电磁学论文范文10篇

时间:2023-03-23 18:30:59

电磁学论文

电磁学论文范文篇1

物理教学分为理论与实验两个部分,两方面需要一起发展、一起进步,才会促进学科教学不断完善。物理教学必须将实践、理论两个方面结合起来,物理学习中有许多理论、概念、规律就是在实验中发现、认证的。电磁学是物理教学中必须学习的内容,电磁学研究电、磁以及电磁之间的相互关系,学习内容抽象、学生难以理解,逐渐产生畏难情绪,不愿意去学习与思考,逐渐影响教学质量。在以往的很长的教学时间里,电磁学教学模式都比较传统,一般来说采取的是传统的讲授法,一张黑板一支笔,一张嘴巴讲到底,教师在讲台上讲,学生在下面被动的听,机械的接受知识,唯书本与教师是从,忽略学生动手能力、实践能力的提升,对实验教学的重视程度是远远不足的。在这样的背景下,若是想要在课堂教学中推进演示实验,是有一定的难度的。演示实验具有趣味性、知识性、实践性与示范性,对提升学生的理解与动手能力有很大的帮助。特别是近年来,随着多媒体技术在教学中的有效运用,教学不再局限于利用多媒体技术进行概念、规律、公式的推导,也逐渐引入物理视频动画,代替事物进行演示实验的操作,让学生更加直观形象的理解概念与含义。在物理教学中引入演示实验,是非常重要的。鉴于电磁学教学的实际情况,教师要有效利用演示实验,将实验与教学巧妙的结合在一起,促进学生学习兴趣与学习质量的提升。

二、研究意义

物理是一门观察与实验为基础的自然学科,物理学习中的概念、公式等都是以实验为基础的。因此,物理实验教学成为课堂教学必不可少的一部分。传统意义上的物理教学实验分为探究性与演示性实验,二者主要的区别就是实验目的是不同的,探究性实验要求学生参与实验的设计与操作,加强学生对实验的设计能力与思维能力,提升学生实践操作能力。演示性实验,更多的是在解释物理概念、物理规律、物理公式的时候,向学生展示相关的实验,这类实验要求实验具有可操作性已经具有明显的实验现象,目的在于加深学生对物理的理解。当前物理课堂教学对实验教学这一块的教学模式依然是十分单一的,往往仅仅注重课堂教学,不注重实验教学,这与学校不重视实验教学有关,很多教师没有认识到物理实验的本质作用,还有一些教师将物理实验作为训练课或者技能课,这也是不可取的。演示实验作为教学中非常重要的方面,将理论讲解与演示实验结合起来,将一些抽象的物理知识与想象展现出来,加深学生对物理知识的理解,掌握物理学习的规律,激发学生的学习兴趣,提升学生学习效率。

三、演示实验在电磁学教学中的应用

电磁学教学从教学内容、研究对象上来说,都具有挑战性,电磁学的概念更加抽象,规律更加深奥,相关的物理现象也是更加复杂的,这对学生的理解能力提出了更高的要求,客观上加大了学生的学习难度。传统的电磁学教学模式是教师在课堂上讲解,学生被动接受,这是以教师为中心的教学模式,其实还是存在许多弊端的。因此,在电磁学教学改革中,引入演示实验是十分必要的,通过这种教学模式,可以清楚的看到教学效果得到明显的提升。针对电磁学教学,我认为需要从以下三个部分进行。(1)电学演示实验的作用。电学是电磁学教学的重要分支,电学本身包含的难点并不是很多,但是电学是电磁学的基础,电学的学习对整个电磁学具有关键作用,在学习电学的时候,学生对电磁学还没有形成特定的认知,还没有形成特定的思维,在理解电磁学的时候往往呈现出一定的主观性、片面性、表面性,针对这些问题,我们采取避雷针演示实验,让学生认识到尖端放电现象,帮助学生更快速的理解知识,加深学生对电学知识的理解。(2)磁学演示实验的作用。磁学在电磁学教学中占据的比例比较大,磁学的难度比电学更大,在实际教学中受到的挑战也会更加多,在实际教学中,安倍力演示实验的引用,学生很快就明白通电导线在磁场中是如何受力的,然后进行深一步的讲解与讨论。(3)电磁学演示实验的作用。纵观电磁学的发展历史,在该现象被发现与研究之后,本来应该是两个独立的学科:电学与磁学,后来逐渐融合发展,成为一个群体。因此,电磁学研究是是电与磁之间的关系与作用。演示实验的引用,可以将电磁之间的关系更好地展示出来。

四、演示实验在电磁教学中的应用策略

演示实验对物理教学有着非常重要的价值与意义。教师要结合学生学习实际与电磁学教学具体内容,将演示实验有效的运用到电磁学中去,以期将物理知识生动形象的展示给学生,加强学生学习的积极性。笔者认为,演示实验在电磁学中的运用,可以从以下几点进行。(一)低成本设计演示实验。结合多年来的教学,以及教学经验总结的基础上,我认为很多演示实验问题,低成本的演示实验就可以解决。教师在教材提供的实验的基础上,做一些补充的小实验,丰富实验内容。例如,用旧灯泡和香烟铅箔等做成简单的电器,制作出来的成品具有较高的灵敏度,与产品验电器有着大致的作用。主要的做法是将一直废旧灯泡的底部切掉修开瓶口,让灯泡灯口立在桌面上,用镊子将灯丝弯成“L”型,从香烟包装纸上取出两片铝箔,挂到灯口上,做成两个简单的验电器,用来做实验非常方便,在说明导体在静电场中受力的时候,可以利用橡皮泥,将两块金属板分别黏在两个绝缘底座上,两块板彼此平行,用导线将两板与起电机正负极相连,形成电场,然后用乒乓球包裹上铝箔纸作为导体,将球悬挂在两板之间,来回迅速的转动,吸引学生的注意力。在学习中类似的实验还是比较多的,可以有效的激发学生的学习兴趣。(二)创新实验,增强效果。在设计实验的时候,教师可以结合内容,大胆的对实验进行改造,提升实验的直观效果。例如,在学习涡流热效应实验的时候。一般电磁学教材都是以变压器铁芯发热来说明涡流热效应,但是由于变压器中有铜损与铁损,在变压器发热的时候,温度上升较慢,虽然能够说明原理,但是展示想过并不是十分理想。根据感应炉的原理,可以设计一个直观展示涡流效应的演示器,找一个绝缘圆筒,在其周围缠绕漆包线,做成螺线管,将一些铁丝插入螺线管中做铁芯,在螺线管上端平面放置一个装有凉水的搪瓷杯,约六七分钟以后,杯中的水沸腾了,学生对涡流加热更深刻的印象。这个实验制作容易,成本也较低,有利于学生的学习活动。(三)电荷流向实验。原来采用的实验,需要使用两个验电器,一个带电,一个不带电,用金属球的传递来说明电荷流向,在这个实验中,电荷传递瞬间就完成了,学生看到的只是开始与结束的状态。假如利用演示实验,学生可以看到电荷是如何传递的,,是非常有价值的。我们可以利用一根棉线,用水沾湿后,用绝缘体将其搭在两验电金属球上,就可以看到原先带电的验电器金属箔张角逐渐减少。因此,演示实验对学生的学习活动非常有利。在大量的教育实践中,我们可以看到,演示实验具有非常重要的价值与作用。在课堂教学中,教师应该结合物理知识,运用演示实验,将理论生动形象、直观简单的展示给学生,让物理更好的理解物理现象,让学生感受到电磁学离自己很近,并不是遥远的、遥不可及的事情,逐渐改善教学效果。演示实验化抽象为具体,将难以理解的概念直观的展示给学生,引导学生积极参与到学习活动中,让学生积极主动的思考,极大提升学生的学习质量。因此,在物理教学中,需要充分的运用演示实验,加强学生与知识、学生与教师之间的互动性,来劲师生关系,让学生更加喜欢物理学习。

参考文献:

[1]吴汉宗.提高学生创造能力的几种教学方法[J].物理与工程,2011,21(3).

[2]张宇,孙凯霞.谈物理教学中的演示实验[J].大学物理实验,1998,(1).

[3]高金岭.大学物理互动式探究型教学模式的探讨[J].物理与工程,2010,20(6).

电磁学论文范文篇2

关键词:电磁学发展世界电化

一、前言

现代人的生活,似乎离不开电。电灯、电话、电视、电影、计算机、电冰箱…,样样都是生活必须用品。一旦停电,日子不知怎么过。但世界上第一个有规模的发电厂(尼加拉水力发电厂,显示了当时电力的需求已渐普遍)开动,不过是1896年的事,距今只有一百多年。(电视连续剧「大宅门」描写清末民初电灯、电话初到北京城的情形,相当有意思。)

一百多年间,这个世界上大部份的人的生活,从几乎没有电器用品,到充满了电器用品,这变化不但是巨大得令人难以想象,并且深入到生活、思想、感情…,所有的人生面向。举个有诗意的例子:爱情上受挫折是古今中外诗歌中最常见的题材。古诗中固然有怨恨情人变心的,但也很常见的是所爱之人远在他乡,衷情难诉,以致相思甚苦。例如:古诗十九首「采之欲谁遗,所思在远道」。李白长相思「天长路远魂飞苦」等等。如今的流行歌曲中,第二种越来越少,第一种却很多。──今日的手机、e-mail等等,使距离不再成为谈情说爱的障碍,但却防不了情人变心。──这也显示了,要了解古人,就要从古人当时的情境来看才能妥切。

