软起动范文10篇

时间:2023-03-28 04:37:43

软起动范文篇1

关键词:鼠笼型异步电动机;起动技术;软起动技术;水泵

1电动机起动的现状

三相鼠笼型异步电动机因其具有结构简单、运行可靠、维修方便、惯性小、价格便宜等诸多优点,在农田排灌中作为电能转化为机械能的主要动力设备而被广泛采用。但由于其起动电流大,对电网的影响和对工作机械(如水泵、拍门等)的冲击力都很大,因而在起动过程中必须采取一些技术措施对起动电流和冲击力(起动电磁转矩)加以合理而有效的控制,实现比较稳定的起动,从而改善系统设备工况,有效延长系统寿命,减少故障率的发生。

异步电动机的起动问题,一直为业内人士所关注。异步电动机的起动方式从原理上讲只有两种:直接起动和降压起动。直接起动,就是将处于静止状态的电动机直接加上额定电压,使电动机在额定电压作用下直接完成起动过程。直接起动转矩大,起动时间短,起动控制方式简单,设备投资少,因此在中小型电动机的起动上得到广泛的采用。但直接起动方式也受到许多限制,主要表现在下列三个方面:

(1)起动电流可大到电动机额定电流的4~7倍,部分国产电动机的起动电流实际测量甚至高达8~12倍。如果直接起动较大的电动机,过大的起动电流将造成电网电压显著下降,影响同一电网其它电气设备和电子设备的正常运行,严重时将使部分设备因电压过低而退出运行,甚至使电力线路继电保护装置过流保护动作而跳闸,使线路供电中断。

(2)直接起动会使被拖动的工作机械受到机械性冲击,对于水泵性负载来说,过高的起动转矩对叶片、轴承、拍门等造成软性损伤(机械变形、疲劳性老化)及硬性损伤(裂纹、断裂等)是较为常见的,甚至会因水流对管道的冲击力(及反作用力)过大而产生严重的水锤效应损坏设备。

(3)直接起动要求供电变压器容量较大,而对农田排灌泵站供电的变压器容量往往达不到直接起动对电网容量的要求。

在不允许直接起动的情况下,就要采用降压起动的起动方式,即降低电动机端电压进行起动。降压起动一般有星/三角起动,定子电路中串接电阻、电抗器起动,自耦变压器降压起动及本文推荐的软起动等方法。

星形/三角形起动器是降压起动器中结构最简单、成本最低的一种,然而它的性能受到限制,主要表现在:

(1)无法控制电流和转矩下降程度,这些值是固定的,为额定值的1/3。

(2)当起动器从星形接法切换到三角形接法时,通常会出现较大的电流和转矩变动。这将引起机械和电气应力,导致经常性故障的发生。

自耦变压器式起动器比星形/三角形起动器提供了更多的控制手段,可以通过变压器抽头改变I段起动电压(典型为65%和80%两挡起动分接头)。然而它的电压是分级升高的,所以其性能受如下限制:

(1)电压的阶跃性变化(分级转换时产生)引起较大的电流和转矩变动,同星形/三角形起动器性能限制“2”一样会导致机械、电气经常性故障的发生。

(2)有限的输出电压种类(起动电压分接头数量有限),限制了理想起动电流的选择。因为自耦变压器式起动器控制是使用较额定电压低的电压级别进行降压起动,它控制的电机参数为电压而非电流,所以当电网电压波动及负载变化(如排灌站水位落差变化)时,起动电流曲线将显著偏离设计理想曲线,从而恶化起动性能,设备在较差的工况下将大大缩短使用寿命,增加维护成本。

电阻式起动器也能提供比星形/三角形起动器更好的起动控制。然而它同样有一些性能、使用上的限制,包括:

(1)起动特性很难优化。原因是制造起动器时电阻值是确定的,在使用中很难改变,虽然可以通过转换分接头来进行分级起动,但当级数较多时,势必增加控制系统的复杂性,而制造成本、故障率也将随之大幅度提高,所以一般电阻式起动器均在2~5级间。这样,加在电动机定子绕组上的电压、电流等主要电量参数在分级起动时仍有很大的波动。

(2)频繁起动场合下的起动特性不好。原因是在起动过程中电阻值会随着电阻的温度变化,在停止到再起动过程中需经长时间冷却过程。

(3)负载较大或起动时间较长的场合下的运行特性变坏,原因是电阻值随着电阻器温度的变化而变化。

(4)在负载大小经常变化的应用场合(如排灌站水位落差变化较大),电阻式起动器不能提供理想的起动效果。

综上所述,传统的降压起动设备均有诸多性能限制和使用限制,越来越难以适应不断发展的电动机复杂使用场合的起动需要。

2软起动技术的工作原理

软起动技术是在晶闸管斩波技术的基础上发展起来的,利用晶闸管斩波技术进行工频电压调节

在50Hz正弦波每个半周内固定时间(过零延时t1)给晶闸管VT1门极以一个触发脉冲,则根据晶闸管特性,在触发脉冲结束后,晶闸管将在半周内剩余时间维持导通(见图1(b)中阴影部分),直至电压再次过零,这样只要调节VT1触发脉冲出现的时间,则输出电压u0将会在0~100%输入电压(ui)内得到调节。如果将晶闸管斩波调压技术应用于三相电源,再加入现代电子技术如单片机控制技术等即可制成软起动器,从而在大型三相鼠笼式交流异步电动机的起动上得以应用。

软起动电动机时的电压、电流特性曲线见图2。从电压特性曲线u=f(t)可以看出,从起动开始软起动器给交流异步电动机一个初始电压Ust(Ust一般在10%~60%Ue间自由调整)并在用户设定的起动时间Tst(Tst一般在1~60s范围内自由设定)内将负载电压均匀上升到电动机额定电压Ue。由于软起动器自身特有的限流功能,起动电流在起动期间始终不超过起动限制电流ILIM(ILIM一般在2~5Ie内自由设定)。

为了比较起动外特性,在此给出了应用中最常见的传统起动方式———自耦变压器降压起动时的电压、电流特性曲线(见图3)。从图3可以看出,两级起动的两个阶段均产生很大的起动冲击电流,对电网形成冲击,而两个较大的级落电压0→Ust与Ust→Ue又会发生非常大的转矩突变,产生机械冲击。而电动机软起动时无论在电流曲线还是电压曲线上看,均已将电冲击及机械性冲击减小到最低的程度。

