制水合肼:

⑶将精制水合肼溶液送入配料槽,加入尿素,待充分溶解后,由泵打入缩合反应锅中,在此加入硫酸,使溶液保持酸性,加热进行缩合反应,制得联二脲及其副产物,经过滤、洗涤,制得联二脲:

⑷联二脲送氧化釜,加入氯酸钠,在溴化钠等催化剂作用下进行氧化反应,生成偶氮二甲酰胺,再经洗涤、离心分离,固体为湿ADC,湿ADC用热空气经气流干燥后,进入粉碎机即为成品:

3. ADC废水来源及危害

从生产工艺分析,ADC生产过程所使用和生成的物料有原料、辅助材料、主产品、副产品、中间产物和其它副产品等6类18种,除Cl2、Na2SO4两种物料其它物料均有不同程度的流失。据测算,流失总量占投入原辅材料的73.81%,主要流失点集中在肼缩合工序,占总流失量的77.69%。废水主要来源于次氯酸钠合成、肼缩合和氧化三个工段,其污染指标主要表现为反映尿素、水合肼、联二脲、ADC等有机成分综合影响的COD,以及与其它无机成分共同表现或单独体现的NH3-N、SO42-、Cl-、SS等[4]。

从表1.2中可以知道,ADC的生产会产生了大量废水,该废水是一种高浓度NH3-N废水,同时含有多种盐分,并且有机物成分复杂,难于治理。如果将废水排入水体,对人类和环境产生不良的影响。其主要危害有:⑴造成水体富营养化现象;⑵增加给水处理成本,加氯量大大增加(每克NH3-N须增加8~10克Cl2);⑶还原态氮(NH3-N、NO2--N)排入水体中,因为硝化作用而耗去水体中大量氧,造成水体发臭;⑷对人及生物的毒害作用。水中游离氨(FA)超过1mg/L时即会使水生生物结合氧能力下降,严重时导致死亡。亚硝酸根与胺作用生成亚硝胺,具有致癌、致畸胎作用。人若饮用NO3-超过10mg/L的水,会引发高铁血红蛋白症;⑸影响废水的再生利用。鉴于此,国内外普遍重视ADC废水处理技术的研究及治理工作。

参考文献

[1] 陈立军,孙曰圣,刘燕燕,吴琴芬,偶氮二甲酰胺的改性探讨[J],江西化工,2002年第4期:61-65;

[2] 龚旌,年产1万T发泡剂ADC装置工艺设计[J] ,化工设计通讯,2002.3,28 (1):5-7;

氯化钠废水处理方法篇4

中文摘要 I

英文摘要 II

目录 III

1. 绪论 1

1.1 印染废水的特点 1

1.2 印染废水的处理方法 1

1.2.1 离子交换法 1

1.2.2 臭氧氧化法 1

     1.2.3 吸附法 1

1.2.4 膜分离法 2

1.2.5 电解法 2

     1.2.6 混凝法 2

1.3 二氧化氯处理印染废水的相关研究 3

1.4 二氧化氯的性质 4

1.5 二氧化氯的制备方法 4

1.6 二氧化氯的脱色机理 4

1.7 二氧化氯应用概况 5

2. 实验部分 6

2.1 主要原料、试剂及仪器 6

2.2 实验步骤 6

2.2.1 用亚氯酸钠自氧化法制备二氧化氯 6

2.2.2 用丙二酸法测定二氧化氯总含量 6

2.2.3 实验用废水 8

3. 实验结果与讨论 9

3.1 标准曲线的绘制 9

3.1.1 波长扫描 9

3.1.2 浓度与吸光度关系曲线 9

3.2 单因素考察 10

3.2.1 转速对废水脱色效果的影响 10

3.2.2 ClO2投加量对废水脱色效果的影响 11

3.2.3 pH值对废水脱色效果的影响 12

3.2.4 反应温度对废水脱色效果的影响 12

3.2.5 反应时间对脱色效果的影响 13

3.2.6 废水初始浓度对脱色效果的影响 14

3.3 正交设计 15

3.4 正交结果 16

4. 总结与展望 17

致谢 18

参考文献 19

 

1 绪 论

1.1 印染废水的特点

印染废水中的主要污染物有染料、浆料、助剂、纤维杂质、油剂、酸碱以及无机盐等。其中,助剂和染料COD的 70%以上,而染料只占废水COD的10%左右。但是,染料形成了印染废水的主要特征之一—高色度。

1.2 印染废水的处理方法

国内外已尝试过多的种方法,包括离子交换、臭氧氧化、吸附法、膜分离法、电解法和混凝法等。

1.2.1离子交换法

近年来,针对水溶性离子型染料废水脱色困难进行了各种研究。其中利用改性纤维素制备成各种离子交换脱色纤维素,取得了较大进展。一种羟基丙基纤维素比纤维素本身对活性染料、直接染料、络合还原染料具有更大的亲和力。对除碱性染料外的其它染料废水的脱色效果优于活性炭。

离子交换法脱色存在的主要问题是,交换剂寿命低,再生困难,不适合大规模废水处理。

1.2.2臭氧氧化法

臭氧氧化法对含水溶性染料的废水如活性、直接、酸性等阴离子染料,有较高的脱色率。但对以分散悬浮状态存在于废水中的分散、还原、硫化染料和涂料的脱色效果较差,研究表明偶氮类染料易被臭氧氧化。目前臭氧氧化技术多与其他技术结合应用,如混凝沉淀后再用臭氧处理可提高脱色效果,且降低处理费用;臭氧电解处理,臭氧与紫外线辐射结合都可提高脱色率。臭氧的发生多采用无声放电法,臭氧氧化法具有适应性广、脱色率高且无二次污染的特点,但其对COD去除率较低,运行费用相对偏高[1]。

1.2.3吸附法

在物理处理法中应用最多的是吸附法,这种方法是将活性炭、粘土等多孔物质的粉末或顺粒与废水混合,或让废水通过由其颗粒状物组成的撼床,使废水中的污染物质被吸附在多孔物质表面上或被过滤除去。目前,国外主要采用活性炭吸附法,该法对去除水中溶解性有机物非常有效,但它不能去除水中的胶体和疏水性染料,并且它只对阳离子染料、直接染料、酸性染料、活性染料等水溶性染料具有较好的吸附性能[2]。

1.2.4膜分离法

膜分离法是利用特殊的薄膜对液体中某些成分有选择性透过而得到分离的方法。目前在印染废水回用上应用较多的膜分离技术有:反渗透(RO)、纳滤(NF)、微滤(MF)和超滤(UF)。这些膜分离过程都是以压差为驱动力,废水流经膜面的时候,废水中的污染物被截留,而水透过膜,实现了对废水的处理。对于MF和UF来说,它们的孔径较大,可以用常规的过滤过程来描述其分离机理;而对于NF和RO这些无孔膜来说,它们的分离机理一般用溶解-扩散模型和平衡热力学模型来解释。有一些纳滤膜表面带有电荷,它们的分离机理比较复杂,一般用电荷模型和空间位阻模型来阐明分离过程。利用活性泥法或生物膜法均可有效地去除其中的COD,但一般对色度去除的效果并不明显[3]。通过选择优势菌种可较好的去除色度[4],但所选择的优势菌种是否能够长时间地在生物处理系统中占主导地位,并始终保持其优良特性,使得这类研究的推广应用受到了一定的限制。

1.2.5电解法

电化学法是利用电解过程中发生的氧化还原反应处理废水的方法,可对印染废水实现有效脱色。传统的电解法对疏水性及亲水性染料都有较好的脱色效果,但电耗大。目前采用较多的是混凝一电解法,先去除胶体态或分散态染料,针对水溶性染料完成氧化脱色,以节省电能。研究表明对含直接、硫化、分散及媒介染料的印染废水采用电解法脱色率可达较高水平,酸性染料废水脱色率可达70%以上。

铁炭微电解法是近年来国内水处理研究的热点之一,它不仅工艺简单,操作方便,而且应用范围广泛,特别对于染色废水的处理显示出良好的效果。铁炭微电解法的工作原理是利用铁和炭在电解质溶液中,由于铁与炭存在一定的电位差,使它们表面形成无数个微电池回路,因而两极发生一系列氧化还原反应,破坏染料发色体系以脱除染整废水的色度。同时电极反应中阴极产生的新生态亚铁离子,除具有还原作用外,其水解产物具有较强的絮凝和吸附能力,后续采用石灰乳中和,可进一步提高脱色效果[5]。

1.2.6混凝法

混凝法是印染废水处理中采用最多的方法,有混凝沉淀法和混凝气浮法2种。常用的混凝剂有碱式氯化铝、聚合硫酸铁等。混凝法对去除COD和色度都有较好的效果。混凝法设置在生物处理前,混凝剂投加量较大,污泥量大,易使处理成本提高,并增大污泥处理与最终处理的难度[6]。混凝法的COD去除率为30%~60%,BOD去除率为20%~50%。

 

1.3 二氧化氯处理印染废水的相关研究

二氧化氯作为一种具有强氧化性和氧化过程中很少有有机物产生的氧化剂[7],在水处理的氧化消毒及造纸、纸浆工业的漂白等行业已经广泛使用。

本文研究的主要内容是利用亚氯酸钠和盐酸制备二氧化氯,研究二氧化氯对废水脱色各个因素的影响,得到最优的工艺条件。首先,我们查阅了大量的文献资料,参考了一些关于二氧化氯对各种染料脱色以及其他物质对印染废水脱色的文章,如:

王九思[8]用ClO2氧化与活性炭吸附相结合的方法处理染色废水,与单独用ClO2氧化或活性炭吸附处理相比,CODCr去除率和脱色率均有较大提高。

王代芝,揭武[9]用三氯化铝改性的膨润土对酸性红的吸附作用,结果表明此改性方法能够明显改善膨润土在水中的沉降与过滤性能,大大提高了膨润土对酸性红的吸附能力。

吴坚,扎西[10]采用Fenton试剂处理酸性 玫瑰红B染料废水,考察了FeSO4投加量、H2O2投加量、pH值和反应时间对处理效果的影响,研究了原水的氧化还原电位的变化规律。

金朝晖等[11]从受污染土壤中筛选出具有广谱脱色的优势菌17株,并进一步扩大染料范围,筛选出3株对偶氮、蒽醌、三苯甲烷染料均有较好脱色效果的优势菌株。3株菌分别为青霉属菌和头孢霉属(菌)的真菌;以染料配水为例,探讨了pH值、温度、碳源、氮源因素对菌株脱色的影响;并进行了实际废水的脱色实验,结果表明该菌在pH值5-9,温度18-37℃的区间内,且外加葡萄糖提供0.15%碳源时对染料废水的脱色率可达70%。因此对处理染料污染废水具有较好的应用前景。

华彬,陆永生,唐春燕,卞华松,胡龙兴[12]以酸性红B染料模拟废水为对象,考察了废水浓度、pH、超声时间、NaCl投加量及曝气等因素对其超声降解效率的影响。

 

1.4二氧化氯的性质

ClO2在常温下为黄绿色或橘黄色气体,当溶液中浓度14~17mg/L时气味明显[6],具有氯和臭氧的特殊刺激臭味,毒性与氯气相似。在20℃、大气压力下,水中二氧化氯的质量浓度为70mg/L。二氧化氯气体在室温条件下可压缩为液态,密度为2.4kg/L,沸点10.9℃,熔点-59℃。在水中的溶解度很大,约为Cl2的5倍 ,ClO2分子结构外层存在一个未成对电子———活泼自由基,具有很强的氧化作用,二氧化氯的还原能力(0.95V)比氯气(1.95V)低的多,但它的氧化能力却比氯气高的多,其氧化能力约为Cl2的2.63倍。其气体在高于-40℃时不稳定、易爆炸,所以需要在使用现场生产。二氧化氯暴露于光线下或接触有机物时,温度上升就会爆炸。二氧化氯压缩为液态,轻微的环境变化就会导致爆炸。工业上,二氧化氯运输通过混合空气以保持二氧化氯浓度在8%~12%。在黑暗中,二氧化氯溶液可保存几个月。

1.5 二氧化氯的制备方法

本实验采用亚氯酸钠自氧化法:在酸性介质中,亚氯酸钠发生自氧化还原反应生成二氧化氯。反应式为:

5NaClO2 + 4HCl = 4ClO2 + 5NaCl + 2H2O

该方法的特点是一次性投资少,操作工艺简便,易于控制。不足之处是反应速度慢,酸量大,产生的废酸多。如果是在盐酸介质中反应,产品混合物中会有一定量的盐酸。

1.6 二氧化氯的脱色机理

ClO2处理印染废水主要是氧化破坏染料的发色基团和助色基团,达到显著的脱色效果。在一定条件下,二氧化氯可与DPD(N,N一二乙基对苯二胺)、甲酚红(邻甲酚磺酞)、氯酚红(二氯磺酞)、酸性靛蓝(5,5一靛蓝二磺酸盐或靛蓝三磺盐)、丽丝胺绿B(芳甲烷染料)、罗丹明B(四乙基罗丹明)和亚甲蓝等显色剂发生脱色反应。酸性靛蓝在pH<4时,可以与氧化剂二氧化氯发生断键反应,而生成稳定化合物靛红C8H5NO2。二氧化氯除与酸性靛蓝等染料发生反应外,还与许多直接染料和活性染料反应,而使染料褪色。利用二氧化氯的这一性质,可将二氧化氯用于处理印染废水。目前,利用二氧化氯来处理印染废水已得到一定的进展,尤其在脱色方面去除率高,因而是具有广阔的推广应用前景的。

 

1.7 二氧化氯应用概况

     制成的稳定性二氧化氯作为一种多功能化工产品,自上个世纪和年代就逐步在纸浆和纺织品漂白、消毒及自来水净化、工业废物处理等行业得到应用,尤其是经ClO2消毒后反应物基本无毒。二氧化氯作为一种强氧化剂,由于其在消毒杀菌、防腐除臭、保鲜及环境污染处理等方面的独特功能已受到国内外有关专家的广泛关注。80年代中期,美国农业部(USDA)和美国环保局(USEDA)确认ClO2可作为食品消毒剂和饮水杀菌剂。最近,世界卫生组织(WHO)认为该物质完全无致癌,而推荐为安全消毒物质中的A1级产品。目前,越来越多的国家已把ClO2用作饮用水的消毒剂,并对ClO2在医疗卫生、水产品加工、果蔬保鲜及环境污水处理等方面进行广泛的应用研究。

ClO2的研究和应用在我国始于20世纪80年代,生产规模上与国外相比都有一定差距,但是目前发展迅速,已有多家厂家生产,应用领域也很广泛,主要有饮用水处理、废水处理、杀菌灭藻、医疗卫生、造纸工业、油田解堵等几个方面。ClO2作为灭菌消毒氧化剂,具有很好的效果,明显优于常用的Cl2,且具安全可靠、无环保问题等优点,因此,它的应用势必愈来愈广,在我国的应用亦有广阔的前景。

 

2  实验部分

2.1主要原料、试剂及仪器 

(1)亚氯酸钠

  A.R.

(6)硫代硫酸钠

A.R.

(2)淀粉     

A.R.

(7)丙二酸           A.R.

(3)盐酸

  A.R.

  (8)重铬酸钾

A.R.

(4)硫酸

      A.R.

(9)废水

  

(5)碘化钾

  A.R.

主要仪器:

(1)可见分光光度计(上海光谱仪器有限公司 722E型)  

(2)恒温水浴缸(上海精密实验设备有限公司 DK-S24型)   

(3)恒速搅拌器(上海申胜生物技术有限公司 S212-40型)

(4)二氧化氯发生装置(实验室自搭)    

(5)电子天平(北京塞多利斯仪器系统有限公司 BS124S型)

2.2.实验步骤

2.2.1 用亚氯酸钠自氧化法制备二氧化氯

(1)打开恒温水浴调至250C;

(2)待水温稳定后,将装有反应液的三口烧瓶浸入水浴锅,同时打开空气压缩机控制0.14m3/h的气体流量,反应开始;

(3)观察反应过程中物料颜色的变化,反应30分钟,结束反应;

(4)关闭水浴锅和压缩机,整理实验台面,将设备等恢复原状。

2.2.2 用丙二酸法测定二氧化氯总含量

试剂配制

(1)2mol/L硫酸  取11mL98%浓硫酸加入到89mL水中置于试剂瓶中;

(2)10%碘化钾  10g碘化钾加入90mL水中置于棕色瓶中避光保存于冰箱中,

若顔色变黄需重新配制;

(3)0.5%淀粉  取0.5g淀粉置于100mL水中煮沸,冷却后置于棕色瓶中避光

保存;

(4)10% 丙二酸  10g丙二酸加无离子水溶解成100mL;

(5)0.1mol/L硫代硫酸钠溶液  取1000mL蒸馏水加入0.1g碳酸钠,煮沸,

称取24.80g硫代硫酸钠置于该沸水中,冷却放置于棕色瓶中,避光保存1-2周;

(6) 标定0.1mol/L硫代硫酸钠标准溶液 在碘量瓶中移取一定量重铬酸钾

标准液加入10%碘化钾4mL及1.5mL的2mol/L硫酸,塞好玻璃塞,摇匀,于暗处置放10min。用上述配制的0.1mol/L硫代硫酸钠溶液滴定。经滴定计算得硫代硫酸钠标准溶液的浓度为0.111mol/L。

测定

    取二氧化氯液10.0mL,置于含100mL无离子水的碘量瓶中,加10% 丙二酸

溶液2mL,摇匀。静置反应2min后,加2mol/L硫酸10mL,10%碘化钾溶液10mL后加蒸馏水数滴 于碘量瓶盖缘,置暗处5min。打开盖,让盖缘蒸馏水流入瓶内。用硫代硫酸钠标准溶液(装入滴定管中)滴定游离碘,边滴边摇匀。待溶液呈淡黄色时加入0.5%淀粉溶液10滴,溶液立即变蓝色。继续滴定至蓝色消失,记录用去的硫代硫酸钠溶液总量。重复测3次,取3次平均值进行以下计算 。

  由于1mol/L硫代硫酸钠标准溶液1mL相当于13.49mg二氧化氯,故可按下

式计算二氧化氯含量:

二氧化氯含量(mg/L)=(M×V×13.49/W)×1000

其中:M-------硫代硫酸钠标准溶液的浓度mg/L;

V-------硫代硫酸钠标准溶液在滴定中用去的毫升数mL;

W-------碘量瓶中所含二氧化氯样液毫升数mL(溶液10mL),盖上盖并振摇混匀。

 

2.2.3实验用废水

余姚百利特种纺织染整有限公司的废水,是棉类的印染废水。

1、原水的测定:

CODCr=(25.02-22.78)×39.15×5=438mg/L

SS1=(39.8700-39.8360)×10000=330mg/L(悬浮固体)