也许,很多人有兴趣知道最新奇的发明。但从物理概念的发展而言,更有趣的,也更重要的是;人们怎么会从不知道用电,一步一步,变成了有了用电的能力,终于到了离不开它的地步。这段历史,也最能鲜明地描绘出:以理解大自然为目标的科学研究,对全人类可能(但不必然)产生的巨大影响。

二、古代的电磁观察与应用

1936年,考古学家在巴格达附近挖出了一些铜罐,罐中铺了沥青,沥青上插着铁条。在大约同一地点,还发掘出了一些镀金物品。有研究者便认为这些铜罐就是巴比伦人发明的电池,而镀金物(如果是电镀)是这些东西确是电池之证据。而这些东西,其年代有早到公元前2000年以上的。

如果这是真的,巴比伦人领先了近代电池(伏特,1793)与电镀(1800-35),将近四千年。

别的文明在电磁方面就没有这样可惊的成绩了。古希腊人发现了琥珀、毛皮等摩擦可以生电,至今英文Electricity的字根,尚是希腊文的琥珀。但对他们说来,天上的雷电,仍然是宙斯大神的脱手武器。中国人很早就知道天然磁石会吸铁,带电物会吸小物体(东汉王充27-97「论衡」电磁力之记述:「顿牟拾介,慈石引针」),以及利用磁针导航,甚至对磁偏角有所记述(方以智,~1600)。「磁针导航」这技术,传到西方,促成了西方的「大探险时代」(15-16世纪。1492哥伦布发现美洲,1498达伽马绕过好望角到达印度,1519-22麦哲伦环绕世界一周,称为「三大航海」。他们都用磁针罗盘。)也引起了十八世纪以后的殖民主义。

这些电磁的观察与应用,可以使我们感叹古人之智能,特别是巴比伦电池。但巴比伦电池即使是事实,对日后电磁学发展,却没有什么影响。摩擦生电与磁性现象却在停滞千余年之后,在十八世纪的西欧,成为电磁学发展的出发点。

三、电之捕捉与库伦定律

十七世纪末(1684年),牛顿出版其「自然哲学之数学原理」。从此,研究自然界之力之种种,成为物理学之中心课题,一直到今天。但这本书太成功了,力学的现象,从天上行星之运转,到地面苹果落地,似乎它都能精准描述。然而,牛顿此书中只有一种力:万有引力。牛顿也知道自然界绝不止这一种力,例如,杯子打破了,碎片不可能凑起来就合而为一,可见原来把杯子各部份连合成一块的力不是万有引力;万有引力太微弱,不足以使物体聚合成形。故牛顿以后,要做有挑战性的研究,莫过于研究万有引力之外的力。

电与磁都会产生力,而且比万有引力大很多。(如果两块磁铁,吸在一起,使其相聚之力是磁力,就可以分分合合。)因此,十八世纪的欧洲,很多人在研究电与磁。特别是电,更富挑战性。因为电这个东西,虽然摩擦两个适当的物体,就能产生。带电物体会吸小纸片,有时还会在黑暗处冒火花,好玩得很。(当时,还有人发明了摩电器。)但是,却不容易驾驭,一不小心就被它溜掉。

1734年,法国人杜菲(Charles-FrancoisduFay,1696-1739),玩来玩去,玩出心得。他发觉不管是用什么东西摩出来的,电只有两种。他命名之为「玻璃电」与「树脂电」。只有不同类的电,相互靠近时才会相吸或冒火花,同类的不但不冒火花,还会相斥。他又发明了一个器具:密封的玻璃瓶中,插入一根金属棒,瓶内的一端,挂上两片金箔;瓶外的一端,做成一个小球。带电的物体靠近小球时,金箔就会张开。──这些,今日看来都没有什么了不起,但在电还是「神出鬼没」的时候,这是不简单的成就。

然而,每次玩电,都要从头摩起,相当烦人。1745年,荷兰莱顿大学教授穆森布洛克(PetrusvanMusschenbrock,1692-1761),根据克莱斯特(E.G.Kleist,1700-48)发明的储电器,发表了「莱顿瓶」。这也是一个玻璃瓶,内外壁上各贴一圈锡箔纸。内壁可以「充电」(把摩擦来的电碰触而输进去),这些电很久都不会跑掉。如果用两根金属线,把内外相连,两金属线的缝隙中就可以产生火花。

今日来看,「莱顿瓶」不过是个简单的电容器,但当时极受欢迎。瓶子越做越大,火花也更壮观。可是,电到一下可不是好玩的(也有人特意去尝一下被电的滋味)。这可以说这是人类驯服电的开始(姑且不算巴比伦),但也开始领教了电的威力。

十八世纪初,美国还是欧洲的化外之地,文化落后,更无所谓科学。波士顿的一个做肥皂与蜡烛的工匠,十七个子女中的第十个,自学有成,文采斐然。与欧洲,特别是英国的科学家,保持通信。他从英国进口仪器开始,研究电学而成名,到后来被英国皇家学院选为院士。在美国的独立革命中,他以著名科学家的身份,出使法国,立下大功。也在独立宣言(1776)上签名,成为美国的开国元勋之一。他就是鼎鼎大名的富兰克林(BenjaminFranklin,1709-1790)。

1752年,他在大雷雨中放风筝,把天上的电,收到莱顿瓶中。从此证明了天上的电,与摩擦出来的电是一样的;一般人所怕的雷,声势吓人,其实并不可怕,伤人破屋的是电。进一步,他就发明了避雷针:建筑物上装一根金属针,通到地下,屋中的人就不怕雷了,因为电就会被导入地下。(新英格兰有一教堂中的牧师,认为避雷针保护好人,也保护坏人,有碍上帝的意旨,故在讲道中大加谴责。不料没几天,教堂受到雷击,塌了一角,只好也装上避雷针。)此外,他注意到了两种电有相互扺消的现象,所以他建议把「玻璃电」与「树脂电」改名为「正电」与「负电」(模拟于正数与负数之相互扺消)。

富兰克林的正负电命名,沿用至今,但是却有些不幸。因为常用的金属导线中流动的都是电子,而电子上所带的电,却被命名为负电。以致电线中的电流若是向左,其中电子其实是向右跑。

「正数与负数之相互扺消」这事中,含有量的关系(+3,-3可以相消,+3,-2就消不干净。)「电荷量」之测定,却要归功于法国人库伦(CharlesAugustinCoulomb,1736-1806)。(也有人得到类似的结果,但以他的发表最早,影响也最大。)

库伦出身兵工军官,早年在中美洲驻扎时,把身体搞坏,回国做研究。法国大革命(1789)后退隐家园。他发现了用细长绳索吊挂一根细棍,细棍两端对称以维持水平。两端若受水平方向之微力,则以的绳索之扭曲以平衡之。这「扭称」(torsionbalance)可以做很精准的力的测量(至今尚是的测量微小力的最精准工具,但这种实验都是很难做的)。在1785-91年间,他用这工具,反复测量,终于发现了库伦定律:

电荷与电荷之间,同性相斥,异性相吸。其力之方向在两电荷间之联机上。其大小与电荷间之距离之平方成反比,而与两电荷量之大小成正比。

这是电学以数学来描述的第一步。请注意:

(1)此定律用到了牛顿之力之观念。(若无牛顿对力之阐述,很难想象此定律是何形式)。这成了牛顿力学中一种新的力。其与牛顿万有引力有相同之处,如:与距离之平方成反比;亦有不同,如:可以相吸,亦可以相斥。

(2)这定律成了「静电学」(即电荷静止时之各种现象)之基础。如今所有电磁学,第一个课题必然是它。

(3)这也是电荷单位的来源。例如:两个相同之电荷,相距一公尺,若其相斥之力为「若干」时,称之为一单位。原理上,这「若干」可以任意选定,所以电荷单位有好几种。但今日「公制」(MKSA)的做法,却是先决定电流单位「安培」(理由见后),再以一安培之电流一秒中的累计量为一「库伦」,再间接决定这「若干」=9×109牛顿。

(4)这9×109牛顿,相当于九十万公吨的重力──静电力强大的可怕。虽然也可以说一库伦的电荷太大,但无论如何,正负电相消的趋势是很强的。日常的物体中,虽然电荷很多,但几乎都抵消的干干净净,呈现电中性的状态。必须花功夫(如摩擦)才能使其呈现带电状。而且,一不小必就又跑去中和掉,所以难以驾驭。

因此,虽然库伦定律描述电荷静止时的状能十分精准,单独的库伦定律的应用却不容易。以静电效应为主的复印机,静电除尘、静电喇叭等,发明年代也在1960以后,距库伦定律之发现几乎近两百年。我们现在用的电器,绝大部份都靠电流,而没有电荷(甚至接地以免产生多余电荷)。也就是说,正负电仍是抵消,但相互移动。──河中没水,不可能有水流;但电线中电荷为零,却仍然可以有电流!

