水闸底板范文10篇

时间:2023-03-17 01:22:04

水闸底板范文篇1

关键词:水闸;底板;混凝土

水闸在水利工程中应用很广,底板部位易出现问题,长期以来困扰着工程界。一直未能很好解决。该问题的出现,给水闸工程带来了多方面不同程度的危害,所以在进行水闸设计时,一定要根据闸址附近的地形、地质条件和水文、施工、管理等因素,认真研究,合理布置。

一、底板混凝土配料的控制

混凝土生产系统在使用前要进行保养、校核,确保计量准确性,材料配合比允许偏差必须控制在水泥、水、混合料为±2%;砂、石为±3%;外加剂为±l%。除粉煤灰、水、砂、石用自动计量系统控制外,对减水剂要先用天平称量每盘料的用量,然后装袋备用。根据现场工地试验室提供的混凝土施工配料单严格配料,机械搅拌时料斗投料顺序为:先加碎石,后加水泥、减水剂、粉煤灰,最后加砂和水,混凝土搅拌时间从投料完毕组成材料,在搅拌机内延续搅拌时间不得少于2分钟,掺入抗裂防渗纤维混凝土搅拌时间不得少于2.5分钟。

混凝土出料时随时测定坍落度和拌和物温度、观察混凝土拌和质量,严禁生料输送,确保混凝土浇筑质量。由于底板混凝土仓面较大,混凝土用量多,可采用混凝土输送泵泵送混凝土。泵管安装时不得直接支撑在钢筋、模板及预埋件上,每隔一段距离要用钢管支架固定,管道卡箍处不得漏气漏浆,泵管尽量少用弯管和软管,预防堵管,确保混凝土顺利出料。混凝土泵送前要用清水湿润管壁,然后拌制1:2水泥砂浆润滑混凝土泵和输送管内壁,润滑用的水泥砂浆要分散布料。

混凝土浇筑过程中,前场和后场均须布置管理人员随时指挥协调。现场可用对讲机联系来控制混凝土浇筑速度及拆布管时间,以确保混凝土整个浇筑过程紧张、连续、有序地进行。同时要安排专人测定混凝土入仓温度、坍落度,并留置规定制取的试压块组数。混凝土浇筑前,要保证仓内无杂物,模板、钢筋、预埋件符合规范要求,一切准备工作就序,并做好质量自检记录。经现场监理验收后方可进行浇筑。底板浇筑前要在仓面平均划分施工区域,混凝土浇筑自西向东、由远而近。混凝土按一定厚度、顺序、方向分层进行,上下层之间的混凝土浇筑间歇时间不得超过混凝土初凝时间。开始布料,两管同时进行,采取“斜面分层”法施工。

振捣混凝土应从浇筑层的下端开始,逐渐上移,以保证混凝土施工质量,在底层混凝土初凝前安排一台泵进行面层防渗抗裂混凝土施工。混凝土灌筑后用插入式振动器振捣,振捣时与混凝土表面垂直,操作时做到快插慢拔,上下略为抽动,插点均匀排列,逐点移动,顺序进行,不得遗漏,使混凝土达到均匀振实。插入式振动器在每一插点上的振捣时间以混凝土表面呈水平而且水泥浆不再出现气泡为准。

二、水闸底板混凝土的分析

目前在对待混凝土底板结构问题上,一般是允许出现裂缝,而对其宽度进行一定的限制,不同国家和地区对不使用环境和要求下的混凝土建筑物的裂缝宽度有不同的控制标准。我国《混凝土结构设计规范》允许裂缝宽为0.2-0.3毫米,在对待裂缝问题上提出限制与允许的两种方法。变形变化引起的约束应力首先要求结构所处的环境能给结构以变形的机会,即变形得到满足,则不会产生约束应力。

在全自由状态下,结构可以有任意长度、任意温差不产生约束应力,因此给结构创造自由变形的条件就是允许原则。在实际工程中,全自由的理想状态不易做到,但是可减少约束,释放大部分变形,使之出现较低的约束应力;当结构处于全约束状态,要让任意长度不设伸缩缝亦不开裂,则只须所选用的结构材料具有足够的抗拉强度和极限拉伸即可。该设计原则称为限制原则。一般说来,对于限制原则,必须有足够的强度储备;采取允许原则,必须有充分的变形余地。现在一般认为,混凝土建筑物不出现裂缝是不可能的,或是很困难的。防止裂缝出现,在材料、设计、施工、运行和维护等方面均有一定的研究,但还不够完善或效果不是十分明显。在水工结构工程中,以限制原则为主,力求工程各部位都不裂缝。

三、水闸底板外部环境的控制

水泥水化产生大量的水化热,在1~3d内可放出热量的50%,甚至更多,当混凝土达到最高温度后随着热量的散发又开始降温,直到与环境温度相同。底板为大体积混凝土,热量传递的同时更易在内部积存,导致了内部温度高于外部温度,内部出现峰值温度。升温阶段结束后,是散热阶段。内外混凝土散热条件不同,外部混凝土和外界环境接触,散热条件好,热量容易散发,内部混凝土散热条件差,于是在降温阶段又造成了外部混凝土温度低于内部混凝土温度。这样在升温和降温阶段都使底板内外混凝土形成了同一方向的温度梯度。导致了其变形的不一致。内部膨胀受到外部的限制,或相应地外部收缩受到内部约束,于是在外部混凝土中产生了拉应力。当外部混凝土拉应力达到其极限拉应力,裂缝就会产生。裂缝初期很细,随着时问发展继续扩大、变深,甚至贯穿。除了混凝土水化引起的温度作用外,运行期环境温度变化也会产生作用。特别是遇到寒潮袭击、表面温降特别大时,裂缝发展更为严重。从以上分析可以看出,影响内外温差的主要因素有混凝土水泥用量、水泥品种、浇筑入模温度及环境温度等。

混凝土内的水分,少部分提供了水泥水化的需要,少部分泌出流失,大部分水分是在浇捣完毕后慢慢蒸发掉的。随着水泥的凝结、硬化,混凝土中的水分在未饱和空气中慢慢散失,引起混凝土体积缩小、变形,这种变形称为干缩。由于混凝土的水分蒸发及含湿量的不均匀分布,形成湿度变化梯度。其水分蒸发总是从外向内,由表及里。表层混凝土的水分蒸发程度和速度总是大于内部,表层混凝土收缩的程度亦大,其变形会受到内部混凝土的限制,在表层混凝土中也产生拉应力,使得表层混凝土总的拉应力加大,产生干缩裂缝,但干缩一般只发生在表层。混凝土的配合比和组成是影响干缩的主要因素,一般水泥用量多,水灰比大,则干缩也大。骨料密度大,级配好,弹性模量高,骨料粒径大,可以减小混凝土的干缩。其次,混凝土的养护和环境对干缩也有很大的影响。公务员之家

混凝土即使没有水分蒸发,其各组成部分的化学反应也会产生自生体积变形。在底板约束影响范围内,膨胀型自生体积变形会产生预压应力,有利于防裂,收缩型自生体积变形则不利于防裂。混凝土的自生收缩一般在拆模之前完成,虽然其量值不大,但如果同其他收缩叠加在一起,就会使表面拉应力增大。像水闸底板这样的断面尺寸很大,确属必须解决水化热问题的大体积混凝土结构,必须考虑自生收缩参与温度收缩等叠加的影响。

水闸底板范文篇2

关键词:水闸;底板;混凝土

水闸在水利工程中应用很广,底板部位易出现问题,长期以来困扰着工程界。一直未能很好解决。该问题的出现,给水闸工程带来了多方面不同程度的危害,所以在进行水闸设计时,一定要根据闸址附近的地形、地质条件和水文、施工、管理等因素,认真研究,合理布置。

一、混凝土底板配料的控制

混凝土生产系统在使用前要进行保养、校核,确保计量准确性,材料配合比允许偏差必须控制在水泥、水、混合料为±2%;砂、石为±3%;外加剂为±l%。除粉煤灰、水、砂、石用自动计量系统控制外,对减水剂要先用天平称量每盘料的用量,然后装袋备用。根据现场工地试验室提供的混凝土施工配料单严格配料,机械搅拌时料斗投料顺序为:先加碎石,后加水泥、减水剂、粉煤灰,最后加砂和水,混凝土搅拌时间从投料完毕组成材料,在搅拌机内延续搅拌时间不得少于2分钟,掺入抗裂防渗纤维混凝土搅拌时间不得少于2.5分钟。

混凝土出料时随时测定坍落度和拌和物温度、观察混凝土拌和质量,严禁生料输送,确保混凝土浇筑质量。由于底板混凝土仓面较大,混凝土用量多,可采用混凝土输送泵泵送混凝土。泵管安装时不得直接支撑在钢筋、模板及预埋件上,每隔一段距离要用钢管支架固定,管道卡箍处不得漏气漏浆,泵管尽量少用弯管和软管,预防堵管,确保混凝土顺利出料。混凝土泵送前要用清水湿润管壁,然后拌制1:2水泥砂浆润滑混凝土泵和输送管内壁,润滑用的水泥砂浆要分散布料。

