无铅电子范文10篇

时间:2023-03-30 05:12:47

无铅电子

无铅电子范文篇1

J.Reachen

伴随欧洲电子电气设备指导法令(WEEEDirective)宣布到2006年部分含铅电子设备的生产和进口在欧盟将属非法,以及国外同业竞争者在全球不断推广无铅电子装配,相伴而生的对各种合金混合物的完好性和可靠性等问题的考虑越来越受到重视。简言之,到底选用哪种合金,这一问题变得越来越紧要。本文将对Sn/Ag、Sn/Ag/Cu和Sn/Cu等三种合金做深入考察,并对其可靠性试验结果与工艺上的考虑进行比较。

Sn/Ag合金

Sn/Ag3.5-4.0合金在混合电路与电子组装工业的使用时间较长。正因如此,部分业者对使用Sn/Ag作为一种无铅替代合金感觉得心应手。但不巧的是这种合金存在几方面的问题。首先这种合金的熔融温度(221度)和峰值回流温度(2400-260度)对于许多表面安装部件和过程来说显得偏高。此外,这种合金还含有3.5-4%的银,对某些应用构成成本制约。而最主要的问题是这种合金会产生银相变问题从而造成可靠性试验失效。

我们注意到,在进行疲劳试验(结果如表1)时,Sn96/Ag4在其中一种循环设置上产生了失效。对此问题作进一步研究得出的结论是:失效起因于相变。相变的产生是因合金的不同区有着不同的冷却速率而致。

为对此问题进行深入研究,用一根Sn96/Ag4焊条,从底部对其进行回流加热及强制冷却,以便对其暴露在不同冷却速率下的合金的微结构进行观察。Sn96/Ag4合金按冷却速率的不同产生三种不同的相。由此考虑同样的脆性结构会存在于焊接互连中,从而造成焊区失效。正是由于这种原因,大多数OEM及工业财团反对把Sn/Ag作为主流无铅合金来用。银相变问题的存在也对高银Sn/Ag/Cu合金提出了质问。

Sn/Ag/Cu合金

尽管涉及专利保护方面的问题,世界大部分地区还是倾向选用Sn/Ag/Cu合金。但到底选择什么样的合金配方?本文将重点讨论两种Sn/Ag/Cu合金:受各种工业财团推崇的Sn/Ag/Cu0.5合金和相应的用作低银含量合金的Sn/Ag2.5/Cu0.7/Sb0.5。

两种Sn/Ag/Cu合金的比较

在讨论两种合金体系的可靠性试验结果之前,先凭经验对两种合金作一比较是有益的。大体上看两种合金很相似:两者都具有极好的抗疲劳特性、良好的整体焊点连接强度以及充足的基础材料供应。但两者之间确也存在一些细微的差异值得讨论。

熔点

两合金的熔点极为相似:Sn/Ag4/Cu0.5熔点为218度,Sn/Ag2.5/Cu0.7/Sb0.5熔点为217度。业界对这种差异是否构成对实际应用的影响存在争议。但如能对回流过程严格控制,熔点温度变低会因减少元件耐受高温的时间而带来益处。

润湿

两种合金比较,自然地会对选择高银含量合金的做法抱有疑问,因为银含量变高会增加产品成本。有臆测认为高银合金有助于改进润湿。但润湿试验结果显示,低银含量合金实际上比高银合金润湿更强健和更迅速。

专利态势

工业界渴望找到一种广泛可获的合金。因此,专利合金是不大受欢迎的。尽管Sn/Ag4/Cu0.5合金没有申请专利,而Sn/Ag2.5/Cu0.7/Sb0.5已申请了专利,但选择时需要全面了解两种合金的专利约束作用和实际供应源情况才好确定。

上面已谈到,Sn/Ag2.5/Cu0.7/Sb0.5合金已获专利。但它已授权给焊料制造商使用,对授权使用者无数量限制和无转让费用。目前,这一合金可通过北美、日本和欧洲的数家焊料厂商在全球范围内获取。尽管Sn/Ag4/Cu0.5合金没有申请专利,但用这种合金制成的焊点连接是有专利的,而在美国具有这种产品销售授权的电子级焊料厂商的数量极为有限。

尽管用Sn/Ag4/Cu0.5制作的焊点有可能侵犯现有的专利权,但业界还是建议使用这种合金。人们曾假想地认为,通过给这种系统施加预先工艺可以避开专利纠纷。但这种想法是错误的,因为大多数的专利说明都会涉及合金成份和应用范围(焊点)两部分内容。换句话说,如果预先工艺能够得到证实,突破专利的合金成份限制是可能的。但如果专利说明做得很完善,那么还需向声明了电子装配焊接特定用法的应用部分进行挑战。总的来说,这意味着即使制造商正在使用一种专利规定范围(如Sn/Ag4/Cu0.5)以外的合金,但如果在制造过程中,此合金"偶获"基础金属成分(一般为铜)并因而形成一种含有专利规定范围内的成份构成的金属间化合物的话,那么该制造商就会因侵犯了专利权而受到法律的裁决。

金属成本

专利载明的银含量范围为3.5%-7.7%。如此高的银含量使得焊料的大量使用变得成本高昂;装填波峰焊锅时,每1%的银大约使成本增加0.66美元/磅(见表2)。为控制成本,有人建议在波峰焊应用中使用不含银的无铅合金,在表面安装应用中使用含银合金。但正如下面所要讨论的,使用这种方法会因Sn/Cu和双合金工艺存在不足而造成失效。

Sn/Cu的工艺缺陷

遏制成本的想法虽说合情合理,但引用Sn/Cu需要考虑几方面的因素。第一,此合金的熔融温度为227度,使其在许多温度敏感应用上受限。此外,它比其它无铅焊料的湿润性差,在许多应用中需引入氮和强活性助焊剂并可造成与润湿相关的缺陷,这点已得到广泛证明。还有,一般来讲Sn/Cu表面张力作用较低,在实施PTH技术时容易进入套孔(barrel)中,且缺乏表面安装装配过程所要求的耐疲劳强度。最后一点,该合金的耐疲劳特性差,可导致焊区失效,从而抵销了节省成本的初衷。

双合金装配

还应注意的是,除Sn/Cu引起相关问题外,使用双焊料合金(SMT过程使用Sn/Ag/Cu,波峰焊使用Sn/Cu)也存在问题。Sn/Ag/Cu、Sn/Cu混用不宜提倡,因为这会造成合金焊点连接的不均匀性。如果这一情形出现,那么制成的焊点会因不能消除应力和应变而易产生疲劳失效。由于存在这些潜在的混用问题,因此在进行修复或修补时就需要开列两种合金的存货清单,并给出具体的指令进行监控,以使两合金不发生混用。然而,经验显示,不论对这种情形监控得多好,操作员都会趋向使用易用性最好也即流动性最好且熔融温度较低的焊料。因此,尽管焊点最初由Sn/Cu来装配,但大量修补工作可能会用Sn/Ag/Cu合金来完成。如果两种产品都在生产现场使用,那么RA会常用到,不只是好用的问题。双合金装配工艺的要害问题是会导致潜在的可靠性失效且很难对此进行有效地监控。

焊点连接的可靠性试验

为分析Sn/Ag/Cu和Sn/Cu的可靠性,对它们进行各种热和机械疲劳试验。试验描述和试验结果如下:

热循环试验结果

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作。之后在-40度到125度的温度范围内,以300、400、500次的15分循环量对该板施以热冲击。然后将焊点分切,检查是否存在裂痕。

试验后检查的结果显示,Sn/Cu合金由于湿润性不好导致某些断裂焊点的产生。此外,成形很好的Sn/Cu焊点在施以第三种500次重复循环设置的试验时,也显示有断裂。

有意思的是Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5合金在经历高达500次重复的试验后没有任何断裂迹象。这显示出Sn/Ag/Cu合金具有Sn/Cu无法比拟的极为优异的耐热疲劳性。但需要注意的是,Sn/Ag4/Cu0.5合金在经过热循环处理后焊点的晶粒(grain)结构的确产生了一些变化。

机械强度-挠性测试

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作,对它进行挠性测试。用Sn/Cu0.7制作的焊点在挠性测试中产生断裂,这显示焊点不能承受大范围的机械应力处理。相反由Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5制作的焊点却满足所有的挠性测试要求。

混合解决方案?

为消除电子行业存在的隐患,已开发出了一种完全无铅装配的混合解决方案。她用粗糙的锡铅成品(QFP208IC)、有机表面保护剂PWB和Sn/Ag2.5/Cu0.7/Sb0.5合金焊膏构成系统,以复杂性或成本都不太高的方式达到了完全无铅装配的目的。取得成功的关键是这种装配方法能够承受峰值温度为234度的回流加热。需要注意的是,这种装配方法要经过惰性环境的处理。当然,限于元件的效用性问题,以及由元件热容、夹具固定等原因引起?=T变化而造成事实上不是所有的装配过程都能达到234度的峰值板温度,因此不是所有装配都能够进行上述处理。但它给我们的重要提示是,在某些情形下,通过引入某些材料,实现无铅焊接可以变得轻而易举。

无铅电子范文篇2

J.Reachen

伴随欧洲电子电气设备指导法令(WEEEDirective)宣布到2006年部分含铅电子设备的生产和进口在欧盟将属非法,以及国外同业竞争者在全球不断推广无铅电子装配,相伴而生的对各种合金混合物的完好性和可靠性等问题的考虑越来越受到重视。简言之,到底选用哪种合金,这一问题变得越来越紧要。本文将对Sn/Ag、Sn/Ag/Cu和Sn/Cu等三种合金做深入考察,并对其可靠性试验结果与工艺上的考虑进行比较。

Sn/Ag合金

Sn/Ag3.5-4.0合金在混合电路与电子组装工业的使用时间较长。正因如此,部分业者对使用Sn/Ag作为一种无铅替代合金感觉得心应手。但不巧的是这种合金存在几方面的问题。首先这种合金的熔融温度(221度)和峰值回流温度(2400-260度)对于许多表面安装部件和过程来说显得偏高。此外,这种合金还含有3.5-4%的银,对某些应用构成成本制约。而最主要的问题是这种合金会产生银相变问题从而造成可靠性试验失效。

我们注意到,在进行疲劳试验(结果如表1)时,Sn96/Ag4在其中一种循环设置上产生了失效。对此问题作进一步研究得出的结论是:失效起因于相变。相变的产生是因合金的不同区有着不同的冷却速率而致。

为对此问题进行深入研究,用一根Sn96/Ag4焊条,从底部对其进行回流加热及强制冷却,以便对其暴露在不同冷却速率下的合金的微结构进行观察。Sn96/Ag4合金按冷却速率的不同产生三种不同的相。由此考虑同样的脆性结构会存在于焊接互连中,从而造成焊区失效。正是由于这种原因,大多数OEM及工业财团反对把Sn/Ag作为主流无铅合金来用。银相变问题的存在也对高银Sn/Ag/Cu合金提出了质问。

Sn/Ag/Cu合金

尽管涉及专利保护方面的问题,世界大部分地区还是倾向选用Sn/Ag/Cu合金。但到底选择什么样的合金配方?本文将重点讨论两种Sn/Ag/Cu合金:受各种工业财团推崇的Sn/Ag/Cu0.5合金和相应的用作低银含量合金的Sn/Ag2.5/Cu0.7/Sb0.5。

两种Sn/Ag/Cu合金的比较

在讨论两种合金体系的可靠性试验结果之前,先凭经验对两种合金作一比较是有益的。大体上看两种合金很相似:两者都具有极好的抗疲劳特性、良好的整体焊点连接强度以及充足的基础材料供应。但两者之间确也存在一些细微的差异值得讨论。

熔点

两合金的熔点极为相似:Sn/Ag4/Cu0.5熔点为218度,Sn/Ag2.5/Cu0.7/Sb0.5熔点为217度。业界对这种差异是否构成对实际应用的影响存在争议。但如能对回流过程严格控制,熔点温度变低会因减少元件耐受高温的时间而带来益处。

润湿

两种合金比较,自然地会对选择高银含量合金的做法抱有疑问,因为银含量变高会增加产品成本。有臆测认为高银合金有助于改进润湿。但润湿试验结果显示,低银含量合金实际上比高银合金润湿更强健和更迅速。