四、从伏特电池、安培定律到电报、电话:

雷雨时的闪电,或莱顿瓶的火花放电,都是瞬间的事。电虽然在动,但是太快了,很难去研究电流的效果。电池可以供应长时间的电流(直流电)。因此,电池的发明是电磁学上的大事。──这也就是为什么巴比伦电池这样令人惊讶。

十八世纪欧洲人到处掠夺殖民地。当时也没有什么保护生态观念,殖民地出产的珍禽异兽,一股脑捉回家去。亚马逊河出产一种电鱼,能发出瞬间强电,电晕小动物。当然,电鱼也被捉回了欧洲。这引起了不少人研究「动物电」的兴趣,也就是动物的身体如何发电。1780年,意大利波隆大学教授加凡尼(LuigiGalvani,1737-1789)发现了用电击死蛙之腿,可引起抽动。而蛙腿夹在不同金属(如铜、锌)间则可发出电来。与他认为这是「动物电」效果。

1793年,加凡尼的朋友,比萨大学教授伏特(AlexandroG.A.A.Volta,1745-1827)把一块锌板,一块铜板放到舌头上下,而用铜丝将两板连结,他发觉舌头会感到咸味,而铜丝中有电流现象(如:可使蛙腿抽动)。但不久他发觉这与「动物电」无干,因为若不用舌头,而用一片浸过碱水的纸板夹在铜、锌之间,也可生电流。而且,如果用多重的锌、纸、铜、锌、纸、铜、…,会得到更明显的电流(蛙腿抽动不止)。──这就是最早(如果不算巴比伦)的电池(碱性电池)。有了稳定的电源,电流的研究与应用才能展开。电压单位伏特(volt)就是因纪念他的功劳而命名的。

这种「伏特堆」(Voltaicpile),很快被人仿效,越做越大(可以表演连续火花),以后又有人加以改良,越做越精致。──直到现在,改良电池还是一门专业的学问。

在伏特电池发明后没多久,就有人发现电流可以从溶液中通过。1800年,英国WilliamNicholson(1753-1815)与AnthonyCarlisle(1768-1840),发现了电解现象,例如水可以被通过的电流被分解为氢与氧。此为电在化合中作用之线索,亦为电解、电镀之原理。但是把电镀技术改善到可以应用,则要到1835年的德国人西门子(ErnstW.Siemens,1816-1892,其弟William,后来成为英国爵士,兄弟创办「西门子」公司,至今尚存。)──巴比伦的镀金物如果真是四千年前的电镀做成的,实在令人惊叹。

然而,怎样「定量」(测定电流的大小),还是不容易,当时有人想了各种方法(如利用电线之发热),又难又不准。

电与磁之间,很早便被认为有些关连。记载中,有一间铁铺被雷电击中,铺中铁器都生了磁性。十八世纪以后,很多人在研究放电现象时,都注意到附近的磁针会动。1820年,丹麦哥本哈根大学教授奥斯特(H.C.Oersted,1777-1851)在演讲时表演电流生热,发现一根导线中的电流,会使附近的磁针偏向垂直方向,也就是电流可以产生「磁力」;越大的电流,这种现象越明显,而且,这种现象,不受纸板间隔的影响。这发现立时引起了很多人的兴趣。不久,便有人把导线绕成很多重的「线圈」,只要很小的电流,就能产生很大的磁力。线圈电流固可使小磁针转动,但如果是一个固定的大磁铁,线圈也会反向而动。──同年,德国人ChristophSchweigger(1779-1850)与JohannC.Poggendorff,就用这方法制成电流计。从此,电流成为物理(或工业)中测定最方便的量之一。这也就是为什么在公制中,先订电流单位「安培」,再订电量单位「库伦」之原因。

法国物理学家安培(AndreMarieAmpere,1775-1836)立刻想到:所有磁性的来源,或许都是电流。他在1820年,听到奥斯特实验结果之后,两个星期之内,便开始实验。五个月内,便证明了两根通电的导线之间也有吸力或斥力。这就是电磁学中第二个最重要的定理「安培定律」:

两根平行的长直导线中皆有电流,若电流方向相同,则相吸引。反之,则相斥。力之大小与两线之间距离成反比,与电流之大小成正比。

(安培也写下了两小段电流作用力之量化描述,可以计算各种形状的电流间之力。如今这称为比奥─沙伐定律。Jean-BaptisteBiot,1774-1862,FelixSavart1791-1841两人与安培几乎同时进行类似的实验)。

公制中,用安培定律以定义电流单位「安培」:两个平行之同向同大小之电流,相距一公尺,若其相吸之力为2×10-7牛顿/公尺时,称之为一安培。这电流单位在使用上有其方便,例如一百瓦的电灯中的电流大约一安培。这2×10-7牛顿/公尺是很小的,故平常在两根电线中,相互之力不太容易察觉。──但做成线圈后,可以产生很大的力。

以后,安培又证实了通了电流的筒状线圈之磁性,与磁铁棒完全一样。故他提出假说:物质之磁性,皆是由物质内的电流而引起的。这使「磁性」成为「电流」的生成物。(这也解释了为什么磁铁没有单极的)。──他后来被誉为「电磁学」的始祖(电与磁从此在物理中是分不开的)。他的名字,也成了电流的单位。

安培早慧,但一生不幸。(童时亲见其父在法国大革命时上断头台,娶妻甚贤,但又早逝)。在听到Oersted之发现后,立刻意识到电流与电流之间必有力在,洞察力惊人。

安培这个发现,在应用上极为重要。它提出了用电流而发出动力,使物体动起来的方法,准确而可靠。因此,它是电流计(以及各种电表)、电马达、电报,电话之原理。特别是电报,在1835年以后就成了新兴事业,大赚其钱。然而,在开始时,也有人对这些新玩意感到恐惧而抗拒。(例如:对电磁学也有贡献的大数学家高斯KarlF.Gauss,1777-1855。)──电报业风光了一百多年。时至今日,卫星通讯发达以后,电报业就没落了。

安培定律之后,电磁学理论与应用之发展可以说「风起云涌」。1825年,英WilliamStrugeon(1783-1850)发明电磁铁,使这种作用力更方便有效。1826年,德UniversityofCologne的数学教授欧姆(GeorgeS.Ohm,1789-1854),发表了欧姆定律,厘清了电压、电流、电阻间的关系(V=iR)。这个定律是以后所有电路理论的开端。但他发现了欧姆定律后,反而被攻击而辞职,失业了好几年后他才另外找到工作。电流消耗能量的关系式,则要到1839年,才被英国的焦耳(JamesPrescottJoule,1818-69)确定(焦耳定律P=i2R)。这成为以后电力买卖的计价基础。

十九世纪的美国,挟其地大物博之优势,发展极快。美国人好新奇,敢冒险,在电器的发明上,领先全世界。美国人亨利(JosephHenry,1799-1878),原在一个乡下学校教书,并做研究(当时在美国这是少见的)。1829年,他改良电磁铁,发明电报的原理。(据说他比法拉第更早一年发现电感现象,但未发表)。后来他转往NewJerseyCollege(以后的PrincetonUniversity)任教。1835年,美国画家摩斯(SamuelF.B.Morse,1791-1872),发明了摩斯电码(MorseCode),制成了电报的第一个原型。从此,电报开始发展成新兴工业。1854-58年,英国Univ.ofGlasgow的凯尔文(WilliamThomson,后来封爵LordKelvin,1824-1907),研究越洋电缆理论,促成大西洋两岸之电讯。他也因此发财。1876年,美国人贝尔(AlexanderG.Bell,1874-1922)发明电话。贝尔的家传技艺是audiology(帮助聋哑的技术)。他发明电话后成为巨富,热心公益。他的公司,至今尚存。晚年他宣称讨厌电话,隐居加拿大东北极寒之地纽芬兰。

焦耳、凯尔文现在的名气,多因其热学上的成就,(焦耳之热功当量,凯尔文之绝对温标)。而且,他们合作,发现了气体膨胀时,温度下降(Joule-ThomsonEffect),这是冷冻机原理。但这发明当时英国的工业界不感兴趣。焦耳去世较早。凯尔文1892之封爵,也是因越洋电缆。

为什么冷冻机原理当时引不起英国工业界的兴趣?为什么用途广泛的电马达(其原理只是安培定律)没有很早的发展?其中重要原因之一是这些都要大量的电力,而当时还没有一个便宜的发电方法(电池发电太贵了)。因此,用电量较小的通讯器材(电报、电话),就率先发达。对当时的一般民众而言,生活中用电还是少见的事。电报是紧急时才用的,而电话也只有少数有钱人才装得起。

要等发电机成功之后,用电量大的器材,才能发展。而电器之普及,也才能实现。

五、法拉第定律与发电机:

公认的实验天才法拉第(MichaelFaraday,1791-1867)是伦敦一位铁匠之子。少年时在一家书店做学徒。当时,皇家研究所(RoyalInstitute)的所长达维(SirHumphreyDavy,1778-1829)为了教育大众(也为了争取经费),举办了一系列的通俗演讲。法拉第去认真听讲,并做了完整的笔记,装订成册。以后他便以这一套笔记,受到达维赏识,被聘为皇家研究所的助理(1812)。不久,他在实验方面的才能,便显露出来,成为达维的得力助手。达维退休以后,他被任命为所长(1821)。

达维是电解专家(1807年发现了钠与钾)。法拉第早年是达维的助手,他对电解有很周密的研究。他发现了通电量与分解量有一定的关系,并且与被分解的元素之原子量有一定的关系。由此,可以大致导致两个结论:(1)每个原子中有一定的电含量(以今日而言,是一定的电子数)。(2)原子在化合时,这些电量起了作用,而通电可使化合物分解。因此,牛顿寻求的分子中的化合之「力」,必与电有关。(此想法在1807年由达维提出,法拉第进一步加以验证,至今尚是正确的。)

法拉第少年失学,缺少科学方面的正式训练,这是他的缺点,但也可能是他的优点。他不长于数学,但有极强的「直感」。他在电与磁的直感的基础是「场」与「力线」概念。

牛顿的万有引力定律提出之初,受到很多质疑。其中之一是:很多人认为,两个相距遥远的物体,无所媒介,而相互牵引,是不可置信的(连牛顿本人对此也有所犹疑)。但是由于万有引力之大获成功,这种「超距力」的概念,不久便被普遍接受了。电磁学中的「库伦」、「安培」等力之观念,起始时亦是这种「超距力」。

