磷化废水处理方法十篇

时间:2023-11-16 17:52:57

磷化废水处理方法

磷化废水处理方法篇1

关键词:化学混凝处理;钙法;高浓度含磷废水

随着我国工厂的增多和人们不注重水资源保护,导致水质恶化。目前人们逐渐认识到水资源保护的重要性。工业、农业甚至人们日常生活中都会使废水的磷含量增高,高浓度含磷废水会给人类身体和自然环境带来重大的影响,因此人们对高浓度含磷废水处理措施越来越重视[1]。钙法化学混凝处理高浓度含磷废水技术能够有效进行废水处理,从而提高人们的生活环境[2]。

一、 高浓度含磷废水的来源及危害

(一) 含磷废水的产生

化学工厂和制药工厂是产生含磷废水的主要来源之一,化学工厂生产过程中,产生了对水体污染较大的总磷污染物,因此形成了高浓度含磷废水。制药工厂主要产生了有机磷和无机磷,因此造成水质污染。

此外农业、人们生活也会产生含磷废水,如田间的肥料,人体的排泄,洗涤的废水等。其中,含磷洗衣粉所造成的污染最高。

(二) 含磷废水所产生的危害

含磷废水流入河流、湖泊等水体中,会严重影响水资源。含磷废水可以加快水中藻类和浮游生物的生长和繁殖,同时河流、湖泊等水体含氧量会迅速降低,而且水中的生物也会出现大量死亡的现象。

由于藻类和浮游生物的生长和繁殖,从而降低水体的透明度,而且藻类死亡和有毒藻类都会导致水中生物的大量死亡。另外一些无法分解的有机物会加速河流、湖泊等水体的老化。

高浓度含磷废水流入河流、湖泊等水体中,会造成水体的颜色产生变化,对水质也会产生影响。海洋中的浮游生物还会出现爆发性繁殖现象,从而造成其他海中生物的死亡。

二、 处理高浓度含磷废水的现状

为了促进环境保护,我国对工业的污水排放量有较高的规定。规定的主要缘由是工业废水磷含量较高,而含磷量过高会造成藻类、浮游生物等加速繁殖生长,从而造成水质被破坏,出现水资源污染的现象[3]。因此我国采取相关规定以促进环境保护。目前国际上采用了处理含磷废水的技术主要有两种,其中生物处理技术无法处理高浓度含磷废水,因此运用较少。另外一种则是化学处理技术,而化学处理技术又分为几种不同的方法,其中运用比较普遍的是钙法化学混凝法,目前我国有多家公司都采用此种方法,且效果较好,成本偏低。另外还有一种流化床结晶法,但其管理不便,且成本高,因此运用的较少。

四、 钙法化学混凝处理高浓度含磷废水的具体过程

通过使磷酸钙沉淀是钙法化学混凝处理高浓度含磷废水技术处理废水的主要应用方式。其中铝盐、钙盐等都能够和磷酸盐反应,形成非溶解性、颗粒状的物质[5]。在处理过程中,铝盐、钙盐等都能够和磷酸盐发生反应时,反应中存在碳酸钙,碳酸钙可以起到增重剂的作用,利于沉淀,而氢氧化钙作为混凝剂,起到凝聚作用,从而促进废水处理。

在废水处理时,钙盐和磷酸盐的反应会逐渐增快。钙法化学混凝处理高浓度含磷废水主要可以分为三个阶段,第一个阶段加入晶体,可以缩短处理时间,在第二个阶段,晶体容易溶解,可以调节磷酸盐的浓度。

因此在钙法化学混凝处理高浓度含磷废水处理过程中,需要注意的问题有很多,在进行处理时要考虑全面,以提高含磷废水处理效果。

五、 钙法化学混凝处理高浓度含磷废水技术的实验研究

在某家汽车生产公司提取含磷废水1000ml,将含磷废水的PH值控制在8.5到9.0,再含磷废水中添加PAC,搅拌后静置30分钟,随后在含磷废水中提取清液,将PH值控制在11.0到11.5,再进行搅拌和静置,最后对清液进行分析。分析结果如表1所示。

六、 钙法化学混凝处理高浓度含磷废水技术的实际运用

目前我国有很多工业工厂都采用钙法化学混凝处理高浓度含磷废水技术,如合肥美菱集团、江淮汽车公司等,这些公司排出的废水的物质中主要含有锌离子磷酸根等,而且这些公司的废水排放量远远超过了国家制定的标准,达到了30m3/h.

一般工厂运用钙法化学混凝处理高浓度含磷废水技术,主要是将废水中的锌离子、磷酸根等去除,因此主要采用的通过将碱性物质与废水中的酸性物质混凝沉淀,也就是利用氢氧化钠进行混凝处理,使得固液分离,从而使废水减少含磷量,达到处理的效果。根据钙法化学混凝处理高浓度含磷废水的过程,主要有三个阶段,第一个阶段是将高浓度含磷废水引入到调节池中,并对废水进行处理和搅拌,使废水的PH值保持在8.5到9.0,然后在废水中添加聚合氯化钠。第二个阶段实在废水中加入氢氧化钠,并将PH值控制在11.0到11.5,随后利用二级涡流反应池进行相关处理,并经过沉淀池沉析,最后在进行中和。经过处理后的废水可以进行回收利用或直接排出。这些工厂采用钙法化学混凝处理高浓度含磷废水技术可以使废水中的含有锌离子物质去除率在93%到97%,含有磷盐物质的去除率则高达99%,因此钙法化学混凝处理高浓度含磷废水技术能够有效进行高浓度含磷废水的处理,从而使相应的公司提高经济效益。

通过实际运用可以看出,钙法化学混凝处理高浓度含磷废水技术无论是从操作、成本还是处理效果来说,都非常符合相应生产公司的需求。在处理废水时,石灰作为药剂,采用沉淀技术,从而控制PH值、搅拌程度等。此外,处理含锌物质有利于减少污泥产量。

结束语

综上所述,随着国家对环境的重视,相关工业工厂开始注重环境保护和应对国家的政策,实施高浓度含磷废水处理工作。通过上述分析可知,钙法化学混凝处理高浓度含磷废水技术能够有效去除废水中的含磷、含锌物质,使废水可以回收利用和直接排除,达到了环境保护的目的。

参考文献:

[1]杨红国,钱雍.钙法化学混凝处理高浓度含磷废水技术探索和研究[J].环境与生活,2014,10:61-62.

[2]陈小燕.钙法化学混凝处理高浓度含磷废水技术研究[J].科技展望,2015,12:43.

[3]赵利,李长春,相政乐,贾振,王铭浩.钙法化学混凝工艺处理海底钢管酸洗废水[J].工业用水与废水,2013,05:35-38.

磷化废水处理方法篇2

电动车生产废水主要污染物及污染源强见下表。

2废水处理方案

按照“清污分流”的原则,纯水制备及各循环冷却系统排放的浓盐水、清洁废水直接排入厂区污水管网。对各种生产废水、废液,根据不同种类分别设置预处理系统。电动车生产废水处理共设置3个处理系统,分别是含镍废水预处理系统、含油废水预处理系统和厂综合废水处理站。

2.1含镍废水预处理系统

含镍废水预处理系统处理表调废液、磷化废液、磷化废水和含镍废水,采用“絮凝+沉淀”的工艺进行处理,使Ni在处理设施处达到《污水综合排放标准》表1“第一类污染物最高允许排放浓度”要求。根据表调废液、磷化废液、磷化废水水质特征及处理要求,表调、磷化废液和磷化废水排入磷化废水调节池,然后经磷化废水预处理一体池(絮凝+沉淀)处理后进入厂区综合污水站进行深度处理。磷化废水含Ni、Zn离子,磷酸盐的含量也较高,单独进行处理,设磷化废水调节池,投加NaOH调节磷化废水的pH值,由于Ni2+生成Ni(OH)2沉淀以及PO43-生成Ca(PO4)2沉淀的最佳pH值是10左右,而Zn2+生成氢氧化物沉淀的最佳pH值范围是8.5~9.5,因此,将废水pH值调整到9.5;表调废液、磷化废液、磷化废水进入调节池,加碱液调节pH9.5左右,促使废水废液中Ni2+、PO43-、Zn2+生成沉淀物;调节池出水进入絮凝反应池,通过投加絮凝剂,促使废水中沉淀物生成大絮凝体,提高沉淀池内Ni2+、PO43-、Zn2+离子沉淀物的去除率。