专利态势

工业界渴望找到一种广泛可获的合金。因此,专利合金是不大受欢迎的。尽管Sn/Ag4/Cu0.5合金没有申请专利,而Sn/Ag2.5/Cu0.7/Sb0.5已申请了专利,但选择时需要全面了解两种合金的专利约束作用和实际供应源情况才好确定。

上面已谈到,Sn/Ag2.5/Cu0.7/Sb0.5合金已获专利。但它已授权给焊料制造商使用,对授权使用者无数量限制和无转让费用。目前,这一合金可通过北美、日本和欧洲的数家焊料厂商在全球范围内获取。尽管Sn/Ag4/Cu0.5合金没有申请专利,但用这种合金制成的焊点连接是有专利的,而在美国具有这种产品销售授权的电子级焊料厂商的数量极为有限。

尽管用Sn/Ag4/Cu0.5制作的焊点有可能侵犯现有的专利权,但业界还是建议使用这种合金。人们曾假想地认为,通过给这种系统施加预先工艺可以避开专利纠纷。但这种想法是错误的,因为大多数的专利说明都会涉及合金成份和应用范围(焊点)两部分内容。换句话说,如果预先工艺能够得到证实,突破专利的合金成份限制是可能的。但如果专利说明做得很完善,那么还需向声明了电子装配焊接特定用法的应用部分进行挑战。总的来说,这意味着即使制造商正在使用一种专利规定范围(如Sn/Ag4/Cu0.5)以外的合金,但如果在制造过程中,此合金"偶获"基础金属成分(一般为铜)并因而形成一种含有专利规定范围内的成份构成的金属间化合物的话,那么该制造商就会因侵犯了专利权而受到法律的裁决。

金属成本

专利载明的银含量范围为3.5%-7.7%。如此高的银含量使得焊料的大量使用变得成本高昂;装填波峰焊锅时,每1%的银大约使成本增加0.66美元/磅(见表2)。为控制成本,有人建议在波峰焊应用中使用不含银的无铅合金,在表面安装应用中使用含银合金。但正如下面所要讨论的,使用这种方法会因Sn/Cu和双合金工艺存在不足而造成失效。

Sn/Cu的工艺缺陷

遏制成本的想法虽说合情合理,但引用Sn/Cu需要考虑几方面的因素。第一,此合金的熔融温度为227度,使其在许多温度敏感应用上受限。此外,它比其它无铅焊料的湿润性差,在许多应用中需引入氮和强活性助焊剂并可造成与润湿相关的缺陷,这点已得到广泛证明。还有,一般来讲Sn/Cu表面张力作用较低,在实施PTH技术时容易进入套孔(barrel)中,且缺乏表面安装装配过程所要求的耐疲劳强度。最后一点,该合金的耐疲劳特性差,可导致焊区失效,从而抵销了节省成本的初衷。

双合金装配

还应注意的是,除Sn/Cu引起相关问题外,使用双焊料合金(SMT过程使用Sn/Ag/Cu,波峰焊使用Sn/Cu)也存在问题。Sn/Ag/Cu、Sn/Cu混用不宜提倡,因为这会造成合金焊点连接的不均匀性。如果这一情形出现,那么制成的焊点会因不能消除应力和应变而易产生疲劳失效。由于存在这些潜在的混用问题,因此在进行修复或修补时就需要开列两种合金的存货清单,并给出具体的指令进行监控,以使两合金不发生混用。然而,经验显示,不论对这种情形监控得多好,操作员都会趋向使用易用性最好也即流动性最好且熔融温度较低的焊料。因此,尽管焊点最初由Sn/Cu来装配,但大量修补工作可能会用Sn/Ag/Cu合金来完成。如果两种产品都在生产现场使用,那么RA会常用到,不只是好用的问题。双合金装配工艺的要害问题是会导致潜在的可靠性失效且很难对此进行有效地监控。

焊点连接的可靠性试验

为分析Sn/Ag/Cu和Sn/Cu的可靠性,对它们进行各种热和机械疲劳试验。试验描述和试验结果如下:

热循环试验结果

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作。之后在-40度到125度的温度范围内,以300、400、500次的15分循环量对该板施以热冲击。然后将焊点分切,检查是否存在裂痕。

试验后检查的结果显示,Sn/Cu合金由于湿润性不好导致某些断裂焊点的产生。此外,成形很好的Sn/Cu焊点在施以第三种500次重复循环设置的试验时,也显示有断裂。

有意思的是Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5合金在经历高达500次重复的试验后没有任何断裂迹象。这显示出Sn/Ag/Cu合金具有Sn/Cu无法比拟的极为优异的耐热疲劳性。但需要注意的是,Sn/Ag4/Cu0.5合金在经过热循环处理后焊点的晶粒(grain)结构的确产生了一些变化。

机械强度-挠性测试

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作,对它进行挠性测试。用Sn/Cu0.7制作的焊点在挠性测试中产生断裂,这显示焊点不能承受大范围的机械应力处理。相反由Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5制作的焊点却满足所有的挠性测试要求。

混合解决方案?

为消除电子行业存在的隐患,已开发出了一种完全无铅装配的混合解决方案。她用粗糙的锡铅成品(QFP208IC)、有机表面保护剂PWB和Sn/Ag2.5/Cu0.7/Sb0.5合金焊膏构成系统,以复杂性或成本都不太高的方式达到了完全无铅装配的目的。取得成功的关键是这种装配方法能够承受峰值温度为234度的回流加热。需要注意的是,这种装配方法要经过惰性环境的处理。当然,限于元件的效用性问题,以及由元件热容、夹具固定等原因引起?=T变化而造成事实上不是所有的装配过程都能达到234度的峰值板温度,因此不是所有装配都能够进行上述处理。但它给我们的重要提示是,在某些情形下,通过引入某些材料,实现无铅焊接可以变得轻而易举。

无铅电子范文篇3

Sn/Ag合金

Sn/Ag3.5-4.0合金在混合电路与电子组装工业的使用时间较长。正因如此,部分业者对使用Sn/Ag作为一种无铅替代合金感觉得心应手。但不巧的是这种合金存在几方面的问题。首先这种合金的熔融温度(221度)和峰值回流温度(2400-260度)对于许多表面安装部件和过程来说显得偏高。此外,这种合金还含有3.5-4%的银,对某些应用构成成本制约。而最主要的问题是这种合金会产生银相变问题从而造成可靠性试验失效。

我们注意到,在进行疲劳试验(结果如表1)时,Sn96/Ag4在其中一种循环设置上产生了失效。对此问题作进一步研究得出的结论是:失效起因于相变。相变的产生是因合金的不同区有着不同的冷却速率而致。

为对此问题进行深入研究,用一根Sn96/Ag4焊条,从底部对其进行回流加热及强制冷却,以便对其暴露在不同冷却速率下的合金的微结构进行观察。Sn96/Ag4合金按冷却速率的不同产生三种不同的相。由此考虑同样的脆性结构会存在于焊接互连中,从而造成焊区失效。正是由于这种原因,大多数OEM及工业财团反对把Sn/Ag作为主流无铅合金来用。银相变问题的存在也对高银Sn/Ag/Cu合金提出了质问。

Sn/Ag/Cu合金

尽管涉及专利保护方面的问题,世界大部分地区还是倾向选用Sn/Ag/Cu合金。但到底选择什么样的合金配方?本文将重点讨论两种Sn/Ag/Cu合金:受各种工业财团推崇的Sn/Ag/Cu0.5合金和相应的用作低银含量合金的Sn/Ag2.5/Cu0.7/Sb0.5。

两种Sn/Ag/Cu合金的比较

在讨论两种合金体系的可靠性试验结果之前,先凭经验对两种合金作一比较是有益的。大体上看两种合金很相似:两者都具有极好的抗疲劳特性、良好的整体焊点连接强度以及充足的基础材料供应。但两者之间确也存在一些细微的差异值得讨论。

熔点

两合金的熔点极为相似:Sn/Ag4/Cu0.5熔点为218度,Sn/Ag2.5/Cu0.7/Sb0.5熔点为217度。业界对这种差异是否构成对实际应用的影响存在争议。但如能对回流过程严格控制,熔点温度变低会因减少元件耐受高温的时间而带来益处。

润湿

两种合金比较,自然地会对选择高银含量合金的做法抱有疑问,因为银含量变高会增加产品成本。有臆测认为高银合金有助于改进润湿。但润湿试验结果显示,低银含量合金实际上比高银合金润湿更强健和更迅速。

专利态势

工业界渴望找到一种广泛可获的合金。因此,专利合金是不大受欢迎的。尽管Sn/Ag4/Cu0.5合金没有申请专利,而Sn/Ag2.5/Cu0.7/Sb0.5已申请了专利,但选择时需要全面了解两种合金的专利约束作用和实际供应源情况才好确定。

上面已谈到,Sn/Ag2.5/Cu0.7/Sb0.5合金已获专利。但它已授权给焊料制造商使用,对授权使用者无数量限制和无转让费用。目前,这一合金可通过北美、日本和欧洲的数家焊料厂商在全球范围内获取。尽管Sn/Ag4/Cu0.5合金没有申请专利,但用这种合金制成的焊点连接是有专利的,而在美国具有这种产品销售授权的电子级焊料厂商的数量极为有限。

尽管用Sn/Ag4/Cu0.5制作的焊点有可能侵犯现有的专利权,但业界还是建议使用这种合金。人们曾假想地认为,通过给这种系统施加预先工艺可以避开专利纠纷。但这种想法是错误的,因为大多数的专利说明都会涉及合金成份和应用范围(焊点)两部分内容。换句话说,如果预先工艺能够得到证实,突破专利的合金成份限制是可能的。但如果专利说明做得很完善,那么还需向声明了电子装配焊接特定用法的应用部分进行挑战。总的来说,这意味着即使制造商正在使用一种专利规定范围(如Sn/Ag4/Cu0.5)以外的合金,但如果在制造过程中,此合金"偶获"基础金属成分(一般为铜)并因而形成一种含有专利规定范围内的成份构成的金属间化合物的话,那么该制造商就会因侵犯了专利权而受到法律的裁决。

金属成本

专利载明的银含量范围为3.5%-7.7%。如此高的银含量使得焊料的大量使用变得成本高昂;装填波峰焊锅时,每1%的银大约使成本增加0.66美元/磅(见表2)。为控制成本,有人建议在波峰焊应用中使用不含银的无铅合金,在表面安装应用中使用含银合金。但正如下面所要讨论的,使用这种方法会因Sn/Cu和双合金工艺存在不足而造成失效。

Sn/Cu的工艺缺陷

遏制成本的想法虽说合情合理,但引用Sn/Cu需要考虑几方面的因素。第一,此合金的熔融温度为227度,使其在许多温度敏感应用上受限。此外,它比其它无铅焊料的湿润性差,在许多应用中需引入氮和强活性助焊剂并可造成与润湿相关的缺陷,这点已得到广泛证明。还有,一般来讲Sn/Cu表面张力作用较低,在实施PTH技术时容易进入套孔(barrel)中,且缺乏表面安装装配过程所要求的耐疲劳强度。最后一点,该合金的耐疲劳特性差,可导致焊区失效,从而抵销了节省成本的初衷。

双合金装配

还应注意的是,除Sn/Cu引起相关问题外,使用双焊料合金(SMT过程使用Sn/Ag/Cu,波峰焊使用Sn/Cu)也存在问题。Sn/Ag/Cu、Sn/Cu混用不宜提倡,因为这会造成合金焊点连接的不均匀性。如果这一情形出现,那么制成的焊点会因不能消除应力和应变而易产生疲劳失效。由于存在这些潜在的混用问题,因此在进行修复或修补时就需要开列两种合金的存货清单,并给出具体的指令进行监控,以使两合金不发生混用。然而,经验显示,不论对这种情形监控得多好,操作员都会趋向使用易用性最好也即流动性最好且熔融温度较低的焊料。因此,尽管焊点最初由Sn/Cu来装配,但大量修补工作可能会用Sn/Ag/Cu合金来完成。如果两种产品都在生产现场使用,那么RA会常用到,不只是好用的问题。双合金装配工艺的要害问题是会导致潜在的可靠性失效且很难对此进行有效地监控。

焊点连接的可靠性试验

为分析Sn/Ag/Cu和Sn/Cu的可靠性,对它们进行各种热和机械疲劳试验。试验描述和试验结果如下:

热循环试验结果

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作。之后在-40度到125度的温度范围内,以300、400、500次的15分循环量对该板施以热冲击。然后将焊点分切,检查是否存在裂痕。

试验后检查的结果显示,Sn/Cu合金由于湿润性不好导致某些断裂焊点的产生。此外,成形很好的Sn/Cu焊点在施以第三种500次重复循环设置的试验时,也显示有断裂。

有意思的是Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5合金在经历高达500次重复的试验后没有任何断裂迹象。这显示出Sn/Ag/Cu合金具有Sn/Cu无法比拟的极为优异的耐热疲劳性。但需要注意的是,Sn/Ag4/Cu0.5合金在经过热循环处理后焊点的晶粒(grain)结构的确产生了一些变化。

机械强度-挠性测试

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作,对它进行挠性测试。用Sn/Cu0.7制作的焊点在挠性测试中产生断裂,这显示焊点不能承受大范围的机械应力处理。相反由Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5制作的焊点却满足所有的挠性测试要求。

混合解决方案?