3软起动技术的应用

用软起动器组成软起动控制系统可以采取两种型式:(1)在线式控制软起动系统和旁路切换式软起动系统(见图4、图5)。图中K0、K1~Kn为空气断路器;RQ、RQ1~RQn为软起动器;KM11~KMn1、KM12~KMn2为交流接触器;M1~Mn为电动机。

在线式控制软起动系统采取“一带一”方式,即每一台负载电动机的起动由相应的软起动器来完成,选用长期工作制的软起动器,可以对电动机实现起动—运行—停止的全过程控制,并且主接线及控制系统均很简捷。

软起动范文篇2

关键词:电机启动;软起动器;制浆设备

电机直接启动时,起动电流高达额定电流的5~7倍,长期的大量的大电流冲击将会影响电器设备控制的使用寿命,增加维护成本,甚至影响其他电气设备的正常运行;其次,起动转矩可达正常转矩的2倍,对负载产生冲击,增加传动机械部件的磨损,增加额外的设备维护开支;另外,若配置传统的起动设备,成本高,设备体积大,结构复杂与负载匹配的电机转矩很难控制。ABB全数字式交流电动机软启动器作为三相异步电动机的起动设备,可以按照事先设定的控制模式对电动机,尤其是一些大功率三相异步电动机进行平稳地降压起动。

一、电动机的启动

原三相异步电动机起动方式的特点:控制线路简单、启动转矩固定不变、启动效率差、故障频繁,并且存在起动电流的二次冲击问题,影响相关设备的电压和转矩。而ABB软起动器具有较好的起动性能,各种参数随机可调,它由先进的晶闸管器件组成,体积小、能耗低、自动化程度高、可靠、安全、免维护。在使用中,根据要求进行调压起动,控制它的起动电流,使整个启动过程平滑无冲击。它的工作原理就是利用晶闸管的移相控制原理,控制晶闸管的触发角达到控制输出点电压大小,以满足控制负载的起动要求。整个起动过程,软起动器按照预先的起动曲线增加电机端电压,使电机能平滑地加速完成其起动过程。

二、软起动器的应用与调整

2.1的合理的调节控制参数ABB软起动器与其它电子式软起动器的工作原理基本相同。它是通过控制电动机的加速转矩及延长起动时间来降低起动电流,以减少大电流对电机负载的冲击,从而使电机设备达到平滑起动。所以在应用软起动器的时候,现场应了解负载的特性,准确地调整各种参数。

2.2的调整基准电压,优化起动电流基准电压是设备能否起动的基本条件。对于所调整的基准电压是要求电机在加电压后应立即旋转,负载设备开始工作。如果电机在加入电压后不旋转,应调高基准电压的整定值;当电机启动速度太快,则应调低基准电压整定值。在调整基准电压时应重复多次,直到加上电压后,电机负载设备立即起动为止。对双盘磨浆机185kW三相异步电动机采用ABB软起动器的调试过程中,基准电压调节在额定电压75%时,起动电流278A,电机即快速起动。基准电压调至额定电压40%时,电机开始慢速起动,起动电流均匀地由140A升至370A,电机起动完毕,电流随后回落在运行工作的290A左右。完全达到了软起动的要求。

软起动范文篇3

关键词:电机启动;软起动器;制浆设备

电机直接启动时,起动电流高达额定电流的5~7倍,长期的大量的大电流冲击将会影响电器设备控制的使用寿命,增加维护成本,甚至影响其他电气设备的正常运行;其次,起动转矩可达正常转矩的2倍,对负载产生冲击,增加传动机械部件的磨损,增加额外的设备维护开支;另外,若配置传统的起动设备,成本高,设备体积大,结构复杂与负载匹配的电机转矩很难控制。ABB全数字式交流电动机软启动器作为三相异步电动机的起动设备,可以按照事先设定的控制模式对电动机,尤其是一些大功率三相异步电动机进行平稳地降压起动。

1的电动机的启动原三相异步电动机起动方式的特点:控制线路简单、启动转矩固定不变、启动效率差、故障频繁,并且存在起动电流的二次冲击问题,影响相关设备的电压和转矩。而ABB软起动器具有较好的起动性能,各种参数随机可调,它由先进的晶闸管器件组成,体积小、能耗低、自动化程度高、可靠、安全、免维护。在使用中,根据要求进行调压起动,控制它的起动电流,使整个启动过程平滑无冲击。它的工作原理就是利用晶闸管的移相控制原理,控制晶闸管的触发角达到控制输出点电压大小,以满足控制负载的起动要求。整个起动过程,软起动器按照预先的起动曲线增加电机端电压,使电机能平滑地加速完成其起动过程。

2的软起动器的应用与调整2。1的合理的调节控制参数ABB软起动器与其它电子式软起动器的工作原理基本相同。它是通过控制电动机的加速转矩及延长起动时间来降低起动电流,以减少大电流对电机负载的冲击,从而使电机设备达到平滑起动。所以在应用软起动器的时候,现场应了解负载的特性,准确地调整各种参数。

2。2的调整基准电压,优化起动电流基准电压是设备能否起动的基本条件。对于所调整的基准电压是要求电机在加电压后应立即旋转,负载设备开始工作。如果电机在加入电压后不旋转,应调高基准电压的整定值;当电机启动速度太快,则应调低基准电压整定值。在调整基准电压时应重复多次,直到加上电压后,电机负载设备立即起动为止。对双盘磨浆机185kW三相异步电动机采用ABB软起动器的调试过程中,基准电压调节在额定电压75%时,起动电流278A,电机即快速起动。基准电压调至额定电压40%时,电机开始慢速起动,起动电流均匀地由140A升至370A,电机起动完毕,电流随后回落在运行工作的290A左右。完全达到了软起动的要求。

软起动范文篇4

某场站原油外输泵中压电动机起动时C相电流偏小,开关柜综保继电器负序保护动作。控制系统接线如图1所示。电动机型号YB3-450-2WF1TH,11kV,450kW。软起动器型号RNMV-120-11kV,中压柜型号ASN3-12。