2.2含油废水预处理系统

含油废水预处理系统处理含油浓度高和含COD高的模具清洗废水和涂装车间热水洗废水、预脱脂及脱脂废液、脱脂废水、电泳废水、喷中漆废水、喷面漆废水,含油废水预处理采用“电解气浮+絮凝”工艺处理。预脱脂及脱脂废液、脱脂废水、喷漆废水和电泳废水分别由脱脂、喷漆废水调节池、电泳废水调节池收集,然后进入气浮处理一体池(电解气浮+絮凝)处理,然后随含镍废水预处理系统出水一同进入厂综合污水处理站进一步处理。含油废水预处理系统采用“电解气浮+絮凝”工艺处理,去除绝大部分石油类和COD。各类废水经脱脂、喷漆废水调节池、电泳废水调节池收集后,首先进行酸碱度调节,将pH调至中性,然后一同进入气浮处理设备。废水中含有的油、高分子树脂、颜料、粉剂、磷酸盐等在表面活性剂、溶剂及各种助剂的作用下,以胶态的形式稳定地分散在水溶液中。在气浮前端投加絮凝剂来破坏胶体的细微悬浮颗粒在水中形成的稳定体系,使其聚集成有明显沉淀性能的絮凝体,另外在废水中加入一定量的无机絮凝剂后,它们可中和乳化油或高分子树脂的电位,压缩双电层,胶粒碰撞促进凝集,完成脱稳过程,形成细小密实的絮凝物,然后形成浮渣加以除去。

2.3综合废水处理站

厂综合废水处理站处理含镍废水预处理系统和含油废水预处理系统出水,采用“水解酸化+二级CASS反应池”工艺处理。气浮处理一体池和磷化废水预处理一体池出水进入综合废水调节池,然后经过水解酸化池+二级CASS反应池处理后外排。采用水解酸化+好氧处理的主体工艺,其中最核心的就是好氧工艺,该阶段工艺的选择与出水水质息息相关。目前常用的主要有活性污泥法和生物膜法,活性污泥法在处理污水方面具有处理效果好,出水水质稳定、运行经验丰富等优点,在国内外废水处理中被广泛应用。

3结束语

磷化废水处理方法篇3

关键词:强化生物除磷技术 功能性微生物 除磷工艺

水体磷的存在形态主要分为:有机磷、磷酸盐以及聚磷,在生活污水中通常含磷量在4~15mg/L,其中约有70%的可溶性作为一种营养物质作用于水体中将造成大量的浮游生物过度生长,严重破坏水体平衡,造成水体的富营养化。通常水体中磷一旦超过0.015mg/L时[1],就可导致水体出现富营养化率。为此,通过对生活污水以及其它废水进行除磷污染的深度处理就成为有效避免自然水体富营养化的关键措施。

依据实际应用情况来看,针对废水中的磷的去除方法大概有物化法、化学法以及生物法三种。物化除磷主要通过应用电解、电渗析吸附等技术实现对水体中磷的去除,物化除磷效果理想但运行费用也相对较高;化学除磷主要通过对水体投加一些化学制剂进行固液分离实现对废水的除磷,该方法由于采用化学物质过程中会产生大量化学化学污泥;生物除磷技术主要包括两种:一种是通过应用生物同化作用,比如:人工湿地对附近水体中的磷进行吸收,第二种是tongg8uo功能微生物对水体中的磷进行超量吸收,该方法也被称为强化生物除磷(EBPR)技术。其原理是通过功能微生物对富集废水中的磷进行超量吸收,该方法效果较为理想且环境友好,并且对富集磷的活性污泥经过处理可以实现磷资源回收具有较高的应用价值。多年来EBPR技术所展现出的生物机理优点,特别是在生活废水及其它废水中磷污染治理领域中被广泛并成为研究重点。

一、强化生物除磷(EBPR)技术的机理

传统的微生物EBPR的作用实现机理主要分为两个过程:一是通过厌氧条件下,聚磷菌(PAOs)对水体中的微生物进行水解细胞内的聚磷酸盐(poly-P)并通过向废水中释放磷酸根离子获取一定的能量,从而有效摄取废水中的可挥发性脂肪酸(VFA),再合成聚名-羟基烷酸酯(PHA)物质并且以有机颗粒形式储存于细胞内;二是通过在好氧条件下的PAOs分解在厌氧阶段储存的PHA而获取能量,其原理是通过对废水中贮存于微生物细胞内的磷酸根合成聚磷酸盐(poly-P) 进行超量摄取来实现对废水中磷污染的去除目的。以往的传统生物除磷理论普遍认为:应用聚磷菌PAOs除磷必须要确保在厌氧和好氧能够有效进行交替的条件下进行,厌氧释磷是好氧超量聚磷的前提也是必不可少的过程。

进几年随着强化生物除磷(EnhancedBiologicalPhosphorusRemoval,EBPR)技术的不断发展和深入研究发现:EBPR生物除磷的作用原理过程中可能不仅仅局限于传统的厌氧/好氧交替作业才能实现除磷作业。很多学者开展的研究以及公开的文献报道已知[2]:微生物可通过不同的环境条件下实现对磷的过量摄取,也就是说在单一好氧状态下就可以实现对磷的摄取。由于不同的微生物在除磷中都起到关键的作用,但不同功能的微生物在EBPR技术的作用机理尚需在未来研究中进行更深度的探究。

二、与生物聚磷相关的功能微生物

(一)聚磷菌(PAOs)

聚磷菌主要是指通过对废水中磷的摄取量可以超过对自身生长的需求,能够超量摄取磷能力的功能性微生物。由于聚磷菌(PAOs)被认为是属于不动杆菌。早期主要由很多学者通过应用不同的培养基从EBPR反应器中进行分离而出。

(二)聚糖菌(GAOs)

聚糖菌主要是指该类微生物在厌氧条件下通过对体内的糖原进行分解,摄取废水中的挥发性脂肪酸VFA然后再转化成PHA并储存于微生物体内;在好氧条件下进行微生物体内的PHA分解并储存糖原,其在整个生理过程中不涉及到微生物对废水中磷的吸收以及释放。

(三)反硝化聚磷菌(DPAOs)

反硝化聚磷菌是指该类微生物在缺氧条件下通过利用废水中的硝酸根作为电子受体,分解微生物体内PHA从而获取能量的同时,再过量摄取废水中的磷酸盐以poly-P的形式储存于微生物体内。相对于PAOs的好氧摄磷,DPAOs在缺氧条件下能够同时实现过量摄磷以及反硝化功能。为此,通过应用DPAOs对废水进行除磷能够有效的降低和减少微生物对废水中有机物和溶解氧的需求,同时确保污泥产量大幅减少。

三、强化生物除磷工艺EBPR的开发和应用情况

(一)经典的EBPR工艺

随着对废水进行生物处理过程中的微生物除磷现象的进一步深入研究以及对生物除磷技术作用机理的途径的探究,更多的不同的生物除磷新的工艺出现对废水除磷治理工作带来了更多的选择,当前应用和新出现的废水除磷工艺主要有:Phostrip工艺、Bardenpho工艺、UCTs工艺、A2/0工艺、卡鲁塞尔氧化沟工艺、BCFS工艺以及Dephanox工艺等等。