混凝土浇筑过程中,前场和后场均须布置管理人员随时指挥协调。现场可用对讲机联系来控制混凝土浇筑速度及拆布管时间,以确保混凝土整个浇筑过程紧张、连续、有序地进行。同时要安排专人测定混凝土入仓温度、坍落度,并留置规定制取的试压块组数。混凝土浇筑前,要保证仓内无杂物,模板、钢筋、预埋件符合规范要求,一切准备工作就序,并做好质量自检记录。经现场监理验收后方可进行浇筑。底板浇筑前要在仓面平均划分施工区域,混凝土浇筑自西向东、由远而近。混凝土按一定厚度、顺序、方向分层进行,上下层之间的混凝土浇筑间歇时间不得超过混凝土初凝时间。开始布料,两管同时进行,采取“斜面分层”法施工。

振捣混凝土应从浇筑层的下端开始,逐渐上移,以保证混凝土施工质量,在底层混凝土初凝前安排一台泵进行面层防渗抗裂混凝土施工。混凝土灌筑后用插入式振动器振捣,振捣时与混凝土表面垂直,操作时做到快插慢拔,上下略为抽动,插点均匀排列,逐点移动,顺序进行,不得遗漏,使混凝土达到均匀振实。插入式振动器在每一插点上的振捣时间以混凝土表面呈水平而且水泥浆不再出现气泡为准。

二、水闸底板混凝土的分析

目前在对待混凝土底板结构问题上,一般是允许出现裂缝,而对其宽度进行一定的限制,不同国家和地区对不使用环境和要求下的混凝土建筑物的裂缝宽度有不同的控制标准。我国《混凝土结构设计规范》允许裂缝宽为0.2-0.3毫米,在对待裂缝问题上提出限制与允许的两种方法。变形变化引起的约束应力首先要求结构所处的环境能给结构以变形的机会,即变形得到满足,则不会产生约束应力。

在全自由状态下,结构可以有任意长度、任意温差不产生约束应力,因此给结构创造自由变形的条件就是允许原则。在实际工程中,全自由的理想状态不易做到,但是可减少约束,释放大部分变形,使之出现较低的约束应力;当结构处于全约束状态,要让任意长度不设伸缩缝亦不开裂,则只须所选用的结构材料具有足够的抗拉强度和极限拉伸即可。该设计原则称为限制原则。一般说来,对于限制原则,必须有足够的强度储备;采取允许原则,必须有充分的变形余地。现在一般认为,混凝土建筑物不出现裂缝是不可能的,或是很困难的。防止裂缝出现,在材料、设计、施工、运行和维护等方面均有一定的研究,但还不够完善或效果不是十分明显。在水工结构工程中,以限制原则为主,力求工程各部位都不裂缝。

三、水闸底板外部环境的控制

水泥水化产生大量的水化热,在1~3d内可放出热量的50%,甚至更多,当混凝土达到最高温度后随着热量的散发又开始降温,直到与环境温度相同。底板为大体积混凝土,热量传递的同时更易在内部积存,导致了内部温度高于外部温度,内部出现峰值温度。升温阶段结束后,是散热阶段。内外混凝土散热条件不同,外部混凝土和外界环境接触,散热条件好,热量容易散发,内部混凝土散热条件差,于是在降温阶段又造成了外部混凝土温度低于内部混凝土温度。这样在升温和降温阶段都使底板内外混凝土形成了同一方向的温度梯度。导致了其变形的不一致。内部膨胀受到外部的限制,或相应地外部收缩受到内部约束,于是在外部混凝土中产生了拉应力。当外部混凝土拉应力达到其极限拉应力,裂缝就会产生。裂缝初期很细,随着时问发展继续扩大、变深,甚至贯穿。除了混凝土水化引起的温度作用外,运行期环境温度变化也会产生作用。特别是遇到寒潮袭击、表面温降特别大时,裂缝发展更为严重。从以上分析可以看出,影响内外温差的主要因素有混凝土水泥用量、水泥品种、浇筑入模温度及环境温度等。

混凝土内的水分,少部分提供了水泥水化的需要,少部分泌出流失,大部分水分是在浇捣完毕后慢慢蒸发掉的。随着水泥的凝结、硬化,混凝土中的水分在未饱和空气中慢慢散失,引起混凝土体积缩小、变形,这种变形称为干缩。由于混凝土的水分蒸发及含湿量的不均匀分布,形成湿度变化梯度。其水分蒸发总是从外向内,由表及里。表层混凝土的水分蒸发程度和速度总是大于内部,表层混凝土收缩的程度亦大,其变形会受到内部混凝土的限制,在表层混凝土中也产生拉应力,使得表层混凝土总的拉应力加大,产生干缩裂缝,但干缩一般只发生在表层。混凝土的配合比和组成是影响干缩的主要因素,一般水泥用量多,水灰比大,则干缩也大。骨料密度大,级配好,弹性模量高,骨料粒径大,可以减小混凝土的干缩。其次,混凝土的养护和环境对干缩也有很大的影响。

混凝土即使没有水分蒸发,其各组成部分的化学反应也会产生自生体积变形。在底板约束影响范围内,膨胀型自生体积变形会产生预压应力,有利于防裂,收缩型自生体积变形则不利于防裂。混凝土的自生收缩一般在拆模之前完成,虽然其量值不大,但如果同其他收缩叠加在一起,就会使表面拉应力增大。像水闸底板这样的断面尺寸很大,确属必须解决水化热问题的大体积混凝土结构,必须考虑自生收缩参与温度收缩等叠加的影响。

水闸底板范文篇3

关键词:节制闸;除险加固;计算;闸室结构

1工程概况

沟村节制闸位于祥符区罗王乡沟村圈章河上,建于1977年6月,控制流域面积108km2,该闸为开敞式结构,其主要部位闸室按3级建筑物设计,其余次要建筑物也为3级建筑物,防洪标准为5年一遇。全闸总长36m,上游连接段长9m,闸桥面宽2m,下游消能防冲段长23m,闸孔总净宽15m,每孔净宽2.5m,共6孔,顺水流方向2m,底板厚0.5m,200#素混凝土。现状闸底板高程为59.75m,闸门为框架混凝土闸门,门高3.47m,手摇启闭系统,现状正常蓄水位为62.95m。经过对水闸现状安全重新进行监测和复核,原有水闸存在损毁严重、设备陈旧、无观测设施、无启闭机房等,已经不满足安全运行要求,必须进行拆除重建工程。

2工程存在的问题

2.1土石方工程。沟村节制闸建于1977年,水闸的上下游连接段均为浆砌石砌筑,通过现场安全检查可以得知,浆砌石结构均存在勾缝砂浆剥落,部分浆砌块石松动,上部浆砌块石表面部分风化,上下游护坡、海漫、防冲槽,裂缝塌陷等问题。管理房为砖砌体结构,房顶塌陷,漏雨严重,门窗损坏,墙壁裂陷。2.2混凝土工程。沟村节制闸的混凝土工程主要是闸门、闸墩、底板、机架桥以及交通桥。根据现场安全检查,混凝土碳化、风化裂陷严重,钢筋锈蚀。初步推测因混凝土强度等级偏低,钢筋保护层偏小,不满足规范要求所致。2.3金属结构。由于年代久远,闸板与螺杆连接金属结构锈蚀严重,左1孔尽毁,启闭困难,该闸不仅不能正常发挥灌溉效益,而且阻碍了汛期行洪,已失去了节制闸应有功效。2.4启闭机、电气设备。启闭机于1977年建成后,一直运行现在,已有30多年,5吨6台启闭设备,左第一孔启闭机及锣杆无,其余5台启闭设备及连接部件,锈蚀严重,启闭困难。2.5管理及观测设施。水闸无专用防汛用电线路,且设备老化,存在安全隐患,不利于汛期安全运行。水闸缺少工程维修管理。水闸上下游无任何沉降、变形观测设施,无法掌握水闸的沉降、变形情况,不利于水闸的运行管理。