在牛顿前一百年的英国人吉伯特(WilliamGilbert,1540-1603)是伊利莎白一世的御医。他的一本「论磁」(DeMagnete,1600)是有系统地研究电磁现象的第一本书(大部份说磁,因其在当时比较有用),其重要性是扬弃了磁性之神秘色彩,以一种客观的自然现象来描述之。吉伯特之「论磁」中曾提出「力线」之观念。这就是说:磁性物质发出一种「力线」,其它磁性物质遇到了这「力线」便受到力之作用。这样就避过了「超距力」的「反直觉」。

(a)力线不断、不裂、不交叉打结,但可以有起头与终止。例如:电场之力线由正电荷发出,由负电荷接受。力线的数量与电荷之大小成正比。(磁场以「磁北极」为正,「磁南极」为负。)

(b)力线像有弹性的线,在空中互相排斥又尽量紧绷。其密度与施力之大小成正比。

(c)力线有方向性,电力线之方向是对正电荷之施力方向(负电受力方向相反),在磁力线是对「磁北极」之施力方向(「磁南极」受力方向相)。

法拉第则更进一步,提出了「场」的概念:空中任意一点,虽然空无一物,但有电场或磁场之存在,这种「场」可使带电或带磁之物质受力。而「力线」则是表现「场」的一种方式。但是,法拉第的「场」观念,当时也受到强烈的质疑与反对。最重要的理由是这观念不及「超距力」之精确。把「场」观念精确化,数学化的是后来的麦克斯威。

他对电磁学最重要的贡献是「电感」之发现。──有磁性的磁铁,可以使附近的无磁性的铁棒磁化。根据安培的发现,通了电流的筒状线圈的磁性与磁铁棒相同,实验上它也可以使其附近的无磁性的铁棒磁化。法拉第就想:是否也可以用通了电流的筒状线圈来引起其附近另一个筒状线圈中的电流?

他1824年开始做实验,起初找不到什么结果。直到1831年,他用了四百多英尺的电线做了两个互相套合的线圈,才在无意中发现:在第一线圈中的电流关掉的瞬间,第二线圈中有瞬间的电流产生,甚至冒火花。他继续研究,发现第一线圈中的电流有变化时,第二线圈中才有电流。而第一线圈中的电流变化越快,第二线圈中的电流越大。法拉第接着又发现,一个移动的磁铁或通了电流的筒状线圈,也可以使附近的线圈中,产生感应电流。──这就是电磁学中第三个最重要的「法拉第定律」。

这个定律与库伦、安培都不同;它是动态的。第一线圈中的电流变化越快,第二线圈中的电流越大。(这是变压器原理)。或磁铁、有电流的筒状线圈,移动得越快,第二线圈中的电流也越大。这就是「发电机」(把动能化成电能)的原理。

法拉第也知道他这发现的重要。发现之后,皇家研究所举办成果展览。英国财政大臣也来参观。看到助手们表演火花放电以娱伦敦民众,不太高兴,便问法拉第:你花了政府这么多钱,就为了表演?法拉第冷冷地回答了四个字:Youwilltaxit!(你会有一天抽它的税)。

法拉第做了一辈子研究,退休时(1855)两袖清风,不知何去何从(当时没有退休金制度)。英维多利亚女皇则早准备了房子、终身俸及封爵,给他一个惊喜。法拉第接受了房子及终身俸,坚辞封爵。

但是,实用的发电机却不是那么简单,法拉第定律之后五十年才在美国做出来。

美国人爱迪生(ThomasA.Edison,1847-1931)号称「发明大王」,拥有(或共享)的专利,有1093项,至今无人打破纪录。其中包括电灯、录音、电影等等,对「电化世界」有决定性影响。1879发明的白炽电灯(以碳化纤维为灯丝),造成轰动,是第一个人人都感到非要不可的电器。但他在发电机的竞争上,却输给了对手。可能的原因是他太执着于直流电(他甚至宣扬交流电危害人类)。──以法拉第定律而言,交流发电机的制作比较顺理成章,而且,交流电才能使用变压器,利于长途输电。

他的竞争对手是西屋(GeorgeWestinghouse,1846-1914)与特斯拉(NicolaTesla,1856-1943,也有700项专利,包括变压器、日光灯,交流电马达)。特斯拉年轻时从匈牙利移民美国,先在爱迪生手下做事,但他热心做交流电,与爱迪生不合,辞职后去挖沟。后来辗转被西屋雇用。1882年,特斯拉制成第一部交流发电机。他们对交流电机之发展,使「西屋公司」成为电机工业之百年重镇。

1896尼加拉瀑布水力发电开始。世界的电化,从此展开。但电磁学的故事,还没有完。

六、麦克斯威与无线电

与法拉第之实验天才对比,麦克斯威(JamesClerkMaxwell,1831-1879)则是长于数学的理论物理学家的典型。他生于苏格兰的一个小康之家。自幼便充份显示了数学之才能。他先在阿伯丁(Aberdeen)大学任教,以后转往剑桥。在物理中,今日麦克斯威之重要性,几可与牛顿、爱因斯坦等量齐观。但生前,麦克斯威并不受其故乡苏格兰之欢迎(爱丁堡大学不要他,死时亦未有公开之表扬)。他在剑桥大学则受到重用,出任CavendishLaboratory的首任所长。

他在1855年,发表了「法拉第之力线」一文,受到将退休的法拉第的鼓励。1862年,他由理论推导出:电场变化时,也会感应出磁场。这与法拉第的电感定律相对而相成,合称「电磁交感」。此后他出版了「电磁场的动态理论」(ADynamicTheoryofElectromagneticField,1867),「电磁论」(TreatiseonElectricityandMagnetism,1873),其重要性可以与牛顿的「自然哲学的数学原理」相提并论。

通过了数学(主要是「向量分析」),麦克斯威写下了著名的「麦克斯威方程式」,不但完整而精确地描述了所有的已知电磁场之现象,而且有新的「预言」。其中最重要的是「电磁波」:

(1)由于「电磁交感」,故电磁场可以在真空中以「波」的形式传递。

(2)计算之结果,这波之速度与光速一致,故光是一种「可见的」电磁波。

(3)这种波亦携带能量、动量等,并且遵从守恒律。(1884波亭定理,英JohnHenryPoynting,1852-1814是麦克斯威的学生,他推导出电磁场中的能量的流动关系式。)

「光是一种电磁波!」这句话现在是常识,在当年则骇人听闻。麦克斯威只靠纸上谈兵(数学运算),就做大胆宣言,也难怪当年根本不信有电磁波的人居多。但他自己却信心满满。有人告诉他有关的实验结果,不完全成功,他毫不在意。他有信心他的理论一定是对的。──以后的理论物理学家很多人就学了他这种态度。有一个物理学者(Dirac)的一个理论被实验证明是错的。他就抱怨:这么美的理论,上帝为什么不用?

德国人赫兹(HeinrichR.Hertz,1857-1894,KarlsruhePolytechnic)是第一个在实验室中证明电磁波存在的人。他先把麦克斯威的电磁学改写成今天常见的形式(1884)。然后在1886-88年,做了一系列的实验,不但证明电磁波存在,而且与光有相同波速,并有反射、折射等现象,也对电磁波性质(波长、频率)定量测定。当然,也同时发展出发射、接收电磁波的方法。──这是所有「无线通讯」的始祖。──此时麦克斯威墓木已拱。

一般人都说无线电的发明人是意大利的马可尼(GuglielmoMarconi1874-1937,获1909年诺贝尔奖)。俄国人则说是波波夫(AleksandrPopov,1859-1906,Univ.St.Petersburg)。但在推广实用上与影响力上,马可尼似乎领先一步。(特斯拉也有无线电的专利,但时间更晚。)1901年,马可尼实验越洋广播成功,轰动一时,从此开始了广播工业。

七、结语

麦克斯威的电磁理论(经赫兹改写),成为现在理工科的学生都要修的电磁学。简单的说来,电磁学核心只有四个部份:库伦定律、安培定律、法拉第定律与麦克斯威方程式。并且顺序也一定如此。这可以说与电磁学的历史发展平行。其原因也不难想见;没有库伦定律对电荷的观念,安培定律中的电流就不容易说清楚。不理解法拉第的磁感生电,也很难了解麦克斯威的电磁交感。

这套电磁理论,在物理学中,是与牛顿力学分庭抗礼的古典理论之一。如果以应用之广,经济价值之大而言,犹在牛顿力学之上。但也不能忘记,如果没有牛顿力学中力之概念,电磁学也发生不了。电磁学中的各定律,也无法理解。因此,普通物理中,也必然先教力学再教电磁。

电磁学论文范文篇3

一、电磁学教材的整体结构

电磁运动是物质的一种基本运动形式.电磁学的研究范围是电磁现象的规律及其应用.其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等.为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的.透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学.对此,应从以下三个方面来认真分析教材.

1.电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行,这两种方式均在高中教材里体现出来.只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力.

场的方法是研究电磁学的一般方法.场是物质,是物质的相互作用的特殊方式.中学物理的电磁学部分完全可用场的概念统帅起来,静电尝恒定电尝恒定磁尝静磁尝似稳电磁尝迅变电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的各章内容.

“路”是“场”的一种特殊情况.中学教材以“路”为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等.

“场”和“路”之间存在着内在的联系.麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的.“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法.

2.物理知识规律物

理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系.

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来.物理定律的形成,也是在物理概念的基础上进行的.但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性.

第二册第一章“电潮重要的物理规律是库仑定律.库仑定律的实验是在空气中做的,其结果跟在真空中相差很小.其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况.

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律.欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的.欧姆定律的运用有对应关系.电阻是电路的物理性质,适用于温度不变时的金属导体.

“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念.

“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律.在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线.本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础.电磁感应的重点和核心是感应电动势.运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的.

“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步.麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步.