SS2=(39.4721-39.4422)×10000=299mg/L

SS=(330+299)÷2=315mg/L

pH=8

电导率=4100μS/cm

2、  初沉:           FeSO4   15g          (300ppm)

50L原水+  PAC       500ml      (100ppm)

                    PAM      150ml      (15ppm)

测定上清液的CODCr: CODCr=(24.92-20.7)×39.15×5=313mg/L

 

3  实验结果与讨论

3.1 标准曲线的绘制

3.1.1 波长扫描

取废水30mL,加去离子水配成100mL,用分光光度计在不同波长下进行量,

得到以下的最佳波长曲线,结果见图1:

 

图1 废水波长扫描

从上图可以看出,波长在340nm时,吸光度达到最大值,即最大吸收峰,以此作为测定波长。

3.1.2 浓度与吸光度关系曲线

分别取0mL、3mL、5mL、7mL、10mL、30mL、50mL、70mL、100mL废水,各加去离子水配成100mL,分别用分光光度计在340nm进行测量,得到以下的浓度标准曲线,(由于原废水成分复杂,因此设定原废水浓度为100%,浓度以百分号表示)结果见图2:

 

图2 废水浓度与吸光度的关系曲线

在以下单因素考察实验中,将吸光度代入上面方程中,算出反应后废水的浓度y,再根据y1=y总-y算出反应的废水的量y1,最后根据脱色率= y1/ y总×100%,计算出脱色率。

3.2 单因素考察

3.2.1 转速对废水脱色效果的影响

在二氧化氯与废水反应时,由于存在一个混合接触的过程,它们的溶液浓度虽然不变,但是,理论上来说,在混合反应时,加快混合时的速率,可以提高反应的速率。因此,对于搅拌速率来说,应该是越快越好。移取30mL废水,加当量浓度为1002mg/L的二氧化氯溶液,使二氧化氯和废水体积比为1:1(过量),在保持温度、pH、起始料液等各因素保持不变的前提下,来考察不同的搅拌速率是否对二氧化氯的脱色效果有影响,使转速分别控制在0r/min、60r/min、100r/min、180 r/min、240r/min,考察搅拌速度对废水脱色效果的影响。反应结束后马上取样,鼓泡除去剩余没有反应的二氧化氯,然后用分光光度计测定吸光度,最后通过废水的标准曲线计算脱色率,结果见图3:

 

图3转速与脱色率的关系曲线

从上图可以看出,搅拌对反应是有影响的。搅拌增加了反应物之间的接触,使反应更完全,实验表明,不搅拌与搅拌相比脱色率较差,而低速搅拌与高速搅拌相比,脱色率相差无几。因此,只需要保证低速的搅拌,就可以达到提高脱色率的效果。

 

注:在反应完全的溶液中,二氧化氯作为脱色物质,必须过量。而且,由于二氧化氯分子是有颜色的,对测定反应后溶液的吸光度是否存在影响,我们做了个实验,就是将没有经过鼓泡赶走二氧化氯的溶液,和有经过鼓泡赶走二氧化氯的溶液的吸光度做了对比,发现必须进行鼓泡测得的吸光度才是可行的,不进行鼓泡的溶液,二氧化氯存在较大的影响。因此,下面的溶液测得的吸光度都是已经进行过鼓泡的。

3.2.2 ClO2投加量对废水脱色效果影响

在反应温度25℃,不加酸碱和反应时间20min,转速60r/min不变的情况下,移取30mL废水,加浓度为1002mg/L的二氧化氯溶液,使加二氧化氯的量(mg)和废水体积比分别为0.25、0.333、0.5、1、1.5,但要让总溶液的量保持在100mL以内,然后加水让溶液的体积保持在100mL,这样就保持了废水浓度的一致性。在相同的因素前提下,考察ClO2投加量对废水脱色效果的差异。反应结束后马上取样,鼓泡除去剩余没有反应的二氧化氯,然后用分光光度计测定吸光度,最后通过废水的标准曲线计算脱色率,结果见图4:

 

图4  投料比与脱色率的关系

由图4可以看出 ,废水脱色率随二氧化氯的量的增加而逐渐升高。较低投量时,脱色率的升高幅度较大 ,当投量增加到一定程度后(1:1)脱色率变化趋于平缓,基本上脱色率保持不变。随着二氧化氯投加量的增加 ,脱色率升高。扣除杂质盐的影响后脱色率可达95%,由此可见,二氧化氯作为氧化剂染料是有很强的脱色能力的,并且脱色能力也都随着二氧化氯的投加量增加而增强。

 

3.2.3 pH值对废水脱色效果的影响

移取30mL废水,加浓度为1002mg/L的二氧化氯溶液,使二氧化氯的量(mg)和废水体积比为1:1(过量),加水稀释保持溶液总体积100mL,在反应温度25℃,转速60r/min,反应时间20min的条件下,加盐酸或氢氧化钠使pH值分别为4、6、8、10、12,考察pH值对废水脱色率的影响,反应结束后马上取样,鼓泡除去剩余没有反应的二氧化氯,然后用分光光度计测定吸光度,最后通过废水的标准曲线计算脱色率,得以下曲线,结果见图5:

 

图5 pH与脱色率的关系曲线

由图可知,脱色率在酸性条件下,处理效果不好,随着pH值的逐渐增大,脱色率逐渐增大,在碱性条件下,效果较好,到pH到10时产生少量橘红色沉淀(可能为三价铁离子),使脱色率明显提高。

3.2.4  反应温度对废水脱色效果的影响

温度是影响反应效果的因素之一,从印染车间排出的废水通常具有较高的温度。移取30mL废水,加浓度为1002mg/L的二氧化氯溶液,使二氧化氯的量和(mg)水和二氧化氯的浓度的一致性。在相同的因素前提下,考察不同的温度二氧化氯对废水溶液的脱色效果的差异。因此,分别考察在15℃、20℃、25℃、30℃、35℃、40℃、45℃和50℃下的脱色率。确定温度这个单因素,是否对二氧化氯脱色效果有影响。以下是考察在不同温度点时,二氧化氯对废水在不同的温度条件下的脱色能力的大小差异。结果见图6:

 

图6 温度与脱色率的关系曲线

从上图可以看出,二氧化氯对废水进行脱色时,温度对其脱色能 力有一定影响,并且温度越高脱色效果越好。可能的原因是由于温度升高,二氧化氯的活化能升高,使转化率提高,但是温度过高,使挥发的二氧化氯较多,造成了二氧化氯溶液浓度的下降。但从工厂废水排放的温度,及处理能耗考虑,在室温下(25℃)进行处理,比较合适。

3.2.5反应时间对废水脱色效果的影响

在进行脱色时,由于不知道确切的反应时间,使得有些反应无法判断比较,因此,必须要考虑二氧化率脱色的比较准确的反应时间。进行以下的实验: 移取30mL废水,加当量浓度为1002mg/L的二氧化氯溶液,使二氧化氯的量(mg)和废水体积比为1:1(过量),加水稀释保持溶液总体积100mL,在反应温度25℃,转速60r/min, 反应时间分别为1、2、3、5、8、10、20min,考察反应时间对脱色率的影响,反应结束后马上取样,鼓泡除去剩余没有反应的二氧化氯,然后用分光光度计测定吸光度,最后通过废水的标准曲线计算脱色率, 结果如下图7:

 

图7 反应时间与脱色率的关系曲线

从图7可以看出,反应速度较快,反应10min后,脱色率几乎不再随时间的增加而增加,这说明反应已完全。

3.2.6  废水初始浓度对脱色效果的影响

在反应温度25℃、不加酸碱和反应时间20min,转速60r/min,加二氧化氯溶液不变的情况下,分别移取10mL、20mL、30mL、40mL、50mL废水原溶液,加水稀释保持溶液总体积100mL。在相同的因素前提下,考察废水起始浓度对脱色率的影响。反应结束后马上取样,鼓泡除去剩余没有反应的二氧化氯,然后用分光光度计测定吸光度,最后通过废水的标准曲线计算脱色率。结果见图8:

 

图8  废水起始浓度对脱色率的影响

从上图可以看出,在起始废水浓度发生改变时,二氧化氯对废水溶液的脱色能力基本无影响,可见二氧化氯的脱色能力还是较强的。

3.3正交设计

经以上单因素考察,初始浓度对脱色率基本无影响。而反应为快速反应,且反应程度较高。因此,初始浓度和反应时间不做设计因素。考虑废水排放的温度,一般在室温,因此,选取温度因素水平为:20℃、25℃、30℃。搅拌速率选取水品为:0r/min、60 r/min、100 r/min。在保证一定脱色率前提下选取1:3、1:1、1.5:1的水平。原始废水pH为8.84,选取pH因素的水平为:6、8、10。

表1 因素水平选择

正交设计           1      2     3

1温度(℃)       20     25    30

2搅拌(r/min)    0      60    100

3配比(体积比)  0.333   1     1.5

4 pH               6      8     10

 

 

图9 脱色率随因素变化情况

表2 正交实验

实验号    1(温度)     2(搅速)    3(配比)   4(pH)    脱色率(%)