(二)潜在的EBPR工艺

好氧颗粒污泥现象自上世纪90年代以来就成为污水治理领域内研究的重点和热点问题之一。由于好氧颗粒污泥的物理结构以及微生物多样性的特点,根据已公开的文献报道可知好氧颗粒污泥已经具备可以有效实现硝化和反硝化的同时脱氮除磷的生物功能。国外的众多研究学者也都通过研究证实了好氧颗粒污泥的在废水除磷中的应用效果。如:2011年法国国立应用科学研究院的Sperandio教授通过领导的课题小组通过在SBAR反应器(F=20L)中培养具有脱氮除磷功能的好氧颗粒污泥,并对成熟的好氧颗粒污泥进行了剖面分析发现了颗粒污泥核心聚集了大量的磷、钙等元素,经分析证实了主要产物为轻基磷灰石(hydroxyapatite,HAP)该课题项目应用“好氧颗粒污泥回收废水磷技术”同时获得了法国的专利。另外,荷兰Delft大学的vanLoosdrecht教授研究团队也证实了废水中的氨氮能够更加容易的被好氧颗粒污泥的胞外聚合物EPS所吸附。上述研究均有效说明了利用好氧颗粒污泥技术能够在单一反应器中实现对生物的脱磷,并且能通过微生物诱导磷酸根以及钙镁等离子发生相应的化学沉淀,从而推动废水中对磷资源的高效回收应用效率。

四、总结

相较于化学除磷而言,EBPR技术充分应用多种功能性微生物通过在厌氧、缺氧和好氧交替环境下富集废水中的磷,EBPR技术因其具备的绿色高效的优势在未来我国开展各项工业废水除磷治理以及进行资源回收方面将更具发展潜力。

参考文献

磷化废水处理方法篇4

[论文摘要]目前磷肥生产企业,特别是湿法工艺放出的三废对环境造成的危害很大,尤其是三废的排出治理长期以来尚未得到全面控制。论述湿法磷酸中三废的治理和综合利用情况,为湿法磷酸中三废的利用和开发提供了研究和参考的方向。

一、废水

湿法磷酸装置的废水来源:1.过滤机冲洗滤布水(或称冲盘水)。2.泵密封水、跑冒滴漏和冲洗设备地坪水。3.反应系统尾气洗涤水。4.浓缩、闪蒸冷却和过滤机真空系统的冷却水。对于废水的主要来源是磷酸系统。一般的处理方法是可以达到排放标准的,但是要排出大量的污水。因而要消耗大量的水,中和剂和动力且对环境还有不利影响。为了解决此类的问题。国内已研究成功污水封闭循环新工艺。当封闭循环装置正常运转时,整个磷酸系统无污水排放。但是如果要把全部的污水都实现封闭循环的话,又将带来一系列问题。

1.对工艺的影响:由于中国的磷矿资源的多样性。各种矿石优良不一。当然各种矿石产生的污水性质也可能不同。在我国一些磷矿就出现过循环使用污水后,自从将污水(特别是污水池中的水)加入稠浆槽进入磷酸系统,在正常的生产条件下,过滤饼出现板结现象,湿渣斗连续出现堵塞,在降低过滤机滤洗真空度后,但滤饼板结现象仍时有发生,有时还相当严重,结块硬度较大。这部分污水进入酸系统后,整个系统结垢现象加剧,特别是闪蒸室、石墨换热器内结垢堵塞比较严重,换热管内结垢物带有大量白色黏稠的硅酸盐类。停止使用这部分污水后,系统工艺状况逐渐恢复正常。

2.对酸系统设备的影响:在处理后的污水进入酸系统后,设备负担肯定会有所增加,另外。由于氯蚀现象的产生,搅拌器的桨叶。萃取槽、各个轴,过滤洗液泵及浓缩轴流泵的桨叶、轴等浸没于液相中的运转设备,其磨蚀较前均有不同程度的加剧。无论是磷矿还是磷酸中氯的存在对设备都有腐蚀作用,其腐蚀性随其它杂质如硫酸、氟的相互作用及氯含量的增大、设备所处环境温度的升高而加强。

二、废气

磷酸生产的废气主要来自过滤机、熟化槽、贮槽和各处密封槽逸出的气体和磷酸反应槽在反应以及冷却过程中产生的气体。废气中的污染物都是SiF4和HF,通常都用水洗涤,生成的稀氟硅酸溶液作为污水,送去处理后外排或循环使用。

我国大多数湿法磷酸装置都是沿用鼓风冷却方法,将空气吹向磷酸反应槽液面使磷酸料浆冷却,废气排出量约为12000~14000m3/t(P205计),少数装置采用RP工艺,在磷酸反应槽内把料浆扬撒用空气吹扫冷却,其排气量约为6000~7000m3/t(P205计)。大量的废气使其处理设备庞大,投资多,让控制污染的困难加剧。最近几年来,我国湿法磷酸装置,其反应槽的磷酸料浆都采用了低位闪蒸真空冷却工艺,使反应槽的废气量大为减少。该流程对氟的洗涤效率达99%。另外采用错流洗涤器该装置后,采用多级逆流洗涤,洗涤效率高、操作弹性大、设备容易清洗、作业率高。实践表明排出物远低于国家标准。

含氟废气吸收液的回收和利用:含氟废气吸收液的主要成分时氟硅酸,可用它做原料生产氟硅酸钠Na2SiF6。氟化铝,和冰晶石等副产品。

三、废渣

湿法磷酸生产有大量磷石膏的排出,无论从环境保护或经济效益,资源的合理利用方面来看都是一个亟待解决的重要问题。国外大多数工厂都作为废弃物堆存,极少数工厂加以综合利用,但是国内对此很重视。磷石膏在工业上主要用于制墙粉,石膏板,水泥缓凝剂等。硫酸铵以及硫酸和水泥。在农业上主要用于作硫和钙的补充来源。盐碱土改良剂和某些农药的填料。石膏中含的少许五氧化二磷也具有一定的肥效。但是目前大多都是用大坝堆积起来,因为没有找到一种经济技术都合理的方法。对于这种方法应该强化管理,避免雨水冲刷污染环境以及污染地下水。

(一)用于水泥工业和建材制品

在某些情况下,为了延长水泥的凝结时间,增加水泥的最终强度,一般在水泥熟料中加入5%左右的石膏作为缓凝剂。但是其放射性元素度应该符合《建筑材料放射性核素限量》的要求,否则对环境有害。磷石膏经过再浆,洗涤,净化,降低了磷石膏中游离的P2O5和F的含量后入脱水机和烘干机,脱除了水分和部分氟的磷石膏经冷却后进入配料仓。焦炭和各种添加物经过粉碎后也进入配料仓。配好的水泥生料加入煅烧窑,经过一系列的除尘,净化送入制酸。出煅烧窑的水泥熟料,经冷却加入部分缓凝剂等原料后,通过配料,粉碎即得到水泥产品。磷石膏因为有胶凝性,所以作为建材原料只要适当净化处理后,脱水成半水合硫酸钙,可产各种石膏墙体材料,如粉刷石膏、石膏板、建筑标准砖、烧结节能砖、免烧砖和装饰吸声板等。

(二)制硫酸铵和硫酸钾以及改良土壤

制硫酸基于简单的复分解反应,CaSO4+(NH4)2CO3=(NH4)2SO4+CaCO3

目前制硫酸钾,国内采用“二步法”。主要是使磷石膏中的硫酸钙与碳酸氢铵反应得到硫酸铵和碳酸钙,将碳酸钙分离后,含硫酸铵的母液再在适宜条件下与氯化钾反应,即制得硫酸钾。磷石膏为酸性,PH在2.5~3.5之间。由于碱性土地上,可以显著降低土壤碱性,有实验得出,使用磷石膏后土壤的氯盐,酸性显著改善。

(三)磷石膏综合利用需注意的问题

磷矿石品种不同、生产工艺和污水处理方式的差异造成磷石膏杂质含量、理化性能波动很大,给废物利用带来一系列问题,使目标产品的质量波动大。若是作为建材制品,其放射性会对人带来危害。如镭等在衰变过程中会析出、扩散放射性气体,导致人产生肿瘤、癌症甚至死亡。因此只有作为掺杂剂少量使用,使其达到《建筑材料放射性核素限量》(GB6566-2001)的要求。因此,理论利用于实践中,应根据矿源品位、废渣理化性质等灵活选用回收利用的方式。

参考文献

[1]海成立,磷铵系统污水的利用[A].磷肥与复肥,2002.3.第17卷第2期.