2检查分析

进行中压电动机的绝缘电阻和直流电阻测试,未发现异常。进行软起动器的低压模拟测试,施加三相400V交流电压,选用3只500W白炽灯星形连接做模拟负载。模拟测试未发现异常。中压柜综保继电器故障录波图如图2所示,故障相量图如图3所示。起动初始阶段C相电流偏小,A相和B相电流接近反向。图1控制系统接线检查开关柜内断路器和软起动柜内进线接触器接触电阻,观察起动过程中软起动器进线侧电压表,显示正常,判定断路器和进线接触器正常。考虑到部分电动机匝间短路仅在中压时才能显现出来,将电动机电缆调相后试起动,录波图显示依旧,判定不是电动机故障。分别更换软起动器的C相阀组和控制器,故障依旧。拆下A相、B相阀组,发现A相阀组阀片绝缘电阻异常。整体更换A相阀组后故障消失。

3故障原因

该中压电动机软起动器每相阀组由5组阀片串联组成。软起动主回路接线如图4所示。软起动器采用三相多组正反并联晶闸管作为调压器,接在电源和电动机定子之间。起动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑起动[1]。测试发现,A相晶闸管组中3小组电阻值为0.1Ω,其余正常晶闸管阻值为0.6MΩ~0.7MΩ。推测A相阀组在低压状态下虽然能正常工作,但在中压状态下功能失效,为全导通状态。图5为三相电压曲线。在任意特定时刻电流从电压为正的相流出,从电压为负的相流回。电动机起动初始阶段导通角较小,由于A相阀组失效,B相电流可从A相流回,造成A相和B相电流大、C相电流小,与前面的故障检测结果和推断一致。故障原因为该电动机的软起动装置A相晶闸管在中压状态下击穿。更换后,故障消失。

4结语

带有软起动器的电动机回路发生负序或三相不平衡保护故障不能正常起动时,要先排除软起动器故障。本案例故障排查中走了一些弯路,通过波形分析,找到了故障原因。

参考文献

软起动范文篇5

关键词:电动机软起动器、空载、轻载、效率、功率因数、有功和无功损耗、全压起动、降压起动、起动电流、起动转矩、负载功率。

引言

电机电脑节电无触点软起动器是近年来在国内出现的新技术,具有节电效率高,软起动特性好等特点。对于我公司这样的大型企业,在动力设备中的应用,节能降耗的意义将十分重大。我公司具有中、小型异步电动机600余台,装机容量7000KW。电能消耗是一笔大的数目。例如:一厂区锅炉房使用软起动器后,2台75KW加压水泵,一个采暖期运行4300小时,就可节电79200Kwh;一台37KW的粉碎机,一个采暖期可节电2800Kwh。节约电能的同时维修费用也降低。

一、电动机软起动器的节电原理

在生产实际当中,一些电气设备经常处于空载或轻载状态下运行,轻载或空载的电动机在额定电压的工作条件下,效率和功率因数均很低,造成电能大量浪费。

衡量电动机节电性能的重要指标为电机空载或轻载时最低运行电压的大小,即功率因数CosΦ的大小。为了说明电动机在不同负载的情况下运行,电压U与功率因数CosΦ的关系,以Y132S-4型,5.5KW三相异步电动机为例。

CosΦ的大小反应了负载的变化。软起动器正是利用微机技术,用单片机作CPU,用可控硅作为执行元件,实时检测电流和电压滞后角,即功率因数Φ角,输入给单片机,单片机根据最佳控制算法,输出触发脉冲,调整可控硅的导通角,即可调整可控硅的输出电压,使空载或轻载运行时降低电机的端电压,可使电机的铁损大大减小,同时也可减小电机定子铜损,从而减小电机空载或轻载时的输入功率,也就减小了电机有功和无功损耗,提高了功率因数,实现了节电控制。

二、电动机软起动技术

电动机传统的起动方式有全压起动和将压起动,软起动是一种完全区别于全压和降压起动的新的起动方式,是电子过程控制技术。所谓软起动,是以斜坡控制方式起动,使电动机转速平滑,逐步提高到额定转速。按照电动机起动电流大小进行分类,全压和降压起动属于大电流起动方式,软起动属于小电流起动方式。

全压起动,起动电流是额定电流的4-7倍,起动冲击电流是起动电流的1.5-1.7倍;起动电流大,起动转矩不相应增大,Ts=KtTn=K(0.9-1.3)Tn。

降压起动,可部分减小起动电流,起动转矩下降到额定电压的K2倍。降压起动是轻载起动,有起动冲击电流、起动电流及二次冲击电流;二次冲击电流同样对配电系统有麻烦。

全压和降压起动的大电流,致使电动机谐波磁势增大,增大后的谐波磁势又加剧了附加转矩,附加转矩是电机起动时产生震动和噪音的原因。

全压和降压起动,都要受单位时间内起动次数的限制。电动机本身的发热主要建立在短时间大电流时。如通过6倍额定电流,温升为8-15℃/S;起动装置的自耦变压器或交流接触器起动引起堆积热;如交流接触器一般要求起动次数每分钟不超过10次。而软起动器可频繁操作,具有①电动机起动电流小,温升低;②软起动器采用的无触点电子元件,除大功率可控硅外,工作时温升很低。

此外,软起动器还具有多种保护功能,配合硬件电路,软件设计有过载、断相、欠压、过压等保护程序,动作可靠程度高。归纳起来,软起动器很好的解决了全压和降压起动电流过大及其派生的许多问题。

三、软起动器在动力设备上的应用

软起动器箱内面板上设有两个速率微动开关,分别对应四种起动速率:重载、次重载、次轻载、轻载,起动时间分别是90S、70S、65S、60S。使用时根据起动负载选相应的起动速率。例如我公司供水泵电动机的起动:供水泵电动机起动的阻转矩,主要由水的静压、惯性、管道阻力、水泵的机械惯性和静动摩擦等构成。水的阻力,水泵的机械惯性、阻力均与水泵的转速,加速度及叶轮的直经有关,速度低时阻力小。水的静压阻力与扬程有关,水泵起动时,由于水管中止回阀的作用,静压与摩擦不同时起作用,有利于起动。供水泵起动阻转矩为额定转矩的30%,属于轻载起动。在实际应用中供水泵电机轻载运行者居多,节电潜力大。

