滑块数控加工论文

时间:2022-05-06 02:34:14

滑块数控加工论文

1工艺制订

案例工件加工面积较大,机加工会产生较大的内应力,内应力较大而未及时予以去除时,会导致工件在运动过程中容易产生变形甚至形成裂纹,因而需要热处理去应力,这就需要机加工时考虑热处理后的装夹、碰数问题,将整个加工过程分成两个阶段:热处理前及热处理后。热处理前需去除大部分材料,只留精加工余量;热处理后需要清除预留的材料,并得到在精度要求范围内的最终零件,精加工使用加工精度较高的德马吉DMC64Iinear加工中心,有效行程640mm×600mm,数控系统为FANUC180i-MB,主轴最高转速12000r/min。热处理前的粗加工分正面、背面、及两侧面四个方位的加工,因热处理去应力后,工件会有所变形,需重新以一个准确的参考基准作为加工碰数基准,像这种大滑块一般以基准角碰数,这就需要一个准确的基准角。粗加工时,预留顶面材料,其平面作为热处理后研磨支撑平面,热处理后可通过磨床,研磨加工出基准角的三个基准面,研磨量为0.2mm,保证其垂直度。热处理后的精加工时,加工方位与热处理前一样,但因背部材料已去除,工件正面加工时(胶位面方向)如何装夹是要考虑的问题。如果用虎钳夹住尾部平位加工,其尾部平位与高度比为60∶322,大概为其总高度的1/6,有2/3的重量处于悬空状态,且正面有较多的材料需要去除,受力不均匀,容易在角位处产生较大内应力,有可能会产生变形或裂纹,并且这么大的滑块装夹、拖表不方便,对机床要求也较高,需要考虑其他装夹工艺。解决方案是在加工背部耐磨片槽时预留工艺凸台,这样在正面加工时可用工装板及垫块紧固装夹固定,其好处是装夹、对数方便,并能较好地平衡加工时的作用力,实用性强。热处理后精加工时,因正面已粗加工,按精加工时的方法将无法装夹固定,这时可考虑使用直角弯板装夹,在数控铣床上去除工艺台背面粗加工时,耐磨片槽后部有一大块相边区域需要去除材料,其尺寸达到261.5mm×174.8mm×280mm,常规的数控加工,需要用刀具一层层的切削,必定会占去较长的加工时间,并且损耗刀具,生产效率不高。通过分析对比,用线切割加工较为合适,不但能得到一块实用的材料,而且省下很多的时间,同时考虑工艺台,这样线割时将一起切割出来,留0.5mm作为热处理后精加工余量,这样背面方位加工只需加工耐磨片槽,大大节省时间,一举多得。

2滑块的数控加工

编程分热处理前的粗加工及热处理后的精加工,按不同的方位加工顶面方位、背面方位及正面方位。热处理前粗加工需要去除大部分材料,考虑装夹加工工艺,预留部分材料到热处理后,粗加工整体留预量0.3mm。因篇幅关系,下文重点介绍正面方位的数控编程加工,编程软件为UGNX7.5,机床使用德马吉DMC64Iinear加工中心,数控系统为FANUC180i-MB,主轴最高转速为12000r/min。正面装夹如图4所示,将已线切割余料的工件,通过螺钉与工装板、垫块紧固为整体,并固定于机床工作台上,基准角对刀。

(1)热处理前粗加工

加工编程前先设定加工坐标系、安全平面、材料毛坯及加工工件,粗加工使用型腔铣削加工,该模块提供粗切单个或多个型腔、沿任意形状切去大量毛坯材料以及可以加工出型芯的全部功能,最突出的功能是对非常复杂的形状产生刀具运动轨迹,确定走刀方式。零件正面方位的型腔铣削粗加工,加工余量0.3mm,用40R6的圆鼻刀完成主体大部分材料的去除工作,切削模式为跟随部件,封闭区域用螺旋进刀,开放区域用圆弧进刀,区域间的快速移刀为到达安全平面,区域内为前一平面;切削深度为顶面开始深70mm,每刀公共深度为恒定0.3mm,主轴转速为1800r/min,进给为2000mm/min。再采用35R5的圆鼻刀完成次级窄角位的材料的去除工作,加工方法设置与上述40R6刀具一样,控制切削范围,使用参考刀具42R8,对40R6未能加工的区域进行补刀。接着可用更小的刀具进行更小窄角位的材料去除工作,但因粗加工后需要热处理去应力,去应力并不会增加材料硬度,部分更窄角位的余料对整体应力影响不大,为减少工作量,提高加工效率,可不需要进一步粗加工。

(2)热处理后半精加工

热处理后材料已去除应力,可完全去除多余材料,但工件表面有变形,需通过磨床研磨加工,重新定好基准。研磨好三个基准面及工艺台面后,按图4所示正面装夹好,整体固定于德马吉DMC64Iinear加工中心上。因滑块正面为产品的表面,要求较高,且正面各层陡峭不一样,可通过切削层深度控制切削范围,分段进行加工,减少移刀时间,优化刀路。如图9所示,先用30R5圆鼻刀进行半精加工,去除热处理前的窄角位材料,切削模式使用轮廓铣加工,切削层深度0.3mm,切削余量为0.3mm,控制切削层深度为0~60mm,完成顶部较凸出部分的清角加工;接着用同样的刀具及加工参数控制切削深度为60~70mm,完成中间较平表面的加工;延续刀具及加工方法,控制切削深度为70~140mm,完成侧面垂直面的加工。完成上述刀路后,正面大部分余料已去除,但更窄角位处还有余量,延续上述的加工方法,使用型腔铣模块轮廓铣进一步清角,如图10所示,先用16R0.8的圆鼻刀,再用10R5、6R3的圆鼻刀逐级递减更换更小的刀具进行清角,进一步减少余量。完成窄角位半精加工后,延续半精加工的装夹方法,在同一机床上进行整体表面精加工,以减少装夹对刀过程中的误差。这里采用固定轴铣削加工,该模块提供了完全和综合的,用于产生3轴运动的刀具路径,实际上它能加工任何曲面模型和实体模型,可以用功能很强的方法来选择零件需要加工的表面或加工部位。有多种驱动方法和走刀方式可供选择,如沿边界、径向、螺旋线以及沿用户定义的方向驱动,此外,还可以容易地识别前道工序未能切除的区域和陡峭区,快速完成清除上一次加工的余量,提高工件的加工质量,使精加工时均匀切削。

3结束语

对于复杂、大型零件的机械加工,其工艺流程的编排是非常重要的。工艺编排时要综合考虑本身的机加工设备及能力,熟悉各工种各工序的加工需要及其加工精度,统一加工基准、装夹定位基准,才能得到更高的几何精度及尺寸精度,同时也提高生产效率降低生产成本。

作者:邹炳辉单位:广东省人力资源社会保障厅职业技能鉴定中心