[2]梁陪训,对我国磷肥环境保护工作的展望[J].化工环保,2002,30(2):21~22.

[3]张泰,含氟废气的治理[M].上海:上海科学技术出版社,2000.

[4]冯金煌,磷石膏及其综合利用的探讨[J].无机盐工业,2001.334:34~36.

[5]赵建茹、玛丽亚·马木提,浅谈磷石膏的综合利用[J].干旱环境监测,2004.18(2):95~97.

[6]郭翠香等,磷石膏的综合利用,中国资源综合利用.

磷化废水处理方法篇5

关键词:涂装废水;预处理;物化+生化

涂装工艺在汽车表面处理中运用极其广泛,在生产过程中基本上都有废水产生[1],而汽车涂装废水的处理已成为当今污水处理工程的一大难题,急待解决。通过多年的摸索和工程实践,发现采用物化+生化处理汽车涂装废水是 经济 有效的,但在实际的应用中也存在一些问题,需要对此工艺进行优化和改进,使汽车涂装废水处理更加稳定和有效。

1汽车涂装废水的来源及特点

在涂装工艺中产生的废水主要有前脱脂、酸洗和磷化表调等前处理废水、电泳涂装废水和喷涂底、中、面漆时的喷漆废水[2]。各股废水的成分复杂,浓度各不相同,处理难度大。

此废水除部分水洗水从水槽连续溢流外,各工序所产生的废水或废液多为间歇排放,各股废水混合后形成高浊度的涂装废水,废水的水量及水质在一天内变化很大,且无 规律 可循,废水中污染物成份复杂,含有多种有毒物质,浓度高,可生化性差。Www.133229.cOm经多年的监测,其综合水质情况为:codcr浓度1000~2500mg/l,bod5浓度100~250mg/l,ss浓度400~600mg/l,石油类浓度30~85mg/l,磷酸盐浓度25~50mg/l,ph7.0~8.5,zn2+浓度5.0~20mg/l。

2处理工艺的研究

2.1单纯物化法

由于汽车涂装废水的可生化性差,单纯的物化处理工艺流程一般为:调节池——混凝沉淀或气浮——砂滤——活性炭过滤,也有的工艺是将每个工序的废水分开,各自加药反应进行预处理(如含油废水则加药破乳)后再进行混凝沉淀或气浮,通过选择适当的混凝剂和絮凝剂,在理论上该工艺处理涂装废水是可行的,但单纯的物化处理后出水水质不稳定,涂装废水在混凝沉淀或气浮后,cod去除率为30%~60%,最高80%,即出水cod会在450mg/l左右,而且绝大部分为溶于水的有机物,这部分有机物的去除主要靠活性炭吸附,加大活性炭过滤器的负荷,很快使活性炭失效,从而导致出水不达标。同时工艺流程长,操作维护复杂,运行成本高。

2.2物化+生化相结合的处理方法

目前处理汽车涂装废水最具前景的方法之一为物化+生化法,此工艺的核心原理为:以物化法作为预处理,然后采用生化法处理,使废水稳定达标。

(1)物化预处理

由于汽车涂装废水中含有大量磷酸盐等生化不能完全去除或难去除的物质,必须依靠物化法来去除。在实际工程中多采用石灰,利用石灰乳将废水的ph值控制在11.5以上,使磷酸根和锌离子生成羟基磷灰石和氢氧化锌沉淀物而去除,使废水中的磷酸盐浓度低于5.0mg/l。同时利用ca2+完成乳化油、高分子树脂的胶体脱稳、凝聚过程,为混凝反应创造条件。

(2)生化处理

废水经物化法预处理后,水质有所改善,但必须通过生化法处理后才可稳定达标。由于涂装车间废水主要污染物质可生化性较差(bod/cod=0.1),因此,提高原水可生化性是该废水生化处理的首要条件。其次,由于 工业 废水中营养物不均衡,为提高废水生化性需投加营养源。另一方面,在生化处理前段,首先将废水进行水解酸化处理,即将厌氧控制在水解酸化阶段,利用水解酸化菌将难以降解的合成有机物如环氧树脂、醚类物质之类的环状有机物、芳香族有机物等断链,分解成小分子有机物,从而提高了废水可生化性。

废水经水解酸化处理后,再采用好氧工艺进行后续处理。好氧生化段是整个废水处理工艺的核心部分。在有氧条件下,废水中的可降解污染物在好氧微生物作用下,一部分合成为微生物细胞,另一部分分解为co2、h2o,得以彻底去除,部分多余的微生物有机体通过排泥从系统中排除,从而使水质得到净化。

而在工程实践中用得较多的好氧工艺有sbr法和接触氧化法。由于汽车涂装废水的水质和水量变化很大,接触氧化法难以稳定运行,出水水质波动较大,需要采用微絮凝过滤或活性炭吸附作为补充,出水才能稳定达标。而sbr工艺的进水、曝气反应、静止沉淀、排上清液和闲置阶段循环操作,将生物处理和沉淀集于一体,具有运行效果稳定、耐水量和有机负荷冲击、运行灵活、构造简单、操作和维护方便等特点[4],故sbr工艺在汽车涂装废水中应用较广泛。

2.3工艺流程

以湖南某汽车制造公司的涂装废水处理为例,设计处理水量:q=300m3/d,水质如前所述,工艺流程如下:

由于涂装预处理中存在不定期的倒槽工序,倒槽废液间歇排放,水量大,且浓度非常高,必须进行分质分流处理。倒槽浓废液收集在浓废液槽中;而其他浓度较低的废水则进入调节池中,然后用泵将浓废液定期定量打到调节池中,与其他废水充分混合均匀;在混凝反应池中投加石灰乳和pam,充分混合反应后去除大部分磷酸盐、重金属和ss,然后经沉淀澄清后,投加盐酸调节废水ph。经物化处理后出水经过水解酸化后进入sbr池,在sbr池中进行好氧生化反应,废水中的有机物被好氧分解,从而使废水得以净化,达到国家一级标准排放。

3工艺的改进

通过多个汽车涂装废水处理厂的设计与实际运行,发现采用物化+生化法处理涂装废水是经济可行的,能达到预期的处理效果,但也存在一些问题,需要对此工艺进行优化与改进。

3.1均匀水质水量

由于汽车涂装废水大多间歇排放,瞬时排放水量大,浓度高,必须在调节池内混合均匀,减少对后续处理的冲击。在设计调节池时,须满足废水在池内停留足够的时间来混合均匀,一般调节池的有效容积占设计水量的40%以上,运行时特别注意池内必须留出安全容积来稀释从倒槽废液池中泵入的高浓度废液,防止水质的大幅波动,造成系统无法稳定运行。

3.2化学除磷的控制

汽车涂装废水中磷酸盐浓度较高,必须考虑采用物化除磷。运行时加入过量的石灰乳,调节废水ph值至11.5以上,去除重金属离子,又能作为廉价高效的除磷剂。根据实际运行,以石灰为混凝剂,pam为絮凝剂,磷酸盐的去除率可达到99%左右,出水浓度小于0.5mg/l。但如此高效的化学除磷,导致废水中磷酸盐过低,影响后续生化反应的进行,必须适当控制石灰乳的投加量,保证出水中的磷酸盐的浓度为2.0~3.0mg/l内,既能满足生化反应的需要,又能保证最终出水磷酸盐稳定达标。

3.3废水营养物的补充

由于汽车涂装废水中缺少微生物所需的各种营养源,必须考虑补充废水的营养物。目前常用的方式有:(1)人工投加氮磷;(2)引入生活污水。从运行管理和实际运行效果来看,最简单有效的方法是引入生活污水,补充微生物所需的各种营养源。

3.4提高水解酸化的效率

汽车涂装废水的重要特征之一为可生化性差,采用水解酸化来提高废水的可生化性能是首要条件,水解酸化的设计水力停留时间一般为6~9h,bod5/codcr由原来的0.2提高到0.3以上,基本满足生化反应的条件。但从多个工程实例的对比来看,在水解酸化池中安装填料,组成复合水解酸化工艺,codcr的去除率可提高20%~30%,废水可生化性可提高15%左右,减轻sbr的处理负荷。