引风机用电动机的起动:其起动转矩与离心式水泵类似,阻转矩都与转速成正比,但是,风机与水泵的结构不同,风机的转动惯量比水泵大的多,空气的流动性比水小,如果风机不关风阀起动,将因空气升能,管道阻力,摩擦阻力等因素,致使风机起动比水泵难,起动加速的时间较长,风机起动属重载起动。

风机输送的流体——烟气的温度也是影响风机负荷量大小的重要因素。温度不同,烟气的容量及密度变化大,温度低时,烟气似凝滞状态,风机负荷量增大。锅炉开炉之初,炉膛内温度低,一般需要30分钟炉温才能升上来,这段时间里,引风机处于超负荷运行阶段。如:一台引风机配用电机22KW,输送的烟气温度200℃,容量7.3N/m3。如输送烟气温度20℃时,负载功率:公务员之家

N=KYQH/η*1/ηt=27.78KW

式中:

K——电机容量储备系数,对引风机取1.3。

Y——流体容量(N/m3)

Q——风机流量(m3/h)

H——全压(Kgf/m2)

η、ηt——风机效率

由上式可知,其负载功率增大。

软起动范文篇6

关键词:电动机软起动器、空载、轻载、效率、功率因数、有功和无功损耗、全压起动、降压起动、起动电流、起动转矩、负载功率。

引言

电机电脑节电无触点软起动器是近年来在国内出现的新技术,具有节电效率高,软起动特性好等特点。对于我公司这样的大型企业,在动力设备中的应用,节能降耗的意义将十分重大。我公司具有中、小型异步电动机600余台,装机容量7000KW。电能消耗是一笔大的数目。例如:一厂区锅炉房使用软起动器后,2台75KW加压水泵,一个采暖期运行4300小时,就可节电79200Kwh;一台37KW的粉碎机,一个采暖期可节电2800Kwh。节约电能的同时维修费用也降低。

一、电动机软起动器的节电原理

在生产实际当中,一些电气设备经常处于空载或轻载状态下运行,轻载或空载的电动机在额定电压的工作条件下,效率和功率因数均很低,造成电能大量浪费。

衡量电动机节电性能的重要指标为电机空载或轻载时最低运行电压的大小,即功率因数CosΦ的大小。为了说明电动机在不同负载的情况下运行,电压U与功率因数CosΦ的关系,以Y132S-4型,5.5KW三相异步电动机为例。

CosΦ的大小反应了负载的变化。软起动器正是利用微机技术,用单片机作CPU,用可控硅作为执行元件,实时检测电流和电压滞后角,即功率因数Φ角,输入给单片机,单片机根据最佳控制算法,输出触发脉冲,调整可控硅的导通角,即可调整可控硅的输出电压,使空载或轻载运行时降低电机的端电压,可使电机的铁损大大减小,同时也可减小电机定子铜损,从而减小电机空载或轻载时的输入功率,也就减小了电机有功和无功损耗,提高了功率因数,实现了节电控制。

二、电动机软起动技术

电动机传统的起动方式有全压起动和将压起动,软起动是一种完全区别于全压和降压起动的新的起动方式,是电子过程控制技术。所谓软起动,是以斜坡控制方式起动,使电动机转速平滑,逐步提高到额定转速。按照电动机起动电流大小进行分类,全压和降压起动属于大电流起动方式,软起动属于小电流起动方式。

全压起动,起动电流是额定电流的4-7倍,起动冲击电流是起动电流的1.5-1.7倍;起动电流大,起动转矩不相应增大,Ts=KtTn=K(0.9-1.3)Tn。

降压起动,可部分减小起动电流,起动转矩下降到额定电压的K2倍。降压起动是轻载起动,有起动冲击电流、起动电流及二次冲击电流;二次冲击电流同样对配电系统有麻烦。

全压和降压起动的大电流,致使电动机谐波磁势增大,增大后的谐波磁势又加剧了附加转矩,附加转矩是电机起动时产生震动和噪音的原因。

全压和降压起动,都要受单位时间内起动次数的限制。电动机本身的发热主要建立在短时间大电流时。如通过6倍额定电流,温升为8-15℃/S;起动装置的自耦变压器或交流接触器起动引起堆积热;如交流接触器一般要求起动次数每分钟不超过10次。而软起动器可频繁操作,具有①电动机起动电流小,温升低;②软起动器采用的无触点电子元件,除大功率可控硅外,工作时温升很低。

此外,软起动器还具有多种保护功能,配合硬件电路,软件设计有过载、断相、欠压、过压等保护程序,动作可靠程度高。归纳起来,软起动器很好的解决了全压和降压起动电流过大及其派生的许多问题。

三、软起动器在动力设备上的应用

软起动器箱内面板上设有两个速率微动开关,分别对应四种起动速率:重载、次重载、次轻载、轻载,起动时间分别是90S、70S、65S、60S。使用时根据起动负载选相应的起动速率。例如我公司供水泵电动机的起动:供水泵电动机起动的阻转矩,主要由水的静压、惯性、管道阻力、水泵的机械惯性和静动摩擦等构成。水的阻力,水泵的机械惯性、阻力均与水泵的转速,加速度及叶轮的直经有关,速度低时阻力小。水的静压阻力与扬程有关,水泵起动时,由于水管中止回阀的作用,静压与摩擦不同时起作用,有利于起动。供水泵起动阻转矩为额定转矩的30%,属于轻载起动。在实际应用中供水泵电机轻载运行者居多,节电潜力大。

引风机用电动机的起动:其起动转矩与离心式水泵类似,阻转矩都与转速成正比,但是,风机与水泵的结构不同,风机的转动惯量比水泵大的多,空气的流动性比水小,如果风机不关风阀起动,将因空气升能,管道阻力,摩擦阻力等因素,致使风机起动比水泵难,起动加速的时间较长,风机起动属重载起动。

风机输送的流体——烟气的温度也是影响风机负荷量大小的重要因素。温度不同,烟气的容量及密度变化大,温度低时,烟气似凝滞状态,风机负荷量增大。锅炉开炉之初,炉膛内温度低,一般需要30分钟炉温才能升上来,这段时间里,引风机处于超负荷运行阶段。如:一台引风机配用电机22KW,输送的烟气温度200℃,容量7.3N/m3。如输送烟气温度20℃时,负载功率:

N=KYQH/η*1/ηt=27.78KW式中:K——电机容量储备系数,对引风机取1.3。Y——流体容量(N/m3)Q——风机流量(m3/h)H——全压(Kgf/m2)η、ηt——风机效率公务员之家:

软起动范文篇7

关键词:电动机软起动器、空载、轻载、效率、功率因数、有功和无功损耗、全压起动、降压起动、起动电流、起动转矩、负载功率。

电机电脑节电无触点软起动器是近年来在国内出现的新技术,具有节电效率高,软起动特性好等特点。对于我公司这样的大型企业,在动力设备中的应用,节能降耗的意义将十分重大。我公司具有中、小型异步电动机600余台,装机容量7000KW。电能消耗是一笔大的数目。例如:一厂区锅炉房使用软起动器后,2台75KW加压水泵,一个采暖期运行4300小时,就可节电79200Kwh;一台37KW的粉碎机,一个采暖期可节电2800Kwh。节约电能的同时维修费用也降低。

一、电动机软起动器的节电原理

在生产实际当中,一些电气设备经常处于空载或轻载状态下运行,轻载或空载的电动机在额定电压的工作条件下,效率和功率因数均很低,造成电能大量浪费。

衡量电动机节电性能的重要指标为电机空载或轻载时最低运行电压的大小,即功率因数CosΦ的大小。为了说明电动机在不同负载的情况下运行,电压U与功率因数CosΦ的关系,以Y132S-4型,5.5KW三相异步电动机为例。

CosΦ的大小反应了负载的变化。软起动器正是利用微机技术,用单片机作CPU,用可控硅作为执行元件,实时检测电流和电压滞后角,即功率因数Φ角,输入给单片机,单片机根据最佳控制算法,输出触发脉冲,调整可控硅的导通角,即可调整可控硅的输出电压,使空载或轻载运行时降低电机的端电压,可使电机的铁损大大减小,同时也可减小电机定子铜损,从而减小电机空载或轻载时的输入功率,也就减小了电机有功和无功损耗,提高了功率因数,实现了节电控制。

二、电动机软起动技术

电动机传统的起动方式有全压起动和将压起动,软起动是一种完全区别于全压和降压起动的新的起动方式,是电子过程控制技术。所谓软起动,是以斜坡控制方式起动,使电动机转速平滑,逐步提高到额定转速。按照电动机起动电流大小进行分类,全压和降压起动属于大电流起动方式,软起动属于小电流起动方式。

全压起动,起动电流是额定电流的4-7倍,起动冲击电流是起动电流的1.5-1.7倍;起动电流大,起动转矩不相应增大,Ts=KtTn=K(0.9-1.3)Tn。

降压起动,可部分减小起动电流,起动转矩下降到额定电压的K2倍。降压起动是轻载起动,有起动冲击电流、起动电流及二次冲击电流;二次冲击电流同样对配电系统有麻烦。

全压和降压起动的大电流,致使电动机谐波磁势增大,增大后的谐波磁势又加剧了附加转矩,附加转矩是电机起动时产生震动和噪音的原因。

全压和降压起动,都要受单位时间内起动次数的限制。电动机本身的发热主要建立在短时间大电流时。如通过6倍额定电流,温升为8-15℃/S;起动装置的自耦变压器或交流接触器起动引起堆积热;如交流接触器一般要求起动次数每分钟不超过10次。而软起动器可频繁操作,具有①电动机起动电流小,温升低;②软起动器采用的无触点电子元件,除大功率可控硅外,工作时温升很低。

此外,软起动器还具有多种保护功能,配合硬件电路,软件设计有过载、断相、欠压、过压等保护程序,动作可靠程度高。归纳起来,软起动器很好的解决了全压和降压起动电流过大及其派生的许多问题。

三、软起动器在动力设备上的应用

软起动器箱内面板上设有两个速率微动开关,分别对应四种起动速率:重载、次重载、次轻载、轻载,起动时间分别是90S、70S、65S、60S。使用时根据起动负载选相应的起动速率。例如我公司供水泵电动机的起动:供水泵电动机起动的阻转矩,主要由水的静压、惯性、管道阻力、水泵的机械惯性和静动摩擦等构成。水的阻力,水泵的机械惯性、阻力均与水泵的转速,加速度及叶轮的直经有关,速度低时阻力小。水的静压阻力与扬程有关,水泵起动时,由于水管中止回阀的作用,静压与摩擦不同时起作用,有利于起动。供水泵起动阻转矩为额定转矩的30%,属于轻载起动。在实际应用中供水泵电机轻载运行者居多,节电潜力大。

引风机用电动机的起动:其起动转矩与离心式水泵类似,阻转矩都与转速成正比,但是,风机与水泵的结构不同,风机的转动惯量比水泵大的多,空气的流动性比水小,如果风机不关风阀起动,将因空气升能,管道阻力,摩擦阻力等因素,致使风机起动比水泵难,起动加速的时间较长,风机起动属重载起动。

风机输送的流体——烟气的温度也是影响风机负荷量大小的重要因素。温度不同,烟气的容量及密度变化大,温度低时,烟气似凝滞状态,风机负荷量增大。锅炉开炉之初,炉膛内温度低,一般需要30分钟炉温才能升上来,这段时间里,引风机处于超负荷运行阶段。如:一台引风机配用电机22KW,输送的烟气温度200℃,容量7.3N/m3。如输送烟气温度20℃时,负载功率:N=KYQH/η*1/ηt=27.78KW式中:K——电机容量储备系数,对引风机取1.3。Y——流体容量(N/m3)Q——风机流量(m3/h)H——全压(Kgf/m2)η、ηt——风机效率由上式可知,其负载功率增大。公务员之家

软起动范文篇8

【关键词】高压电动机软起动软件设计

一、异步电机软起动

异步电机软起动器可减小电动机硬起动引起的电网电压降,使之不影响与其共网的其它电气设备的正常运行。可减小电动机的冲击电流,冲击电流会造成电动机局部温升过大,降低电动机寿命;可减小硬起动带来的机械冲击力和冲击力加速对所传动机械(轴、啮合齿轮等)的磨损;减少电磁干扰,冲击电流会以电磁波的形式干扰电气仪表的正常运行。软起动使电动机可以起停自如,减少空转,提高作业率,因而有节能作用。