为消除电子行业存在的隐患,已开发出了一种完全无铅装配的混合解决方案。她用粗糙的锡铅成品(QFP208IC)、有机表面保护剂PWB和Sn/Ag2.5/Cu0.7/Sb0.5合金焊膏构成系统,以复杂性或成本都不太高的方式达到了完全无铅装配的目的。取得成功的关键是这种装配方法能够承受峰值温度为234度的回流加热。需要注意的是,这种装配方法要经过惰性环境的处理。当然,限于元件的效用性问题,以及由元件热容、夹具固定等原因引起€%=T变化而造成事实上不是所有的装配过程都能达到234度的峰值板温度,因此不是所有装配都能够进行上述处理。但它给我们的重要提示是,在某些情形下,通过引入某些材料,实现无铅焊接可以变得轻而易举。

无铅电子范文篇4

J.Reachen

伴随欧洲电子电气设备指导法令(WEEEDirective)宣布到2006年部分含铅电子设备的生产和进口在欧盟将属非法,以及国外同业竞争者在全球不断推广无铅电子装配,相伴而生的对各种合金混合物的完好性和可靠性等问题的考虑越来越受到重视。简言之,到底选用哪种合金,这一问题变得越来越紧要。本文将对Sn/Ag、Sn/Ag/Cu和Sn/Cu等三种合金做深入考察,并对其可靠性试验结果与工艺上的考虑进行比较。

Sn/Ag合金

Sn/Ag3.5-4.0合金在混合电路与电子组装工业的使用时间较长。正因如此,部分业者对使用Sn/Ag作为一种无铅替代合金感觉得心应手。但不巧的是这种合金存在几方面的问题。首先这种合金的熔融温度(221度)和峰值回流温度(2400-260度)对于许多表面安装部件和过程来说显得偏高。此外,这种合金还含有3.5-4%的银,对某些应用构成成本制约。而最主要的问题是这种合金会产生银相变问题从而造成可靠性试验失效。

我们注意到,在进行疲劳试验(结果如表1)时,Sn96/Ag4在其中一种循环设置上产生了失效。对此问题作进一步研究得出的结论是:失效起因于相变。相变的产生是因合金的不同区有着不同的冷却速率而致。

为对此问题进行深入研究,用一根Sn96/Ag4焊条,从底部对其进行回流加热及强制冷却,以便对其暴露在不同冷却速率下的合金的微结构进行观察。Sn96/Ag4合金按冷却速率的不同产生三种不同的相。由此考虑同样的脆性结构会存在于焊接互连中,从而造成焊区失效。正是由于这种原因,大多数OEM及工业财团反对把Sn/Ag作为主流无铅合金来用。银相变问题的存在也对高银Sn/Ag/Cu合金提出了质问。

Sn/Ag/Cu合金

尽管涉及专利保护方面的问题,世界大部分地区还是倾向选用Sn/Ag/Cu合金。但到底选择什么样的合金配方?本文将重点讨论两种Sn/Ag/Cu合金:受各种工业财团推崇的Sn/Ag/Cu0.5合金和相应的用作低银含量合金的Sn/Ag2.5/Cu0.7/Sb0.5。

两种Sn/Ag/Cu合金的比较

在讨论两种合金体系的可靠性试验结果之前,先凭经验对两种合金作一比较是有益的。大体上看两种合金很相似:两者都具有极好的抗疲劳特性、良好的整体焊点连接强度以及充足的基础材料供应。但两者之间确也存在一些细微的差异值得讨论。

熔点

两合金的熔点极为相似:Sn/Ag4/Cu0.5熔点为218度,Sn/Ag2.5/Cu0.7/Sb0.5熔点为217度。业界对这种差异是否构成对实际应用的影响存在争议。但如能对回流过程严格控制,熔点温度变低会因减少元件耐受高温的时间而带来益处。

润湿

两种合金比较,自然地会对选择高银含量合金的做法抱有疑问,因为银含量变高会增加产品成本。有臆测认为高银合金有助于改进润湿。但润湿试验结果显示,低银含量合金实际上比高银合金润湿更强健和更迅速。

专利态势

工业界渴望找到一种广泛可获的合金。因此,专利合金是不大受欢迎的。尽管Sn/Ag4/Cu0.5合金没有申请专利,而Sn/Ag2.5/Cu0.7/Sb0.5已申请了专利,但选择时需要全面了解两种合金的专利约束作用和实际供应源情况才好确定。

上面已谈到,Sn/Ag2.5/Cu0.7/Sb0.5合金已获专利。但它已授权给焊料制造商使用,对授权使用者无数量限制和无转让费用。目前,这一合金可通过北美、日本和欧洲的数家焊料厂商在全球范围内获取。尽管Sn/Ag4/Cu0.5合金没有申请专利,但用这种合金制成的焊点连接是有专利的,而在美国具有这种产品销售授权的电子级焊料厂商的数量极为有限。

尽管用Sn/Ag4/Cu0.5制作的焊点有可能侵犯现有的专利权,但业界还是建议使用这种合金。人们曾假想地认为,通过给这种系统施加预先工艺可以避开专利纠纷。但这种想法是错误的,因为大多数的专利说明都会涉及合金成份和应用范围(焊点)两部分内容。换句话说,如果预先工艺能够得到证实,突破专利的合金成份限制是可能的。但如果专利说明做得很完善,那么还需向声明了电子装配焊接特定用法的应用部分进行挑战。总的来说,这意味着即使制造商正在使用一种专利规定范围(如Sn/Ag4/Cu0.5)以外的合金,但如果在制造过程中,此合金"偶获"基础金属成分(一般为铜)并因而形成一种含有专利规定范围内的成份构成的金属间化合物的话,那么该制造商就会因侵犯了专利权而受到法律的裁决。

金属成本

专利载明的银含量范围为3.5%-7.7%。如此高的银含量使得焊料的大量使用变得成本高昂;装填波峰焊锅时,每1%的银大约使成本增加0.66美元/磅(见表2)。为控制成本,有人建议在波峰焊应用中使用不含银的无铅合金,在表面安装应用中使用含银合金。但正如下面所要讨论的,使用这种方法会因Sn/Cu和双合金工艺存在不足而造成失效。

Sn/Cu的工艺缺陷

遏制成本的想法虽说合情合理,但引用Sn/Cu需要考虑几方面的因素。第一,此合金的熔融温度为227度,使其在许多温度敏感应用上受限。此外,它比其它无铅焊料的湿润性差,在许多应用中需引入氮和强活性助焊剂并可造成与润湿相关的缺陷,这点已得到广泛证明。还有,一般来讲Sn/Cu表面张力作用较低,在实施PTH技术时容易进入套孔(barrel)中,且缺乏表面安装装配过程所要求的耐疲劳强度。最后一点,该合金的耐疲劳特性差,可导致焊区失效,从而抵销了节省成本的初衷。

双合金装配

还应注意的是,除Sn/Cu引起相关问题外,使用双焊料合金(SMT过程使用Sn/Ag/Cu,波峰焊使用Sn/Cu)也存在问题。Sn/Ag/Cu、Sn/Cu混用不宜提倡,因为这会造成合金焊点连接的不均匀性。如果这一情形出现,那么制成的焊点会因不能消除应力和应变而易产生疲劳失效。由于存在这些潜在的混用问题,因此在进行修复或修补时就需要开列两种合金的存货清单,并给出具体的指令进行监控,以使两合金不发生混用。然而,经验显示,不论对这种情形监控得多好,操作员都会趋向使用易用性最好也即流动性最好且熔融温度较低的焊料。因此,尽管焊点最初由Sn/Cu来装配,但大量修补工作可能会用Sn/Ag/Cu合金来完成。如果两种产品都在生产现场使用,那么RA会常用到,不只是好用的问题。双合金装配工艺的要害问题是会导致潜在的可靠性失效且很难对此进行有效地监控。

焊点连接的可靠性试验

为分析Sn/Ag/Cu和Sn/Cu的可靠性,对它们进行各种热和机械疲劳试验。试验描述和试验结果如下:

热循环试验结果

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作。之后在-40度到125度的温度范围内,以300、400、500次的15分循环量对该板施以热冲击。然后将焊点分切,检查是否存在裂痕。

试验后检查的结果显示,Sn/Cu合金由于湿润性不好导致某些断裂焊点的产生。此外,成形很好的Sn/Cu焊点在施以第三种500次重复循环设置的试验时,也显示有断裂。

有意思的是Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5合金在经历高达500次重复的试验后没有任何断裂迹象。这显示出Sn/Ag/Cu合金具有Sn/Cu无法比拟的极为优异的耐热疲劳性。但需要注意的是,Sn/Ag4/Cu0.5合金在经过热循环处理后焊点的晶粒(grain)结构的确产生了一些变化。

机械强度-挠性测试

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作,对它进行挠性测试。用Sn/Cu0.7制作的焊点在挠性测试中产生断裂,这显示焊点不能承受大范围的机械应力处理。相反由Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5制作的焊点却满足所有的挠性测试要求。

混合解决方案?

为消除电子行业存在的隐患,已开发出了一种完全无铅装配的混合解决方案。她用粗糙的锡铅成品(QFP208IC)、有机表面保护剂PWB和Sn/Ag2.5/Cu0.7/Sb0.5合金焊膏构成系统,以复杂性或成本都不太高的方式达到了完全无铅装配的目的。取得成功的关键是这种装配方法能够承受峰值温度为234度的回流加热。需要注意的是,这种装配方法要经过惰性环境的处理。当然,限于元件的效用性问题,以及由元件热容、夹具固定等原因引起€%=T变化而造成事实上不是所有的装配过程都能达到234度的峰值板温度,因此不是所有装配都能够进行上述处理。但它给我们的重要提示是,在某些情形下,通过引入某些材料,实现无铅焊接可以变得轻而易举。

无铅电子范文篇5

J.Reachen

伴随欧洲电子电气设备指导法令(WEEEDirective)宣布到2006年部分含铅电子设备的生产和进口在欧盟将属非法,以及国外同业竞争者在全球不断推广无铅电子装配,相伴而生的对各种合金混合物的完好性和可靠性等问题的考虑越来越受到重视。简言之,到底选用哪种合金,这一问题变得越来越紧要。本文将对Sn/Ag、Sn/Ag/Cu和Sn/Cu等三种合金做深入考察,并对其可靠性试验结果与工艺上的考虑进行比较。

Sn/Ag合金

Sn/Ag3.5-4.0合金在混合电路与电子组装工业的使用时间较长。正因如此,部分业者对使用Sn/Ag作为一种无铅替代合金感觉得心应手。但不巧的是这种合金存在几方面的问题。首先这种合金的熔融温度(221度)和峰值回流温度(2400-260度)对于许多表面安装部件和过程来说显得偏高。此外,这种合金还含有3.5-4%的银,对某些应用构成成本制约。而最主要的问题是这种合金会产生银相变问题从而造成可靠性试验失效。

我们注意到,在进行疲劳试验(结果如表1)时,Sn96/Ag4在其中一种循环设置上产生了失效。对此问题作进一步研究得出的结论是:失效起因于相变。相变的产生是因合金的不同区有着不同的冷却速率而致。