3水闸拆除重建设计

3.1拆除后的水闸布置。本水闸设计采用开敞式C20钢筋混凝土结构。底板采用平底板设计,采用上、下游墩头均为半圆形的闸墩设计,露顶式平板钢闸门设计。铺盖采用现浇混凝土,护坡段与铺盖段以圆弧翼墙相连接,圆弧翼墙初步采用钢筋混凝土悬臂式挡土墙,与闸室连接处翼墙顶高程从63.43m加高至63.63m,采用斜坡相连。采用底流消能防冲,消力池布置在闸室后面,池底与闸底板之间以斜坡相连(本设计斜坡坡率取为1:5),斜坡顶端紧靠闸底板的下游端。按照《水闸设计规范》,设计闸孔净宽为15m,闸墩厚度为中墩1.0m,边墩0.8m。按照《水闸设计规范》,消力池深度为0.9m,长度为15m,护坦厚度为0.6m,消力池采用钢筋混凝土结构。重建后海漫长20m,底板采用0.3m厚的C20现浇混凝土,两岸以圆弧翼墙与下游护坡连接,护坡为0.15m厚C20现浇混凝土,边坡坡率1:2.5。防冲槽采用宽浅式以便施工,其深度为1.2m,设计底宽b取3m,顺河流方向长6m,上、下游坡率都取为m=2.5,两岸边坡与河岸相同。3.2防渗排水。设计本设计为轻粉质壤土,均采用平底式地基轮廓,其防渗设备为平铺盖,浅齿墙。铺盖长度11.28m,铺盖厚度为1m,铺盖上下游均设齿墙增加闸室的抗滑稳定性并延长渗径,齿墙深一般为(0.5-1.5)m,本设计采用0.8m,底板尺寸设计为3H(H为上下游最大水位差)8.46m,底板厚度与地基土质,水闸荷载,单孔净宽等因素有关,初拟时取闸孔净宽的(0.2-0.125)倍,本设计取0.2倍的净宽,取为0.6m,齿墙高取0.7m,混凝土垫层厚取0.1m。按渗透稳定最不利条件考虑,闸上游为正常蓄水位,下游无水,上游蓄水位62.95m,上、下游最大水位差为2.82m,根据地质报告,闸基应建在轻粉质壤土层上,根据《水闸设计规范》,取渗径系数为4,由此计算水闸防渗长度为4×2.82=11.28m。3.3水闸稳定计算。闸顶高程=最高水位+波浪高度+安全超高,3级水闸正常蓄水位时安全超高为0.4m,最高挡水位时安全超高0.3m,区域波高为0.2m,故闸顶高程为63.73m,取值64m,闸顶高位3.4m,闸门高度为3.2m,门宽为3.5m,露顶式平面闸门重估算结果为14.33kN。闸底板是闸室的基础部分,必须有足够的刚度和强度,本设计底板厚度取1.0m,底板内配筋,对于轻砂质壤土地基偏安全的闸底板长度取12m闸墩顺水流方向的长度取与底板相同,为10m。闸墩为钢筋混凝土结构。中墩厚为1.0m,边墩厚为0.8m,闸墩型式采用上、下游为半圆型,由《水工设计手册》可知,上游检修门槽槽深0.3m,宽0.3m。工作门槽一般由闸门尺寸及支承方式确定,槽深先设为0.3m,宽为0.6m。经过计算,启门力为78.13kN,闭门力为48.05kN,启闭机选择QL-160-SD手电两用螺杆式启闭机,检修闸门启闭设备选用160kN-4.5m电动葫芦较为合理,最大启闭力160kN,工作闸门选用螺杆式启闭机,在紧急情况既无电力保证的情况下,采用人力手动方式进行启闭闸门。

4闸室结构计算

4.1工作桥结构设计。考虑到方便起吊,设计每跨由两根倒L型纵梁及两根横梁组成,人后再在两纵梁之间加活动铺盖。设计纵梁梁高800mm,梁宽300mm,梁缘厚度端部100mm,根部200mm,挑出长度600mm。设计横梁截面为矩形,梁高480mm,梁宽200mm。铺板厚度80mm,活动铺板预制长度2160mm,宽度500mm。悬臂板取1.0m宽板带,自重设计为3.859kN/m,故按构造配筋,由于梁高较大,箍筋不宜太细,采用准8@200,全梁设置箍筋,用准12@200为受力钢筋。活动铺板自重设计值4.54kN/m,人群荷载设计3kN/m,绳鼓荷载设计7.1kN/m,故选配3准10(236mm2),均布钢筋配准6@200。4.2交通桥结构设计。本次交通桥按公路-Ⅱ级设计,采用预制装配式钢筋混凝土桥板,板长4000mm,板宽1000mm。已知净跨径为L0=3000mm,计算跨径为L=3000+500×2=4000mm,桥面净宽5m,桥面宽5+1=6m,栏杆0.15×2=0.3m,预制板材料混凝土C20,钢筋采用HRB335钢筋。

上游铺盖长10m,厚0.6m。闸室底板长12m,厚1m。下游铺盖与消力池长度为15m,铺盖与消力池以坡率为1:5斜坡相连。上、下游翼墙采用八字形翼墙,翼墙与边墩连接段有高程差,以斜坡过渡。海漫长为20m。本设计主要进行了水力学计算,结构计算,确定了断面尺寸,最后确定其配筋,保证了除险加固工程的稳定性和合理性。

参考文献:

[1]陈端,王贤忠,崔海涛.某水利枢纽施工导流设计[J].水利水电工程设计,2018,37(1):3-5.

水闸底板范文篇4

[关键词]病险水闸;除险加固;方案比选

1引言

2013年8月16日,浑河干流发生了严重的洪水灾害,造成下寨子拦河闸所处河段两岸防护堤以及水闸大部分冲毁,其残余部分已无法利用,因此,需要除险加固,推倒重建。

2设计方案与比选

2.1设计方案。下寨子拦河闸是一座具有泄洪和灌溉效益的综合利用功能的水闸,属浑河防洪工程的一部分,本次除险加固后灌溉面积为4500亩。下寨子拦河闸所在河道防洪标准为20年一遇,最大过闸流量1797m3/s,水闸过流能力按此标准和流量复核。本次除险加固工程规模确定为Ⅱ等大(2)型,泄水闸、冲砂闸、进水闸和两岸边墙等主要建筑物级别降为3级,次要建筑物级别为3级,临时建筑物为4级。因本工程下游紧邻国道202线及跨河公路桥,如被冲毁影响巨大,所以下游消能防冲建筑物设计洪水重现期为20年,用校核洪水重现期50年进行复核。下寨子拦河闸所在河道为典型山区多泥砂河道,汛期洪水陡涨陡落、迅疾凶猛,挟带大量泥砂及漂浮物。因此,除险加固设计拟采用平板闸和液压坝两种方案供分析选择。2.1.1平板闸设计方案平板闸方案是将翻板闸和一孔冲砂闸改为泄水闸结构布置。拆除翻板闸底部浆砌石及一个冲砂闸闸墩混凝土,仅保留下部浆砌石作为闸底板基础,布置平板闸加平板门的泄水闸结构。在全河断面布置平板门泄水闸,为加大泄流能力,应尽可能加大泄水闸孔口尺寸。参考同类工程,拦河闸总长为132m,由泄水闸、冲砂闸、进水闸和挡水坝段组成。泄水闸共设8孔,每孔净宽10m,闸室底板顶高程略高于上游河床开挖后地面高程。泄洪冲砂闸单孔净宽8m,边墩宽1m,中墩宽1.5m,2孔冲砂闸总长19.5m;闸室沿水流方向长度8.5m,闸底板厚度2.25m;泄洪冲砂闸为不设胸墙开敞式闸孔,闸孔净高8.45m,闸门为平板钢闸门,采用手动和电动两用启闭操作方式,闸顶以上布置排架结构,用于布置闸门启闭机房。进水闸长3.5m,左岸挡水坝段长15m。闸室底板保留部分老浆砌石作为水闸基础,并新建下游消力池。消力池采用底流消能方式,消力池长度39.3m(含斜坡段11m),斜坡段底板厚度0.5m,水平段底板厚度0.5m。2.1.2液压坝设计方案由右岸到左岸一次布置19扇合页式钢闸门泄水闸、1孔进水闸及左岸挡水坝段,拦河闸总长126.62m,其中合页式钢闸门总长114m,进水闸长3.5m,左岸挡水坝段长9.12m。19扇合页式钢闸门泄水闸总长114m,分为7个坝段,其中5个坝段为3扇一联布置,单个坝段长度18m,2个坝段为2扇一联布置,单个坝段长度12m。每扇合页式钢闸门净宽6m,闸室底板沿水流方向长度7m,闸底板顶部为台阶式,上游闸底板厚度3.5m,下游闸底板厚度3.13m。2.2方案比选。本工程的平板闸和液压坝方案分别从防止泥砂淤积、过流能力、运行管理、景观等4方面进行经济技术比选。(1)防止泥砂淤积方面平板闸方案紧靠进水闸布置有2孔泄洪冲砂闸,闸孔总净宽16m,泄洪冲砂闸底板高程低于进水闸底板高程1.35m,能够很好的解决进水闸附近的泥砂淤积问题,另外,8孔泄洪闸也为平板闸,闸孔总净宽80m,泄洪闸底板高程低于进水闸底板高程1.10m,泄洪期间也能够起到冲砂作用;液压坝方案在主河床布置有19孔合页式钢闸门,闸孔总净宽114m,闸底板高程低于进水闸底板高程1.10m,拦河闸泄洪期间,钢闸门放倒,同样能够将上游淤积的泥砂排向下游,起到很好的冲砂效果。可见,两方案均能够解决拦河闸上游的泥砂淤积问题。(2)过流能力方面平板闸方案在宣泄设计洪水时上游水位高于液压坝方案0.58m,宣泄校核洪水时上游水位高于液压坝方案0.79m,造成两方案的过流能力差别的原因主要在于,平板闸方案在主河床布置有闸墩,占用了部分主河床过流宽度。可见,在过流能力方面,液压坝方案优于平板闸方案。(3)运行管理方面平板闸方案布置有10孔平板钢闸门,闸门孔数较多,需要电动启闭设备对闸门进行控制,从而消耗一定的电能,造成一定的日常运行费用。液压坝的控制系统灵活多样,可针对不同客户的需求,配备手动摇杆式操作、PLC自控操作、电脑远程监控等控制系统;还可以采用角度传感器等检测装置,配套电控液压操作系统,达到自动升降操作。可配备任意调节坝高功能,控制上游水位和下泄流量。还可实现任意坝扇同步升降,实现面板的精准控制。液压坝体水力性能优越,面板倒伏后紧贴坝基面板,可畅泄洪水、上游堆积泥沙和漂浮物,特别适用于多砂、多石、多树、寒冷地区的河流和洪水涨落快速的山区及城市河道,以及有较高溢流要求的工程。可见,在运行管理方面,液压坝方案优于平板闸方案。(4)景观方面液压坝方案由于仅需闸门作为挡水结构,无需布置闸墩及用于布置启闭设备的上部结构,其采用暗藏式支撑,低重心,支撑机械隐藏于高强度外形美观的保护套中,能有效防止大型漂浮物、泥砂、杂物、锈蚀等不利因素对各部件造成的影响。坝面整齐干净,可根据业主需要,喷绘不同色彩、图案、标语等。液压坝可根据河道蓄水能力,实现液压坝闸顶超过0.50m高度挡水,坝面可在任意角度范围内停留支撑,同时还可实现单扇或多个坝扇任意组合或同步调节,减少水流对下游的冲刷。可见,在景观方面,液压坝方案优于平板闸方案。通过以上四方面比较得知,在防止泥沙淤积方面两个方案均有同样的效果,在过流能力方面,液压坝方案因无中墩阻水明显优于平板闸方案,在运行管理和景观方面,液压坝方案优于平板闸方案。对于建在城镇的挡水建筑物,其过流能力较大、上游淹没少的枢纽尤为重要。综合考虑水闸安全运行及防洪影响因素推荐选用液压坝方案。