3.5合理分配供氧,降低能耗

目前汽车涂装废水的好氧工艺多采用sbr法,其运行方式为:进水时间4h,进水1h后进行曝气8h,沉淀2h。排水0.5h,闲置0.5h。sbr池供氧采用罗茨鼓风机和微孔曝气器,池内溶解氧的浓度控制在2.0~5.0mg/l。

在sbr法处理涂装废水时,多采用非限制性或限制性曝气。在充水的起始阶段,由于池内污染物浓度较低,需氧量较小;但随着进水量的加大,污染物的浓度逐渐加大,在进水的后半期应加大废水的供氧量[4]。在曝气阶段,由于池内污染物浓度逐渐降低,需氧量也逐渐减少,在曝气的后半期应减少废水的供氧量。在实际运行时,罗茨鼓风机变频运行可很好的解决供氧分配问题,节省能耗约20%~25%。

4处理效果及运行成本分析

经多年运行表明,系统运行稳定,处理效果好,处理后的水质经当地环境监测站多次采样分析,结果为ph=6.0~9.0,codcr≤80%~90mg/l,ss≤60~70mg/l,bod5≤4~20mg/l,石油类物质≤5.0mg/l,磷酸盐≤0.5mg/l,达到国家《污水综合排放标准》中的一级排放标准。

优化与改进后,总的运行成本由原来的1.36元/立方米降到0.93元/立方米,减少运行成本约30%左右, 经济 效益明显。

5结论

5.1对于汽车涂装废水的处理,必须对原水进行分质分流,重视废水水质均匀。

5.2经实践表明,采用物化+生化法处理汽车涂装废水是经济可行的,较之其它方法具有处理效果稳定、运行成本低、操作维护简单等特点。

5.3通过对物化+生化处理工艺的改进,使汽车涂装废水处理工艺更趋完善,处理效果更稳定。

参考 文献 :

[1]工锡春.最新汽车涂装技术[m].北京:机械械业出版社,1998.

[2]孙华.涂镀三废处理工艺与设备[m].北京:化学 工业 出版社,2006.

磷化废水处理方法篇6

论文关键词:铁炭微电解,光催化氧化,有机磷废水

 

磷是造成水体富营养化的重要原因,对高有机磷废水的处理一直是工业企业环境污染治理的难题。虽然对处理高有机磷的研究一直没有中断过,但目前处理效果好、运行费用低的方法还不多。这是因为磷的排放标准较高(GB8978-1996《污水综合排放标准》中磷的一级排放标准为不超过0.5mg/l),且处理成本较高,一般企业难以承受。

1工程概况

某化工企业主要生产卤代烷基磷酸酯阻燃剂,废水主要来自生产车间的碱洗、酸洗、水洗及部分水冲泵废水。废水呈强酸性,COD、SS、P等较高。针对该废水有机磷含量高的特点,采用铁炭微电解+光催化氧化+生化工艺,经过八个月调试,废水处理系统运行稳定,且达标排放。废水设计参数见表1。

 

项目

 

  ρ(COD)

(mg·L-1)

ρ(BOD5)

(mg·L-1)

ρ(总磷)

(mg·L-1)

ρ(NH3-N)

(mg·L-1)

pH

进水水质

≤13000

≤3500

≤675

≤121

2~3

出水水质

≤100

≤20

≤0.5

磷化废水处理方法篇7

提高磷资源开采率

技术进步促进了世界磷化工产业的发展,几乎世界上所有磷化工大国走过的发展道路都证明了这一点。在绿色发展的新形势下,我国磷化工产业必须走技术创新的发展道路,以技术的自主创新和引进吸收作为绿色发展的驱动力。

上世纪80年代,国家将开磷矿区磷矿资源的开采列为国家攻关课题,经过近10年努力,开磷开发了具有自主知识产权的“锚杆护顶分段空场采矿法”,获得了“国家科技进步一等奖”。这一科技成果的应用,使磷矿石的回收率从50%提高到70%,贫化率从13%下降到6%,采场日生产能力由300吨提高到1008吨,使矿山寿命延长20年以上。与此同时,开磷引进国外先进大型无轨采掘设备,使矿山技术装备水平达到国际先进、国内一流水平;大力推进“无泄漏工厂”、“清洁文明矿山”建设,建成了闻名化学矿山行业的“花园式矿山”,化工部在行业内倡导“学吉化、赶开磷”。

进入新世纪以来,开磷又成功开发出“磷化工全废料自胶凝充填采矿技术”,使采矿回收率从70%进一步提高到92.6%,贫化率由7%降至4.52%,技术经济指标达到了世界先进水平。按照开阳磷矿区的资源储量和年产500万吨规模,该采矿方法可延长矿山服务年限25年以上。同时,通过采用改性后的磷石膏和黄磷废渣充填采空区,每年可综合利用磷石膏废渣204.4万吨,减少废石排放72.8万吨。不但为磷石膏等工业固体废弃物的综合利用开辟了一条新的途径,而且通过充填井下采空区,大大提高了井下采矿的安全性,避免地表塌陷、山体崩落,防止和减少地质灾害,改善矿山生态环境,使磷石膏大规模再利用与高效低贫损采矿两者完美结合,实现了我国磷矿山的无废害开采。该采矿方法还先后获得了“全国化工科技进步一等奖”和“国家科技进步二等奖”。

建设现代化矿山

矿业是磷化工产业链的起点,但我国化学矿业的现状令人堪忧,资源禀赋差,矿山企业数量多、规模小、资源储备不高,技术水平落后,粗放开发,浪费严重。推进矿业现代化建设是加快绿色发展的必然选择。随着信息技术的推广应用逐渐深入,开磷着力推进信息化与工业化的融合,以现代信息技术改进矿山传统的安全生产管理,积极推进矿山数字化、装备现代化、管理信息化的现代化矿山建设。井下打眼、装药,锚喷支护工艺实现了机械化,井下固定操作设备、皮带运输系统、机械供风系统和运输监控实现了远程控制,矿山从地质勘探、工程设计、生产到管理控制等各流程基本实现了数字化、信息化、模型化管理,使矿山生产管理科学化水平和管理效率大大提高。

促进园区化发展

在工业化进程中,必须调和工业发展需求不断增长与资源有限,工业促进人类文明进步与破坏自然环境,这两对矛盾。以产业群集聚或产业链耦合为基础,吸纳生产要素,形成集约增长效应,实现生态工业园区化,可以充分发挥土地、资金、水、电、人才、信息等生产要素的集聚效益,集约利用各种资源,突破资源有限性的制约,使资源发挥更大效益。同时,生态工业园区可以通过集中联片生产,对污水等“三废”进行统一综合治理,降低治理成本,促进园区及企业的绿色发展和可持续发展。

开磷充分利用息烽磷煤化工基地和开阳矿肥基地的两个生态工业园区及企业群落平台,实施“磷-煤-电-碱”一体化多业并举,促进产业聚集,实现磷化工、煤化工、能源生产和氯碱化工与建材等产业协调发展,形成多产业横向共生耦合和纵向延伸发展的新型磷煤化工产业格局,可开发出上千种精细化工产品,有利于企业进一步做精、做细、做强、做大。其中,开磷磷煤化工(国家)生态工业示范园区开阳大水工业园120万吨坑口磷铵项目的建成,开启了我国磷矿石资源实现坑口就地转化、搭建精细磷化工平台的新格局,是目前国内唯一的坑口大型高浓度磷肥装置和典型的矿肥结合项目,也是我国高浓度磷复肥生产装置同等规模中投资最省、效益最好、最具市场竞争力的项目。

打造循环产业链

发展循环经济是建立资源节约型和环境友好型企业,走新型工业化道路的重要手段和途径,是落实科学发展观的具体实践。大力发展循环经济、搞好节能减排、保护生态环境对于调整优化结构和产业升级,转变发展方式,在推进我省绿色工业化和生态立省战略中具有重要意义。