为对此问题进行深入研究,用一根Sn96/Ag4焊条,从底部对其进行回流加热及强制冷却,以便对其暴露在不同冷却速率下的合金的微结构进行观察。Sn96/Ag4合金按冷却速率的不同产生三种不同的相。由此考虑同样的脆性结构会存在于焊接互连中,从而造成焊区失效。正是由于这种原因,大多数OEM及工业财团反对把Sn/Ag作为主流无铅合金来用。银相变问题的存在也对高银Sn/Ag/Cu合金提出了质问。

Sn/Ag/Cu合金

尽管涉及专利保护方面的问题,世界大部分地区还是倾向选用Sn/Ag/Cu合金。但到底选择什么样的合金配方?本文将重点讨论两种Sn/Ag/Cu合金:受各种工业财团推崇的Sn/Ag/Cu0.5合金和相应的用作低银含量合金的Sn/Ag2.5/Cu0.7/Sb0.5。

两种Sn/Ag/Cu合金的比较

在讨论两种合金体系的可靠性试验结果之前,先凭经验对两种合金作一比较是有益的。大体上看两种合金很相似:两者都具有极好的抗疲劳特性、良好的整体焊点连接强度以及充足的基础材料供应。但两者之间确也存在一些细微的差异值得讨论。

熔点

两合金的熔点极为相似:Sn/Ag4/Cu0.5熔点为218度,Sn/Ag2.5/Cu0.7/Sb0.5熔点为217度。业界对这种差异是否构成对实际应用的影响存在争议。但如能对回流过程严格控制,熔点温度变低会因减少元件耐受高温的时间而带来益处。

润湿

两种合金比较,自然地会对选择高银含量合金的做法抱有疑问,因为银含量变高会增加产品成本。有臆测认为高银合金有助于改进润湿。但润湿试验结果显示,低银含量合金实际上比高银合金润湿更强健和更迅速。

专利态势

工业界渴望找到一种广泛可获的合金。因此,专利合金是不大受欢迎的。尽管Sn/Ag4/Cu0.5合金没有申请专利,而Sn/Ag2.5/Cu0.7/Sb0.5已申请了专利,但选择时需要全面了解两种合金的专利约束作用和实际供应源情况才好确定。

上面已谈到,Sn/Ag2.5/Cu0.7/Sb0.5合金已获专利。但它已授权给焊料制造商使用,对授权使用者无数量限制和无转让费用。目前,这一合金可通过北美、日本和欧洲的数家焊料厂商在全球范围内获取。尽管Sn/Ag4/Cu0.5合金没有申请专利,但用这种合金制成的焊点连接是有专利的,而在美国具有这种产品销售授权的电子级焊料厂商的数量极为有限。

尽管用Sn/Ag4/Cu0.5制作的焊点有可能侵犯现有的专利权,但业界还是建议使用这种合金。人们曾假想地认为,通过给这种系统施加预先工艺可以避开专利纠纷。但这种想法是错误的,因为大多数的专利说明都会涉及合金成份和应用范围(焊点)两部分内容。换句话说,如果预先工艺能够得到证实,突破专利的合金成份限制是可能的。但如果专利说明做得很完善,那么还需向声明了电子装配焊接特定用法的应用部分进行挑战。总的来说,这意味着即使制造商正在使用一种专利规定范围(如Sn/Ag4/Cu0.5)以外的合金,但如果在制造过程中,此合金"偶获"基础金属成分(一般为铜)并因而形成一种含有专利规定范围内的成份构成的金属间化合物的话,那么该制造商就会因侵犯了专利权而受到法律的裁决。

金属成本

专利载明的银含量范围为3.5%-7.7%。如此高的银含量使得焊料的大量使用变得成本高昂;装填波峰焊锅时,每1%的银大约使成本增加0.66美元/磅(见表2)。为控制成本,有人建议在波峰焊应用中使用不含银的无铅合金,在表面安装应用中使用含银合金。但正如下面所要讨论的,使用这种方法会因Sn/Cu和双合金工艺存在不足而造成失效。

Sn/Cu的工艺缺陷

遏制成本的想法虽说合情合理,但引用Sn/Cu需要考虑几方面的因素。第一,此合金的熔融温度为227度,使其在许多温度敏感应用上受限。此外,它比其它无铅焊料的湿润性差,在许多应用中需引入氮和强活性助焊剂并可造成与润湿相关的缺陷,这点已得到广泛证明。还有,一般来讲Sn/Cu表面张力作用较低,在实施PTH技术时容易进入套孔(barrel)中,且缺乏表面安装装配过程所要求的耐疲劳强度。最后一点,该合金的耐疲劳特性差,可导致焊区失效,从而抵销了节省成本的初衷。

双合金装配

还应注意的是,除Sn/Cu引起相关问题外,使用双焊料合金(SMT过程使用Sn/Ag/Cu,波峰焊使用Sn/Cu)也存在问题。Sn/Ag/Cu、Sn/Cu混用不宜提倡,因为这会造成合金焊点连接的不均匀性。如果这一情形出现,那么制成的焊点会因不能消除应力和应变而易产生疲劳失效。由于存在这些潜在的混用问题,因此在进行修复或修补时就需要开列两种合金的存货清单,并给出具体的指令进行监控,以使两合金不发生混用。然而,经验显示,不论对这种情形监控得多好,操作员都会趋向使用易用性最好也即流动性最好且熔融温度较低的焊料。因此,尽管焊点最初由Sn/Cu来装配,但大量修补工作可能会用Sn/Ag/Cu合金来完成。如果两种产品都在生产现场使用,那么RA会常用到,不只是好用的问题。双合金装配工艺的要害问题是会导致潜在的可靠性失效且很难对此进行有效地监控。

焊点连接的可靠性试验

为分析Sn/Ag/Cu和Sn/Cu的可靠性,对它们进行各种热和机械疲劳试验。试验描述和试验结果如下:

热循环试验结果

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作。之后在-40度到125度的温度范围内,以300、400、500次的15分循环量对该板施以热冲击。然后将焊点分切,检查是否存在裂痕。

试验后检查的结果显示,Sn/Cu合金由于湿润性不好导致某些断裂焊点的产生。此外,成形很好的Sn/Cu焊点在施以第三种500次重复循环设置的试验时,也显示有断裂。

有意思的是Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5合金在经历高达500次重复的试验后没有任何断裂迹象。这显示出Sn/Ag/Cu合金具有Sn/Cu无法比拟的极为优异的耐热疲劳性。但需要注意的是,Sn/Ag4/Cu0.5合金在经过热循环处理后焊点的晶粒(grain)结构的确产生了一些变化。

机械强度-挠性测试

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作,对它进行挠性测试。用Sn/Cu0.7制作的焊点在挠性测试中产生断裂,这显示焊点不能承受大范围的机械应力处理。相反由Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5制作的焊点却满足所有的挠性测试要求。

混合解决方案?

为消除电子行业存在的隐患,已开发出了一种完全无铅装配的混合解决方案。她用粗糙的锡铅成品(QFP208IC)、有机表面保护剂PWB和Sn/Ag2.5/Cu0.7/Sb0.5合金焊膏构成系统,以复杂性或成本都不太高的方式达到了完全无铅装配的目的。取得成功的关键是这种装配方法能够承受峰值温度为234度的回流加热。需要注意的是,这种装配方法要经过惰性环境的处理。当然,限于元件的效用性问题,以及由元件热容、夹具固定等原因引起€%=T变化而造成事实上不是所有的装配过程都能达到234度的峰值板温度,因此不是所有装配都能够进行上述处理。但它给我们的重要提示是,在某些情形下,通过引入某些材料,实现无铅焊接可以变得轻而易举

无铅电子范文篇6

J.Reachen

伴随欧洲电子电气设备指导法令(WEEEDirective)宣布到2006年部分含铅电子设备的生产和进口在欧盟将属非法,以及国外同业竞争者在全球不断推广无铅电子装配,相伴而生的对各种合金混合物的完好性和可靠性等问题的考虑越来越受到重视。简言之,到底选用哪种合金,这一问题变得越来越紧要。本文将对Sn/Ag、Sn/Ag/Cu和Sn/Cu等三种合金做深入考察,并对其可靠性试验结果与工艺上的考虑进行比较。

Sn/Ag合金

Sn/Ag3.5-4.0合金在混合电路与电子组装工业的使用时间较长。正因如此,部分业者对使用Sn/Ag作为一种无铅替代合金感觉得心应手。但不巧的是这种合金存在几方面的问题。首先这种合金的熔融温度(221度)和峰值回流温度(2400-260度)对于许多表面安装部件和过程来说显得偏高。此外,这种合金还含有3.5-4%的银,对某些应用构成成本制约。而最主要的问题是这种合金会产生银相变问题从而造成可靠性试验失效。

我们注意到,在进行疲劳试验(结果如表1)时,Sn96/Ag4在其中一种循环设置上产生了失效。对此问题作进一步研究得出的结论是:失效起因于相变。相变的产生是因合金的不同区有着不同的冷却速率而致。

为对此问题进行深入研究,用一根Sn96/Ag4焊条,从底部对其进行回流加热及强制冷却,以便对其暴露在不同冷却速率下的合金的微结构进行观察。Sn96/Ag4合金按冷却速率的不同产生三种不同的相。由此考虑同样的脆性结构会存在于焊接互连中,从而造成焊区失效。正是由于这种原因,大多数OEM及工业财团反对把Sn/Ag作为主流无铅合金来用。银相变问题的存在也对高银Sn/Ag/Cu合金提出了质问。

Sn/Ag/Cu合金

尽管涉及专利保护方面的问题,世界大部分地区还是倾向选用Sn/Ag/Cu合金。但到底选择什么样的合金配方?本文将重点讨论两种Sn/Ag/Cu合金:受各种工业财团推崇的Sn/Ag/Cu0.5合金和相应的用作低银含量合金的Sn/Ag2.5/Cu0.7/Sb0.5。

两种Sn/Ag/Cu合金的比较

在讨论两种合金体系的可靠性试验结果之前,先凭经验对两种合金作一比较是有益的。大体上看两种合金很相似:两者都具有极好的抗疲劳特性、良好的整体焊点连接强度以及充足的基础材料供应。但两者之间确也存在一些细微的差异值得讨论。

熔点

两合金的熔点极为相似:Sn/Ag4/Cu0.5熔点为218度,Sn/Ag2.5/Cu0.7/Sb0.5熔点为217度。业界对这种差异是否构成对实际应用的影响存在争议。但如能对回流过程严格控制,熔点温度变低会因减少元件耐受高温的时间而带来益处。

润湿

两种合金比较,自然地会对选择高银含量合金的做法抱有疑问,因为银含量变高会增加产品成本。有臆测认为高银合金有助于改进润湿。但润湿试验结果显示,低银含量合金实际上比高银合金润湿更强健和更迅速。

专利态势

工业界渴望找到一种广泛可获的合金。因此,专利合金是不大受欢迎的。尽管Sn/Ag4/Cu0.5合金没有申请专利,而Sn/Ag2.5/Cu0.7/Sb0.5已申请了专利,但选择时需要全面了解两种合金的专利约束作用和实际供应源情况才好确定。

上面已谈到,Sn/Ag2.5/Cu0.7/Sb0.5合金已获专利。但它已授权给焊料制造商使用,对授权使用者无数量限制和无转让费用。目前,这一合金可通过北美、日本和欧洲的数家焊料厂商在全球范围内获取。尽管Sn/Ag4/Cu0.5合金没有申请专利,但用这种合金制成的焊点连接是有专利的,而在美国具有这种产品销售授权的电子级焊料厂商的数量极为有限。

尽管用Sn/Ag4/Cu0.5制作的焊点有可能侵犯现有的专利权,但业界还是建议使用这种合金。人们曾假想地认为,通过给这种系统施加预先工艺可以避开专利纠纷。但这种想法是错误的,因为大多数的专利说明都会涉及合金成份和应用范围(焊点)两部分内容。换句话说,如果预先工艺能够得到证实,突破专利的合金成份限制是可能的。但如果专利说明做得很完善,那么还需向声明了电子装配焊接特定用法的应用部分进行挑战。总的来说,这意味着即使制造商正在使用一种专利规定范围(如Sn/Ag4/Cu0.5)以外的合金,但如果在制造过程中,此合金"偶获"基础金属成分(一般为铜)并因而形成一种含有专利规定范围内的成份构成的金属间化合物的话,那么该制造商就会因侵犯了专利权而受到法律的裁决。