3案例

除险加固后的下寨子拦河闸由泄水闸、进水闸及左岸挡水坝段三部分组成。建筑物从左至右依次为左岸挡水坝段、进水闸、泄水闸,其中挡水坝段长9.12m,进水闸段长3.50m,泄水闸段长114.00m。加固后的泄水闸,由原来的自动翻板门改为合页式钢闸门形式。原有基础底部老浆砌石全部拆除,加固后水闸闸室底板建基面坐落至强风化岩基上,下游重新设置底流式消力池。泄水闸闸室顺水流方向长7m。共设19孔,每孔净宽6m,其中5个坝段为3孔一联布置,单个坝段长度18m,2个坝段为2孔一联布置,坝段长度12m。泄水闸下游采用消力池底流消能,消力池深均为1.80m,消力池池长35.05m(包括斜坡过渡段),消力池底板厚度均为0.5m,为了抵消消力池底板扬压力,底板水平段设Φ25锚筋深入基岩4.5m与基岩相接,间排距2m,呈梅花形布置。加固后进水闸孔口净宽1.5m,共1孔,顺水流方向总长16.5m,其中闸室段长6.5m,下设消力池,消力池长为10.00m。泄水闸采用电动液压缸启闭,于右岸上游侧设一泵房,内设液压站、操控台、电控柜等操控设施。进水闸采用手电两用螺杆式启闭机操纵平板闸门。

4结语

下寨子拦河闸现状已不满足该地区的灌溉要求,加之河道淤积严重,应尽快进行除险加固,以保证该地区农作物的灌溉要求。此次加固方案的泄流能力比原建筑物泄流能力增大,并且液压坝是近年来一项水利科技的创新成果,是国内领先的活动水坝技术,可广泛应用于农业灌溉、水力发电、城市河湖美化等方面。

参考文献:

[1]石桂萍.城市河道治理设计中几种拦河建筑物型式的分析比较[J].水利规划与设计,2013,No.116(06):62-64.

[2]丁峰,刘月刚,邱象玉.液压升降坝在城市河道中的选型设计[J].水利规划与设计,2013,No.113(03):59-61.

水闸底板范文篇5

引水枢纽工程主要建筑物包括:上游导流堤、泄洪闸、人工弯道、进水闸、冲沙闸、曲线形悬臂式挡沙坎、消力池、引水渠道。在人工弯道进口处,修建导流堤,并向上延伸与河道两岸平缓的连接,以便束水导流,使水流平顺的进入引水弯道。设置泄洪闸用以泄洪排沙,减少泥沙进入人工弯道,保证引水弯道有良好的进水条件;在洪水季节,泄水排沙,平时可关闭壅水,保证下游工农业用水,在寒冷季节还可将冰凌、漂浮物排向下游。在人工弯道设计时,要充分利用天然稳定的河湾,加以整治,即可作为引水弯道;弯道设计流量要综合考虑进水闸的流量和含沙量较大季节河湾流量,使弯道内产生较强的横向环流作用,有利于排沙。进水闸与冲沙闸设置在引水弯道末端,按正面引水侧面排沙的原则布置,进水闸与冲沙闸两轴线的夹角以33度为宜,使冲沙闸各闸孔均匀排沙。进水闸底板高程要高出原河床,这样可以减少泥沙入渠,并可增大闸前泥沙淤积库容,有利于定期冲沙。进水闸前设置曲线形悬臂式挡沙坎,可增强横向环流的作用,还可将泥沙导向冲沙闸,挡沙坎悬臂板末端加宽并延伸到冲沙闸边孔,有利于引水防沙,引水面做成流线型,以免扰动水流。冲沙闸底板高程也要高于原河床,可增大闸下冲沙水头,有利于排沙。进水闸下游消能建筑物,多采用底流型降低护坦式的消能方式,消力池紧接闸室布置,在池中利用水跃进行消能,使水流在消力池中发生淹没水跃,池中布置排水孔,下设砂石反滤层,保证下游引水渠道的安全运行。下游引水渠道根据水力最佳断面及经济实用断面综合确定,常采用梯形断面渠道、混凝土板衬砌。

2引水枢纽主要设计内容

枢纽工程总体布置:根据基本资料确定工程的等级、级别、洪水标准,可参考《水闸设计规范》、《水闸》、《取水工程》等文献,并结合地形及方案比较,确定采用什么类型引水枢纽,这里以人工弯道式引水枢纽为例,根据经验公式确定弯道的底宽、半径、中心线长度等参数,根据工程各主要建筑物的作用和设计原理,合理布置建筑物的位置。枢纽工程水力设计:首先,根据水力最佳断面和经济实用断面确定下游引水渠道的断面尺寸,利用《水力学》中的迭代计算公式确定渠道正常水深;其次,根据《水闸设计规范》确定进水闸、冲沙闸、泄洪闸的闸孔总净宽及单孔净宽,利用试算法确定进水闸、冲沙闸、泄洪闸的设计洪水位及校核洪水位;最后,根据《水力学》进行各闸的消能防冲计算。

枢纽工程防渗计算:根据工程的要求,需对进水闸、冲沙闸、泄洪闸设计洪水位和校核洪水位都进行防渗计算,计算过程相似;根据《水工建筑物》拟定各闸室的地下轮廓,采用改进阻力系数法进行渗流计算。首先进行阻力系数的计算,确定渗透压力,绘制渗压水头分布图,最后计算闸底板水平段渗透坡降和渗流出口处坡降以及允许坡降并进行比较,均要满足闸基的抗渗稳定要求。闸室稳定分析:首先,确定各闸室荷载,包括:闸底板、闸墩自重、工作桥自重、闸门自重、检修桥自重、启闭力、水自重、水平水压力、扬压力;根据荷载和偏心受压公式分别验算各闸室完建期、设计洪水位期、校核洪水位期的闸室基底应力,结果均要满足规范要求;根据《水闸》公式,验算各闸室的抗滑稳定性,结果均要满足闸室的抗滑稳定要求。

水闸底板范文篇6

关键词:水闸;除险;加固;设计

水闸在水力工程建设中已经广泛应用,随着我国在科技力量下的推动,水闸设计水平也得到较大提高。在设计水闸期间,要根据当地水力的生态变化、周围环境、水系变化以及自然条件的影响进行分析,然后在设计结构上实现创新设计,并保证在施工期间运行管理的稳定性,从而实现水力工程建设的新挑战。