发展磷的深加工,会产生大量的“三废”,尤以磷石膏为最。以开磷为例,350万吨/年高浓度磷复肥产能的全部释放,每年将产生600万吨磷石膏。贵州属喀斯特地貌,很容易出现污染物渗漏,生态环境相对脆弱。如果仍然走先污染后治理的路子,资源深加工的发展将不可持续。因此在贵州搞资源的深加工,对“三废”综合利用的要求更高。

开磷牢固树立“绿色是发展的灵魂,环保是企业的生命”的理念,确立了“抓好两头,做强做大中间”的发展思路。即依托资源开采与深加工一体化的优势,对“三废”实施资源化、再利用,实现“资源一产品一废弃物一再生资源”的发展模式。

磷石膏综合利用。开磷以磷石膏的资源化为突破口开展技术攻关。一方面推广应用磷石膏充填采矿法,另一方面,首创新型高强耐水磷石膏砖的“一步法”生产工艺,解决了磷石膏遇水软化的技术难题,开发出可用于建筑物外墙和承重墙的新型高强耐水磷石膏砖。2009年6月,中国石油和化学工业协会组织科技成果鉴定认为:“该项科技成果总体技术达到国际先进水平,其中直接利用二水磷石膏制备建筑用砖技术达到国际领先水平”,并被评为全国化工科技进步一等奖。利用这一具有自主知识产权的技术,开磷投资3.5亿元建成了10亿块/年新型磷石膏砖项目和相关配套项目,开发出包括新型磷石膏砖在内的系列新型建材产品。每年可综合利用磷石膏、黄磷炉渣300万吨(干基),以黄磷尾气取代燃煤为原料烘干热源和黄磷生产喷淋热水加热源,每年可利用黄磷尾气4910万NM3/年,相当于每年节约60000吨标煤,减少二氧化硫排放量84.89吨/年,减少温室气体二氧化碳排放量86000吨/年;该项目利用化工生产废水为工业用水,每年可减少新鲜水取水量约56万吨。同时,该项目每年还可为企业增加销售收入2亿元,实现利税5000万元,为社会提供就业岗位700余个。

建设尾矿渣制砖厂。利用矿山井下开采产生的尾矿渣制砖,解决废石堆放占用土地、污染环境等问题。目前,开磷页岩砖生产线规模达2亿块/年,每年可综合利用尾矿渣50万吨。

磷化废水处理方法篇8

关键词:电厂 化学废水 综合利用工程

中图分类号:X703 文献标识码:A 文章编号:1672-3791(2014)05(b)-0049-01

电厂化学废水处理属于一项系统而复杂的工程,废水处理工艺与监控技术有助于促进化学废水处理技术的发展,在保持电厂正常运行方面也发挥着十分重要的作用。我国大部分电厂使用的机组容量较大,废水的来源有锅炉补给水、循环水等,在大机组中进行废水净化处理对于电力设备的正常运用十分关键[1]。我国很多老电厂在生产运营过程中,直接将一些废酸、废碱等进行中和处理,然后直接排放到锅炉循环系统中,作为锅炉的冲灰补给用水。其实这些废水中还含有一些可以利用的资源,同时直接排放废水也浪费了水资源,不符合节能减排的理念。因此,电厂应该认真对待化学废水净化处理问题,并且研究和推广化学废水综合利用方案。本文结合某电厂的废水综合利用实际,对电厂化学废水综合利用工程进行了研究和探讨。

1 化学废水中需要重点处理的物质分析

1.1 碱类物质的处理

化学废水中的碱类物质比较难处理,在处理过程中首先应该做预处理,然后在碱液中加入一定浓度的酸进行中和处理,调节溶液pH到合适的值。预处理和中和操作后,一般使用三种方式进行净化处理:(1)超临界水氧化处理方法。使用氧化剂和处理后的废碱液混合在一起,然后加入到反应装置中进行高温高压处理,经过这种方式处理的废水变得十分清澈,并且其生化需氧量等指标可以达到一级排放标准;(2)湿式氧化处理方法。该方法反应速度十分迅速,氧化剂和处理后的废碱液混合放入反应装置后,两者在高温高压下快速发生反应,出水的生化需氧量等指标可以达到二级排放标准;(3)膜分离的方法。该方法投资成本低,并且占地面积较小,废碱液等经过超滤膜或者纳米膜进行过滤,处理后的出水可以达到二级排放标准。

1.2 油类物质的处理

化学废水中油污的存在状态有悬浮、乳化和溶解三种[2]。悬浮的油污一般比较容易去除,一般使用物理方法处理。乳化油污是最难处理的,需要用到高级氧化处理技术,如使用超临界水氧化处理的方法,将氧化剂和乳化油混合放入反应装置中,在高温高压的条件下进行快速反应,经过处理的废水变得十分清澈,可以达到一级排放标准。在处理过程中如果某些指标不合格,可以适当加入催化剂或者金属氧化物。乳化油污也可以使用组合的方式进行处理,如组合运用混凝土和活性炭,在乳化油溶解后使用活性炭吸附处理。研究表明,活性炭吸附油类物质的能力很强,可以有效净化水中的油污[3]。

1.3 磷类物质的处理

磷类物质是化学废水中比较难处理的一种,可以将高价金属离子加入废水中,让其与磷元素反应变为不溶于水的固体物质,或者添加明矾、石灰等让磷元素转化为沉淀析出。同时也可以使用生物的方法进行除磷,一般使用A2/O这种脱氮除磷生物工艺,以有效清除废水中的磷元素。此外,活性污泥法也是除磷的有效方法,主要通过培养优势菌群达到除磷的目的。

2 化学废水综合利用的改进方案

2.1 废酸、废碱的收集和输送分离

该电厂中的化学废水的排放并不是连续和均匀的,废酸和废碱等产生的时间也不同,产生的流量存在很大的差异。化学废水排放的共用通道为连接废液池的一条沟道,由于使用时间过久,目前腐蚀十分严重。由于电厂化学废水的产生时间不确定,形成废水的间断性排放,直接影响到锅炉冲灰水的调整。在使用过程中为了控制废水泵的流量,一般会对废液泵进行限流,这也在一定程度上影响到泵的使用安全。鉴于此种情况,可以在化学厂房和废液池连接的地方,埋设一根PVC塑料管道排放废碱液,并且处理沟道中的腐蚀情况,便于废碱液排入废液池,然后隔断废碱液和废酸液连接的沟道,实现废酸、废碱的收集和输送分离,改造完毕后处理几个废液池中的淤泥。

2.2 设置废水排放的气动和远程控制装置

电厂化学废水的pH值受到很多因素的影响,并且处理起来有一定的难度,在废水排放系统中必须设置远程监控装置,以保障废水排放的准确和适用,在排放系统中设置必要的气动和远程控制装置。使用气动阀门替换废酸和废碱排放的总阀门,然后在废酸、废碱排放管道中设置旁路管,在循环管道设置气动阀门进行连接,各种手动阀门也使用气动阀门替换,在每个管道的进出口处设置气动联络阀。之后在废水排放中设置动力控制系统,将pH计等仪器安装在废酸和废碱管道上,每个废液池中安装超声波流量计,以此对排污系统进行实时监控。在化学控制系统中接入电子装置,以此对排污过程进行远程控制。

2.3 改造锅炉系统

通过变频的方式对电厂中的蓄水泵进行改造,添加一定数量的在线压力表,在蓄水泵和高跌水井中设置前池围堰,将超声波液位计安装在蓄水泵的前池上,根据液位的变化调节控制参数,通过对电机转速进行调节控制蓄水泵的运行。在蓄水泵的前池中设置液位报警器,在灰场控制室中的合适位置安装变频器操作盘,以保障灰场中干净的水被全部回收利用。这种方式也减少了加酸装置的投入和使用,避免跌水井中发生溢流以及蓄水泵中打空的情况,保障排污系统中的冲灰水量充足,减少了额外的补水。回水泵中的调节方式为液压力耦合式,回水泵控制参数的调节以出口压力为准。

3 结语

电厂化学废水处理中通过使用废酸、废碱收集和输送分离的方式,并且设置了废水排放的气动和远程控制装置,可以实现对化学废水的综合利用,以此变废为宝,符合节能减排的理念并能够提高企业的经济效益,应该在电厂废水处理中大力推广使用。

参考文献

[1] 奚占新,胡月.电网稳控装置在张家口发电厂的发展和应用[J].华北电力技术,2010(9).