金属成本

专利载明的银含量范围为3.5%-7.7%。如此高的银含量使得焊料的大量使用变得成本高昂;装填波峰焊锅时,每1%的银大约使成本增加0.66美元/磅(见表2)。为控制成本,有人建议在波峰焊应用中使用不含银的无铅合金,在表面安装应用中使用含银合金。但正如下面所要讨论的,使用这种方法会因Sn/Cu和双合金工艺存在不足而造成失效。

Sn/Cu的工艺缺陷

遏制成本的想法虽说合情合理,但引用Sn/Cu需要考虑几方面的因素。第一,此合金的熔融温度为227度,使其在许多温度敏感应用上受限。此外,它比其它无铅焊料的湿润性差,在许多应用中需引入氮和强活性助焊剂并可造成与润湿相关的缺陷,这点已得到广泛证明。还有,一般来讲Sn/Cu表面张力作用较低,在实施PTH技术时容易进入套孔(barrel)中,且缺乏表面安装装配过程所要求的耐疲劳强度。最后一点,该合金的耐疲劳特性差,可导致焊区失效,从而抵销了节省成本的初衷。

双合金装配

还应注意的是,除Sn/Cu引起相关问题外,使用双焊料合金(SMT过程使用Sn/Ag/Cu,波峰焊使用Sn/Cu)也存在问题。Sn/Ag/Cu、Sn/Cu混用不宜提倡,因为这会造成合金焊点连接的不均匀性。如果这一情形出现,那么制成的焊点会因不能消除应力和应变而易产生疲劳失效。由于存在这些潜在的混用问题,因此在进行修复或修补时就需要开列两种合金的存货清单,并给出具体的指令进行监控,以使两合金不发生混用。然而,经验显示,不论对这种情形监控得多好,操作员都会趋向使用易用性最好也即流动性最好且熔融温度较低的焊料。因此,尽管焊点最初由Sn/Cu来装配,但大量修补工作可能会用Sn/Ag/Cu合金来完成。如果两种产品都在生产现场使用,那么RA会常用到,不只是好用的问题。双合金装配工艺的要害问题是会导致潜在的可靠性失效且很难对此进行有效地监控。

焊点连接的可靠性试验

为分析Sn/Ag/Cu和Sn/Cu的可靠性,对它们进行各种热和机械疲劳试验。试验描述和试验结果如下:

热循环试验结果

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作。之后在-40度到125度的温度范围内,以300、400、500次的15分循环量对该板施以热冲击。然后将焊点分切,检查是否存在裂痕。

试验后检查的结果显示,Sn/Cu合金由于湿润性不好导致某些断裂焊点的产生。此外,成形很好的Sn/Cu焊点在施以第三种500次重复循环设置的试验时,也显示有断裂。

有意思的是Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5合金在经历高达500次重复的试验后没有任何断裂迹象。这显示出Sn/Ag/Cu合金具有Sn/Cu无法比拟的极为优异的耐热疲劳性。但需要注意的是,Sn/Ag4/Cu0.5合金在经过热循环处理后焊点的晶粒(grain)结构的确产生了一些变化。

机械强度-挠性测试

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作,对它进行挠性测试。用Sn/Cu0.7制作的焊点在挠性测试中产生断裂,这显示焊点不能承受大范围的机械应力处理。相反由Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5制作的焊点却满足所有的挠性测试要求。

混合解决方案?

为消除电子行业存在的隐患,已开发出了一种完全无铅装配的混合解决方案。她用粗糙的锡铅成品(QFP208IC)、有机表面保护剂PWB和Sn/Ag2.5/Cu0.7/Sb0.5合金焊膏构成系统,以复杂性或成本都不太高的方式达到了完全无铅装配的目的。取得成功的关键是这种装配方法能够承受峰值温度为234度的回流加热。需要注意的是,这种装配方法要经过惰性环境的处理。当然,限于元件的效用性问题,以及由元件热容、夹具固定等原因引起?=T变化而造成事实上不是所有的装配过程都能达到234度的峰值板温度,因此不是所有装配都能够进行上述处理。但它给我们的重要提示是,在某些情形下,通过引入某些材料,实现无铅焊接可以变得轻而易举。

无铅电子范文篇7

J.Reachen

伴随欧洲电子电气设备指导法令(WEEEDirective)宣布到2006年部分含铅电子设备的生产和进口在欧盟将属非法,以及国外同业竞争者在全球不断推广无铅电子装配,相伴而生的对各种合金混合物的完好性和可靠性等问题的考虑越来越受到重视。简言之,到底选用哪种合金,这一问题变得越来越紧要。本文将对Sn/Ag、Sn/Ag/Cu和Sn/Cu等三种合金做深入考察,并对其可靠性试验结果与工艺上的考虑进行比较。

Sn/Ag合金

Sn/Ag3.5-4.0合金在混合电路与电子组装工业的使用时间较长。正因如此,部分业者对使用Sn/Ag作为一种无铅替代合金感觉得心应手。但不巧的是这种合金存在几方面的问题。首先这种合金的熔融温度(221度)和峰值回流温度(2400-260度)对于许多表面安装部件和过程来说显得偏高。此外,这种合金还含有3.5-4%的银,对某些应用构成成本制约。而最主要的问题是这种合金会产生银相变问题从而造成可靠性试验失效。

我们注意到,在进行疲劳试验(结果如表1)时,Sn96/Ag4在其中一种循环设置上产生了失效。对此问题作进一步研究得出的结论是:失效起因于相变。相变的产生是因合金的不同区有着不同的冷却速率而致。

为对此问题进行深入研究,用一根Sn96/Ag4焊条,从底部对其进行回流加热及强制冷却,以便对其暴露在不同冷却速率下的合金的微结构进行观察。Sn96/Ag4合金按冷却速率的不同产生三种不同的相。由此考虑同样的脆性结构会存在于焊接互连中,从而造成焊区失效。正是由于这种原因,大多数OEM及工业财团反对把Sn/Ag作为主流无铅合金来用。银相变问题的存在也对高银Sn/Ag/Cu合金提出了质问。

Sn/Ag/Cu合金

尽管涉及专利保护方面的问题,世界大部分地区还是倾向选用Sn/Ag/Cu合金。但到底选择什么样的合金配方?本文将重点讨论两种Sn/Ag/Cu合金:受各种工业财团推崇的Sn/Ag/Cu0.5合金和相应的用作低银含量合金的Sn/Ag2.5/Cu0.7/Sb0.5。

两种Sn/Ag/Cu合金的比较

在讨论两种合金体系的可靠性试验结果之前,先凭经验对两种合金作一比较是有益的。大体上看两种合金很相似:两者都具有极好的抗疲劳特性、良好的整体焊点连接强度以及充足的基础材料供应。但两者之间确也存在一些细微的差异值得讨论。

熔点

两合金的熔点极为相似:Sn/Ag4/Cu0.5熔点为218度,Sn/Ag2.5/Cu0.7/Sb0.5熔点为217度。业界对这种差异是否构成对实际应用的影响存在争议。但如能对回流过程严格控制,熔点温度变低会因减少元件耐受高温的时间而带来益处。

润湿

两种合金比较,自然地会对选择高银含量合金的做法抱有疑问,因为银含量变高会增加产品成本。有臆测认为高银合金有助于改进润湿。但润湿试验结果显示,低银含量合金实际上比高银合金润湿更强健和更迅速。

专利态势

工业界渴望找到一种广泛可获的合金。因此,专利合金是不大受欢迎的。尽管Sn/Ag4/Cu0.5合金没有申请专利,而Sn/Ag2.5/Cu0.7/Sb0.5已申请了专利,但选择时需要全面了解两种合金的专利约束作用和实际供应源情况才好确定。

上面已谈到,Sn/Ag2.5/Cu0.7/Sb0.5合金已获专利。但它已授权给焊料制造商使用,对授权使用者无数量限制和无转让费用。目前,这一合金可通过北美、日本和欧洲的数家焊料厂商在全球范围内获取。尽管Sn/Ag4/Cu0.5合金没有申请专利,但用这种合金制成的焊点连接是有专利的,而在美国具有这种产品销售授权的电子级焊料厂商的数量极为有限。

尽管用Sn/Ag4/Cu0.5制作的焊点有可能侵犯现有的专利权,但业界还是建议使用这种合金。人们曾假想地认为,通过给这种系统施加预先工艺可以避开专利纠纷。但这种想法是错误的,因为大多数的专利说明都会涉及合金成份和应用范围(焊点)两部分内容。换句话说,如果预先工艺能够得到证实,突破专利的合金成份限制是可能的。但如果专利说明做得很完善,那么还需向声明了电子装配焊接特定用法的应用部分进行挑战。总的来说,这意味着即使制造商正在使用一种专利规定范围(如Sn/Ag4/Cu0.5)以外的合金,但如果在制造过程中,此合金"偶获"基础金属成分(一般为铜)并因而形成一种含有专利规定范围内的成份构成的金属间化合物的话,那么该制造商就会因侵犯了专利权而受到法律的裁决。金属成本

专利载明的银含量范围为3.5%-7.7%。如此高的银含量使得焊料的大量使用变得成本高昂;装填波峰焊锅时,每1%的银大约使成本增加0.66美元/磅(见表2)。为控制成本,有人建议在波峰焊应用中使用不含银的无铅合金,在表面安装应用中使用含银合金。但正如下面所要讨论的,使用这种方法会因Sn/Cu和双合金工艺存在不足而造成失效。

Sn/Cu的工艺缺陷

遏制成本的想法虽说合情合理,但引用Sn/Cu需要考虑几方面的因素。第一,此合金的熔融温度为227度,使其在许多温度敏感应用上受限。此外,它比其它无铅焊料的湿润性差,在许多应用中需引入氮和强活性助焊剂并可造成与润湿相关的缺陷,这点已得到广泛证明。还有,一般来讲Sn/Cu表面张力作用较低,在实施PTH技术时容易进入套孔(barrel)中,且缺乏表面安装装配过程所要求的耐疲劳强度。最后一点,该合金的耐疲劳特性差,可导致焊区失效,从而抵销了节省成本的初衷。

双合金装配

还应注意的是,除Sn/Cu引起相关问题外,使用双焊料合金(SMT过程使用Sn/Ag/Cu,波峰焊使用Sn/Cu)也存在问题。Sn/Ag/Cu、Sn/Cu混用不宜提倡,因为这会造成合金焊点连接的不均匀性。如果这一情形出现,那么制成的焊点会因不能消除应力和应变而易产生疲劳失效。由于存在这些潜在的混用问题,因此在进行修复或修补时就需要开列两种合金的存货清单,并给出具体的指令进行监控,以使两合金不发生混用。然而,经验显示,不论对这种情形监控得多好,操作员都会趋向使用易用性最好也即流动性最好且熔融温度较低的焊料。因此,尽管焊点最初由Sn/Cu来装配,但大量修补工作可能会用Sn/Ag/Cu合金来完成。如果两种产品都在生产现场使用,那么RA会常用到,不只是好用的问题。双合金装配工艺的要害问题是会导致潜在的可靠性失效且很难对此进行有效地监控。

焊点连接的可靠性试验

为分析Sn/Ag/Cu和Sn/Cu的可靠性,对它们进行各种热和机械疲劳试验。试验描述和试验结果如下:

热循环试验结果

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作。之后在-40度到125度的温度范围内,以300、400、500次的15分循环量对该板施以热冲击。然后将焊点分切,检查是否存在裂痕。

试验后检查的结果显示,Sn/Cu合金由于湿润性不好导致某些断裂焊点的产生。此外,成形很好的Sn/Cu焊点在施以第三种500次重复循环设置的试验时,也显示有断裂。

有意思的是Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5合金在经历高达500次重复的试验后没有任何断裂迹象。这显示出Sn/Ag/Cu合金具有Sn/Cu无法比拟的极为优异的耐热疲劳性。但需要注意的是,Sn/Ag4/Cu0.5合金在经过热循环处理后焊点的晶粒(grain)结构的确产生了一些变化。

机械强度-挠性测试

测试板用Sn/Cu0.7、Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5,以及1206薄膜电阻器制作,对它进行挠性测试。用Sn/Cu0.7制作的焊点在挠性测试中产生断裂,这显示焊点不能承受大范围的机械应力处理。相反由Sn/Ag4/Cu0.5和Sn/Ag2.5/Cu0.7/Sb0.5制作的焊点却满足所有的挠性测试要求。

混合解决方案?