3.通过电磁场在各方面表现的物质属性,使学生建立“世界是物质的”的观点

电现象和磁现象总是紧密联系而不可分割的.大量实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着.电场的基本特性就是对位于场中的其它电荷有力的作用.运动电荷的周围除了电场外还存在着另一种唱—磁场.磁体的周围也存在着磁场.磁场也是一种客观存在的物质.磁场的基本特性就是对处于其中的电流有磁场力的作用.现在,科学实验和广泛的生产实践完全肯定了场的观点,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态.

运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用.所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的.麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场.按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场.电磁场由近及远的传播就形成电磁波.

从场的观点来阐述路.电荷的定向运动形成电流.产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场.导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处.导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷.当导体中电势差不存在时,电流也随之而终止.

二、以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体

1.场的客观存在及其物质性是电学教学中一个极为重要的问题.第一章“电潮是学好电磁学的基础和关键.电场强度、电势、磁尝磁感应强度是反映电、磁场是物质的实质性概念.电场线,磁感线是形象地描述场分布的一种手段.要进行比较,找出两种力线的共性和区别以加强对场的理解.

2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用.在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等.场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度.在电场中用电场力做功,说明场具有能量.通常说“电荷的电势能”是指电荷与电场共同具有的电势能,离开了电场就谈不上电荷的电势能了.

3.认真做好演示实验和学生实验,使“潮抽象的概念形象化,通过演示实验是非常重要的措施.把各种实验做好,不仅使学生易于接受知识和掌握知识,也是基本技能的培养和训练.安排学生自己动手做实验,加强对实验现象的分析,引导学生从实验观察和现象分析中来发展思维能力.从物理学的特点与对中学物理教学提出的要求来看,应着力培养学生的独立实验能力和自学能力,使知识的传授和能力的培养统一在使学生真正掌握科学知识体系上.

电磁学论文范文篇4

一、电磁学教材的整体结构

电磁运动是物质的一种基本运动形式.电磁学的研究范围是电磁现象的规律及其应用.其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等.为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的.透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学.对此,应从以下三个方面来认真分析教材.

1.电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行,这两种方式均在高中教材里体现出来.只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力.

场的方法是研究电磁学的一般方法.场是物质,是物质的相互作用的特殊方式.中学物理的电磁学部分完全可用场的概念统帅起来,静电尝恒定电尝恒定磁尝静磁尝似稳电磁尝迅变电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的各章内容.

“路”是“场”的一种特殊情况.中学教材以“路”为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等.

“场”和“路”之间存在着内在的联系.麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的.“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法.

2.物理知识规律物

理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系.

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来.物理定律的形成,也是在物理概念的基础上进行的.但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性.

第二册第一章“电潮重要的物理规律是库仑定律.库仑定律的实验是在空气中做的,其结果跟在真空中相差很小.其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况.

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律.欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的.欧姆定律的运用有对应关系.电阻是电路的物理性质,适用于温度不变时的金属导体.

“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念.

“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律.在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线.本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础.电磁感应的重点和核心是感应电动势.运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的.

“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步.麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步.

3.通过电磁场在各方面表现的物质属性,使学生建立“世界是物质的”的观点

电现象和磁现象总是紧密联系而不可分割的.大量实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着.电场的基本特性就是对位于场中的其它电荷有力的作用.运动电荷的周围除了电场外还存在着另一种唱—磁场.磁体的周围也存在着磁场.磁场也是一种客观存在的物质.磁场的基本特性就是对处于其中的电流有磁场力的作用.现在,科学实验和广泛的生产实践完全肯定了场的观点,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态.

运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用.所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的.麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场.按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场.电磁场由近及远的传播就形成电磁波.

从场的观点来阐述路.电荷的定向运动形成电流.产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场.导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处.导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷.当导体中电势差不存在时,电流也随之而终止.

二、以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体

1.场的客观存在及其物质性是电学教学中一个极为重要的问题.第一章“电潮是学好电磁学的基础和关键.电场强度、电势、磁尝磁感应强度是反映电、磁场是物质的实质性概念.电场线,磁感线是形象地描述场分布的一种手段.要进行比较,找出两种力线的共性和区别以加强对场的理解.

2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用.在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等.场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度.在电场中用电场力做功,说明场具有能量.通常说“电荷的电势能”是指电荷与电场共同具有的电势能,离开了电场就谈不上电荷的电势能了.

3.认真做好演示实验和学生实验,使“潮抽象的概念形象化,通过演示实验是非常重要的措施.把各种实验做好,不仅使学生易于接受知识和掌握知识,也是基本技能的培养和训练.安排学生自己动手做实验,加强对实验现象的分析,引导学生从实验观察和现象分析中来发展思维能力.从物理学的特点与对中学物理教学提出的要求来看,应着力培养学生的独立实验能力和自学能力,使知识的传授和能力的培养统一在使学生真正掌握科学知识体系上.

电磁学论文范文篇5

一、电磁学教材的整体结构

电磁运动是物质的一种基本运动形式.电磁学的研究范围是电磁现象的规律及其应用.其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等.为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的.透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学.对此,应从以下三个方面来认真分析教材.

1.电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行,这两种方式均在高中教材里体现出来.只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力.

场的方法是研究电磁学的一般方法.场是物质,是物质的相互作用的特殊方式.中学物理的电磁学部分完全可用场的概念统帅起来,静电尝恒定电尝恒定磁尝静磁尝似稳电磁尝迅变电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的各章内容.

“路”是“场”的一种特殊情况.中学教材以“路”为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等.

“场”和“路”之间存在着内在的联系.麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的.“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法.

2.物理知识规律物

理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系.

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来.物理定律的形成,也是在物理概念的基础上进行的.但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性.

第二册第一章“电潮重要的物理规律是库仑定律.库仑定律的实验是在空气中做的,其结果跟在真空中相差很小.其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况.

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律.欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的.欧姆定律的运用有对应关系.电阻是电路的物理性质,适用于温度不变时的金属导体.

“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念.

“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律.在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线.本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础.电磁感应的重点和核心是感应电动势.运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的.

“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步.麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步.

3.通过电磁场在各方面表现的物质属性,使学生建立“世界是物质的”的观点

电现象和磁现象总是紧密联系而不可分割的.大量实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着.电场的基本特性就是对位于场中的其它电荷有力的作用.运动电荷的周围除了电场外还存在着另一种唱—磁场.磁体的周围也存在着磁场.磁场也是一种客观存在的物质.磁场的基本特性就是对处于其中的电流有磁场力的作用.现在,科学实验和广泛的生产实践完全肯定了场的观点,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态.

运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用.所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的.麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场.按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场.电磁场由近及远的传播就形成电磁波.

从场的观点来阐述路.电荷的定向运动形成电流.产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场.导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处.导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷.当导体中电势差不存在时,电流也随之而终止.

二、以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体

1.场的客观存在及其物质性是电学教学中一个极为重要的问题.第一章“电潮是学好电磁学的基础和关键.电场强度、电势、磁尝磁感应强度是反映电、磁场是物质的实质性概念.电场线,磁感线是形象地描述场分布的一种手段.要进行比较,找出两种力线的共性和区别以加强对场的理解.

2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用.在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等.场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度.在电场中用电场力做功,说明场具有能量.通常说“电荷的电势能”是指电荷与电场共同具有的电势能,离开了电场就谈不上电荷的电势能了.

3.认真做好演示实验和学生实验,使“潮抽象的概念形象化,通过演示实验是非常重要的措施.把各种实验做好,不仅使学生易于接受知识和掌握知识,也是基本技能的培养和训练.安排学生自己动手做实验,加强对实验现象的分析,引导学生从实验观察和现象分析中来发展思维能力.从物理学的特点与对中学物理教学提出的要求来看,应着力培养学生的独立实验能力和自学能力,使知识的传授和能力的培养统一在使学生真正掌握科学知识体系上.

电磁学论文范文篇6

一、电磁学教材的整体结构

电磁运动是物质的一种基本运动形式.电磁学的研究范围是电磁现象的规律及其应用.其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等.为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的.透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学.对此,应从以下三个方面来认真分析教材.

1.电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行,这两种方式均在高中教材里体现出来.只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力.

场的方法是研究电磁学的一般方法.场是物质,是物质的相互作用的特殊方式.中学物理的电磁学部分完全可用场的概念统帅起来,静电尝恒定电尝恒定磁尝静磁尝似稳电磁尝迅变电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的各章内容.

“路”是“场”的一种特殊情况.中学教材以“路”为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等.

“场”和“路”之间存在着内在的联系.麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的.“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法.

2.物理知识规律物

理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系.

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来.物理定律的形成,也是在物理概念的基础上进行的.但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性.

第二册第一章“电潮重要的物理规律是库仑定律.库仑定律的实验是在空气中做的,其结果跟在真空中相差很小.其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况.

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律.欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的.欧姆定律的运用有对应关系.电阻是电路的物理性质,适用于温度不变时的金属导体.

“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念.

“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律.在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线.本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础.电磁感应的重点和核心是感应电动势.运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的.

“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步.麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步.

3.通过电磁场在各方面表现的物质属性,使学生建立“世界是物质的”的观点

电现象和磁现象总是紧密联系而不可分割的.大量实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着.电场的基本特性就是对位于场中的其它电荷有力的作用.运动电荷的周围除了电场外还存在着另一种唱—磁场.磁体的周围也存在着磁场.磁场也是一种客观存在的物质.磁场的基本特性就是对处于其中的电流有磁场力的作用.现在,科学实验和广泛的生产实践完全肯定了场的观点,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态.

运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用.所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的.麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场.按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场.电磁场由近及远的传播就形成电磁波.