1水闸设计

1.1结构设计

水闸工程在整个结构布置期间,水闸的中心线要与河道中心线保持在同一水平上。建筑物在建设期间,要保证合理、美观,并在整体设计上保证一定的成本效益和经济效益。不仅在结构形式上保持美观形式,闸孔以及宽度还要形成统一形式,从而实现水闸在运行期间的合理性。在水闸整个结构设计形式上,首先对闸顶高程进行设计。该高程主要为水闸门在上游闸墩顶部的高程设计。它不仅要考虑挡水现象,还要考虑泄水现象。在挡水期间,闸顶的高程一般低于水闸所在的正常蓄水水位。对于泄水,水闸顶部高程一般要保证低于水闸在洪水位上的设计。还要对底板高程进行设计,如果底板高程设计的比较高,在枯水期,就会影响河道流量。如果下游河床子在高程上没有一定变化,闸底板设计的太低就不会影响水闸流量,一般会增加闸墩以及闸门的高程。对水闸闸孔在总净宽以及孔数设计方式上,一般的水闸流态分为两种,一种是泄流期间水流由于不受阻,形成堰流现象;一种是泄流期间由于闸门的阻挡现象,出现孔流状况。所以,根据不同水位的设计要求,就应利用不同比值进行设计。

1.2消能防冲设计

因为影响池水力的因素条件比较多,实现的情况比较复杂,所以要控制消力池的变化因素,就要分析水闸在上游、下游之间的水位差、过闸流量宽度、下游水深以及孔数、宽度等因素。一般利用低流式消能设计[2]。首先,在设计形式上,应先考虑上游与下游的水位差、过闸期间的流量宽度等水力存在的条件,然后再控制消力池的池深度,底板厚度等相关组合。这样不仅能够增加调度期间的灵活性,还能保证一定安全性。

1.3防渗排水设计

由于闸基的上部为砾石层,下部的基石为已经风化的花岗岩,不仅受风力影响比较强烈,而且岩石质量也比较软弱,所以水闸地基处容易出现渗透等现象。为了防渗排水,在设计期间,首先在离闸室上游存在的钢筋混凝土加固防渗墙,然后在上游墙的两侧以及混凝土挡墙下设计高压旋喷防渗墙,并保证防渗效果的稳定性。而且,由于渗透压力的影响,所以应根据上水闸在地基上的深度以及渗透水力进行计算,从而保证渗透期间的稳定效果。

2水闸除险加固设计方案

2.1溢流坝除险

由于原来的水闸溢流坝的表层都会存在较强的混凝土,不仅不能满足一定的抗冻性,还产生一定的碳化深度。所以在溢流坝进行除险设计期间,应凿除一部分的混凝土。首先实现消能方式,在原溢流坝下游实现防冲措施时,要利用低流消能,一般在设计期间针对巨大洪水进行的。还要对堰型进行调整,因为消能方式与洪水产生的标准会不断变化,所以对溢流坝的堰面形状就要进行调整。这期间,应利用复核计算,由于该坝体中的基地应力不能实现一定的规范要求,所以就要利用计算方式将坝体基础下顺流方向的长度进行加长。对溢流坝结构进行设计期间,为了保证地基在承载力以及应力上的规范要求,为了对除险加固形式进行设计,就要对溢流坝的顺水流方向长度进行计算,使它能够满足一定的要求标准。特别在溢流坝基础,首先,应将原坝体的高程进行凿除,然后将已经凿除后的形成为新的浇筑坝体,最后将新的混凝土与原坝混凝土进行结合,并保证原坝体内的浆砌石以及基岩相互连接。在确定好溢流坝的前缘长度以及顺流方向长度期间,还要保证上游坝面的垂直现象,并加宽下游的坝基础,从而实现一定的灌溉要求。对于新浇筑的溢流坝,要保证体内混凝土在外包设计形式上具有一定厚度,将溢流坝的坝段进行分组、编号,并保证它在冲沙闸形式上的长度。溢流坝与冲沙闸之间还有用墙过渡开,如果在下游处设计了过河交通桥,在上游就不能设置交通桥。

2.2冲砂闸除险

对原拦河闸进行复核计算能够看出,冲沙闸原设计比较小,不仅在排砂形式上不能满足,汛期中产生的河水砂量比较大,在上游,还会出现比较严重的淤积现象以及河床抬高现象。而且,冲沙闸的金属结构以及相关的机电设备也不能满足相关要求,冲沙闸也不能实现消能防冲作用。冲沙闸在结构设计上,对于地基承载力以及应力比的设计要求,如果冲砂闸的垂直水流方向为13m,为了除险加固,就要对冲砂闸底板的水流方向长度设计为5m。闸底板一般利用原冲砂闸底板,首先应对原冲砂闸底板进行凿除,然后利用混凝土进行浇筑,并形成合理的冲砂闸底板。新浇筑的混凝土要保证与原有的浆砌石底板、基岩进行接触,并保证底板的浇筑厚度以及混凝土厚度。一般情况下,冲砂闸底板的高程与原冲砂闸底板高程以及河床低高程保持一致。由于冲砂闸孔数一般都保持不变,在孔的净宽以及水断面设计上,要保证在设计期间的相关设计标准,就要选择溢流坝在河道产生的水断面积。对于冲砂闸的闸门,一般为平板钢闸门,并利用手摇螺杆方式进行启动、关闭。冲砂闸的闸门在顶部一般分为两层,下层闸门是专门检修平台,能够实现人行通道。而上层闸门一般为开关相关设备平台,不仅能够对开关设备进行布置,还能检查出闸门的层高要求。

2.3进水闸除险

在原拦河闸实施复核计算形式上,如果出现较大洪水变化,原进水闸就不能保持正常运行形式,所以就要对进水闸进行增高。因为进水闸为金属结构,原进水闸在墩的厚度上根本不能满足该金属的相关结构。原进水闸在不断利用其间,经过长期间的运行,它表面的混凝土以及粗骨料都已经滑落,在闸墩以及闸墙上都出现混凝土裂缝现象。尽管利用水毁进行修复,但内部结构还无法消除。其次,混凝土本身就具有较大强度以及抗冻性,进水闸混凝土结构根本不能实现。所以在设计期间,就要对拆除掉进水闸的启闭机以及闸墩。进水闸的结构设计,为了使基地应力能够满足一定条件,实施的除险加固行为一般是增加水闸底部中水流的流向长度,首先将水闸底板进行凿除,然后增加混凝土的高程变化,在新形成的进水闸底板处,要保证石底板与基岩之间的接触形式,并保证底板的组合厚度。一般在进水闸顶部也设计两层平台,下层为人员检修平台,上层为开关设备平台。

3结论

实施除险加固设计主要能够保障原工程在建设期间实现安全性,并能够以最小的经济成本获得最大经济效益。所以在原工程建设中,不仅要做出该设计的深度研究,还要找出水闸在变化中存在的问题,对存在的问题进行解决,这样才能保障水闸除险加固行为的有效实施。

作者:陈秋 单位:开原市金沟子橡胶坝管理所

参考文献:

[1]毛新强.沩水水闸除险加固设计及研究[D].南昌大学,2013.

[2]樊静.对病险水闸除险加固初步设计中一些问题的思考[J].新疆水利,2010,01:49-51.

[3]姚久经.苏家吉水闸除险加固设计方案探讨[J].水利规划与设计,2015,06:97-99.

水闸底板范文篇7

[关键词]病险灾害;除险加固;柴埠口水闸

水闸广泛应用于农业灌溉、防洪排涝、城镇供水、航运发电等行业[1-2]。尽管我国建设了大量水闸发挥了显著的工程效益,但受限于建设年代和经济技术条件,很多工程运行多年后均出现了不同程度的病害,突出表现在:结构损坏、防洪能力不足、建筑物老化、闸前淤积及相关设施失效。本文结合柴埠口水闸除险加固工程,分类分项探讨水闸存在的病害和采取的加固措施。

1工程概况

柴埠口水闸位于赣抚平原灌区,是一座以灌溉为主,兼顾发电、航运等综合利用的中型水闸,位于进贤县李渡镇柴埠口村附近,主要建筑物由进水闸、船闸组成,是抚东堤主要建筑物之一。工程建成以来,为赣抚平原灌区东总干渠提供农业灌溉用水发挥了巨大的社会效益。