无铅电子范文篇8

关键词:有铅;无铅;混装;工艺优化

1绪论

随着世界环保的推行,市场上有铅元器件的种类在逐渐减少,越来越多的无铅器件已进入高可靠电子产品组装中,国内军工行业高新及部分预研项目为实现产品技术指标和功能,必须选购国外集成电路芯片。在某型号译码器电路板使用的表面安装元器件中,各种集成芯片主要依赖进口,BGA封装器件的焊球、QFP封装器件的引线镀层已经改用无铅材料,而片式电阻、电容、电感、二极管等国产元件的引脚还是采用传统的锡铅合金,这就在有铅制程下出现了有铅和无铅混装现象,需要设置合理的工艺流程和焊接参数来保证焊接质量。

2优化前的工艺流程

某型号译码器电路板由于存在无铅BGA封装器件,生产中采取了用有铅焊膏(主要成分为Sn62Pb36Ag2)3次回流焊接的工艺流程.第1次回流时完成电路板上含BGA面的BGA器件和同面其它无铅器件焊接,峰值温度235℃;第2次回流时完成电路板反面阻容元件的焊接,峰值温度210℃;第3次回流时完成BGA面剩余元器件的焊接,峰值温度220℃;对于部分未能丝印焊膏又无法手工点焊膏的器件,采取手工焊接的形式完成焊接。上述流程考虑了有铅、无铅焊接对回流温度要求的区别和公司具备的生产条件,经过数批产品生产验证和试验考核,可以保证焊接质量,尤其是无铅BGA器件的焊接质量能得到保证。

3工艺优化的方向

在对外交流学习中发现,不管电路板上是否含无铅BGA器件,业内通常都是采用单面板1次回流完成焊接,双面板2次回流完成焊接。一般认为,减少回流焊接的次数,可以减少焊点重熔次数,提高焊点可靠性。同时,航天科工集团了《航天电子电气产品有铅、无铅混合再流焊技术要求》(Q/QJB235-2014),对航天产品的有无铅混合再流焊接做了规范,主要内容如下:

(1)要求印制板玻璃化转变温度不小于170℃。焊盘镀层要求采用锡铅镀层或镍金镀层。公司选用的印制板材料和镀层能满足要求。

(2)要求选用的元器件应能够承受耐温度260℃、时间大于10s再流焊要求;元器件应具有良好的引线共面性,其平面偏差应小于0.1mm;元器件应具有良好的引线平行度,其歪斜度应小于0.08mm。这些要求在《电子元器件表面安装要求》(GJB3243-1998)中已有要求,公司选用的元器件也能达到要求。

(3)锡膏推荐选择合金成分分别为Sn63/Pb37、Sn62/Pb36/Ag2的焊膏。公司选用的为Sn62/Pb36/Ag2,符合要求。

(4)双面板的表贴工艺流程规定。公司电路板的表贴工艺流程与标准工艺流程不一致,需要按标准进行优化。

(5)回流参数选择。有铅无铅混合焊接的峰值温度一般设置在210℃~245℃的范围,当印制板组件中只含纯锡无铅镀层类器件时,峰值温度一般控制在210℃~230℃;当印制板组件中含NiPdAu无铅镀层或纯Sn、NiPdAu无铅镀层同存时,峰值温度一般控制在220℃~235℃;当印制板组件中含无铅BGA类器件时,峰值温度一般控制在230℃~245℃。有无铅混合焊接时参数选择。公司电路板的回流参数需要进一步确认。

4焊接参数的确定

为进一步提高印制电路板焊接的质量,贯彻新的标准,需对目前公司产品上印制电路板的焊接进行工艺优化:第一个是调整工艺流程,可以通过更改工艺文件和制作印刷焊膏的网板来实现;第二个是对回流焊接时焊接参数的选择进行确认。测试实时温度曲线的方法为:选择已完成焊接的译码器电路板组件作为温度曲线测试板。在测试板上选择4个测试点,分别是:测试点1,BGA器件底部;测试点2,普通IC;测试点3,普通IC;测试点4,QFP器件。用高温胶带纸将热电偶的测试端固定在测试点上。将热电偶的另一端分别插上温度曲线测试仪的插座上,对热电偶编号,并在热电偶端头标记出所测温度的相应位置。启动温度曲线测试程序,打开温度曲线测试仪,将被测试板和温度曲线测试仪先后放置于回流焊机入口处的传送链条上。测试板和温度曲线测试仪从回流焊机出来后,将温度曲线测试仪与电脑相连接,读出温度曲线。温度曲线回流炉设置及测试结果.从测试结果来看,1号点是温度最低点,2号点是温度最高点,各组都存在峰值±5℃范围内时间各测试点间差别较大的情况;根据实际情况来看,回流炉10个温区的长度相等,在传送链条速度一定时,经过各温区的时间也相等,由于每个温区只能设置一个温度,若要将该值调到标准规定范围内,则会造成回流时峰值温度过低或总的回流时间过短。以上8组测试结果中,高于217℃时间和峰值温度两个主要参数都符合标准要求,160℃~183℃时间也都符合标准要求,差别主要是183℃以上时间,其中第1组参数是公司目前的工艺流程中电路板第1次回流焊接是采用的温度曲线。综合来看,第8组参数最符合保准要求。

5结语

通过更改工艺文件,对印制电路板表面组装工艺流程进行调整,批产中采用第1组参数作为有无铅混合回流焊的温度曲线设置值来完成回流焊接,在保证无铅BGA焊接质量的前提下,最符合标准的要求和公司生产的实际,也能保证有无铅混合回流焊接的质量和可靠性。而新研制产品生产中,采用第8组参数作为有无铅混合回流焊的温度曲线设置值来完成回流焊接更能符合标准要求,也能通过实际的生产和试验考核来验证曲线设置的正确性。

参考文献:

[1]Q/QJB235-2014航天电子电气产品有铅、无铅混合再流焊焊接技术要求.

无铅电子范文篇9

摘要:指出了产品供应链的系统传导作用为绿色技术在企业群落中的扩散提供了自然和充分的系统动力,绿色技术在物质流和信息流两个层面上的扩散是这种动力作用的具体反映。继而,运用演化博弈数学模型对绿色技术扩散的动力渠道问题进行了分析。研究认为,市场诱致作用下的“交易传染型”和“成功主体模仿型”是绿色技术在企业群落内得以高效扩散的两类最重要的动力渠道,反应了企业个体实施绿色技术变革的内在动机。在两类动力渠道的作用下,企业的清洁生产意愿得以强化,绿色技术转换环境得以改善。

关键词:绿色技术;扩散层面;动力渠道;市场诱致

1引言

绿色技术(GreenTechnologies)或称清洁技术工艺(CleanTechnologiesandCrafts)是指能减少环境污染、节能降耗的技术、工艺或产品的总称,从经济学意义上看,绿色技术的应用是为了使整个产品系统(或生命周期)的内部、外部成本总和最小化,具有明显的正外部性效应。根据绿色技术进化程度以及与环境的匹配情况,可以将绿色技术分为三个层面:末端治理技术、清洁技术工艺、绿色产品制造[1]。末端治理技术是在生产的最后环节消除生产过程中产生的污染;清洁工艺注重在生产过程中合理利用资源、减少污染;绿色产品是从设计、研发、生产、销售的全过程来节约能源,预防污染。

从外在来看,绿色技术的扩散与应用是企业群落可持续产业模式最重要的特征之一,群落系统内大多数企业采用清洁生产技术减弱对环境的负面影响、开展废弃物资源化活动、企业投入专用设施与其他企业建立工业共生合作(工业废物或副产品的交换利用)等。从内在来看,绿色技术实际上是促进企业生态化经营,进而推动整个群落生态化演进关键的知识(技术工艺)与物质(材料设备)保证。企业的绿色技术应用究竟发生在哪一层面和环节、绿色技术在群落中是通过何种渠道和方式来扩散和应用的,所有这些都是市场调节、政府管制下的企业自主决策结果。其中,企业所处供应链系统的自发传导作用、迫于外部压力的信息共享、为了获得市场竞争力的策略反应等因素,是绿色技术在企业群落内得以扩散与应用的主要系统动力。

2供应链传导作用下的绿色技术扩散

绿色技术在企业群落中的扩散与应用,可以从产品供应链系统传导活动中的物质流和信息流两个视角予以观测与解释。

2.1物质流层面的绿色技术扩散

物质流层面的技术扩散表现为:在产品供应链系统传导活动中,当下游企业获得上游企业提供的清洁替代能源、原料和中间产品后,下游企业的整个产品系统(从产品设计、生产直至终端消费使用)随即也就具备了生态化品质。

这是因为,绿色产品制造本身就被视为绿色技术第三种层面上的技术扩散[1],在绿色中间品、产成品被制造和输出的同时,绿色技术实际上也就在扩散了。例如,下游厂商购买了来自上游供应商的“光伏发电系统”(可以利用太阳能的整套发电系统),由于“光伏发电系统”没有机械运动部分,无污染、无噪音,当下游厂商用这套清洁能源装置为本企业的生产系统提供清洁、可再生动力时,下游厂商的生产活动也就自然具备了清洁技术工艺特征。在此,绿色技术伴随产品绿色供应链系统的传导活动得以有效扩散[2]。

同样,企业群落中的横向生态耦合链接关系也同时伴随着绿色技术的创新与扩散,如图1的虚线框所示:被观测企业出于“三废”综合利用、环境保护的考虑,将其产生的副产品———“工业排泄物”进行无毒化、无污化和原料化处理,出售给关联的、处于“工业食物链”下游的企业作为工业原料使用,被观测企业这一举措本身就内含绿色技术的利用或创新。另外,在对潜在成本与潜在收益权衡的基础上,处于相同“食物链”的上、下游企业会在绿色技术扩散问题上达成交易。反过来,在满足潜在收益大于潜在成本的前提下,来自“食物链”下游企业的绿色供应需求(可循环使用、无公害原材料、低耗能产成品)、第三方的法规监管,均能促使被观测企业从其上游企业或者科研机构(多数是政府支持的)购买、获得清洁技术工艺[3]。在此,绿色技术在横向生态耦合中得以扩散。

2.2信息流层面的绿色技术扩散

信息流层面的技术扩散表现为:当企业迫于某种“现实性压力”(技术、成本、消费者偏好、法规管制等)提升产品系统的生态品质(资源节约、清洁环保)时,就会在产品的设计阶段考虑清洁能源、环保材料的技术替代问题,因此对其上游供应商提出了“绿色供货”

需求信息。为了维系与传统客户的供应关系,上游供应商按下游顾客的“绿色”供货需求,向其提供清洁替代能源、原料和中间品。在此,下游厂商的清洁生产活动信息、绿色产品需求信息促进了上游供应商的绿色技术应用与开发,这里呈现出信息流的顺向或逆向运动(图1中虚线指示的方向)。

绿色信息流更为重要的促进作用是:在控制成本、强化市场反应能力、提高垂直分工效率的战略考虑下,群落中规模大、实力雄厚、对群落经济起带动和主导作用的企业,通常会将绿色创新技术(如替代材料生产工艺和使用技术)有偿或无偿转移给上游供应商使用。

下面将通过对国内OEM电子产品企业在无铅焊接技术上合作的案例来说明这一现象①(见图2)。

在电子产品的生产过程中,应用无铅焊料可以杜绝产品报废后和报废处置过程对环境(水系、土壤)形成具有毒害作用的铅污染。随着欧盟2003年颁布电子废弃物管理指令(RoHS)后,在欧盟市场上销售的电子产品都必须在欧盟设定的时间期限内(2007年以前)实现无铅化生产。在此压力下,国际知名品牌电器商出于成本控制、提高跨国垂直分工效率的考虑,早在2003年欧盟法令颁布后就着手对中国境内的OEM(贴牌制造)企业进行无铅焊接技术培训,从而将这项在中国基本空缺的清洁技术工艺转移、扩散给中国的电子产品生产企业。国内的OEM电子厂商大多集聚于同一专业生产地带,如广东的深圳、东莞、惠州,上海、苏州、常州等长江三角洲地带。群落的聚集效应为同类企业之间进行技术工艺、管理方式的比较、揣摩、模仿,甚至内部交流提供了便利的条件。