从场的观点来阐述路.电荷的定向运动形成电流.产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场.导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处.导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷.当导体中电势差不存在时,电流也随之而终止.

二、以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体

1.场的客观存在及其物质性是电学教学中一个极为重要的问题.第一章“电潮是学好电磁学的基础和关键.电场强度、电势、磁尝磁感应强度是反映电、磁场是物质的实质性概念.电场线,磁感线是形象地描述场分布的一种手段.要进行比较,找出两种力线的共性和区别以加强对场的理解.

2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用.在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等.场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度.在电场中用电场力做功,说明场具有能量.通常说“电荷的电势能”是指电荷与电场共同具有的电势能,离开了电场就谈不上电荷的电势能了.

3.认真做好演示实验和学生实验,使“潮抽象的概念形象化,通过演示实验是非常重要的措施.把各种实验做好,不仅使学生易于接受知识和掌握知识,也是基本技能的培养和训练.安排学生自己动手做实验,加强对实验现象的分析,引导学生从实验观察和现象分析中来发展思维能力.从物理学的特点与对中学物理教学提出的要求来看,应着力培养学生的独立实验能力和自学能力,使知识的传授和能力的培养统一在使学生真正掌握科学知识体系上.

电磁学论文范文篇7

一、电磁学教材的整体结构

电磁运动是物质的一种基本运动形式.电磁学的研究范围是电磁现象的规律及其应用.其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等.为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的.透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学.对此,应从以下三个方面来认真分析教材.

1.电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行,这两种方式均在高中教材里体现出来.只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力.

场的方法是研究电磁学的一般方法.场是物质,是物质的相互作用的特殊方式.中学物理的电磁学部分完全可用场的概念统帅起来,静电尝恒定电尝恒定磁尝静磁尝似稳电磁尝迅变电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的各章内容.

“路”是“场”的一种特殊情况.中学教材以“路”为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等.

“场”和“路”之间存在着内在的联系.麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的.“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法.

2.物理知识规律物

理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系.

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来.物理定律的形成,也是在物理概念的基础上进行的.但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性.

第二册第一章“电潮重要的物理规律是库仑定律.库仑定律的实验是在空气中做的,其结果跟在真空中相差很小.其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况.

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律.欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的.欧姆定律的运用有对应关系.电阻是电路的物理性质,适用于温度不变时的金属导体.

“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念.

“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律.在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线.本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础.电磁感应的重点和核心是感应电动势.运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的.

“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步.麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步.

3.通过电磁场在各方面表现的物质属性,使学生建立“世界是物质的”的观点

电现象和磁现象总是紧密联系而不可分割的.大量实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着.电场的基本特性就是对位于场中的其它电荷有力的作用.运动电荷的周围除了电场外还存在着另一种唱—磁场.磁体的周围也存在着磁场.磁场也是一种客观存在的物质.磁场的基本特性就是对处于其中的电流有磁场力的作用.现在,科学实验和广泛的生产实践完全肯定了场的观点,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态.

运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用.所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的.麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场.按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场.电磁场由近及远的传播就形成电磁波.

从场的观点来阐述路.电荷的定向运动形成电流.产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场.导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处.导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷.当导体中电势差不存在时,电流也随之而终止.

二、以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体

1.场的客观存在及其物质性是电学教学中一个极为重要的问题.第一章“电潮是学好电磁学的基础和关键.电场强度、电势、磁尝磁感应强度是反映电、磁场是物质的实质性概念.电场线,磁感线是形象地描述场分布的一种手段.要进行比较,找出两种力线的共性和区别以加强对场的理解.

2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用.在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等.场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度.在电场中用电场力做功,说明场具有能量.通常说“电荷的电势能”是指电荷与电场共同具有的电势能,离开了电场就谈不上电荷的电势能了.

3.认真做好演示实验和学生实验,使“潮抽象的概念形象化,通过演示实验是非常重要的措施.把各种实验做好,不仅使学生易于接受知识和掌握知识,也是基本技能的培养和训练.安排学生自己动手做实验,加强对实验现象的分析,引导学生从实验观察和现象分析中来发展思维能力.从物理学的特点与对中学物理教学提出的要求来看,应着力培养学生的独立实验能力和自学能力,使知识的传授和能力的培养统一在使学生真正掌握科学知识体系上.

电磁学论文范文篇8

一、电磁学教材的整体结构

电磁运动是物质的一种基本运动形式.电磁学的研究范围是电磁现象的规律及其应用.其具体内容包括静电现象、电流现象、磁现象,电磁辐射和电磁场等.为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的.透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学.对此,应从以下三个方面来认真分析教材.

1.电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行,这两种方式均在高中教材里体现出来.只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力.

场的方法是研究电磁学的一般方法.场是物质,是物质的相互作用的特殊方式.中学物理的电磁学部分完全可用场的概念统帅起来,静电尝恒定电尝恒定磁尝静磁尝似稳电磁尝迅变电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的各章内容.

“路”是“场”的一种特殊情况.中学教材以“路”为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等.

“场”和“路”之间存在着内在的联系.麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的.“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法.

2.物理知识规律物

理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系.

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来.物理定律的形成,也是在物理概念的基础上进行的.但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性.

第二册第一章“电潮重要的物理规律是库仑定律.库仑定律的实验是在空气中做的,其结果跟在真空中相差很小.其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况.

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律.欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的.欧姆定律的运用有对应关系.电阻是电路的物理性质,适用于温度不变时的金属导体.

“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念.

“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律.在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线.本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础.电磁感应的重点和核心是感应电动势.运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的.

“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步.麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步.

3.通过电磁场在各方面表现的物质属性,使学生建立“世界是物质的”的观点

电现象和磁现象总是紧密联系而不可分割的.大量实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着.电场的基本特性就是对位于场中的其它电荷有力的作用.运动电荷的周围除了电场外还存在着另一种唱—磁场.磁体的周围也存在着磁场.磁场也是一种客观存在的物质.磁场的基本特性就是对处于其中的电流有磁场力的作用.现在,科学实验和广泛的生产实践完全肯定了场的观点,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态.

运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用.所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的.麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场.按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场.电磁场由近及远的传播就形成电磁波.

从场的观点来阐述路.电荷的定向运动形成电流.产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场.导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处.导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷.当导体中电势差不存在时,电流也随之而终止.

二、以“学科体系的系统性”贯穿始终,使知识学习与智能训练融合于一体

1.场的客观存在及其物质性是电学教学中一个极为重要的问题.第一章“电潮是学好电磁学的基础和关键.电场强度、电势、磁尝磁感应强度是反映电、磁场是物质的实质性概念.电场线,磁感线是形象地描述场分布的一种手段.要进行比较,找出两种力线的共性和区别以加强对场的理解.

2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用.在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等.场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度.在电场中用电场力做功,说明场具有能量.通常说“电荷的电势能”是指电荷与电场共同具有的电势能,离开了电场就谈不上电荷的电势能了.

3.认真做好演示实验和学生实验,使“潮抽象的概念形象化,通过演示实验是非常重要的措施.把各种实验做好,不仅使学生易于接受知识和掌握知识,也是基本技能的培养和训练.安排学生自己动手做实验,加强对实验现象的分析,引导学生从实验观察和现象分析中来发展思维能力.从物理学的特点与对中学物理教学提出的要求来看,应着力培养学生的独立实验能力和自学能力,使知识的传授和能力的培养统一在使学生真正掌握科学知识体系上.

电磁学论文范文篇9

19世纪初叶,不论是对于英国还是欧洲大陆的德国、法国都是可以称为是科学复兴和发展的时期。在欧洲大陆,各国科学思想交流广泛,科学探究方法也普遍得到认同,科学成为了国际性的事业。同时,科学与社会的联系也日益紧密。支配科学方法的那种数学精神也影响了贸易、商业和工业。“科学上的每个进步都增进我们对实际生活中某些可测量现象的驾驭;而实际生活中每个新发展都为科学探究准备了一块新的领域”。

英国虽然也受到德、法两国的影响,但是,同哲学上的德国和科学上的法国相比,英国在本世纪表现得明显的无所建树。这一时期科学在法国可以夸耀的那种组织和保护在英国却闻所未闻。英国科学没有一个中央组织机构,也没有形成什么学派,相反则是独立的个人风格。

在经济方面,英国的资产阶级正处于工业化过程中,他们越来越发现科学发展对技术革新产生的巨大影响。新的技术学院相继建立,企业为其提供资金支持,还设立各种奖金;私人性质的学会和民间组织也可以从个人、企业或国家支持,继而可以从事工业所需的相关科技研究。这样的联系一方面使科学不再是有闲、有钱的阶层的特权,而是作为一种职业存在;另一方面,科学也越来越成为实验室、工厂和市场的差使。自由研究的可能性越来越小,取而代之的是仅仅解决实际生产中技术层面的问题。

在哲学与科学思想方面,英国也受到德国自然哲学兴起的影响。自然哲学是用化学、数学,运用对立、互补、有机结合等概念来解释自然。对立和统一思想就是自然哲学的产物。正是由于这一思想的广泛传播才在科学上引起了一个重要的结果。科学家开始关注多年被视为毫无关系的电现象和磁现象,开始研究电学和磁学以及电、磁之间的相互联系。

二、法拉第及其早年的成长和工作的背景

法拉第出生于伦敦的一个贫民窟,父亲是铁匠。虽然家境贫苦,但幼年的法拉第还是读了几年小学。在那里他学习了基本的读写和算术。这样的基本教育使得法拉第从1804年开始在G.黎堡先生的书店作装订学徒的生活可以变得有意义。他可以阅读所要装订的大量书籍。正是在这长达7年学徒生活中,法拉第读到了I.瓦茨的《意识的改善》,“这本书成了指导法拉第学习的第一位老师”。在装订《大英百科全书》中J.梯特勒撰写的“电学”条目时,法拉第开始对科学产生了最初的兴趣。“他开始在书店的住处做实验,并记实验日记,一直坚持了数十年”。试想如果没有早年的基本读写和算术教育。这些书籍不可能对法拉第走上科学道路产生最初的影响。