对于电动机的软起动,大致可分为有级和无级两种。有级型的软起动有定子串电抗器降压、液态电阻降压、星-三角(y-△)降压、自耦变压器降压和延边三角形降压等。无级型软起动有开关变压器降压、磁饱和电抗器降压、晶闸管串联降压软起动等。由于有级型降压软起动的调节存在一定程度的二次电流冲击,因此对电机的软起动效果有限。而在无级型软起动器中,随着电力电子技术的提高和功率器件的发展以及铜、铁等原材料价格的大幅上涨,晶闸管串联式的高压软起动装置越来越被市场所认可。

二、降压起动原理

把三相异步电动机的定子绕组接通到三相电源上,转子从静止升速到稳定状态,这一过程叫起动。在合闸的瞬间,电动机的转差率为1,起动电流等于堵转电流,起动转矩等于堵转转矩。随着转速升高,起动电流从堵转电流逐渐下降,最后稳定在某个数值。较高的堵转转矩表明电动机能在较大负载下起动,并获得较大的加速度,但过大的堵转电流会在供电线路上产生很大的压降,使电网电压波动,直接影响到接在该电网上电气设备的运行。异步电动机的t形等效电路图。

高压电动机软起动装置系统所示。晶闸管串联的功率单元联接在三相高压电网与电动机之间,控制单元根据传感器传送回来的信号按事先设定好的起动曲线进行移相调节。控制单元发出的晶闸管触发信号经光纤传送到晶闸管触发单元,用来调整晶闸管的导通角,进而达到调整电压的目的,使得输出到电动机上的电压按照一定曲线缓慢上升,实现电动机的软起动。当电动机达到额定转速时,旁路接触器吸合,电动机处于旁路运行状态。控制单元仍然进行在线检测,负责电机的电压、电流的显示及各种故。

三、高压软起动、晶闸管串联单元设计

由于目前国内市场应用的电动机大多是6kv和10kv电机,做为串接在高压电网和电动机之间的功率执行器件,单只晶闸管还不足以承受6kv的高压,虽然单只晶闸管目前已经成熟地发展到单只耐压6500v,但考虑到电网波动、浪涌及耐压余量等可靠性因素,在设计6kv高压软起动装置的时候,功率单元采用3只晶闸管串联的方式来提高耐压值。同理在设计10kv高压软起动装置的时候采用5只晶闸管串联组成高压阀组。

(1)单相6kv高压晶闸管功率阀组所示。scr1~scr6为大功率高压晶闸管,它们每三个串联后再反并联组成单相功率串联阀组,以实现软起动器对交流电机的控制。这6只晶闸管选用同一厂家、同一型号、同一生产批次的产品,以减小其在生产过程中由于生产工艺的不同而产生的自身特性诸如伏安特性、反向恢复电荷、开关时间和临界电压上升率等的差异,影响均压。r1、r2、r3为静态均压电阻,用以实现晶闸管的静态均压。静态均压电阻选用无感电阻,阻值为晶闸管阻断状态等效阻值的1/40,且功率留有足够大的余量。r4、r5、r6和c1、c2、c3共同组成动态均压网络,用以实现动态均压。通过选择,各电阻和电容的参数误差应非常小,电容的取值根据晶闸管的最大反向恢复电荷和最小反向恢复电荷的差值计算求得。均压过程主要是由电容c完成的。串联的各只晶闸管开关速度不会完全一致,而会稍有差别。电容c上的电压在静态情况下数值相同,在开关过程中,由于电容上的电压不能突变,加在各只晶闸管上的压降不会发生跳变。由于开关过程中各只晶闸管中电流不一致所造成的影响由电容c的充放电补偿。

(2)接口单元设计

单元包括电压传感器接口、电流传感器接口、光纤传送接口、故障检测接口及人机交互接口等。其中电压信号采用高阻降压方式,并考虑到系统兼容性,将电路设计成3kv、6kv、10kv通用,以方便产品生产。电流传感器采用标准x/5电流互感器加高精度电流霍尔的形式,将信号进行相应处理后送到cpu进行运算。高压与低压间的信号传送采用光纤传输,既保证信号的实时性及可靠性传输,又起动高低压隔离作用。信号经过接口电路编码后通过光纤传送至触发单元,触发单元将信号解码并经过相应处理后用以触发晶闸管。触发单元的供电采用高位、低位相结合,每只晶闸管的触发电源各自独立。人机接口采用贴膜式软键和液晶显示屏。液晶显示屏为4行8列,设计成4级菜单管理模式,可预设中文及英文显示。公务员之家

四、软件设计系统实验

软件设计是系统控制的核心,直接关系到系统运行的稳定性和可靠性。为了适应各种不同负载的应用,软件设计上设计了多种不同的起动曲线,包括电压斜坡起动、限流起动、突跳起动及软停车曲线等。同时设计完善的保护功能,包括短路保护、过流保护、过压、欠压保护、晶闸管过热保护等。电机的参数及各种保护参数可由用户根据现场应用情况自行设定。公务员之家

系统设计完成后,用6kv/1000kw电机进行了带载起动实验。电机额定电压6kv,额定电流112a,额定转速1480r/min。起动电流单相波,起动电流平稳无冲击,峰值起动电流为额定电流的2.6倍左右,起动时间22s,电网电压无明显波动,达到了良好的起动效果。

软起动范文篇9

关键词:高压固态软启动器;给排水;工程应用

1引言

随着我国社会经济发展水平的提高随着我国社会经济发展水平的提高,需要使用高压大容量输电设备的行业量输电设备的行业越来越多。高压大功率交流电动机的主要问题是启动问题,虽然进行冷启动操作较为简单、经济,但是会随之出现一系列问题随之出现一系列问题,例如以下两点:(1)启动时额定电流可达正常程度的4到7倍,容易导致电机绕组温度过高,加速电机的老化,引起电网的电压波动。当电压小于等于一定程度时,甚至还会影响其他设备的正常使用。(2)冷启动产生的超额转矩会产生部件冲击,减少了设备的正常服役寿命和精度。如果联轴器或是皮带产生了撕裂损坏,则会导致传动部件的异常磨损,加剧设备损坏程度程度。为了解决上述问题,高压固态软起动器是控制高压大功率电机起动电流和转矩的最佳方式高压大功率电机起动电流和转矩的最佳方式。本文介绍了高压电动机固态软起动器的概念和其相关技术特性压电动机固态软起动器的概念和其相关技术特性,并以大型给排水工程中的水泵进行了相关测试举例给排水工程中的水泵进行了相关测试举例。