另外,OEM电子厂商同样是为了提高垂直分工效率,直接将学习得来的无铅焊接工艺(免费)转移、传授给自己的供应链上游企业———集成电路板、电子元件、板卡等群落内或附近的国内电器材料供应生产企业,而这些电器材料生产企业为了保证无铅焊接电子元件的阻燃性、耐高温性能,又与无铅焊料供应商在技术上进行着频繁的沟通,进一步促进了无铅焊料生产厂商的绿色工艺技术水平。

3绿色技术扩散动力渠道分析

基于市场诱致的绿色技术扩散的动力渠道主要可以分为:“交易传染型”和“竞争模仿型”两类模式。

3.1“交易传染型”绿色技术扩散

在被观测企业A的前向和后向供应链上(图1的横向线框所示),企业A对清洁工艺的采纳会通过与其上、下游企业的交易关联,促进绿色技术的运用和扩散。另外,在企业间的横向生态耦合过程中(某一企业的副产品成为另一企业的生产原料,如图1的纵向线框所示),处于“工业食物链”下游的企业对上游“排泄物”的原料化利用行为也衍生出绿色技术的交易和扩散,这类扩散模式可以称之为“交易传染型”扩散。交易传染型绿色技术扩散的实现机理可以通过应用“传染复制”总体博弈演化模型予以解释[4~10]。

(1)“传染复制”演化模型说明企业群落中所有的企业被理解为一种群落总体I。

不同的企业个体i之间发生交易关联(“遭遇”)的情况是一个不确定的随机事件,总体中的个体出现在不同交易项目(产业供应链关系或者工业共生关系)上的概率bi(x)被假定服从泊松分布。

当某个企业个体在某个具体交易项目上“遭遇”

到具有“绿色需求”的交易伙伴时,所采用的策略主要有两种:其一,采纳策略h(如迎合交易伙伴的“绿色需求”,采用新技术改善产品的生态品质,向客户方提供节能、清洁型原材料或设备);其二,不采纳策略r(依然因循传统生产工艺)。

假定每个具有“绿色需求”的企业都是一个实际的h策略者,而每个仍然因循传统生产工艺的企业都被暂时作为r策略者对待。

当前企业群落中持有h策略的企业比例(流行度)为xih,持有r策略的企业比例为xir,一个h策略者与一个r策略者彼此遭遇的概率为bi(x)xihxir(对任何h,r∈Si,Si为策略集)。在此,策略具有传染性,r策略者变成h策略者的概率为phir(x),而h策略者变成r策略者则反过来。

假设在统计上是独立的,可以发现:当(h,r)对“遭遇”时,它们变成(h,h)的概率为phir(x)(1-phih(x)),变成(r,r)的概率为prih(x)(1-phir(x)),其他情况下则成为(h,r)对或者(r,h)对。第一种情况下,h策略者数量增加一个,r策略者数量则减少一个;第二种情况则正好相反。在后两种策略组合对中,企业总体中采纳绿色技术与因循传统技术的企业比例保持不变。

(2)基于交易的绿色技术“传染复制”

通过以上的说明和定义,可以得到一个基于流行病学的绿色技术采纳企业的“生殖能力”动态预期:x·ih=bi(x)∑k∈SIxir[phir(x)(1-prih(x))-prih(x)(1-phir(x))]xih=bi(x)∑k∈SIxir[phir(x)-prih(x)])xih(1)公式(1)这个流行病学(统计力学)模型被视为传染性复制子,这里可以假定传染概率phir(x)是采纳策略h平均收益ui(ehi,x-i)的增函数;是不采纳策略r平均收益ui(eri,x-i)的减函数。对某个在第一自变量ui(ehi,x-i)上递增、在第二个自变量ui(eri,x-i)上递减的函数(Lipschitz连续)来说,令:phir(x)=δi[ui(ehi,x-i),ui(eri,x-i)](2)prih(x)=δi[ui(eri,x-i),ui(ehi,x-i)](3)因此,(1)式可以改写成:x·ih=bi(x)[∑k∈SIxir(δi[ui(ehi,x-i),ui(eri,x-i)]-δi[ui(eri,x-i),ui(ehi,x-i)])xih](4)从式(4)中可以看到:类似许多动态演化一样,这种流行病学动态成为企业选择纯策略(采纳绿色技术或者不采纳绿色技术)的依据,即企业群落中实施清洁生产工艺的流行度xih的变化率x·ih在“绿色遭遇率”

bi(x)(在供应链关系活动中遇到“绿色需求”企业的几率)不变的情况下,主要取决于企业策略转变(生态化技术变革)的收益差。由此可以发现,绿色技术在群落内部得以扩散的根本机理是:企业的自利考虑以及市场机制的诱致作用———采纳清洁技术工艺可以维系与“绿色需求”客户企业的商业交往,所获收益要高于因循传统工艺、有可能失去交易机会的不采纳绿色技术策略r。在现实中,“传染型”绿色技术扩散的具体渠道主要有:A实施清洁工艺生产属于工艺型绿色技术革新,而不是采用末端型治理技术,因此在产品的设计阶段就强调绿色替代原料的应用,对上游供应商提出了“绿色供应”要求,促进了上游企业开展绿色制造,从而间接刺激了其实施绿色技术的采纳和创新。例如,通用电气公司要求与其有合作关系的所有供应商企业都必须自觉遵守环境法规,做到达标排放,而且所供原材料必须具备环境友好品质,这使得那些希望维系与通用商业关系的供应商必须采纳绿色技术工艺来满足通用的“绿色需求”。

A采用清洁工艺生产出的绿色产品系统提供给下游企业,使得下游厂商的生产具备了清洁品质。而接受A的绿色产品系统必然导致下游企业对传统生产工艺进行绿色变革,因此绿色技术得以有效扩散。

A与上下游企业之间就绿色创新技术资源的受让问题达成交易。出于获得垂直分工利益的考虑,A将自身的绿色创新技术有偿或无偿提供给上游企业以获得绿色原料的供应保证,或出于引导消费和开发市场的需要,将技术提供给下游企业使其具备应用A企业绿色产品系统的能力。还有一种可能性就是,A具有强大的技术研发能力和独立的研发部门,绿色创新技术转让本身就能实现可观的经济效益,即转让的潜在收益远大于潜在成本。

居于“工业食物链”下游的企业能够以A的“工业排泄物”为生产原料,说明企业之间构筑了事实上的产业生态链接,即前文所指的企业横向生态耦合。在这种主导产业链活动衍生出的横向生态耦合关联中,处在相同“食物链”的上、下游企业会彼此促进对绿色技术的运用,如FutureGen项目中的煤炭气化产生的二氧化碳被用于强化采油(EOR)。另外,双方也可能在绿色技术转让问题上达成交易。例如,上游企业为了降低成本会把对“三废”的处理从其生产边界内排除,而下游企业在有利可图的前提下会自愿选择“三废”

治理和综合利用业务,在此过程中同样可能伴随着相关技术的交易转让。

3.2“成功主体模仿”型绿色技术扩散

在企业群落中,绿色技术有效扩散的另一种重要途径,是通过群落里生产相同或同类产品的企业之间的市场竞争实现的。其中,模仿成功的“绿色企业”的做法是清洁生产技术工艺得以有效扩散的重要途径。

竞争模仿型绿色技术扩散的实现机理,可以通过“成功主体模仿”的总体博弈演化模型予以解释[9~14]。

(1)“成功主体模仿”演化模型说明在研究中,可以假设企业群落总体中选择采纳某种绿色技术策略h(h策略表现为产品系统中较为具体的、某个环节的生态品质改进)的概率phil(x)与企业群落内策略h的流行度xih成比例。持有采纳策略h的企业当前收益越高,该比例就越大。

ωir[ui(ehi,x-i),x]>0用来表示企业群落总体I中反思策略l者(l策略是指因循传统生产工艺的做法)赋予纯策略h的权重,其中ωir为一个(Lipschitz连续的)函数,它在第一个自变量(收益)上是严格递增的。

(2)基于成功模仿的绿色技术选择通过以上的模型说明和变量定义,可以得到企业个体采纳某种绿色技术策略h的概率为:phil(x)=ωil[ui(ehi,x-i),x]xih∑k∈Siωil[ui(eki,x-i),x]xik(5)在“成功主体模仿”的总体博弈演化中,反思策略的企业个体i未必知道博弈方位置所有纯策略(例如选择变革产品设计方案策略h、选择采用绿色替代原材料策略k、选择清洁节能的加工制造技术策略m、对生产废料的资源再生处理策略g、对产品报废后的回收再利用策略e等)的当期预期收益,对所有的i∈I;企业个体不需要知道当期的总体状态(群落中究竟有多少家企业实施了生态化经营、生态化经营的企业在产品系统的哪些环节应用了绿色技术等);企业个体也不需要知道其他企业个体实施生态化经营的具体收益。但是,企业个体却可以通过了解群落内采用某类绿色技术的企业(这样的企业总体为J,且JI)的总体收益概况,做出是否采用该类绿色技术的决策。

那么,促成企业个体采纳某类绿色技术的系统动力(动态选择情况),可以通过式(5)中的绿色技术策略h选择概率phil(x)、策略的流行度xih与h策略占策略总体收益的比值来予以构造(如式(6)):x·ih=∑i∈Jωil[ui(ehi,x-i),x]xih∑k∈Siωil[ui(eki,x-i),x]xik-1xih(6)同理可以获得其他纯策略的动态选择情况,例如:x·ik=∑i∈Jωil[ui(eki,x-i),x]xik∑k∈Siωil[ui(eki,x-i),x]xik-1xik(7)………

x·ie=∑i∈Jωil[ui(eei,x-i),x]xie∑k∈Siωil[ui(eki,x-i),x]xik-1xie(8)式(6)~(8)说明:在企业群落中,某类绿色技术选择(纯策略)的动态生长主要取决于运用此类技术企业的总体收益概况(企业规模的扩张、市场份额和税收上缴额度的增加等)、运用该类绿色技术的企业比例(技术流行度)两个因素带给企业个体的启迪,在此基础上不同的企业个体会根据各自对x·ih,x·ik,…x·ie值的主观判断进行排序①,以便选择自己的绿色技术模仿点。当某种绿色技术通过模仿机制被采纳后,新的一轮策略选择在同样的机制下又自发持续进行。

假设被观测的A类企业运用绿色技术,尤其采纳的是工艺型绿色技术,其生产排污、耗能耗材情况得以有效的改善,而且其产品系统具有显著的“生产者责任延伸”特征[15],另外A类企业还和位于“工业食物链”

下游企业建立的综合利用其副产品的契约机制。更重要的假设是:由于产品系统的清洁、节约品质被越来越多的责任型消费者和具有“绿色原料”供应要求的下游企业所青睐,因而A类企业的绿色生产工艺以及横向产业生态耦合为其带来了可观的综合效益。

A类企业的成功模式引起了同行业者B的注意,出于竞争的需要,对A类企业产品系统的绿色技术特征进行模仿被纳入了企业B策略选择集中。模仿点主要出现在:产品工艺设计阶段(含替代材料选择)、加工制造阶段、副产品处理阶段、产品报废后的处理与循环利用阶段(该阶段是在传统产品系统基础上延伸出的企业责任阶段)。模仿点可以在产品系统的某一环节出现,也可以是在许多环节上同时出现,这主要取决于企业对模仿成本、资源环境法规约束力度等因素的考虑。模仿点的出现必然导致模仿企业对绿色技术的吸收和运用。

假如模仿点出现在副产品处理阶段和产品报废处理阶段,那么该阶段的绿色技术运用则属于末端治理型技术,事后性与被动性是这类绿色技术实施的特征;假如模仿点出现在产品工艺设计和制造加工阶段,那么企业B采用的是工艺型绿色技术,即注重整个产品系统生命周期内的生态化运作,突出典型的“3R”原则。“竞争模仿型”绿色技术扩散的核心机理在于成功开展生态化经营、获得市场竞争优势的企业对同行业企业产生的启发,其技术来源不一定是创新性技术资源(需要购买),绝大多数可以是成熟的环保节能技术,或者只是在产品的设计中增添了对整个产品系统(生命周期)的环保、耗能品质的考虑。