法拉第曾在1810年参加了由J.塔特姆组织的“市哲学学会”。“这个学会的成员每星期三在塔特姆家聚会,讨论感兴趣的科学问题、交流将已,听塔特姆作自然哲学讲演”。正是在市哲学学会法拉第完成了他的“基本科学造就”。在获得了力学、电学、光学、化学等基础学科的启蒙之时,他的兴趣也与日俱增的集中于科学。

法拉第在1812年2月~4月听了戴维的四次讲演,他仔细作了笔记,将笔记仔细装订并在当年的12月送给了戴维,明确地表达了从事科学的愿望。1813年在戴维推荐下法拉第成为皇家研究院的实验室助理。至此,法拉第开始了他风云变化的科学历程。

三、电磁感应定律的发现

(一)19世纪20年代电磁学的发展。1820年,奥斯特发现电流磁效应后,物理学界表现了极大的关注,但同时也认为这就是电磁关系的全部内容。1821年英国《哲学年鉴》的主编约请戴维撰写一篇文章,评述奥斯特发现以来电磁学实验的理论发展概况.戴维把这一工作交给了法拉第.法拉第在收集资料的过程中,对电磁现象的研究产生了极大的热情,并开始转向电磁学的研究。1821年,法拉第发现了电磁旋转现象,第一次实现了将电磁力转化为机械力。他仔细地分析了电流的磁效应等现象,1822年他在日记中写下了自己的思想:“磁能转化成电”。与此同时,毕奥与安培对于奥斯特的发现做出回应,他们二人在关于电磁作用力的性质的问题上展开了一场争论。毕奥认为电、磁都是不能变更的实体,在电磁相互作用中得到统

一。而安培则认为电、磁是相同的实体,同一性在电流方面反映出来。法拉第也许从这场争论中隐约看到,处理电磁学方面的问题,力比物质、效应比实体是更为关键的东西。1822年,阿拉果和洪堡在进行地磁强度测定时发现金属可以阻止磁针的振荡。这其实是人类发现的第一个电磁感应现象。1824年阿拉果根据此现象又作了一个实验,将一个铜盘装在一个垂直轴上,让其可以自由旋转,但稍有滞后;反之,当磁针旋转时,铜盘亦然。这就是著名的“阿拉果圆盘实验”。阿拉果本人解释不了这个现象。安培在实验中用通电流的螺线管取代磁针,仍得到阿拉果实验相同的结果。但他没有发现阿拉果圆盘实验反映的是一种全新的事实,而简单的把本来不属于他的电动力学范畴的东西归并入他的理论,使一种已经暴露出来的新现象又重新掩盖起来。

(二)法拉第建立电磁感应定律的过程

早在1825年11月开始,法拉第就设计了三个实验试图找到磁转化为电的证据,但由于他还没有意识到电磁感应中最关键的东西,这三个实验都失败了。如果法拉第先接好电流计,再把电池接于到鲜活螺线管的两端,他就能看到电流计指针转动。

1824~1830年间,英国业余电学家斯特詹、美国的J.亨利和荷兰的G.莫尔等相继对电磁铁作了重大改进,他们都使用蹄形铁芯而获得了比以往更强的磁场。这一系列研究深深的吸引了法拉第。他匆匆忙忙的向皇家学会打报告,请求暂停光学玻璃的研究,以便重新进行放下了多年的电磁研究。

法拉第第一要解决的是寻找一种体积小而效益高的电磁铁。起初,他试图用强磁铁靠近闭合线圈或用强电场使邻近的闭合导线中产生出稳定的电流,但一次次都失败了。他探寻使磁体产生最大张力的最好形状是什么,最后他可能作了这样的设想,蹄形电磁铁比棒形电磁铁的能力强,若将铁芯做成环形,可能会获得更高的能力。(这种封闭型电磁铁实为人类的第一个变压器)1831年8月26日,法拉第在日记中描述了线圈的样子。厚7/8英寸,外环直径6英寸的软铁环上绕上两个彼此绝缘的线圈A和B。B的两端用导线连接成闭合回路,在导线的下面放置一个与导线平行的小磁针(相距3英尺);A和一个电池组连接在一个开关上(这个线圈现存于伦敦皇家学会,线圈上仍带有法拉第当年给它们写上的标号A和B)1831年8月29日,法拉第在进行这一实验时偶然发现,当开关合上有电流通过线圈A的瞬间,小磁针发生了偏转,随后又停在原来的位置上,当开关断开时,磁针又发生了偏转。这个实验成功的关键是他先把B边的线圈短路,而后才把电池接到A边的线圈上。如果实验程序刚好相反,什么效应也观察不到了。法拉第把这一现象称为“伏打电感应”。法拉第此时还没有明确的领悟到这一现象是暂态性的。他以为A边接上电流以后B边附近的磁针会持续偏转,但实验表现的是磁针的瞬时的扰动,而后很快又静止在原先的位置上,不管电池接上的时间有多长。在1831年10月17日,法拉第开始了电磁感应的第二阶段的实验。他在一个直径为3/4英寸、长为8英寸的空心纸筒上绕8个线圈,并将这8个线圈并联起来,再与一个电流计连接。当他把一根磁棒插入纸筒时,他惊喜的发现,电流计指针忽的偏转起来,然后很快又回到平衡位置;当他把磁棒抽出纸筒时,指针又忽的转向另一边,然后很快就又回到平衡位置。每次把磁棒插入或抽出时,这种效应都会出现。法拉第通过这个实验看出,不仅伏打电池在关和断的瞬时可以激发电流,磁体相对于线圈的运动也能激发电流。他称这种现象为“磁感应”。法拉第仍不满足这个实验,他希望用更大磁铁进一步实验,当时伦敦皇家学会的大磁铁防在克里斯提家里。法拉第预先做好一根直径为3/4英寸、长13英寸的软铁柱和一个套在软铁柱上的螺线管(称之为“0线圈”)。1831年10月28日,他带着这些东西登门实验。他对实验做了如下记录:“将软铁柱(接在蹄形磁铁的)两个磁极上,当电流计与导线还未连接时,电流计受影响甚微,以至无法感知。但是,当导线(与电流计)连接后,一旦断开或接通与软铁柱的磁接触时,一种强大的推力就迫使电流计指针来回振荡多次。”“将0线圈忽然带进磁铁的大磁极之间,它里面没有铁棒,这是(电流计)指针受到强烈影响。若一旦将它抽出,就会发生与前面情况一样的结果。”同一天法拉第还做了一个旋转通盘实验,N、S表示蹄形磁铁的两极,D为可绕轴在垂直平面内旋转的铜盘。他又在一个电流计的两个接线柱上接上两个电刷,当使铜盘旋转起来后,将两个电刷分别防在铜盘的各个部位,以测定产生感应电流的最佳方向。经过反复实验,法拉第发现只要转动铜盘,便可以在铜盘轴心和边缘两处引出电场,只要铜盘保持不停的恒速旋转,产生的电流就一直是稳定不变的。这个装置其实是人类的第一台直流发电机。

至此,法拉第不仅实现了由永久磁体产生电流的设想,而且完全弄明白了这种转化的暂态性。1831年11月24日,法拉第在伦敦皇家学会宣读了他的《电学实验研究》第一辑的四篇论文。法拉第在这组论文中总结了他对电磁感应的发现,提出了“电紧张态”和“磁力线”两个新概念,在此基础上总结电磁感应定律,并完美的解释了阿拉果圆盘实验。

从1821年的电磁旋转实验到1831年正式完成电磁感应定律有十年之久。其实这段时间法拉第的主要精力都用在合金钢和光学玻璃的研制。实际的工业上的需要占据了他的大部分研究时间。这一时期法拉第所写的论文、日记及信件,涉及到电磁学问题的寥寥可数。这是电磁感应定律在奥斯特发现电流的磁效应后十年才被发现的原因之一。

【参考文献】

[1](英)梅尔茨.十九世纪欧洲思想史(第一卷)[M].北京:商务印书馆,1999.

[2]钱临照,许良英.世界著名科学家传记Ⅲ[M].北京:科学出版社,1994.

[3]约瑟夫·阿盖西.法拉第传[M].北京:商务印书馆,2002.

[4]M.H.沙摩斯.物理史上的重要实验[M].北京:科学出版社,1985.