2工程病险及加固措施

2.1进水闸病害及加固要点

进水闸存在的主要问题是:进水闸砼存在老化、裂缝、蜂窝麻面、露石露筋现象;进水闸上部排架裂缝,启闭梁预埋件锈蚀;进水闸消力池底板已出现纵横裂缝和下沉现象,消力池深度、底板厚度及海漫长度不满足要求;进水闸下游两岸岸坡2010年汛期出现泡泉渗漏险情,水闸基础存在渗漏隐患;进水闸启闭机房建设年代久远,墙体裂缝,屋面为砼预制板漏水严重。2.1.1闸室混凝土由于进水闸闸室砼表面老化碳化较严重,为提高进水闸闸墩表面的抗冲磨和抗老化性能,在混凝土表面喷一层2mm厚的聚脲弹性体抗冲磨材料对老混凝土进行保护,实施后需满足表1中参数指标。喷涂聚脲弹性体固化快,10s凝胶,10min达到步行强度。复杂曲面不流挂;停工期短,对温度和水分不敏感,施工时受环境温度、湿度影响小。具有优越的抗冲磨、防渗和抗腐蚀特性;撕裂强度大于50kN/m,抗冲磨强度达到C60硅粉混凝土的10倍以上,高速水流冲刷无脱落。聚脲弹性体补强由底涂、喷涂聚脲弹性涂料、脂肪族聚氨酯面层组成。2.1.2消能防冲设施现状消力池长度均满足要求,但深度及底板厚度不满足要求,海漫长度不满足要求。现状消力池底板裂缝,损毁严重。因此设计对消力池进行拆除重建,池长24.0m,底板厚0.7m,池深1.0m。底板梅花形布置排水孔,孔、排距3m×3m。消力池后接15.0m长的干砌石海漫,干砌石厚300mm,下设150mm后的砂砾石垫层。

2.2闸基渗漏及处理

由于受当时施工技术限制,水闸成墙质量难以保证。高喷防渗墙轴线布置在上游混凝土铺盖上,未形成封闭,闸基存在渗漏的可能。且防渗墙左侧起于左岸岸坡,右侧止于右岸道路,长仅约65m,根据地勘资料防渗墙之外仍有中粗砂墙透水层,两侧存在绕渗隐患。同时,防渗墙布置在进水池上游侧,当抚河水位较高时,由于防渗墙后为砌石护坡亦存在沿坡面渗透的通道。且防渗墙已使用近30年,故在抚河发生特大洪水的汛期,进水闸下游两侧岸坡出现泡泉险情,闸基存在渗透问题。2.2.1基础防渗处理方案拟定根据《水闸设计规范》闸基的防渗长度应满足:L=C∆H(1)式中:L为闸基防渗长度,m;∆H为上下游水头差,m,进水闸在设计洪水工况下,∆H=11.09m;C为允许渗径系数值,进水闸基础为中粗砂,C值取7。根据式(1)可知,如果采用水平铺盖防渗,防渗长度应不小于77.63m,铺盖过长且难以与坡面形成封闭的防渗体系,施工质量难以保证,故不予以考虑。根据本工程地质条件和目前较成熟且应用较为广泛的垂直防渗技术,本次加固设计防渗处理采用垂直防渗方案。2.2.2处理方案比选根据目前成墙技术,成墙工艺有高喷灌浆、射水造墙(射水法造砼防渗墙)、液压抓斗法等。由表2可知,虽然液压抓斗和射水造墙成墙造价较低,但是由于施工需要一定的施工场地,且防渗墙与建筑物形成封闭的防渗体系需拆除部分建筑物,待防渗墙实施后再对其重建,不但延长工期、增加施工难度,还增加工程投资。同时由于基础主要为中粗砂,液压抓斗和射水造墙施工有一定局限性。因此,结合工程地质条件和现场实际情况,从经济技术的角度出发,本阶段设计推荐采用高喷灌浆防渗墙方案。2.2.3防渗加固设计进水闸基础采用高喷灌浆处理,摆喷,孔距1.2m。防渗墙起于进水闸左侧30m处的公路,止于进水闸右侧管理房围墙,防渗墙长85m。进水闸段高喷防渗墙布置在进水池砼底板上,与进水闸形成封闭的防渗体系。高喷灌浆防渗墙深入基岩0.5m,墙体抗压强度:R28≥5.0MPa;墙体渗透系数:K≤1.0×10-6cm/s。根据其他工程措施施工需要,进水闸上游将设施工围堰,围堰基础采用高喷灌浆防渗,下游亦设围堰。为避免上下游水位差对高喷防渗墙的影响,确保防渗墙质量,闸基础防渗墙应在围堰实施之后进行施工,同时施工期应对下游围堰内充水,确保上下游水位差控制在1.0m以内。

2.3船闸病害及加固要点

船闸位于进水闸右侧,属赣抚航道上的通航建筑物,同时兼有抗御抚河洪水任务。目前船闸闸墩及闸室砼老化、蜂窝麻面;启闭机房建设年代久远,墙体裂缝,屋面为砼预制板漏水严重;人字门启闭设备陈旧、老化启闭机房裂缝,漏水;输水阀门及启闭设备不能正常工作。2.3.1混凝土补强由于船闸上下闸首表面碳化较深,砼表面老化碳化较严重,为提高船闸上下闸首表面的抗冲磨和抗老化性能,在混凝土表面喷一层2mm厚的聚脲弹性体抗冲磨材料对老混凝土进行保护。2.3.2人字钢闸门、输水阀启闭机房4座人字钢闸门启闭机房以及输水阀启闭机房建于20世纪50年代,屋面为砼预制板。现状墙体裂缝、漏水严重,设计对其拆除重建。启闭机房为砖混结构,房屋高5.1m,长8.2m,宽4.2m。

2.4安全监测设施

柴埠口水闸各建筑物无任何安全监测设施,水闸无水情、雨情测报设施,工程管理设施简陋,不能满足工程管理需要。本枢纽主要监测项目有:沉降及水平位移观测、水位及流量观测、扬压力观测。2.4.1沉降及水平位移观测水闸水平位移采用视准线法进行监测,进水闸闸墩各上设1个测点,共8个测点,在右岸布置一个工作基点和一个校核基点;船闸在上下闸首各闸墩上设1个测点,共4个测点,在船闸下闸首左岸布置一个工作基点和一个校核基点。合计观测基点12个,工作基点2个,校核基点2个。进水闸、船闸垂直位移采用精密水准法进行监测,各闸墩垂直位移监测点与水平位移监测点共用。在进水闸闸址上游附近地基稳固可靠处,共布设2个水准基点。2.4.2水位及流量观测水位观测:在进水闸右岸闸前设1个,在下游流量观测断面岸边设1个;在船闸左岸上闸首闸前设1个,在下闸首下游流量观测断面岸边设1个;共计水位观测点4个。

3结语

基于柴埠口水闸各分部分项工程存在的险情,加固方案从混凝土补强、进水闸构件重建更换、闸基防渗、船闸处理及监测设施增补等方面完成了水闸整体除险加固设计,方案自始至终贯彻了环保、节约及经济等理念,从根本上解决了水闸存在的病险灾害,为赣抚平原灌区发挥更大的灌溉通航效益奠定了坚实基础。

参考文献

[1]邵杰,孙承坪,周路宝.大中型病险水闸的成因及除险加固措施分析[J].水利规划与设计,2019(2):112-115.

水闸底板范文篇8

关键词:水闸;底板;混凝土

水闸在水利工程中应用很广,底板部位易出现问题,长期以来困扰着工程界。一直未能很好解决。该问题的出现,给水闸工程带来了多方面不同程度的危害,所以在进行水闸设计时,一定要根据闸址附近的地形、地质条件和水文、施工、管理等因素,认真研究,合理布置。

一、底板混凝土配料的控制

混凝土生产系统在使用前要进行保养、校核,确保计量准确性,材料配合比允许偏差必须控制在水泥、水、混合料为±2%;砂、石为±3%;外加剂为±l%。除粉煤灰、水、砂、石用自动计量系统控制外,对减水剂要先用天平称量每盘料的用量,然后装袋备用。根据现场工地试验室提供的混凝土施工配料单严格配料,机械搅拌时料斗投料顺序为:先加碎石,后加水泥、减水剂、粉煤灰,最后加砂和水,混凝土搅拌时间从投料完毕组成材料,在搅拌机内延续搅拌时间不得少于2分钟,掺入抗裂防渗纤维混凝土搅拌时间不得少于2.5分钟。

混凝土出料时随时测定坍落度和拌和物温度、观察混凝土拌和质量,严禁生料输送,确保混凝土浇筑质量。由于底板混凝土仓面较大,混凝土用量多,可采用混凝土输送泵泵送混凝土。泵管安装时不得直接支撑在钢筋、模板及预埋件上,每隔一段距离要用钢管支架固定,管道卡箍处不得漏气漏浆,泵管尽量少用弯管和软管,预防堵管,确保混凝土顺利出料。混凝土泵送前要用清水湿润管壁,然后拌制1:2水泥砂浆润滑混凝土泵和输送管内壁,润滑用的水泥砂浆要分散布料。

混凝土浇筑过程中,前场和后场均须布置管理人员随时指挥协调。现场可用对讲机联系来控制混凝土浇筑速度及拆布管时间,以确保混凝土整个浇筑过程紧张、连续、有序地进行。同时要安排专人测定混凝土入仓温度、坍落度,并留置规定制取的试压块组数。混凝土浇筑前,要保证仓内无杂物,模板、钢筋、预埋件符合规范要求,一切准备工作就序,并做好质量自检记录。经现场监理验收后方可进行浇筑。底板浇筑前要在仓面平均划分施工区域,混凝土浇筑自西向东、由远而近。混凝土按一定厚度、顺序、方向分层进行,上下层之间的混凝土浇筑间歇时间不得超过混凝土初凝时间。开始布料,两管同时进行,采取“斜面分层”法施工。