磷化废水处理方法篇9

1 4,6-二氯嘧啶的应用

4,6-二氯嘧啶可用于合成农药中的甲氧基丙烯酸酯类杀菌剂嘧菌酯,医药中的治疗溶血性链球菌、肺炎球菌及脑膜炎球菌等感染的磺胺类药物磺胺-6-甲氧嘧啶、磺胺间甲氧嘧啶(磺胺莫托辛)以及抗癌药氟脲嘧啶等。据了解,4,6-二氯嘧啶最主要的用途及最大的消费领域是用于合成甲氧基丙烯酸酯类杀菌剂嘧菌酯。目前4,6-二氯嘧啶用于合成嘧菌酯的年消费量不少于6000t,而且随着嘧菌酯的推广,其消费量还会稳步增加。

通过查询文献和了解市场情况,目前,国内研究较多的嘧菌酯合成路线主要有3条,分别介绍如下:

1.1 苯并呋喃-2[3H]-酮法

以苯并呋喃-2[3H]-酮为初始原料,先在乙酸酐作用下与原甲酸三甲酯反应,得到中间体3-(甲氧基甲烯基)-2(3H)-苯并呋喃酮,由于该中间体对

皮肤有非常强的刺激作用,因此一般不经提纯,直接与甲醇钠进行开环反应,之后与4,6-二氯嘧啶进行乌尔曼缩合,再经过路易斯酸催化,得到(E)-2-[2-(6-氯嘧啶-4-基氧)苯基]-3-甲氧基丙烯酸甲酯。(E)-2-[2-(6-氯嘧啶-4-基氧)苯基]-3-甲氧基丙烯酸甲酯与水杨腈在催化剂作用下经过第二次乌尔曼缩合得到目标产品嘧菌酯。该过程的反应方程式如下:

1.2 邻羟基苯乙酸法

以邻羟基苯乙酸原料,在催化剂和缚酸剂的作用下与4,6-二氯嘧啶和水杨腈的缩合产物发生二次缩合,产物与原甲酸三甲酯反应制得2-[2-[6-(2-氰基-苯氧基)-嘧啶-4-基氧]-苯基]-3,3-二甲氧基-丙酸甲酯,后者在催化剂作用下脱除甲醇得到嘧菌酯。该过程的反应方程式如下:

1.3 水杨腈和4,6-二氯嘧啶法

水杨腈和4,6-二氯嘧啶缩合制得2-(6-氯-嘧

啶-4-基氧)苯甲腈,之后与2-(羟基-苯基)-3,3-二甲氧基-丙酸甲酯在催化剂作用下缩合,缩合a物2-[2-[6-(2-氰基-苯氧基)-嘧啶-4-基氧]-苯基]-3,3-二甲氧基-丙酸甲酯在催化剂作用下脱甲醇得到嘧菌酯。该过程的反应方程式如下:

尽管目前嘧菌酯的合成工艺有所差别,但作为关键中间体的4,6-二氯嘧啶是必不可少的。

2 4,6-二氯嘧啶合成工艺

目前4,6-二氯嘧啶的合成工艺主要有两种,分别是4,6-二羟基嘧啶在有机碱作用下与三氯氧磷反应制备4,6-二氯嘧啶以及4,6-二羟基嘧啶在三氯氧磷、三氯化磷和氯气共同作用下合成4,6-二氯嘧啶。此外也有关于4,6-二羟基嘧啶在光气作用下制备4,6-二氯嘧啶和酰胺类化合物与光气反应制备4,6-二氯嘧啶的报道,下面分别对上述4种主要工艺进行介绍。

2.1 4,6-二羟基嘧啶在有机碱作用下与三氯氧磷反应

4,6-二羟基嘧啶在有机碱作用下与三氯氧磷反应制备4,6-二氯嘧啶工艺是开发最早的工艺,也是目前国内广泛采用的一条合成4,6-二氯嘧啶工艺路线。该工艺以三氯氧磷为溶剂和氯代试剂,先将4,6-二羟基嘧啶和三氯氧磷混合,升温并滴加缚酸剂如:有机叔胺或者不饱和的N,N-二甲基苯胺、吡啶等,之后在一定温度下保温至反应完全。料液脱出过量的溶剂后缓慢倾入冰水中进行分离,加溶剂萃取产品,有机相经过洗涤,脱溶剂和蒸馏得到产品。该制备过程的反应方程式如下:

该工艺过程简单,设备投资较少,而且原料转化完全,收率比较高。主要缺点是废水量较大,而且废水成分较为复杂,所含的磷酸盐和氯化物难以分离,随着国家对水资源管理的日益严格,该工艺的发展受到一定的限制。

近年来已有关于进行该类产品合成时所产生的

废水处理的报道,但处理后所得副产物价值都不是很大,而且纯度较低,使用受到一定限制。

2.2 4,6-二羟基嘧啶在三氯氧磷、三氯化磷和氯气作用下进行反应工艺

为解决4,6-二羟基嘧啶与三氯氧磷及缚酸剂反应而生成大量的难处理磷酸、盐酸混合盐,拜耳公司以三氯化磷和氯气与三氯氧磷共同作用制备4,6-二氯嘧啶。在该工艺中,三氯氧磷先与4,6-二羟基嘧啶反应制备4,6-二氯嘧啶并副产二氯磷酸,之后加入的三氯化磷和氯气与副产二氯磷酸反应生成三氯氧磷和氯化氢。该制备过程的反应方程式如下所示:

与介绍的工艺2.1相比,该工艺废水和废渣量明显减少,但该工艺反应过程中需要大量的三氯氧磷作为溶剂,而且副产的二氯磷酸能够与三氯氧磷反应生成四氯三氧化二磷,消耗反应原料,浪费资源。

2.3 4,6-二羟基嘧啶与光气反应工艺

4,6-二羟基嘧啶与光气反应制备4,6-二氯嘧啶的报道也比较多,该工艺与三氯化磷工艺有一定的相似之处,区别在于将三氯氧磷改为光气。反应方程式如下:

与三氯氧磷工艺相比,该工艺理论上所产生的废水量明显降低,副产物可以转化为纯度非常高的氯化物盐。但该工艺目前并没有实现大规模工业生

产,分析其主要原因是4,6-二羟基嘧啶溶解度非常低,与光气的反应属于两相反应,反应难度大而且转化率比较低,通常报道的转化率在60%~70%,因此限制了该工艺的发展。

2.4 酰胺与光气反应工艺

该工艺是制备氯代嘧啶系列物质的通用方法。该工艺以相应的有机胺与光气反应或者有机腈与盐

酸反应制备酰胺盐,之后在光气作用下合环得到单氯代羟基嘧啶,后者继续与光气反应得到相应的二氯代嘧啶。以二氯嘧啶的合成为例,其反应方程式如下:

在该工艺中,原料光气的来源同样受到限制,此外,生成的两种酰胺盐容易发生自身缩合而得到取代的二氯嘧啶,不仅降低收率至60%左右,而且会极大地增加分离难度。此外,合成过程需要0.7~2.4MPa的压力,对于设备提出更高的要求,实际生产意义不大。

除上述4种工艺外,也有以4-氯-6-甲氧基嘧啶与三氯氧磷反应以及4-氯-6-羟基嘧啶与三氯氧磷反应制备4,6-二氯嘧啶的工艺报道,不过都

是以副产品回用为主进行的报道,实际产能受到原

料来源的影响而受到极大限制。

综上所述,目前4,6-二氯嘧啶的合成工艺仍然以4,6-二羟基嘧啶与三氯氧磷反应工艺为主,不同之处在于采用缚酸剂和以三氯化磷与氯气处理副产物二氯磷酸,前者产能较大,设备投资等较少,但废水较多,处理难度较大;后者副产物较少,且废水量较少,成分相对简单,但是存在设备利用率低和设备要求高,初始投资多等问题,需要进一步研究更加清洁、环保、经济的合成工艺。