电磁学论文范文篇10

【关键词】法拉第;电磁感应;皇家研究院

一、19世纪初英国的科学、哲学与社会

19世纪初叶,不论是对于英国还是欧洲大陆的德国、法国都是可以称为是科学复兴和发展的时期。在欧洲大陆,各国科学思想交流广泛,科学探究方法也普遍得到认同,科学成为了国际性的事业。同时,科学与社会的联系也日益紧密。支配科学方法的那种数学精神也影响了贸易、商业和工业。“科学上的每个进步都增进我们对实际生活中某些可测量现象的驾驭;而实际生活中每个新发展都为科学探究准备了一块新的领域”。

英国虽然也受到德、法两国的影响,但是,同哲学上的德国和科学上的法国相比,英国在本世纪表现得明显的无所建树。这一时期科学在法国可以夸耀的那种组织和保护在英国却闻所未闻。英国科学没有一个中央组织机构,也没有形成什么学派,相反则是独立的个人风格。

在经济方面,英国的资产阶级正处于工业化过程中,他们越来越发现科学发展对技术革新产生的巨大影响。新的技术学院相继建立,企业为其提供资金支持,还设立各种奖金;私人性质的学会和民间组织也可以从个人、企业或国家支持,继而可以从事工业所需的相关科技研究。这样的联系一方面使科学不再是有闲、有钱的阶层的特权,而是作为一种职业存在;另一方面,科学也越来越成为实验室、工厂和市场的差使。自由研究的可能性越来越小,取而代之的是仅仅解决实际生产中技术层面的问题。

在哲学与科学思想方面,英国也受到德国自然哲学兴起的影响。自然哲学是用化学、数学,运用对立、互补、有机结合等概念来解释自然。对立和统一思想就是自然哲学的产物。正是由于这一思想的广泛传播才在科学上引起了一个重要的结果。科学家开始关注多年被视为毫无关系的电现象和磁现象,开始研究电学和磁学以及电、磁之间的相互联系。

二、法拉第及其早年的成长和工作的背景

法拉第出生于伦敦的一个贫民窟,父亲是铁匠。虽然家境贫苦,但幼年的法拉第还是读了几年小学。在那里他学习了基本的读写和算术。这样的基本教育使得法拉第从1804年开始在G.黎堡先生的书店作装订学徒的生活可以变得有意义。他可以阅读所要装订的大量书籍。正是在这长达7年学徒生活中,法拉第读到了I.瓦茨的《意识的改善》,“这本书成了指导法拉第学习的第一位老师”。在装订《大英百科全书》中J.梯特勒撰写的“电学”条目时,法拉第开始对科学产生了最初的兴趣。“他开始在书店的住处做实验,并记实验日记,一直坚持了数十年”。试想如果没有早年的基本读写和算术教育。这些书籍不可能对法拉第走上科学道路产生最初的影响。

法拉第曾在1810年参加了由J.塔特姆组织的“市哲学学会”。“这个学会的成员每星期三在塔特姆家聚会,讨论感兴趣的科学问题、交流将已,听塔特姆作自然哲学讲演”。正是在市哲学学会法拉第完成了他的“基本科学造就”。在获得了力学、电学、光学、化学等基础学科的启蒙之时,他的兴趣也与日俱增的集中于科学。

法拉第在1812年2月~4月听了戴维的四次讲演,他仔细作了笔记,将笔记仔细装订并在当年的12月送给了戴维,明确地表达了从事科学的愿望。1813年在戴维推荐下法拉第成为皇家研究院的实验室助理。至此,法拉第开始了他风云变化的科学历程。

三、电磁感应定律的发现

(一)19世纪20年代电磁学的发展。1820年,奥斯特发现电流磁效应后,物理学界表现了极大的关注,但同时也认为这就是电磁关系的全部内容。1821年英国《哲学年鉴》的主编约请戴维撰写一篇文章,评述奥斯特发现以来电磁学实验的理论发展概况.戴维把这一工作交给了法拉第.法拉第在收集资料的过程中,对电磁现象的研究产生了极大的热情,并开始转向电磁学的研究。1821年,法拉第发现了电磁旋转现象,第一次实现了将电磁力转化为机械力。他仔细地分析了电流的磁效应等现象,1822年他在日记中写下了自己的思想:“磁能转化成电”。与此同时,毕奥与安培对于奥斯特的发现做出回应,他们二人在关于电磁作用力的性质的问题上展开了一场争论。毕奥认为电、磁都是不能变更的实体,在电磁相互作用中得到统

一。而安培则认为电、磁是相同的实体,同一性在电流方面反映出来。法拉第也许从这场争论中隐约看到,处理电磁学方面的问题,力比物质、效应比实体是更为关键的东西。1822年,阿拉果和洪堡在进行地磁强度测定时发现金属可以阻止磁针的振荡。这其实是人类发现的第一个电磁感应现象。1824年阿拉果根据此现象又作了一个实验,将一个铜盘装在一个垂直轴上,让其可以自由旋转,但稍有滞后;反之,当磁针旋转时,铜盘亦然。这就是著名的“阿拉果圆盘实验”。阿拉果本人解释不了这个现象。安培在实验中用通电流的螺线管取代磁针,仍得到阿拉果实验相同的结果。但他没有发现阿拉果圆盘实验反映的是一种全新的事实,而简单的把本来不属于他的电动力学范畴的东西归并入他的理论,使一种已经暴露出来的新现象又重新掩盖起来。

(二)法拉第建立电磁感应定律的过程

早在1825年11月开始,法拉第就设计了三个实验试图找到磁转化为电的证据,但由于他还没有意识到电磁感应中最关键的东西,这三个实验都失败了。如果法拉第先接好电流计,再把电池接于到鲜活螺线管的两端,他就能看到电流计指针转动。

都使用蹄形铁芯而获得了比以往更强的磁场。这一系列研究深深的吸引了法拉第。他匆匆忙忙的向皇家学会打报告,请求暂停光学玻璃的研究,以便重新进行放下了多年的电磁研究。

法拉第第一要解决的是寻找一种体积小而效益高的电磁铁。起初,他试图用强磁铁靠近闭合线圈或用强电场使邻近的闭合导线中产生出稳定的电流,但一次次都失败了。他探寻使磁体产生最大张力的最好形状是什么,最后他可能作了这样的设想,蹄形电磁铁比棒形电磁铁的能力强,若将铁芯做成环形,可能会获得更高的能力。(这种封闭型电磁铁实为人类的第一个变压器)1831年8月26日,法拉第在日记中描述了线圈的样子。厚7/8英寸,外环直径6英寸的软铁环上绕上两个彼此绝缘的线圈A和B。B的两端用导线连接成闭合回路,在导线的下面放置一个与导线平行的小磁针(相距3英尺);A和一个电池组连接在一个开关上(这个线圈现存于伦敦皇家学会,线圈上仍带有法拉第当年给它们写上的标号A和B)1831年8月29日,法拉第在进行这一实验时偶然发现,当开关合上有电流通过线圈A的瞬间,小磁针发生了偏转,随后又停在原来的位置上,当开关断开时,磁针又发生了偏转。这个实验成功的关键是他先把B边的线圈短路,而后才把电池接到A边的线圈上。如果实验程序刚好相反,什么效应也观察不到了。法拉第把这一现象称为“伏打电感应”。法拉第此时还没有明确的领悟到这一现象是暂态性的。他以为A边接上电流以后B边附近的磁针会持续偏转,但实验表现的是磁针的瞬时的扰动,而后很快又静止在原先的位置上,不管电池接上的时间有多长。在1831年10月17日,法拉第开始了电磁感应的第二阶段的实验。他在一个直径为3/4英寸、长为8英寸的空心纸筒上绕8个线圈,并将这8个线圈并联起来,再与一个电流计连接。当他把一根磁棒插入纸筒时,他惊喜的发现,电流计指针忽的偏转起来,然后很快又回到平衡位置;当他把磁棒抽出纸筒时,指针又忽的转向另一边,然后很快就又回到平衡位置。每次把磁棒插入或抽出时,这种效应都会出现。法拉第通过这个实验看出,不仅伏打电池在关和断的瞬时可以激发电流,磁体相对于线圈的运动也能激发电流。他称这种现象为“磁感应”。法拉第仍不满足这个实验,他希望用更大磁铁进一步实验,当时伦敦皇家学会的大磁铁防在克里斯提家里。法拉第预先做好一根直径为3/4英寸、长13英寸的软铁柱和一个套在软铁柱上的螺线管(称之为“0线圈”)。1831年10月28日,他带着这些东西登门实验。他对实验做了如下记录:“将软铁柱(接在蹄形磁铁的)两个磁极上,当电流计与导线还未连接时,电流计受影响甚微,以至无法感知。但是,当导线(与电流计)连接后,一旦断开或接通与软铁柱的磁接触时,一种强大的推力就迫使电流计指针来回振荡多次。”“将0线圈忽然带进磁铁的大磁极之间,它里面没有铁棒,这是(电流计)指针受到强烈影响。若一旦将它抽出,就会发生与前面情况一样的结果。”同一天法拉第还做了一个旋转通盘实验,N、S表示蹄形磁铁的两极,D为可绕轴在垂直平面内旋转的铜盘。他又在一个电流计的两个接线柱上接上两个电刷,当使铜盘旋转起来后,将两个电刷分别防在铜盘的各个部位,以测定产生感应电流的最佳方向。经过反复实验,法拉第发现只要转动铜盘,便可以在铜盘轴心和边缘两处引出电场,只要铜盘保持不停的恒速旋转,产生的电流就一直是稳定不变的。这个装置其实是人类的第一台直流发电机。

至此,法拉第不仅实现了由永久磁体产生电流的设想,而且完全弄明白了这种转化的暂态性。1831年11月24日,法拉第在伦敦皇家学会宣读了他的《电学实验研究》第一辑的四篇论文。法拉第在这组论文中总结了他对电磁感应的发现,提出了“电紧张态”和“磁力线”两个新概念,在此基础上总结电磁感应定律,并完美的解释了阿拉果圆盘实验。

从1821年的电磁旋转实验到1831年正式完成电磁感应定律有十年之久。其实这段时间法拉第的主要精力都用在合金钢和光学玻璃的研制。实际的工业上的需要占据了他的大部分研究时间。这一时期法拉第所写的论文、日记及信件,涉及到电磁学问题的寥寥可数。这是电磁感应定律在奥斯特发现电流的磁效应后十年才被发现的原因之一。

【参考文献】

[1](英)梅尔茨.十九世纪欧洲思想史(第一卷)[M].北京:商务印书馆,1999.

[2]钱临照,许良英.世界著名科学家传记Ⅲ[M].北京:科学出版社,1994.