1           1           1            1           1        33

2           1           2            2           2        44.3

3           2           1            2           3        56.7

4           1           3            3           3        49.6

5           2           2            3           1        33

6           2           3            1           2        41.5

7           3           3            2           1        48.6

8           3           2            1           3        56

9           3           1            3           2        42.2

T=404.9

Ⅰ          134         131.2        130.5       108.2

Ⅱ          124.1       133.3        136.1       134.4

Ⅲ          146.8       140.4        138.3       162.3

Ⅰ′        44.67       43.73        43.5        36.06

Ⅱ′        41.37       44.43        45.37       44.8

Ⅲ′        48.93       46.8         46.1        54.1

R′         7.56        3.07         2.6         18.04

3.4正交结果

通过正交设计可得出:极差大小顺序为:R(pH)>R(温度)>R(搅速)>R(配比)

最佳设计条件为:搅速=100r/min、配比=1.5、pH=10、温度=30℃。

 

4 总结与展望

(1)在考察搅拌速度对染料脱色率的影响时发现,搅拌速率对其脱色能力有一定影响。搅拌增加反应物之间的接触,使反应更完全,实验表明,不搅拌与搅拌相比脱色率较差,而低速搅拌与高速搅拌相比,脱色率相差无几。因此,只需要保证低速的搅拌,就可以达到提高脱色率的效果。

(2)在考察ClO2投加量对染料脱色率的影响时我们发现,废水脱色率随二氧化氯的量的增加而逐渐升高。较低投量时,脱色率的升高幅度较大 ,当投量增加到一定程度后(1:1)脱色率变化趋于平缓,基本上脱色率保持不变。随着二氧化氯投加量的增加,脱色率升高,在单位体积比1:1时脱色率就接近50%,如扣除杂质盐的影响,脱色率可达到95%以上。这说明二氧化氯对这种染料废水的氧化作用很强,体现了二氧化氯的优越性。

(3)在考察pH值对染料脱色率的影响时我们发现,脱色率在酸性条件下,处理效果不好,随着pH值的逐渐增大,脱色率逐渐增大,在碱性条件下,效果较好,到pH到10时产生少量橘红色沉淀(三价铁离子),使脱色率明显提高。

(4)在考察温度影响因素时发现,尽管理论上,温度越高废水的脱色效果越好,但联系实际因素,考虑能耗等因素,反应温度在常温附近比较合适。

(5)考察反应时间影响因素时,发现反应较快速,10min基本就反应完全。

(6)在考察废水初始浓度对脱色率的影响时,发现在起始废水浓度发生改变时,二氧化氯对废水溶液的脱色能力基本无影响,可见二氧化氯的脱色能力还是较强的。

(7)通过正交设计得出,最佳设计条件为:搅速=100、配比=1.5、pH=10。

(8)二氧化氯产业已是国际公认的绿色朝阳产业,应用领域和消费量还将大规模拓展,其技术的发展趋势是低耗节能、高效高纯、低副产物的系列生产工艺和针对各个行业而开发的使用便捷、应用成熟的下游产品的应用。就目前而言,稳定性二氧化氯和二氧化氯发生器等系列产品,投资少、见效快,不仅能有效地发挥其本身的特性,还可推动相关产业的繁荣和发展。

 

致 谢

四年的大学生活就这样随着毕业论文的完成而结束了,感谢浙江科技学院所有教过我的和我所熟悉的老师的谆谆教诲,特别是生化学院的老师们的教导将使我终生受益。由衷感谢诸爱士老师,在他的孜孜不倦的指导之下使我顺利完成了毕业课题。诸老师严谨的科学态度使我受益良多,还有在实验过程中给我的谆谆教诲,以及在四年大年生活中对我关心和照顾,在此衷心感谢您!还有和我同做一组实验的同学,也给了我很多帮助,在这里一并谢过。

 

参考文献

[1] 杨俊仕,李国欣.活性污泥-接触氧化法处理印染废水[J].环境工程,2003,21(2):

    21-22.

. Desalination, 1989,71(5) :83-88.

.Wat . Sci Technol,1990,22(9):265-270.

.Bioresource Technol,1994, 49(15):47-50.

[5] 吴文军.铁屑内电解法处理染料废水[J].污染防治技术,1994,7(3):41-42.

[6] 祁佩时,李欣,程树辉.水解-混凝-复合生物池工艺处理印染废水的工程应用[J].给水排水,2003,29(3):44-47.

[7] 黄君礼.二氧化氯对氯仿形成的影响[J].环境科学,1994,13(5):44-450.

[8] 王九思.ClO2氧化-活性炭吸附法处理染色废水的试验研究[J].环境科学,2000,

21(4):83-86.

[9] 王代芝,揭武.Al3+改性膨润土处理酸性红印染废水[J].中国非金属矿工业导刊,2005,16(5):12-15.

[10] 吴坚,扎西.Fenton试剂处理酸性玫瑰红B的研究[J].环境科学,2000,21(3):

     93-96.

[11] 金朝晖,柴英涛.3株真菌对活性艳蓝KN2R的脱色条件[J].环境科学,2000,20(3): 

氯化钠废水处理方法篇5

摘要:烧碱工业是国家经济发展的重要行业,但是其也造成了重大的污染,影响环境的质量,随着人们生活水平的提高,人们对环境质量的要求也在逐渐提高,实现绿色化学是未来工业发展的一个必然方向烧碱工业也必须不断地提升自身的生产水平,实现绿色生产的目标。

前言

作为氯碱的重要产品,其主要被应用于化工原料、造纸、纺织、纺织等多个领域,在国民经济的发展中占有重要的地位,从当前的烧碱工艺现状来看,主要的烧碱工艺主要包括隔膜法、水银法,离子膜法与苛化法4种。

一、集中烧碱工艺的对比

作为我国氯碱行业烧碱生产的最关键措施之一,隔膜法在我国烧碱的生产行业发挥了重要作用,而离子膜法则是世界上最先进的烧碱工艺,随着生产水平的逐渐提高,我国对其应用范围也在逐渐扩大。

经过对比分析,我们发现,国内隔膜阀烧碱生产企业清洁化生产的水平较差,很多企业对三废的治理措施不到位,尤其是绿色壁垒的出现,阻碍了西方先进技术的进入,受到资金、意识、技术水平的限制,我国的氯碱行业相对较为落后,要想提升其在国际市场中的竞争力,必须要不断地创新与完善,开展绿色化工,消除产品中的环保隐患。治理三废的工程迫在眉睫,新世界是绿色环保的世界,是化学工业发展的必然方向,氯碱工业必须朝着绿色化的方向发展,就是利用最少的能源,产生最少的废物,获取利益最大化。

二、治理三废所需遵循的原则

按照相关规定,三废的治理是当前化工行业的重要组成部分之一,尤其是废水的的排放需要遵循着“清污分流”、“一水多用”、“节约用水”的原则,经过处理后的清水尽量重复使用,无法进行重复利用的废水送到处理中心进行处理,为了贯彻一水多用与重复利用的原则,降低废水的排放,尽可能的采取有效的措施回收废水。按照相关的规定,有利用价值的废水要采取回收处理,有选择性的选择处理工具,对有利用价值的元素进行提取;对于与其他产物可以合成利用的,采取合成办法进行处理;经过处理后的物质分为有污染和无污染两种,可以将其作为一种产品来提升企业的经济效益,就是对资源实行利用的最大化;对废水的处理采取一定的防渗措施,防止污染严重,影响地下水的正常使用;从实际的生产中我们不难发现,工艺废水、循环水站,脱盐水站在进行运转的过程中都会产生一定量的排放,按照常规的方法排放,将造成水资源的重大浪费。所以,有必要根据自身的经济实力设置废水回收处理站,将废水分层次处理,降低有用资源的排放,最终使其达到循环水的质量等。经过以上的治理对策处理后,大大增强了其环保意义。

在烧碱与聚氯乙烯的生产过程中,都需要坚持经济的发展与环境的保护共同发展,任何的产业都需要以保护环境为前提,环境是人类赖以生存的基础,是造福子孙的可持续工程。

三、苛化法对“三废”的处理对策

1.使氮氛化钠与碳酸钙分离

进过苛化夜抽取处理后,其主要由沉淀的碳酸钙与少量的烧碱组成,氢氧化钠的分离将会直接影响到烧碱的产量。假如采用板框压滤机过滤或者是逆流清洗的方式,而这的融合将会使部分溶液达到循环利用的目的。

2.氛化钠中氮或者纳的分离

在熬制苛化液的过程中,所分离出的氯化钠中含有一定量的氢氧化钠,我们可以采用水系或者是饱和的氯化钠溶液进行清洗,其中的部分采取有效措施将其熬制成烧碱,另一部分将其稀释,用来熔矿,水洗后的氯化钠也可以作为工业盐应用于生产中。

3. 固体碳酸钙的利用

利用苛化法生产烧碱与生产轻质的碳酸钙程序基本一致,因此在生产烧碱过程中合成的碳酸钙经过处理可以合成轻质的碳酸钙,作为产品出售,但是当前的状况来看,大多数企业将其作为废品丢掉,造成浪费。

四、减少烧碱工业污染的新工艺探讨

从近年来的发展状况来看,行业污染问题日益突出,由于其属于耗能较高,环境污染严重的行业,所以传统的方法已经无法满足生产的需求,造成了巨大的资源浪费,同时增加了环境的负担,很多企业对废物的处理能力较差,治理能力不足,非常容易造成严重的环境污染。因此,有必要采取清洁化生产工艺与隔膜法形结合方式来提高工艺的环保性。从当前的发展形势来看,以下两种清洁的制备烧碱工艺比较受欢迎,本文就对其进行详细的分析:

1.用海水替代传统的水源

不是所有的海水都可以用于制备烧碱,在涨潮时收集海水,经过日光使其溶度缩减,达到一定的数值后,加入石灰和纯碱,使钙和镁沉淀,此时加入一定量的碳酸氢铵,进行分解,提炼出纯碱,然后加入氢氧化钙苛化制取烧碱。当前采取的烧碱制备方法一般都采用电解食盐法或者是利用天然碱与氢氧华纳进行苛化反应来提取烧碱,相对而言,这一方法原料供应不足,对电力的需求大,而且需要大量的资金投入生产,而利用海水进行烧碱的提取,对工艺要求简单,对生产设备的要求较低,可以广泛的推行,尤其是在一些沿海的城市。

2.采用氨镍法制备烧碱

涉及一种钠、钾或一般碱金属的氧化物或氢氧化物,尤其是涉及一种采用氨镍法制备烧碱的工艺。这一生产工艺对设备的要求较低,不限制生产规模,能源耗费小,所生产的目标产物及其所含的氯离子可以使其控制在0.1%以内的低氯烧碱制备方法。

将原盐溶解,在除钙和镁后的饱和盐水中加入氢氧化镍吸氨至饱和,再进行复分解反应、过滤、分离出烧碱氨水溶液和Ni(NH3)6Cl2;将烧碱氨水溶液经蒸馏浓缩脱氨,再次过滤即得烧碱产品;将Ni(NH3)6Cl2和石灰乳混合,用蒸汽加热蒸氨,将蒸出的氨回收到吸氨工序,蒸氨后的液固混合物过滤出Ni(OH)2回收,滤液CaCl2溶液经蒸发浓缩得CaCl产品。

五、结束语

总之,烧碱工业在现代经济的发展中具有重要的意义,但是从根本上来说,其不利于当前的经济与环境可持续发函,严重影响环境质量,对此,发展绿色化学势在必行,经过上文的分析我们看到,我们必须提高生产工艺,采用无污染,低成本的工艺,推动绿色烧碱工业的发展。

参考文献

[1]石敏,王红东.优化蒸发工艺 降低蒸汽消耗[J]. 氯碱工业. 2006(03).

[2]陈孝彦,郑平友,刘芙蓉.关于冷却系统中NaCl结晶影响因素的几点思考[J]. 氯碱工业. 2003(12).

[3]王超武,吴学玉,王本明,周美红.降低蒸发系统中结盐的措施[J]. 氯碱工业. 2003(10).

氯化钠废水处理方法篇6

    1.1回收有机溶剂

    对于经过回收之后,还可以使用的有机溶剂,首先在分液漏斗中对溶剂进行简单洗涤,之后采用蒸馏或分馏方式,让整个溶剂更加精制、纯化。但是,回收中要注意几点:(1)应在通风柜中完成整个废液回收的流程。(2)在蒸馏瓶内正确安装用于测量蒸馏温度的温度计,保证水银球上缘和蒸馏瓶支管口下缘处在同一水平高度,这样能够使水银在蒸馏过程中完全被蒸汽包围,提高蒸馏温度的准确性。(3)有机溶剂回收后,要保证纯度,方便实验室的重复使用。

    1.1.1三氯甲烷用水、浓硫酸(用量为三氯甲烷的1/10)、蒸馏水、盐酸羟胺(一般为0.5%分析纯),对三氯甲烷依次进行洗涤,之后用氯化钙将经过重蒸馏水再次洗涤的溶剂进行干燥处理,处理后随即能够过滤蒸馏。在蒸馏过程中,要将恒温水浴锅预热至75℃,然后才可以放置蒸馏瓶,接着连接好冷凝管,用长颈瓶漏斗把三氯甲烷倾入蒸馏瓶中,最后再安装温度计,开启冷凝水,就能够收集沸点高达60℃~62℃的蒸馏液。

    1.1.2四氯化碳回收四氯化碳废液要注意其中的成分,一般双硫腙和铜试剂两种。双硫腙四氯化碳废液的回收比较容易:就是用无水氯化钙把依次经过硫酸洗涤、蒸馏水等洗涤的废液干燥后,蒸馏就可以进行;铜试剂四氯化碳废液的回收较为简单,只需要用纯水洗涤两次,然后用无水氯化钙进行干燥,最后就可以蒸馏,通常水浴的温度控制在90℃~95℃,而收集的馏分主要分布在76℃~78℃。3.1.3乙醚乙醚废液回收的第一步就是要中和其酸碱性,主要的中和方式就是用水洗涤,接着用0.5%的高锰酸钾将废液洗涤至不褪紫色,下一步选择蒸馏水清洗,然后取0.5%~1%的硫酸亚铁铵对乙醚溶液进行第二次洗涤,这次洗涤主要是为了除去其中的氧化物。最一部就是用氯化钙将经过第二次蒸馏水洗涤的废液进行干燥、过滤后,收集温度在33.5℃~34.5℃的馏分。这个过程应注意要根据乙醚沸点低的特性,避开夏季高温。其它的石油醚、正乙烷、乙酸乙酯等有机溶剂都可依此方法纯化回收。

    1.2银的回收方法

    回收含银废液的首要任务是降低其化学价。通常是在搅拌含银废液的过程中添加一些过量的浓盐酸,帮助其生成氯化银沉淀。这些沉淀中含有三价铁和氯离子,需要倾泻法洗涤后才能够出去。然后将锌粒或者锌棒加入进1+4硫酸或者10%~15%氯化钠中,就能够达到还原氯化银沉淀的目的,获得的暗灰色的银粉洗涤,并待其干燥后即可回收银。

    2处理实验室中废液的方式

    实验室的废液中经常会含酚、氰、汞、铬、砷等成分,这些成分本身具有很大危害性,故而要经过处理,并且合乎标准之后才能直接排放。

    2.1含酚废液的处理含酚废液

    是指包含苯酚、甲酚、萘酚且其酚成分水溶性较强的废液。由于废液含酚浓度的高低不同,故而要分别进行处理。对于浓度较高的含酚废液,一般采用乙酸丁酯萃取、之后用重蒸馏回收的方式。而浓度较低的含酚废液,通常要加入次氯酸钠、漂白粉等物质,破坏酚氯,并将其转化成邻苯二酚、邻苯二、顺丁烯二酸,然后将处理后的废液回收到综合废水桶中。

    2.2含氰废液的处理

    氰化物本身含有剧毒,通过皮肤以及呼吸系统进入人体之后,会直接威胁人的生命。故而处理含氰废液时,必须要在通风橱中谨慎操作。含氰废液同样也有浓和稀两种,在处理中也要进行分类。废液浓度较稀的,首先要将其pH至10以上,在这个过程中,主要的使用的是氢氧化钠。之后加入高锰酸钾(3%),对氰化物进行氧化分解;废液中氰化物含量较高的,首先要采用氯碱法对其进行氧化分解处理。

    2.3汞的处理

    (1)金属汞散失的现象在实验室操作中已经屡见不鲜。通常工作人员主要采用的方法是收集法。就是用滴管、毛笔、薄铜片(经过硝酸汞等酸性溶液中浸泡)等物质将散失的金属汞收集起来,当然要覆盖上水。对于那些散失在地面上的金属汞,一般会采用撒硫磺粉或者喷三氯化铁水的方式,注意要等到待地面干燥之后,才能进行清扫。(2)含汞废液的处理首先要将含汞盐废液的pH值调至7~7.5左右,之后再加入过量的硫化钠,待废液生成硫化汞沉淀后,加硫酸亚铁将pH调至8~9,这些硫酸亚铁与过量的硫化钠经过化学反应之后,会生成硫化铁。作为硫化汞的共沉物,硫化铁沉淀而促使硫化汞的沉淀,有利于去除汞。剩下的清液可进行排放,而汞渣需要用专用瓶进行贮存,到达一定量之后,通过经焙烧或电解法的方式实现汞的回收。

    2.4含铬废液处理

    含铬废液经常是以铬酸根的形式存在,也是一种剧毒物质。所以在处理时,工作人员要戴上防护眼镜、橡胶手套等保护措施,在通风橱内完成整个操作过程。含六价铬的废液一般呈酸性,故而要加入亚铁盐或亚硫酸盐等还原剂对其进行中和,使六价铬还原为三价铬,然后再加入碱,将其分离,使含铬废液转化为毒性较低的氢氧化铬沉淀物。含砷废液处理在处理含砷废液时,首先加入氯化钙或消石灰调节其pH值,待其到达8之后,会生成难溶的砷酸钙及亚砷酸钙,这两种物质经过沉淀后,可以除去废液中的砷。

    2.5铅、镉等重金属处理

    处理铅、镉等重金属时,首先要做的是将其pH调至8~10,使用的主要物质是消石灰,经过调剂后,这些重金属以金属氢氧化物沉淀的方式存在。但是要特别注意,这个处理过程中的残液,在排放时,还要再次经过中和,才能达到排放标准。在处理综合废液时,实验室既可以委托资质较好、处理能力较强的化工废水处理站,或者城镇污水处理厂进行处理,也可以自行处理。综合废液中一般都是由互不作用的混合废液组成,适合用铁粉进行处理。主要步骤是:首先加入铁粉,将废液的pH调节至3~4,搅拌半小时后。再用碱将pH调至9左右,接着再均匀搅拌10min,之后加入高分子混凝剂进行沉淀,沉淀物的上清液可直接排放,沉渣应按照废渣处理方式,将废酸、废碱中和之后再进行排放。