振捣混凝土应从浇筑层的下端开始,逐渐上移,以保证混凝土施工质量,在底层混凝土初凝前安排一台泵进行面层防渗抗裂混凝土施工。混凝土灌筑后用插入式振动器振捣,振捣时与混凝土表面垂直,操作时做到快插慢拔,上下略为抽动,插点均匀排列,逐点移动,顺序进行,不得遗漏,使混凝土达到均匀振实。插入式振动器在每一插点上的振捣时间以混凝土表面呈水平而且水泥浆不再出现气泡为准。

二、水闸底板混凝土的分析

目前在对待混凝土底板结构问题上,一般是允许出现裂缝,而对其宽度进行一定的限制,不同国家和地区对不使用环境和要求下的混凝土建筑物的裂缝宽度有不同的控制标准。我国《混凝土结构设计规范》允许裂缝宽为0.2-0.3毫米,在对待裂缝问题上提出限制与允许的两种方法。变形变化引起的约束应力首先要求结构所处的环境能给结构以变形的机会,即变形得到满足,则不会产生约束应力。

在全自由状态下,结构可以有任意长度、任意温差不产生约束应力,因此给结构创造自由变形的条件就是允许原则。在实际工程中,全自由的理想状态不易做到,但是可减少约束,释放大部分变形,使之出现较低的约束应力;当结构处于全约束状态,要让任意长度不设伸缩缝亦不开裂,则只须所选用的结构材料具有足够的抗拉强度和极限拉伸即可。该设计原则称为限制原则。一般说来,对于限制原则,必须有足够的强度储备;采取允许原则,必须有充分的变形余地。现在一般认为,混凝土建筑物不出现裂缝是不可能的,或是很困难的。防止裂缝出现,在材料、设计、施工、运行和维护等方面均有一定的研究,但还不够完善或效果不是十分明显。在水工结构工程中,以限制原则为主,力求工程各部位都不裂缝。

三、水闸底板外部环境的控制

水泥水化产生大量的水化热,在1~3d内可放出热量的50%,甚至更多,当混凝土达到最高温度后随着热量的散发又开始降温,直到与环境温度相同。底板为大体积混凝土,热量传递的同时更易在内部积存,导致了内部温度高于外部温度,内部出现峰值温度。升温阶段结束后,是散热阶段。内外混凝土散热条件不同,外部混凝土和外界环境接触,散热条件好,热量容易散发,内部混凝土散热条件差,于是在降温阶段又造成了外部混凝土温度低于内部混凝土温度。这样在升温和降温阶段都使底板内外混凝土形成了同一方向的温度梯度。导致了其变形的不一致。内部膨胀受到外部的限制,或相应地外部收缩受到内部约束,于是在外部混凝土中产生了拉应力。当外部混凝土拉应力达到其极限拉应力,裂缝就会产生。裂缝初期很细,随着时问发展继续扩大、变深,甚至贯穿。除了混凝土水化引起的温度作用外,运行期环境温度变化也会产生作用。特别是遇到寒潮袭击、表面温降特别大时,裂缝发展更为严重。从以上分析可以看出,影响内外温差的主要因素有混凝土水泥用量、水泥品种、浇筑入模温度及环境温度等。

混凝土内的水分,少部分提供了水泥水化的需要,少部分泌出流失,大部分水分是在浇捣完毕后慢慢蒸发掉的。随着水泥的凝结、硬化,混凝土中的水分在未饱和空气中慢慢散失,引起混凝土体积缩小、变形,这种变形称为干缩。由于混凝土的水分蒸发及含湿量的不均匀分布,形成湿度变化梯度。其水分蒸发总是从外向内,由表及里。表层混凝土的水分蒸发程度和速度总是大于内部,表层混凝土收缩的程度亦大,其变形会受到内部混凝土的限制,在表层混凝土中也产生拉应力,使得表层混凝土总的拉应力加大,产生干缩裂缝,但干缩一般只发生在表层。混凝土的配合比和组成是影响干缩的主要因素,一般水泥用量多,水灰比大,则干缩也大。骨料密度大,级配好,弹性模量高,骨料粒径大,可以减小混凝土的干缩。其次,混凝土的养护和环境对干缩也有很大的影响。

混凝土即使没有水分蒸发,其各组成部分的化学反应也会产生自生体积变形。在底板约束影响范围内,膨胀型自生体积变形会产生预压应力,有利于防裂,收缩型自生体积变形则不利于防裂。混凝土的自生收缩一般在拆模之前完成,虽然其量值不大,但如果同其他收缩叠加在一起,就会使表面拉应力增大。像水闸底板这样的断面尺寸很大,确属必须解决水化热问题的大体积混凝土结构,必须考虑自生收缩参与温度收缩等叠加的影响。公务员之家

水闸底板范文篇9

汉川水闸位于汉江干堤左岸桩号65+050处。该水闸为排涝防洪节制水闸,于1951年开工,1953年竣工。该水闸为钢筋混凝土开敞空箱式结构,底板高程18.30m,水闸顶部高程31.30m,三孔,每孔净宽4.0m,净高6.0m,水闸室宽16.50m长33.8m,设计流量474m3/s。原规划设计的水位组合:防洪工况:内湖水位23.00m,外江水位30.50m;排涝工况:内湖水位23.00m~27.00m,外江水位18.68m~30.24m。该水闸建成后,为刁汊湖区的农业生产发挥了重要作用。为了更进一步了解裂缝的成因,业主委托长江科学院材料结构所对水闸水闸墩、底板的混凝土及钢筋情况进行取样试验,检测报告结论为:

(1)水闸墩裂缝表面宽,向水闸墩内逐渐变小。

(2)混凝土碳化深度最大为6.0mm。

(3)未碳化的混凝土抗压强度为37.6MPa~53.7MPa。

(4)混凝土碱骨料反应特征不明显。

(5)混凝土裂缝以外的钢筋无锈蚀现象。

2工程加固设计方案

通过技术经济比选,采用水闸后建水闸的方案。经论证分析,新建水闸的规模可将原老水闸两边孔封闭,只保留中间一孔。

3工程地质

新建涵水闸地质勘探揭示,工程区为汉江一级阶地。从上往下依次为:18.2m~17.40m,为淤泥质粉质粘土,灰黑色,呈软塑状。该层在新水闸洞身以下,建老水闸时进口铺盖时已完全挖除。17.40m~16.20m,为黄褐色粘土,含锰铁斑点,呈可塑状态,标准承载力fk=150kPa,压缩模量Es=5.63MPa,钻孔桩桩周摩阻力标准值qs=25kPa。16.20m~14.60m,为含淤泥质粘土,灰黑色,云母片比较多,呈塑状,标准贯数5击,标准承载力fk=110kPa,压缩模量Es=1.8MPa,钻孔桩桩周摩阻力标准值qs=20kPa。14.60m~5.40m,为粉砂层,灰黑色,饱和,稍~中密实,质地均一,上部夹薄层粉质粘土,下部时见细砾石,标贯数8~25击,标准承载力0.00m高程以上fk=180kPa,0.00m高程以下fk=200kPa,钻孔桩桩周摩阻力标准值qs=30kPa。钻孔桩桩端承载力标准值qp=750MPa。

4水闸工程加固设计

4.1设计标准

设计水位组合情况:设计防洪工况:内湖水位23.50m,外江水位31.69m;校核防洪工况:内湖水位23.50m,外江水位32.19m;排涝工况:内湖水位25.14m,外江水位18.97m。

4.2设计指导思想

(1)新建涵水闸所有部分独立受力挡水,紧挨老水闸但与老水闸断开。

(2)工程布置充分考虑水闸区环境建设。

(3)充分利用现有消力池及海漫的消能防冲功能。

(4)充分利用原有建筑物的防渗功能。

4.3工程布置及设计

(1)洞身布置。新建涵水闸为涵洞型式,洞身中心轴线与老水闸中心线一致,孔口尺寸为5.5m×4.8m,底板高程由于受到现有内湖侧铺盖的限制,最低只能定为19.50m。与老水闸底板18.30m的联接采用1:3.5的坡度衔接。洞顶高程25.00m,顶板上部高程26.00m。洞身长度根据城区建设及防渗要求,为36.00m,防洪工作门设在靠外江侧。洞上部填土至31.30m与老水闸水闸顶高程一致,以便于配合城市建设。31.30m以上采用钢筋混凝土防水墙,防水墙顶部高程为33.00m,高于校核洪水位0.81m。新水闸启闭室与老水闸启闭室一起组成新水闸生活管理设施。堤顶由公路面14.00m宽及两边1.50m人行道组成,公路面暂采用沥青路面,人行道采用混凝土预制块铺设,堤坡与环境绿化建设一致。