4市场诱致的绿色技术扩散案例分析

美、日电子企业在无铅焊料技术选择路径上的比较(见图3)电子产品制造过程中的传统电子元器件连接方法,包括印刷电路板的表面涂料、电子元件的回炉焊工艺等,都离不开锡铅焊料。

以锡铅焊料工艺生产的电子产品在报废后难以回收,并且导致了废弃物拆解场地和作业人员的铅污染、电子垃圾填埋场的地下水系铅污染等,来自电子废弃物的铅污染引起了各国环境管理部门的高度重视。为此,美国早在20世纪90年代初,就由个别大企业开展了无铅焊接工艺的研发(见图3),但在无铅焊接技术的研发和推广过程中,存在着个别企业单独研发和应用无铅技术,缺乏必要的生产系统技术转换环境、环境经济收益无法补偿高额成本、传统有铅焊接具有的技术和市场优势形成了强大的技术惯性等,阻碍了无铅焊接技术工艺在企业中的推广。

在电子产品制造商的大力游说下,美国环境管制部门最终同意采纳和推广低铅技术方案(减少印刷电路板中铅的消耗、鼓励研发集成度较高的印刷电路设计),另外在政策上鼓励企业加大对废弃电子产品的回收力度(末端处理)。相对美国而言,日本企业在20世纪90年代末才涉足电子产业的无铅化,但日本企业却将无铅化技术的研发和应用看作是电子产业界的重大机遇。松下电器公司于1995年开始无铅化技术开发,并于1998年推出无铅MD播放器后,日本企业凭借其纵横交错的产业网络、紧密的上下游企业协作关联、日本企业群独有的利益共享与风险共担机制,为电子产品的无铅焊接工艺的普及创造了系统的技术环境,其间还得到了日本焊接协会在研发和培训上的大力支持。随着欧盟电子废弃物管理法令(RoHS)于2003年的出台,日本电子企业普遍采用的锡银铜为主料的焊接工艺被确定为电子产品市场的主流技术(见图3),并已经成为目前全球最主要的无铅元器件、无铅材料和无铅系统产品的供应商[21~23]。

该案例说明了日美两国电子企业在企业分布特征、绿色技术流行度、绿色“遭遇率”、技术变革收益均存在差异的情况下,两国企业不同的绿色技术变革路线,日本企业最终采纳了无铅焊接工艺(RoHS许可的技术主流),美国企业则选择了低铅化技术(含有末端治理的技术特征)。

事实上,“交易传染”型与“成功主体模仿”型两类绿色技术扩散特征都能够见之于本案例的分析。无论是绿色“遭遇率”bi(x),还是无铅焊接技术流行度xih,日本电子企业都比美国企业高。这首先应归于日本电子企业的高聚集度,例如日本山梨市井底瘦地区聚集了几十家电子产品和电子元器件生产厂商,是典型的电子产品专业生产带。在产业网络密集、地域相对集中的技术环境中,上、下游企业的绿色技术研发、绿色供应需求能够相对容易地得到与之有供应链关联的企业响应,出于节约谈判时间、便于垂直分工、迅速应对市场需求变化的考虑,企业间往往能够就新技术的研发、交流、转让达成高效的沟通与协作,从而加速了新技术在群落内的应用和扩散。因此,当RoHS法规下的无铅供货压力增强(可以理解为“绿色遭遇率”

bi(x)增大)时,随着无铅焊接工艺收益被大多数企业认可,无铅焊接技术必然在企业群落内呈现出高流行度xih态势,其技术应用增长率(扩散效应)自然得以提升。

5研究结论

本文通过对绿色技术扩散层面和渠道的研究,得出以下结论:在产品供应链系统的传导作用下,绿色技术在企业间的扩散主要经过物质与信息两个层面,即物质传导作用表现为产品的绿色制造、工业废料与副产品的交互循环利用,客观上促进了绿色技术在企业间的传播使用;信息传导则体现在为了提高整体供应链运营效率,企业个体间自发传播绿色技术的动机是客观和充分的。

绿色技术在上述两种层面上的扩散,实质上体现了市场机制对绿色技术扩散的自发调节作用。事实上,绿色技术在企业群落中得以高效扩散的根本动力在于企业个体自愿和持续的市场行为选择。这种选择主要是基于对绿色技术采纳的收益与成本、政府监管等变量的权衡和反应,具体而言,两类渠道动力促使企业自发地采纳绿色技术工艺。

其一,群落系统内从事清洁生产的企业越多、具有生态需求的用户越多,产品供应链系统中“遭遇”绿色需求(环保、可重复利用材料,低耗能产成品或中间品)的概率越高,为了维系与客户的供应链关系,企业有足够激励去采纳绿色技术,而非因循传统的“三高”(高消耗、高排放、高污染)技术。

其二,群落系统中的其他企业采纳绿色技术所获收益会提供一个有效的模仿效应,出于获得市场竞争力的考虑,企业会根据自身的成本技术约束选择适合的技术模仿环节,以绿色技术工艺代替传统技术工艺。

模仿效应带来的直接影响就是增加从事清洁生产的企业数量和密度,企业间商业交往的“绿色遭遇率”也因此提高,在高“绿色遭遇率”的群落系统中,企业实施绿色技术变革的技术环境得到改善、技术转换成本较低,因而绿色技术在企业群落中被扩散和应用的可能性进一步增大。

参考文献:

[1]董炳艳,靳乐山.我国绿色技术创新研究进展初探[J].科技管理研究,2005,25(2):64.

[2]陈英婕,傅仲文.太阳能光伏发电产业的发展趋势和展望[J].电源资讯,2006(7):44-45.

[3]魏晓平,李昆.基于“复制动态”进化博弈理论的生态工业链接研究[J].中国工业经济,2005(12):49-57.

[4][瑞典]乔根·W·威布尔.演化博弈论[M].第1版.王永钦(译).上海:上海三联出版社,上海人民出版社,2006.

无铅电子范文篇10

关键词:微电子装备;焊膏;理化性能;可靠性

随着SMT技术被广泛应用,焊膏作为当今电子产品生产中极为重要的关键材料,在SMT生产中发挥着巨大的作用,焊膏质量好坏在一定程度上决定了焊接的质量及产品可靠性水平[1]。提升焊膏品质对于提升电子工艺装配水平,提高企业经济效益,推动技术创新,支撑产业升级,保障工业安全具有重要的战略意义。目前国内焊膏品牌与国外品牌在质量和性能指标存在一定差距,特别是质量稳定性和可靠性方面有较大差距,高端产品加工制造不敢大面积应用国产焊膏,用户对国产焊膏产品缺乏信心。为提高国产焊膏品牌的核心竞争力,需要充分摸清国内外品牌焊膏性能的差距,取长补短,为加速国内品牌焊膏高水平、高可靠性发展做准备。本研制工程对国内外知名品牌焊膏的理化性能、工艺性和可靠性进行全面摸底,分析差距形成的原因,并不断优化国产焊膏,使其更具国际竞争力。本文介绍了研制工程第一阶段的部分工作,对国外知名品牌的三款无铅焊膏和两款有铅焊膏的全项目理化性能进行了性能检测和研究分析。

1研究内容及方法

1.1研究内容

本文从焊膏的金属部分、助焊膏部分以及焊膏整体三个方面对国外焊膏进行分析研究:焊膏金属部分的性能研究主要包括金属含量、合金成分、合金粉末粒度大小及形状分布;焊膏助焊剂部分的性能研究包括酸值、扩展率、残留物干燥度、铜镜腐蚀和铜板腐蚀;焊膏整体部分的性能研究包括黏度、触变系数、黏滞力、坍塌、锡珠、离子卤化物含量、总卤、离子清洁度、表面绝缘电阻和电迁移。

1.2研究方法

本文采用国内外较为成熟、通用的标准方法对焊膏的理化性能进行分析,其中,除合金成分参考GB/T10574标准、总卤参考EN14582标准,扩展率、触变系数和锡珠试验参考JIS标准外,其余项目全部参考IPC-TM-650系列标准进行测试,对试验结果进行评判的主要依据为IPCJ-STD-004B、IPCJ-STD-005A、IPCJ-STD-006C、JISZ3283等。应用到的分析手段主要包括显微组织分析、电绝缘性能分析、化学成分分析和可靠性测试分析等。分析方法主要有:显微测量法对合金粉末粒度进行分析;在线监测法测定表面绝缘电阻;离子色谱分析法对卤化物含量进行定量分析;氧弹燃烧法对焊膏总卤进行分析;化学滴定法及ICP-OES法对焊膏合金成分进行定量分析等。焊膏的材料理化性能分析分三部分展开:金属部分分析,助焊膏部分性能分析,焊膏整体性能分析。样品编码“U”代表无铅焊膏,“L”代表有铅焊膏。为了确保数据的有效性和一致性,针对每个项目都进行了3~5组平行样进行研究,将研究的数据进行汇总统计与对比分析。文中涉及的焊膏是从市面上采购的常用品牌,并进行盲样编码测试,所有测试结果均真实、有效。

1.3仪器设备

研究所用的主要仪器设备及型号为:电感耦合等离子原子发射光谱仪Agilent5100、场发射扫描电子显微镜S-4300&Genesis-60、离子色谱仪ICS-1500、SIR在线监测系统SIR-8328、黏滞力测试仪TK.1、高阻仪Agilent4339B等。

2研究结果

2.1金属部分研究结果此部分内容研究了焊膏的金属含量、合金成分、合金粉末粒度大小及形状分布,金属部分性能直接影响了焊膏的焊接工艺性与焊点可靠性。三款无铅焊膏U-1、U-2和U-3的金属含量均在88%~89%之间,且合金成分均符合SAC305的要求[2],U-2和U-3的合金粉末粒度符合Type4,U-1符合Type3[3]。两款有铅焊膏L-1和L-2的金属含量均在89%~90%之间,且合金成分均符合Sn63Pb37的要求,L-1的合金粉末粒度符合Type4,L-2符合Type3。金属部分测试结果如图1和图2所示。2.2助焊膏部分研究结果此部分内容研究了焊膏中助焊膏部分的性能,助焊膏性能的优劣会直接影响焊接的工艺性。一般来说,酸值越高,焊膏中助焊剂所含活性物质越多,这些活性物质有利于焊接,但是若活性物质不能完全分解,其残留物会增加线路板腐蚀、漏电和电迁移等的风险。无铅焊膏中,酸值较大的是U-1,有铅焊膏中,酸值较大的是L-1(如图3所示)。值得一提的是,若焊剂的活性较强,则会对铜镜腐蚀的结果有一定影响,结果表现为铜镜具有穿透性腐蚀(即符合M级或H级[4]),在实际工艺使用过程中,如果印刷后放置一段时间再进行焊接,则会对焊盘、器件引脚造成腐蚀。经过铜镜腐蚀试验,U-1和U-2铜膜表面基本无变化,U-3、L-1、L-2铜膜减薄,但无穿透性腐蚀。铜板腐蚀则考察的是焊接后的焊剂残留物对铜板的腐蚀性,五款焊膏的铜板腐蚀结果均为无明显腐蚀,符合L级。扩展率可以表征助焊剂的助焊性能。根据扩展率的测试原理,扩展率与铺展面积成正比,助焊剂的助焊能力越好,焊膏的铺展面积就越大,焊点的高度就越低,扩展率就越大。五款焊膏扩展率结果均高出标准规定值(如图4所示)[5],其助焊性能良好。焊膏坍塌性能与材料的黏度、合金粉末大小、钢网印孔大小、工艺制程等都有关系。小粒径的合金粉末易塌边,黏度过低也容易发生坍塌。五款焊膏的坍塌试验结果并无差异,均符合IPC-J-STD-005A产品的技术要求。离子卤化物含量考察焊膏卤化物中游离的卤化物含量。当离子卤化物含量较高时,游离出的卤酸根离子(F-、Cl-、Br-、I-)残留在PCB上会对线路板表面产生腐蚀、漏电、电迁移等不良影响。总卤考察焊膏整体的总卤素含量,包含离子态的卤化物和化合态的卤素含量,需要符合环保要求。总卤结果中,无铅焊膏U-2的溴含量和有铅焊膏L-2的溴含量均高于900mg/kg。离子清洁度考察了焊膏印刷在PCB板上的残留物含量。五款焊膏的离子清洁度测试结果良好,说明焊膏的焊剂残留物较少。详细结果见表1。

3研究结论