2高压固态软起动器概念阐述

随着晶闸管峰值电阻水平的提高和触发技术的突破随着晶闸管峰值电阻水平的提高和触发技术的突破,晶闸管降压软起动技术在高压电机起动过程中具有符合标准的保护作用保护作用,高压电机固态软起动装置主要用于高压交流电机的起动、停止的相关控制和保护。软起动装置采用计算机控制技术,以高压大功率晶闸管为电路的主要开关元件。通过改变晶闸管的导通角,控制电机电压的稳定升降和非接触点的导通断路,实现软起动电机平稳停机。此装置还能够以启动电机所需的最小电流启动电机,减少电流对电网的影响,降低设备的不良噪声和启动机械应力,延长相关机械部件和电机系统的预计寿命[[1]。高压固态软起动器构造分为两个模块,分别是主电路和控制电路控制电路。其主要部件分别是真空接触器,真空断路器、晶闸管、过电压保护器、数字信号处理器控制系统等。该起动器设备具有运行稳定可靠有运行稳定可靠,保护功能齐全的特性。

3高压固态软起动装置的相关技术特性

高压固态软起动器广泛应用于各大工业领域高压固态软起动器广泛应用于各大工业领域。可与各种机电设备混合使用机电设备混合使用。正常的软启动装置应当具备以下特性:①软启动装置需要将智能控制与电子技术相互融合软启动装置需要将智能控制与电子技术相互融合,主电路开关元件采用高压大功率可控硅电路开关元件采用高压大功率可控硅。硬件能够通过改变晶闸管闸管,来控制电机电压的平稳升降以及无触点的通断,从而实现电机的启动停止操作现电机的启动停止操作。②系列晶闸管具有结构紧凑的特点点,并且需要设有可靠的静态和动态电压平衡保护措施。③部分模块需要采用光纤传输技术以及变压技术部分模块需要采用光纤传输技术以及变压技术,并在晶闸管触发检测和低压控制之间的有效平衡需求触发检测和低压控制之间的有效平衡需求。④硬件核心应当使用双处理器结构使用双处理器结构,处理器需要至少16位DSP为核心控制为核心控制,以保证设备控制时具有实时保证设备控制时具有实时、高效、稳定的特点。⑤内部通信采用多层次处理和信道隔离技术用多层次处理和信道隔离技术,保证设备的抗干扰能力。⑥中央处理系统应当具备采集高压设备中的同步电流信号的能力力,来实现控制效果。⑦高压固态软启动装置一般情况下具有切换功能有切换功能,在启动流程完成后可自动切换为旁路,以进行实时保护时保护。⑧装置的软控制方式包括电压恒流装置的软控制方式包括电压恒流、恒压控制。启动方式包括直接物理启动动方式包括直接物理启动、上位机启动、协调启动。⑨软启动装置应配备电流电压互感器、过电压保护等模块,并且能够自我检查和故障排除。例如电压过低、:晶闸管元件缺损、启动超时、三相电流不平衡等情况能够自行解决,保持设备正常运行。

4排水工程软启动水泵参数特性

离心泵一般用于供排水系统离心泵一般用于供排水系统,其输出特性取决于泵型号和管网系统内部压力和管网系统内部压力。泵轴输出功率P计算如下:P=QHR//102η式中式中:P——为轴功率为轴功率(kw);Q——为工作点流量—为工作点流量(M/s);H——为工作点扬程—为工作点扬程(M);R——为介质单位容重—为介质单位容重(kg/M);η——为工作点泵效为工作点泵效。只有当每台泵都在原设计点时,泵的使用效率才是最佳状态率才是最佳状态,如果偏离该工作点,泵的效率便会产生降低低。根据实际流量Q、扬程H及水泵的相应使用效率η,可以计算出水泵的经济轴功率P0,即即:P0=Q0H0R//102η整个系统的节能潜力如下整个系统的节能潜力如下:W=(P-P0)t式中式中:P——为水泵消耗的总轴功率—为水泵消耗的总轴功率:t——为水泵运行时间间。水由管道输送时,会受到网络中压力的影响。管网装置的数据可由阀门全开时测得的数据可由阀门全开时测得,并按照下列公式进行计算:H2=KQ2+H3式中式中:K——电阻值—电阻值;H——泵出口水位差—泵出口水位差。

5对水泵的控制以及软停车

如图1所示所示,停止电动设备有着多种方法,例如直流制动、自由惯性停车和软停车自由惯性停车和软停车。其中,软停车可以满足机械设备对日常保养过程的要求日常保养过程的要求。图1不同类型停车速度曲线泵的设计是为了防止可能导致流体流动和压力突然变化的快速停止的快速停止,这被称为“水锤效应”。停车控制分为两种:减速坡道和直流制动坡道和直流制动,前者称为软停车。后者也配置在一些软启动硬件中动硬件中,可以作为备用模式选择。通常控制模式是将指定的控制所需要的时间ti转换为0。而软停机指令则是在ti时刻将电机电压缓慢调低时刻将电机电压缓慢调低,然后慢慢将端子电压从TT1降至uo。图2为三种控制方式下的泵机停车曲线为三种控制方式下的泵机停车曲线。软停止是一个可选的启动控制软停止是一个可选的启动控制,通常能够选择三种模式。软停控制模式应该严格按照生产线的具体要求进行选择软停控制模式应该严格按照生产线的具体要求进行选择。水泵控制也可以选择软起动器进行控制项目泵控制也可以选择软起动器进行控制项目,软起动时间虽然较长较长,但是能够保护泵的使用寿命,减少震动,防止管道阀门导致爆裂导致爆裂,减少停机检修次数,泵的具体停止时间应当现场设定定,避免出错。软启动、软停机;解决“水锤效应”;减弱开机电流流,使启动流程简单平稳并减小机械结构受到的应力,延长寿命命;降低管道流体冲击力和振动。高压固态软起动器与经典高压启动器相比具有以下优点点:①适用于大范围的电压和功率适用于大范围的电压和功率。具备多种可选电压等级,并且能够配合功率在120120kW~W~14000kWkk左右的电机使用左右的电机使用。②具备核心软启动功能具备核心软启动功能,能够保护硬件的安全运行,避免损伤寿命命。③高压固态软启动器在电动机启动时高压固态软启动器在电动机启动时,能够实现电压的稳步上升稳步上升,避免突然高压产生的设备冷启动损坏。④能够减少机械构造受到的冲击少机械构造受到的冲击,防止超压现象与水锤效应的出现,延长核心设备传动系统的使用寿命长核心设备传动系统的使用寿命。⑤高压固态软启动器的电路能够减少启动脉冲电流路能够减少启动脉冲电流,延长电动机预计寿命,减少波动和对其他用电设备的影响对其他用电设备的影响。⑥可以实现软停机可以实现软停机,消除在极端情况下某些设备突然停机对整体系统造成的冲击和损坏况下某些设备突然停机对整体系统造成的冲击和损坏。⑦保护措施完备护措施完备,能够防止意外事故发生,对人和财产造成损失。⑧系统完全智能化系统完全智能化,具备中文显示功能和友好人机界面。