氯化钠废水处理方法篇7

1P204萃取除杂的反萃液

P204萃取除杂的反萃液是钴湿法冶金各种金属杂质最集中的地方,主要含锰、铜、锌、钙、铝等。如何处理并利用好其有价金属是钴生产企业面临的共同难题。最初都采用沉淀法,把废水中的金属全部沉淀,废渣堆放,废水达标排放;目前已有企业采用资源综合利用的方式处理这部分废水,处理工艺是将反萃液中铜形成硫化物沉淀,锰生产三元电池材料用的高纯硫酸锰[2],锌生产成锌产品。P204反萃液中的各种有价金属基本得到回收利用。萃锰余液的废水经过化学沉锰,锰形成锰渣,再经过浸出后的锰液返回到P204反萃液中再利用,沉锰后液完全达到《铜、钴、镍工业污染源排放标准GB25467-2010》中规定的指标。有些钴原料中锌含量高,导致P204反萃液中含锌高。处理此种P204反萃液工艺在硫化沉淀时仅沉淀铜、钴,在富集锰工序前增加萃锌工序,此工序中的锌反萃后液(硫酸锌溶液)可蒸发结晶制成硫酸锌,或电积生产阴极锌。

2P507萃钴余液

P507萃钴余液的主要成份为可溶性的钠盐(或铵盐)和少量的镍、钴、镁等。因为各企业所用的钴原料成分不同,萃取剂皂化用碱的种类不同(氢氧化钠或氨水),以及洗涤用的酸不同,使P507萃余液的成份差别较大。处理工艺主要有沉淀法[3]和树脂法。沉淀法可采用石灰乳沉淀、氢氧化钠沉淀和硫化钠沉淀等;树脂法可将大部分的重金属用树脂吸附后再用沉淀法处理。

2.1制钠皂的P507萃余液处理工艺有机相用液碱制钠皂的P507萃余液,该废水的处理首先要除去镍、钴等金属杂质,然后再降低COD等。在这种废水中,钠离子是主要的阳离子,此外还有少量的镁、镍、钴等离子,当采用氢氧化钠沉淀镍钴时,大量的镁也共同沉淀,导致渣量较大,渣中镍钴含量低;而且沉淀后液中的镍、钴含量难以达到《铜、钴、镍工业污染源排放标准GB25467-2010》标准规定的指标(Ni0.0005g/L、Co0.001g/L)。该方法的优点是处理过程简单,操作方便等。但这种方法产出的是一种含氯化钠和硫酸钠的混合高盐废水,脱盐难度较大,产出的混合盐难以利用。

2.2制铵皂的P507萃余液处理工艺处理这种P507萃余液要求在流程中不带入氯离子,为纯硫酸体系。其处理工艺可先用沉淀法除重金属、用磷酸盐法除镁,处理后溶液成份是硫酸铵,硫酸铵溶液蒸发结晶,冷凝水返回钴生产系统,结晶产品为硫酸铵。这个工艺可使P507萃余液基本达到零排放,是一种比较彻底的解决方案。但目前能耗和成本还比较高,很多企业也正在探索降低能耗和成本的方法,使该工艺不断的完善。

3P204、P507洗铁废酸

P204洗铁废酸是P204萃取除杂工序的洗铁段产生的含残酸高、铁高的废酸,其典型化学成份为:HCl4~4.5mol/L、Fe3~10g/L。其处理方法主要有:直接返回浸出段做为补加酸;采用萃取法除铁或树脂法除铁后再用于配制洗铁酸或配置P204洗液、反萃液等。P507洗铁废酸与P204洗铁废酸的处理方法基本相同。

4四氧化三钴合成的废水

目前合成四氧化三钴的生产工艺主要有两大类,一是用氯化钴溶液与碳铵反应生产碳酸钴,碳酸钴再经过高温煅烧得到四氧化三钴;二是氯化钴溶液与氢氧化钠反应生产羟基钴,再经过低温煅烧得到四氧化三钴。这两种生产工艺产出的废水主要成份分别为氯化铵和氯化钠,处理这两类废水的工艺基本相似,都是先将废水中的钴沉淀,然后再蒸发结晶。由于采用蒸发设备不同,使蒸发成本有很大差异,目前采用的设备有两类:多效蒸发和MVR蒸发。多效蒸发主要是利用蒸发的二次蒸汽再加热溶液,使蒸汽的热量得到较充分利用,但最末段蒸发的二次蒸汽的余热得不到利用。MVR蒸发技术的应用大大降低了蒸发的成本,其基本原理是利用高效能的蒸汽压缩机将蒸发产生的二次蒸汽再压缩,将电能转换为机械能,再转换为热能,使二次蒸汽的余热得到充分的再利用,从而使蒸发过程不需要再进行外部蒸汽加热,大大降低了蒸发的能耗,但需根据产量和蒸汽需要的温升配置不同的机械压缩设备。采用MVR技术蒸发四氧化三钴合成的氯化钠废水,每吨蒸馏水电耗仅约50-60KWh,而在相同条件下用MVR技术蒸发四氧化三钴合成的氯化铵废水的蒸发费用相对较高(因为氯化铵溶液沸点升高,因此需要更高的温度)。

5三元前驱体合成的废水

三元前躯体是将用一定比例硫酸镍、硫酸钴、硫酸锰溶液(目前已有镍、钴、铝三元、镍、钴二元等前躯体)在铵性条件下与液碱反应合成以氢氧化物为主体的化合物,合成的浆液经过固液分离,固体为三元前驱体材料,滤液为含铵、钠的硫酸盐溶液,此溶液还含少量重金属离子镍、钴、锰等。处理这种废水的工艺是先除去废液中重金属离子,然后脱除废液中的氨并加以回收,最后蒸发结晶回收废液中的水和硫酸钠盐。由于三元合成的工艺条件有差异,导致三元合成废水的成份略有不同,主要表现在废水中的钠离子、硫酸根、铵根和氨等浓度有差异,因此废水的处理工艺也有差异,主要的差别在氨的回收方法。目前氨回收工艺有汽提法和吹脱法。汽提法能基本实现氨的全循环利用,汽化的氨采用水吸收制成氨水,并返回合成系统,但汽提法的设备投资较大;吹脱法仅能形成铵盐,设备投资相对较小,但运行费用相对较高。脱氨后的溶液进入蒸发,蒸发也可采用多效蒸发或MVR蒸发。

6四氧化三钴和镍钴锰三元材料前驱体的混合废水

合成四氧化三钴和合成三元材料前躯体产生的混合废水,主要含氨氮、重金属等,混合废水的化学成份。此工艺首先在斜管沉淀池中加减沉淀重金属,然后经过吹脱法与组合生化法(即生物膜法+活性污泥法)串联联合处理高浓度氨氮废水,处理后的水质稳定,主要污染物总钴、氨氮、COD的平均去除率分别可达到99.67%、99.75%、88%。处理后液低于《铜、钴、镍工业污染源排放标准GB25467-2010》规定的指标要求。

7结论

氯化钠废水处理方法篇8

关键词:氯碱行业废水;处理工艺;零排放

中图分类号: U664.9+2 文献标识码: A 文章编号:

2007年11月国家新颁布的《国家环境保护“十一五”规划》更明确要求在钢铁、电力、化工、煤炭等重点行业推广废水循环利用,努力实现废水少排放或零排放。“十一五”期间,国内氯碱行业发展迅速。2010年中国烧碱产量达到2087万吨,聚氯乙烯产量达到1130万吨。烧碱和聚氯乙烯产能、产量均居世界第一,成为名副其实的氯碱大国。面对如此惊人的数字,我们是否该认真考虑如何做到节能减排,符合国家“生态文明”的长远规划,寻求处理效果更好、工艺稳定性更强、运行费用更低的废水处理工艺,实现“废水零排放”的目标。

下面就氯碱行业产生污水来源、特征、处理方法及实现零排放做出讨论。

一、氯碱化工厂污水种类及来源

氯碱化工厂产生的工业废水主要有四类:废次钠污水、含汞废水、离心母液废水及综合污水。

废次钠污水主要来自对乙炔气清净处理工序;含汞废水主要是VCM装置的酸洗排水和碱洗排水;离心母液废水来自离心干燥工段;综合污水主要由本单位其他生产装置及职工日常生活排放。

二、各种污水的特点及危害

1、废次钠污水:废水中含氯化钠、硫酸根、磷酸根较多,还有部分钙镁,溶解的乙炔气。从外观来看,废水发白发绿,浊度和色度也很高。若此污水直接排放不仅污染环境还浪费资源[1]。

2、含汞废水:含汞量在10~20 mg/L,废水中盐分含量高,含汞高,并含部分COD,伴有少量氯乙烯。含汞废水是世界上危害最大的工业废水之一。排入水体中的汞及其化合物,经物理、化学及生物作用形成各种形态的汞,尤其是可以转化为毒性很大的甲基类化合物,严重危害水生生物及人类[2]。

3、离心母液废水:离心母液的PH值为6~9;产水量大,每生产1吨PVC产生离心母液,废水约3-4吨;硬度、氯根低;浊度高,悬浮物(SS)质量浓度为30~300mg/L,主要是PVC颗粒;有机物浓度低,CODcr 一般为100~400mg/L,属低浓度化工废水;有机物难降解;温度高,一般在70℃左右;离心母液废水具有较高的潜在价值,可使水循环使用、回收树脂和节约蒸汽等。

4、综合污水:我公司综合污水厂进水主要有螯合树脂塔再生废液,呈现弱酸性,含少量重金属离子;盐水膜过滤反洗水,含少量盐酸和钙镁离子;纯水站混床再生排水,含盐、碱及碳酸钠;循环水系统RO浓缩排水及冲洗设备等水;糊树脂排水含少量氯乙烯;水泥厂、电石厂生活化验用水及职工日常生活排水。