3 结语

4,6-二氯嘧啶是一种非常重要的化工中间体,

磷化废水处理方法篇10

关键词:化学除磷 城市污水处理 化学沉淀处理

随着工业生产的快速发展与人们生活水平的提高,排放到湖泊的工业废水增加了营养物质的富集,从而引起了水生植物与藻类的异常繁殖,即水体的富营养化,因此限制水体里面磷的浓度尤为重要。

污水中除磷工艺分为化学除磷技术与生物除磷技术两种,尽管生物除磷技术具有无污染且污泥产量小等优点;但是,也存在着对废水组分过度依赖,稳定性以及灵活性较差等缺点,因此为了减少磷二次释放所造成的污染,需要增加化学除磷技术在污水处理中的比重。

1 化学除磷的工作原理

化学除磷一般通过加入一定的药剂(例如磷酸钙、聚合氯化铝,氢氧化钠)等产生微溶磷酸盐沉淀物,同时利用沉淀、气浮还有固液分离等过程来完成除磷的过程。而随着沉淀物的析出,较小的非溶性磷酸盐会聚集成较大的非溶性固体,并使稳定的胶体脱稳,在速度梯度下相互接触生成絮凝体,这一过程称为絮凝过程,在絮凝过程中部分磷酸盐吸附在胶体的氢氧化物表面上,随着胶体一起沉淀下来,这样大大提高了除磷的效率。

2 化学除磷的种类以及简要介绍

化学除磷最常用的沉淀剂是Fe3+、Fe2+、Al3+和Ca2+的单盐或其聚合物,包括硫酸盐、硫酸铁、硫酸亚铁、聚合硫酸铁、聚合氯化铝、石灰或氢氧化钙。

这两个沉淀过程都伴随碱度的减少,即pH值的下降。当采用铝盐或铁盐作沉淀剂时,适当加入石灰(或氢氧化钙)将提高沉淀效果,得到CakMem(H3PO4)f(OH)h(HCO3)c的不定产物和副产物Mex(OH)y(HCO3)z ,沉淀过程包括沉淀反应、凝聚作用和絮凝作用。

2.1 铁盐以及铝盐的除磷原理及介绍

铝盐以及铁盐经常用作除磷的沉淀剂,金属离子既可以生成金属氢氧化物沉淀又可以生成磷酸盐沉淀,这是主反应,另外金属离子和氢氧根形成了金属氢氧化物沉淀,这是另外的副反应。反应过程中氢氧根离子来源于污水中游离的氢氧根离子以及碳酸氢根离子形成的碱度。资料表明在PH接近于中性的情况下,碱度主要以碳酸氢根离子形式存在。因此对于磷酸铁以及磷酸铝而言,最小溶解度应该是5-5.6以及6-7为适宜的范围。如果PH低于这个值,磷酸盐沉淀会再次溶解到水中,污水中的碱度控制十分重要。

一般而言,铝盐除磷的过程在理想的PH情况下,铝盐分散于水体,一方面Al3+与PO4-反应,另一方面Al3+水解为AL(OH)+等单核的络合物,并且进一步缩合成一系列多核络合物,这些多核的络合物往往带有较高的正电荷能够迅速吸附水中的负电荷,中和胶体电荷,促进了胶体的脱稳与沉淀,从而起到了很好的除磷效果。

而铁盐除磷一般分为亚铁盐与三价铁盐两种,其反应形式都十分类似,常用于污水除磷的一般分为氯化铁、氯化亚铁等,硫酸亚铁的重要来源就来自钢铁工业的酸洗废液,通过以废治废来达到降低磷费用。但是往往亚铁离子在pH=7.5-8.5的碱性环境下是容易生成沉淀,这在一定程度上限制了二价铁盐在废水除磷中的应用。为了改善沉淀的性能,在铁盐较低含量的时候可以适当的提高混凝搅拌的强大,提高三价铁盐对总磷去除的增加度。

2.2 钙盐除磷

氢氧化钙投入到水体会与磷酸根离子发生沉淀声场羟基磷酸钙,随着PH的增高,羟基磷酸钙的溶解性逐步降低,废水的除磷效果也会逐步提高。但是在ph为10.5左右的时候除了会产生沉淀外,还有磷酸钙产生这也是管壁上积垢的主要原因。生成的磷酸钙可以有助于沉淀而使得废水澄清。利用钙处理法可以大大提高了除磷的效率。

3 化学除磷的工艺

一般而言,化学沉淀工艺师按照药料的投放地点来区分的,常分为同步沉淀,前沉淀以及在生物处理之后加絮凝过滤。

3.1 前沉淀

前沉淀的工艺流程的特点就是沉析药剂投入沉砂池中,或者利用文丘里渠。这一般需要设置产生的涡流装置来供应需要。而相应产生的沉淀产物在一次沉淀池中通过沉淀被分离。如果生物段采用的是生物滤池是不允许使用亚铁药剂,防止产生黄绣。这种工艺特别适合于污水处理厂的改建,因为这一工艺流程可以除去磷,也可以减少生物处理措施的负荷。常用的沉析药剂为生石灰以及金属盐药剂。

3.2同步沉析

使用最广泛的化学除磷工艺就是同步沉析,在国外占所有化学除磷工艺的50%,这种工艺流程一般是将药剂投放在曝气池中或者二次沉淀池进水中,当然也有个别情况就是将药剂投放在回流污泥管中。

3.3 后沉淀

这种工艺流程是将沉析、絮凝以及被絮凝物质的分离在一个与生物设施相分离的设施中进行,因而也就有二段法工艺的说法。一般将沉析药剂投加到二次沉淀池后的一个混合池(M池)中,并在其后设置絮凝池(F池)和沉淀池(或气浮池)。另外采用气浮池也能比沉淀池更好的去除悬浮物以及总磷,但是需要恒定供应空气因此运转费用比较高。

3.4各种化学除磷工艺的优缺点比较

前沉淀工艺具有能够降低生物处理设施的能耗同时现有的污水厂也容易改造实施,但是总污泥产量增加以及不利于改善污泥指数等是前沉淀工艺的缺点。

同步沉淀工艺则具有以下优点:金属盐会使活性污泥重量增加,避免活性污泥膨胀;另外同步沉析设施的工程量也较小。但是其缺点也不可忽视,比如增加污泥产量;采用酸性金属盐药剂会对硝化反应不利。

后沉淀工艺流程具有很多优点,比如药剂的投加可以按磷的负电荷的变化进行控制;磷酸盐的沉析是与生物净化相互分离的,互相不影响;单独的磷酸盐污泥可以单独排放,并可作为肥料利用。但是其投资大,费用运行高,但是后沉淀工艺可以减小生物处理二次沉淀池的尺度。

3.5接触过滤

通常接触过滤一般与同步沉淀、前置沉淀以及后置沉淀组合在一起,作为二步除磷法中的第二部进行工作,最后使出水的含磷量达到了最低的浓度,一般第一步处理后,含磷的浓度为0.8-1.2mg/L,用微滤膜进行絮凝接触过程过滤,可以达到更高的出水水质,同时加入适宜的铁能大大降低渗透液的含磷量。

4 结语

由于生物强化除磷的工艺稳定性总是不能满足处理要求而且也难以预测,同时绝大部分具有生物除磷功能的污水处理厂都需要附加化学沉淀除磷,所以使用铁或铝等化学试剂的添加是保证出水中较低磷浓度的必要条件,化学除磷在城市污水处理中将得到越来越广泛的应用。

参考文献:

[1]王文超,张华,张欣.化学除磷在城市污水处理中的应用[J].水科学与工程技术,2008,01:14-16.

[2]刘宁,陈小光,崔彦召,柳建设,徐晓雪.化学除磷工艺研究进展[J].化工进展,2012,07:1597-1603.