(2)老水闸两边孔的封堵工程布置。由于对于老水闸桩基础的实际承载力不尽详细,故对于两边孔的封堵建筑物的布置基本原则仍然同洞身布置一样,在老水闸内湖侧采用扶壁式挡土墙型式。

(3)内湖侧联接建筑物。内湖侧进口联接建筑物采用R=10.00m的圆弧型扶壁式挡土墙型式。挡土墙顶高程与涵顶板上部高程一致,为26.00m。

(4)基础处理。在进行桩基础设计时,天然地基承载力较低,只有110kPa,根据其他同类工程设计经验,及相关设计规范要求,为了节约工程量,应合理利用天然地基承载能力。所以在设计中我们采用了桩土共同受力的设计方法。即天然地基在不超过允许承载力的前提下,让天然地基承受40%的上部荷载,60%由桩基承担。桩基布置型式为:①洞身部分:在顺水流方向,沿洞身两边墙各布置一排桩,桩距在顺水流方向由2.50m逐渐变为3.00m,垂直水流方向间距6.00m。桩直径800mm,桩长随受力大小,由24.00m逐渐变为20.00m。②挡土墙部分:桩基布置主要解决天然地基承载力不够,及控制不均匀沉降问题。桩基直径仍采用800mm,由于封堵老水闸口处的两个挡土墙,前齿处地基应力比较大,且又受到地质层的限制,桩基长度不能超过24.00m,(超过24.00m则进入砂卵石层,施工非常困难。)故桩距离比较近,最小2.00m(相当于2.5倍桩径,达到规范允许最小值)。

水闸底板范文篇10

关键词:水闸;底板;混凝土

水闸在水利工程中应用很广,底板部位易出现问题,长期以来困扰着工程界。一直未能很好解决。该问题的出现,给水闸工程带来了多方面不同程度的危害,所以在进行水闸设计时,一定要根据闸址附近的地形、地质条件和水文、施工、管理等因素,认真研究,合理布置。

一、底板混凝土配料的控制

混凝土生产系统在使用前要进行保养、校核,确保计量准确性,材料配合比允许偏差必须控制在水泥、水、混合料为±2%;砂、石为±3%;外加剂为±l%。除粉煤灰、水、砂、石用自动计量系统控制外,对减水剂要先用天平称量每盘料的用量,然后装袋备用。根据现场工地试验室提供的混凝土施工配料单严格配料,机械搅拌时料斗投料顺序为:先加碎石,后加水泥、减水剂、粉煤灰,最后加砂和水,混凝土搅拌时间从投料完毕组成材料,在搅拌机内延续搅拌时间不得少于2分钟,掺入抗裂防渗纤维混凝土搅拌时间不得少于2.5分钟。

混凝土出料时随时测定坍落度和拌和物温度、观察混凝土拌和质量,严禁生料输送,确保混凝土浇筑质量。由于底板混凝土仓面较大,混凝土用量多,可采用混凝土输送泵泵送混凝土。泵管安装时不得直接支撑在钢筋、模板及预埋件上,每隔一段距离要用钢管支架固定,管道卡箍处不得漏气漏浆,泵管尽量少用弯管和软管,预防堵管,确保混凝土顺利出料。混凝土泵送前要用清水湿润管壁,然后拌制1:2水泥砂浆润滑混凝土泵和输送管内壁,润滑用的水泥砂浆要分散布料。

混凝土浇筑过程中,前场和后场均须布置管理人员随时指挥协调。现场可用对讲机联系来控制混凝土浇筑速度及拆布管时间,以确保混凝土整个浇筑过程紧张、连续、有序地进行。同时要安排专人测定混凝土入仓温度、坍落度,并留置规定制取的试压块组数。混凝土浇筑前,要保证仓内无杂物,模板、钢筋、预埋件符合规范要求,一切准备工作就序,并做好质量自检记录。经现场监理验收后方可进行浇筑。底板浇筑前要在仓面平均划分施工区域,混凝土浇筑自西向东、由远而近。混凝土按一定厚度、顺序、方向分层进行,上下层之间的混凝土浇筑间歇时间不得超过混凝土初凝时间。开始布料,两管同时进行,采取“斜面分层”法施工。

振捣混凝土应从浇筑层的下端开始,逐渐上移,以保证混凝土施工质量,在底层混凝土初凝前安排一台泵进行面层防渗抗裂混凝土施工。混凝土灌筑后用插入式振动器振捣,振捣时与混凝土表面垂直,操作时做到快插慢拔,上下略为抽动,插点均匀排列,逐点移动,顺序进行,不得遗漏,使混凝土达到均匀振实。插入式振动器在每一插点上的振捣时间以混凝土表面呈水平而且水泥浆不再出现气泡为准。

二、水闸底板混凝土的分析

目前在对待混凝土底板结构问题上,一般是允许出现裂缝,而对其宽度进行一定的限制,不同国家和地区对不使用环境和要求下的混凝土建筑物的裂缝宽度有不同的控制标准。我国《混凝土结构设计规范》允许裂缝宽为0.2-0.3毫米,在对待裂缝问题上提出限制与允许的两种方法。变形变化引起的约束应力首先要求结构所处的环境能给结构以变形的机会,即变形得到满足,则不会产生约束应力。

在全自由状态下,结构可以有任意长度、任意温差不产生约束应力,因此给结构创造自由变形的条件就是允许原则。在实际工程中,全自由的理想状态不易做到,但是可减少约束,释放大部分变形,使之出现较低的约束应力;当结构处于全约束状态,要让任意长度不设伸缩缝亦不开裂,则只须所选用的结构材料具有足够的抗拉强度和极限拉伸即可。该设计原则称为限制原则。一般说来,对于限制原则,必须有足够的强度储备;采取允许原则,必须有充分的变形余地。现在一般认为,混凝土建筑物不出现裂缝是不可能的,或是很困难的。防止裂缝出现,在材料、设计、施工、运行和维护等方面均有一定的研究,但还不够完善或效果不是十分明显。在水工结构工程中,以限制原则为主,力求工程各部位都不裂缝。

三、水闸底板外部环境的控制

水泥水化产生大量的水化热,在1~3d内可放出热量的50%,甚至更多,当混凝土达到最高温度后随着热量的散发又开始降温,直到与环境温度相同。底板为大体积混凝土,热量传递的同时更易在内部积存,导致了内部温度高于外部温度,内部出现峰值温度。升温阶段结束后,是散热阶段。内外混凝土散热条件不同,外部混凝土和外界环境接触,散热条件好,热量容易散发,内部混凝土散热条件差,于是在降温阶段又造成了外部混凝土温度低于内部混凝土温度。这样在升温和降温阶段都使底板内外混凝土形成了同一方向的温度梯度。导致了其变形的不一致。内部膨胀受到外部的限制,或相应地外部收缩受到内部约束,于是在外部混凝土中产生了拉应力。当外部混凝土拉应力达到其极限拉应力,裂缝就会产生。裂缝初期很细,随着时问发展继续扩大、变深,甚至贯穿。除了混凝土水化引起的温度作用外,运行期环境温度变化也会产生作用。特别是遇到寒潮袭击、表面温降特别大时,裂缝发展更为严重。从以上分析可以看出,影响内外温差的主要因素有混凝土水泥用量、水泥品种、浇筑入模温度及环境温度等。

混凝土内的水分,少部分提供了水泥水化的需要,少部分泌出流失,大部分水分是在浇捣完毕后慢慢蒸发掉的。随着水泥的凝结、硬化,混凝土中的水分在未饱和空气中慢慢散失,引起混凝土体积缩小、变形,这种变形称为干缩。由于混凝土的水分蒸发及含湿量的不均匀分布,形成湿度变化梯度。其水分蒸发总是从外向内,由表及里。表层混凝土的水分蒸发程度和速度总是大于内部,表层混凝土收缩的程度亦大,其变形会受到内部混凝土的限制,在表层混凝土中也产生拉应力,使得表层混凝土总的拉应力加大,产生干缩裂缝,但干缩一般只发生在表层。混凝土的配合比和组成是影响干缩的主要因素,一般水泥用量多,水灰比大,则干缩也大。骨料密度大,级配好,弹性模量高,骨料粒径大,可以减小混凝土的干缩。其次,混凝土的养护和环境对干缩也有很大的影响。公务员之家:

混凝土即使没有水分蒸发,其各组成部分的化学反应也会产生自生体积变形。在底板约束影响范围内,膨胀型自生体积变形会产生预压应力,有利于防裂,收缩型自生体积变形则不利于防裂。混凝土的自生收缩一般在拆模之前完成,虽然其量值不大,但如果同其他收缩叠加在一起,就会使表面拉应力增大。像水闸底板这样的断面尺寸很大,确属必须解决水化热问题的大体积混凝土结构,必须考虑自生收缩参与温度收缩等叠加的影响。