三、构成污水“零排放”的各种废水站的处理工艺

1、废次钠污水处理

根据废次钠污水的成分及特征,选择采用化学法处理。因温度和乙炔气含量对系统均不构成威胁,所以对废次钠污水的处理主要集中在去除硫化物和磷上。

废次钠污水处理的工艺流程简图如下:

来自乙炔装置的废次钠水先进入调节池调节PH值,经泵提升进入空气氧化池,在空气氧化池中加入催化剂进行催化氧化,使大部分的硫化物被氧化成单质硫、亚硫酸根、硫代硫酸根等,氧化后的出水进入混凝絮凝池,投加亚铁盐、PAC、PAM和石灰用于除磷和硫;经混凝絮凝后的出水流入辅流沉淀池,使之前形成的沉淀物在此去除,部分沉淀池出水流入清水池,从而进入综合污水处理厂进行处理;另一部进入二级氧化池,投加氧化剂次氯酸钠,氧化残余硫化物,确保出水含硫达标;二级氧化池的出水流入二级混凝絮凝池,再次投加PAC和PAM,二次强化除磷,混凝絮凝出水重力流入辅流沉淀池,含磷沉淀物在此去除,沉淀出水经泵提升进入重力无阀过滤器后,进一步去除悬浮物,过滤器的达标出水重力流入清水池,作为复配水回用至乙炔装置;辅流沉淀池产生的污泥由污泥泵送至综合污水处理厂,统一进行处理。

2、含汞废水处理

对含汞废水的处理采用国内外先进工艺,化学沉淀微米膜分离技术,是一种化学法和物化法组合工艺。通过在废水中投加除汞剂,达到汞与水分离,从而净化水的目的。处理后的水又可以重复利用,节约水资源。通过分离器产生的泥渣经过压滤机压滤处理进入水泥厂作为原料利用,减少了汞对环境的污染,达到了社会效益、环境效益和经济效益的统一。

含汞废水处理的工艺流程简图如下:

对废送入预中和池进行预处理(调节PH值到6~9);经过预处理的含汞废水在预中和池提升泵的提升下进入汞转型分离器,在此投加除汞剂,使汞转入固相,在分离区进行固液分离,大部分的汞在此去除,除汞剂在分离器中循环使用,上清液自流到储水池,经泵提升依次送入砂滤罐、膜分离器,最终出水排入清水池,用户会用或达标外排;汞转型反应器内除汞剂一次投加,失效后排入储渣池,分离器产生的泥渣自排入除渣池,由螺杆泵送入压滤机压滤处理产生的泥饼外运,压滤出水回调节池;经处理后出水作为砂滤罐及膜分离器反冲洗水,由反冲洗泵送入砂滤罐及膜分离器。

3、离心母液水处理

对离心母液水的处应理采用国内外先进的二次生化处理和臭氧处理工艺,发幅度降低氧化离心母液废水中BOD、COD等的含量,输水达到循环冷却水的补水标准。所有产水全部回用于循环冷却系统,节约水资源,过程中污泥经过脱水系统,全部回用,减少对环境的污染。

离心母液水处理工艺流程简图如下:

来水首先进入冷却塔,经冷却塔冷却后的废水自流进入初沉池。在初沉池中去除部分悬浮物后,初沉池出水自流进入两级生化反应池。在一级生化池中进行水解反应,使原水中难生物降解的有机物分解,提高可生化性,水解后的水自流进入二级生化池,在二级生化池中大部分的有机物和悬浮物得到生化降解和去除。检修放空时的废水在厂区事故池中暂存,待系统恢复正常运行后,通过泵打回系统再进行处理。生化池出水自流入混凝池,混凝池中投加PAC和PAM进行混凝反应。混凝池出水进入沉淀池,对悬浮物进行固液分离。沉淀池出水自流入中间水池1,经泵提升后进入砂滤器进行过滤,进一步去除小分子颗粒物后进入氧化池。在氧化池中通入臭氧气体,对水中有机物进行进一步氧化,降解去除水中的COD。氧化池出水自流进入中间水池2,经泵提升后进入碳滤器,通过碳滤器进一步除去悬浮物及氧化后的COD。碳滤器出水进入回用水池,出水经泵提升至厂区循环水系统进行回用。

两级生化池设有污水回流系统,以使污水中形成厌氧-缺氧-好氧的不同环境,使之有效地进行硝化和反硝化,以去除水中的氨氮。过滤器的反冲洗水自流进入废水池,由泵提升进入生化池进行再处理。初沉池、二沉池的污泥自流进入污泥池,混合后污泥通过污泥泵送入污泥脱水系统进行脱水后泥饼外运。

4、综合污水处理

综合污水处理厂主要处理经预处理达到三级排放标准的工业废水和生活污水,设计规模为日处理1.3万吨。出水进入深度处理单元再处理,有利于节能减排及废水再利用。

综合污水处理单元工艺流程简图如下:

综合污水生化处理单元位于综合污水处理厂,进水通过重力流经地下管道进入界区。

污水先通过细格栅拦截较大的漂浮物,再通过中和反应池、初沉池调节污水PH值并去除大部分悬浮物,出水经调节池均质、均量调节后,通过投加液碱、碳酸钠,经软化澄清池去除污水中的钙、镁离子及硫酸根离子,降低污水总硬度及二价离子含量,以降低TDS并延长后续RO膜的使用寿命、提高其产水率,同时进一步去除部分COD。

经上述预处理后,软化澄清池出水自流到水解生化池,通过水解菌的作用,初步分解有机物,提高废水可生化性,同时为保证生化处理效果,引入低压蒸汽,保证水解池水温。水解池出水再经接触氧化好氧生化处理,经曝气的废水流经填料层,使颗粒表面长满生物膜,废水和生物膜接触,在生物膜的作用下,对污水中有机物进行充分降解,并通过沉淀池回流脱落的生物污泥,保证好氧池中的微生物总量。好氧沉淀池出水自流到混凝沉淀池,通过投加混凝剂,降低污水浊度,出水自流到生化产水池,作为深度处理回用单元的原水。

系统产生的污泥经浓缩后,进入絮凝反应系统进行化学处理,PAM与污泥混合后经布料斗均匀送进网带,污泥随滤带向前运行,游离态水在自重作用下通过滤带流进接水槽,随着滤带的向前运行,上下滤带间距逐渐减少,物料开始受到稍微压力,并随着滤带运行,压力逐渐增大,物料脱离楔形区就进进压力区,物料在此区内受挤压,沿滤带运行方向压力随挤压辊直径的减少而增加,物料受到挤压体积收缩,物料内的间隙游离水被挤出,此时,基本形成滤饼,滤饼外运到制砖厂。浓缩池上清液、压滤机压滤液及反洗水返回到调节池重新处理。

5、中水回用单元

中水回用就是采用物理、化学、生物等手段对经综合污水处理站处理过的废水进行不同深度的处理,达到工艺要求的水质,然后回用到工艺中去,从而达到节约水资源,减少环境污染的目的。

中水回用单元处理工艺流程简图如下:

经综合污水处理站处理后的生化产水进入生化产水池,在超滤给水泵的提升下进入自清洗过滤器,去除大颗粒和纤维类物质,防止大的颗粒进入系统划破膜丝表面以及纤维物质缠绕膜丝上,保证超滤系统的安全;出水进入超滤装置,可使出水的SDI值降至2-3以内;经超滤装置处理后的出水流入超滤产水池经反渗透给水泵送至保安过滤器,对进入反渗透装置的处理水进行深度过滤,有效保护反渗透膜;出水经高压泵送至反渗透装置,反渗透装置总脱盐率应保证在一年内≥97%,三年内≥95%;回收率≥75%。经反渗透后的水进入回收水池收集,后经回用水泵送至各用户;反渗透浓水各项指标负荷某装置生产用水,也用于回用。

四、污水零排放

化工废水零排放技术的研究和应用在我国处于起步阶段,在技术、经济、环境影响、管理规划等方面仍不成熟,需要政府部门和相关企业支撑和扶持。化工行业废水零排放的实现,解决了水资源紧张和环境污染两大难题,具有铭心啊的经济效益和社会效益。

我公司在对废水零排放采用如下方式:废次钠处理站的出水和含汞废水处理站的出水符合综合污水处理系统的进水水质要求,统一进入综合污水处理单元进行在处理;离心母液处理站的出水符合循环水补水水质要求,直接补充至循环水系统;综合污水站处理的水除蒸发损耗的极少部分,全部进入深度处理单元(中水回用)进行深度处理,深度处理单元的产水水质达到纯水站给水水质的要求,回用至纯水站,反渗透浓水达到乙炔发生给水水质,回用至乙炔装置,对于高浓盐水采用蒸发塘对于进行晾晒,固化处理;事故水池用于手机工艺装置运行异常时排放的事故污水。

五、结语

化工生产废水“零排放”技术为在极度缺水地区,生态环境脆弱地区和环境排放受限制等地区的大型化工企业提供了有效可靠废水零排放解决方法。在内蒙古和新疆等氯碱化工较集中的地区,废水零排放将为当地政府和企业很好的解决当地经济发展与水资源匮乏和严格环保排放限值的困扰。环境与经济应相辅相成,在我们追求经济利益的前提下,更应重视化工废水“零排放”,将其提到一定的高度,为子孙后代留下蓝天碧水。

参考文献:

[1]王卫霞,耿彩军.乙炔清净废水再利用研究.化工工程师,2007.4.

[2]尚 谦,张长水.含汞废水的污染特征及处理.有色金属加工,1997(5).

[3]王西彬.PVC离心母液生化处理回用技术.聚氯乙烯,2010(8),38(8).

氯化钠废水处理方法篇9

【关键词】生化需氧量 影响因素

一、概述

生化需氧量又称生化耗氧量,是“生物化学需氧量”的简称,英文(biochemical oxygen demand)缩写BOD,是表示在一定期间内,微生物分解一定体积水中的某些可被氧化物质,特别是有机物质所消耗的溶解氧的数量,常用mg/L表示。它是反映水中有机污染物含量的一个综合指标,其值越高,说明水中有机污染物质越多,污染也就越严重。

微生物对有机物的分解与温度有直接的关系,一般最适宜温度在15-30℃,实际测量中通常选取20℃作为培养测定温度。通常污水中有机物质分解分两个阶段进行,第一阶段为碳氧化阶段,是有机物转化为CO2、H2O、NH3的过程;第二阶段为硝化阶段,是NH3进一步在硝化细菌和亚硝化细菌的作用下转化为硝酸盐和亚硝酸盐的过程。各种有机物达到完全氧化分解的时间,总共约需一百天。但是,这在实际试验中很难做到,为此规定五天的耗氧量为代表,称其为五日生化需氧量,简称BOD5,这对生活污水来说,它相当于完全氧化分解耗氧量的70%左右。

二、BOD测定方法简介

BOD的实验室常用测定方法是稀释与接种法,该方法的检出限为0.5mg/L,方法的测定下限为2 mg/L,非稀释法和非稀释接种法的测定上限为6 mg/L,稀释与稀释接种法的测定上限为6000mg/L。若样品中的有机物含量较多,BOD5的质量浓度大于6 mg/L,需要稀释后再培养,以降低其浓度并保证氧气消耗量不超过水中的溶解氧量。同时,为了保证水样在培养过程中微生物的生长,稀释水通常要在空气中曝气,使稀释水中溶解氧接近饱和,然后在稀释水中加入适量的无机盐和缓冲物质(通常加入磷酸盐缓冲溶液、硫酸镁溶液、氯化钙溶液、氯化铁溶液等),以保证微生物营养需要;对于经过二级生化处理的出水,往往含有大量的硝化微生物,需要在稀释水中加入硝化抑制剂;对于不含或少量含有微生物的工业废水,其中包括酸、碱、高温废水或经过氯化处理的废水在BOD测定时应进行接种,以引入能分解废水中有机物的微生物,当废水中存在难被一般生活污水中微生物以正常速度降解的有机物或含有剧毒物质时,应将驯化后的微生物引入水样中进行接种。

三、BOD测定过程需要注意的问题

由于BOD的生化反应过程十分复杂,并经过五天的培养,所以影响该过程的因素很多,大体归纳为以下几个方面。

(一)样品储存条件及储存时间对BOD测定的影响

按照HJ/T 91的相关规定,采集的样品应充满并密封于棕色玻璃瓶中,样品量不小于1 000ml,在0~4℃的暗处运输和保存,并于24h内尽快分析。储存条件和时间不达标准,均会对测定结果产生影响。

(二)温度对BOD测定的影响

温度直接影响微生物的生长繁殖,进而影响到BOD的测定结果,另外,温度的变化还会影响到水中溶解氧量的变化。

(三)曝气对BOD测定的影响

稀释水用曝气装置至少曝气1h,使稀释水中的溶解氧达到8mg/L以上。在曝气的过程中防止污染,特别是防止带入有机物、金属、氧化物或还原物。如有污染,空气应过滤清洗。稀释水中氧的质量浓度不能过饱和,使用前需开口放置1h,且应在24h内使用。

(四)稀释水来源对BOD测定的影响

实验用水为符合GB/T 6682规定的3级蒸馏水,且水中铜离子的质量浓度不大于0.01mg/L,不含有氯或氯胺等物质。BOD5稀释水的水源选择甚为重要,离子交换水易受到树脂床的污染,不易采用。而蒸馏水作为BOD稀释水源,其空白值可达到规定要求。

(五)稀释倍数对BOD测定的影响

如样品中的有机物含量较少,BOD5的质量浓度不大于6 mg/L,且样品中有足够的微生物,用非稀释法测定。若样品中的有机物含量较少,BOD5的质量浓度不大于6 mg/L,但样品中无足够的微生物,如酸性废水、碱性废水、高温废水、冷冻保存的废水或经过氯化处理等的废水,采用非稀释接种法测定。若试样中的有机物含量较多,BOD5的质量浓度大于6mg/L,且样品中有足够的微生物,采用稀释法测定;若试样中的有机物含量较多,BOD5的质量浓度大于6mg/L,但试样中无足够的微生物,采用稀释接种法测定。

(六)pH对BOD测定的影响

pH影响微生物的生长,BOD测定方法中规定,若样品或稀释后样品pH值不在6~8范围内,应用盐酸溶液或氢氧化钠溶液调节其pH值至6~8。

(七)余氯和结合氯的去除

若样品中含有少量余氯,一般在采样后放置1~2 h,游离氯即可消失。对在短时间内不能消失的余氯,可加入适量亚硫酸钠溶液去除样品中存在的余氯和结合氯,加入的亚硫酸钠溶液量的确定:取已中和好的水样,加入乙酸溶液、碘化钾溶液混匀,暗处静置5 min。用亚硫酸钠溶液滴定析出的碘至淡黄色,加入淀粉溶液呈蓝色。再继续滴定至蓝色刚刚褪去,即为终点,记录所用亚硫酸钠溶液体积,由亚硫酸钠溶液消耗的体积,计算出水样中应加亚硫酸钠溶液的体积。

四、小结

稀释法和稀释接种法的对比测定结果重现性标准偏差为11mg/L,再现性标准偏差为3.7~22 mg/L。非稀释法实验室间的重现性标准偏差为0.10~0.22 mg/L,再现性标准偏差为0.26~0.85 mg/L。

BOD作为水质检测的一项重要指标,其反映的可降解的有机物污染程度是其他测量参数无法替代的。为了达到成功测量的目的,必须依靠国标减少实验的盲目性,高度重视实验过程中的关键因素,提高实验的准确性,将误差控制在规定的范围内。

参考文献:

氯化钠废水处理方法篇10

论文关键词:二氧化氯,含氰废水,破氰,COD,催化剂

 

随着人们对环境的日益重视,对于工业生产过程中产生的含氰废水和高COD废水等一些特殊水质的处理要求也越来越高,这些废水必须达到一定的标准后方可排放[1]。而这些水质的处理由于它们的处理难度,也一直是困扰污水处理工作者的难题。根据我公司的特点和多年来的水处理经验,对二氧化氯在特殊水质的处理方面进行了详尽的研究和效果验证。通过二氧化氯对含氰废水和高COD废水的处理实验,我们验证了二氧化氯对这些水质的处理效果。

下面二氧化氯对含氰废水和高COD废水的处理进行详细的说明。

1.二氧化氯对含氰废水的处理

1.1实验原理

通过二氧化氯氧化法对CN-进行处理。

二氧化氯是一种强氧化剂,与氯气相比,它具有氧化性更强,操作安全简便,受 pH值的影响较小的特点。氯气对氰化物的氧化通常只将CN- 氧化成毒性较小的氰酸盐(NaCNO),并要求很高的PH值,见反应式(1)含氰废水,而二氧化氯对氰化物的氧化却能将CN- 氧化成N2 和CO2 ,见反应式(2),彻底消除氰化的的毒性[2]:

CN- +Cl2+2OH- == CNO- +2Cl- +H2O (1)

2CN- +2ClO2==2CO2↑ +N2↑ +2Cl- (2)

1.2实验对象

含氰废水样品由济南某化学品有限责任公司提供毕业论文范文。

1#废水水质指标:颜色:深褐色,pH=11.0,CN-=4064 mg/L;

2#废水水质指标:颜色:褐色,pH=10.0,CN-=792 mg/L。

1.3二氧化氯的制备及投加工艺

先将氯酸钠固体颗粒与水充分混合,然后加入某还原剂成分,配制成一定浓度的氯酸钠混合液,然后与一定浓度的硫酸进行反应,并且控制一定温度,通过负压曝气的投加工艺技术,将产生的纯二氧化氯投加到作用水体,经一二级吸收系统,常温下,反应时间30min,最终达到对水体的破氰的处理要求。

具体工艺流程如下图所示。

图1. 二氧化氯破氰工艺流程图

我们分别对1#、2#分别进行了不同二氧化氯浓度的投加实验,并对处理后的水样的pH值和CN-浓度进行了检测和分析。

检测方法:用五步碘量法测定二氧化氯投加含量,用吸光度-浓度曲线法测定CN-的浓度,用pH计测定水样的pH值。

具体数据见下表。

表1. 二氧化氯对1#水样的处理数据

 

实验样

pH值

CN-

mg/L

ClO2投加浓度mg/L

CN-去除率%

现象

原水

11

4064

10566(理论)

100(理论)

-

1#A

9.9

2898

2920

28.69

无现象

1#B

9.4

1729

4813

57.46

无现象

1#C

8.5

866

7189

78.69

无明显现象

1#D

3.22

510

9543

87.45

剧烈冒泡颜色变浅

1#E

3.29

366

12250

90.99

剧烈冒泡颜色变浅

1#F

1.01

276

18852