6结束语

高压电机固态软起动器可与多种电机配套使用高压电机固态软起动器可与多种电机配套使用,是一种易于推广软启动电机控制设备易于推广软启动电机控制设备,能够在大型给排水工程中发挥重要作用挥重要作用。

参考文献:

软起动范文篇10

关键词:软起动器起动转矩冲击电流晶闸管触发角自由停车软停车制动停车

一、概述

笼型异步电机由于结构简单、控制方便、效率高等优点而被水泥企业广泛地应用于机械设备的拖动中。在实际使用中,电动机在起动或停止过程中还存在着一系列问题。全压起动时要产生较大的冲击电流(一般为额定电流Ie的5~8倍)。电动机容量越大,起动时冲击电流对电网及其负载冲击就越大,特别是大容量电机直接起动会对电网及其他负载造成干扰,甚至危害电网的安全运行;同时由于起动应力较大,使负载设备的使用寿命降低。在停机时,如果拖动系统突然失去转矩,靠系统的摩擦转矩克服系统的惯性滑行停车,也给拖动系统带来诸多问题。

解决办法有两个:一是增大配电容量;二是采用限制电机起动电流的起动设备。如果仅仅为起动电机而增大配电容量,从经济角度来说,显然不可取。为此,在水泥厂设计时,对低压大电机需要配备限制电机起动电流的起动设备,常用的有Y/Δ起动,自藕降压起动等方式来实现。这些方法虽然靠接触器切换电压实施启动降压,可以达到降低电流的目的,但没有从根本上解决起动瞬时电流尖峰冲击问题。起动转距基本固定不可调,起动过程中都存在二次冲击电流,对负载机械有冲击转距,且受电网波动的影响,一旦出现电网电压向下浮动,会造成电机堵转、起动过程接触器带载切换,易造成触点的拉弧、损坏等方面问题。严重时烧毁开关、电动机,影响电网其它设备运行。

随着电力电子技术的发展,软起动器作为一个新型电动机起动装置可以克服以上缺点,它是一种集电机软起动、软停车、轻载节能和多功能保护于一体的新颖电机控制装置。目前,水泥企业笼型异步电机的降压起动设备正逐步被软起动器取代。

二、软起动器的工作原理及主要特点

软起动器的工作原理软起动主要由串接于电源与被控电动机之间三对反并联晶闸管调压电路构成。现代软起动器基本上都采用了电力电子技术和微机控制技术,以单片微机作为中央控制器控制核心来完成测量及各种控制算法,因此,软起动器具备了很强的功能和灵活性。整个起动过程是数字化程序软件控制下自动进行。利用三对晶闸管的电子开关特性,通过起动器中的单片机,控制其触发脉冲的迟早来改变触发角的大小。而触发导通角的大小,又改变晶闸管的导通时间,最终改变加到定子绕组的三相电压的大小。异步电动机定子调压的结果,一方面其转矩近似与定子电压的平方成正比,另一方面电动机的电流又和定子电压成正比。电动机的起动转矩和初始电流的限制可以通过定子电压的控制来实现,而定子电压又是通过可控硅的导通相角来控制的,所以不同的初始相角可实现不同的端电压,以满足不同的负载起动特性。电动机起动过程中,晶闸管的导通角逐渐增大,晶闸管的输出电压也逐渐增加,电动机从零开始加速,直到晶闸管全导通,从而实现电动机的无级平滑起动。电动机工作在额定电压的机械特性上。电动机的起动转矩和起动电流的最大值可根据负载情况设定。

软起动器常用的几种起动方式:

1、限流起动电机的起动过程中限制其起动电流不超过某一设定值(Is)的软起动方式。其输出电压从零开始迅速增长,直到输出电流达到预先设置的电流限值Is,然后保持输出电流I<Is的条件下逐渐升高电压,直到额定电压。使电机转速逐渐升高,直到额定转速。这种起动方式的优点是起动电流小,且可按需要调整。对电网影响小,其缺点是在起动时难以知道起动压降,不能充分利用压降空间。损失起动力矩,对电动机不利。

2、斜坡电压起动这种起动方式最简单,不具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定函数关系增加。顾名思义是电压由小到大斜坡线性上升,它是将传统的降压起动从有级变成了无级,主要用在重载起动,它的缺点是初始转矩小,转矩特性抛物线型上升对拖动系统不利,且起动时间长有损于电机。

3、转矩控制起动用在重载起动,它是将电动机的起动转矩由小到大线性上升,它的优点是起动平滑,柔性好,对拖动系统有更好的保护,它的目的是保护拖动系统,延长拖动系统的使用寿命。同时降低电机起动时对电网的冲击,是最优的重载起动方式,它的缺点是起动时间较长。

4、转矩加突跳控制起动与转矩控制起动相仿也是用在重载起动,不同的是在起动的瞬间用突跳转矩克服电机静转矩,然后转矩平滑上升,缩短起动时间。但是,突跳会给电网发送尖脉冲,干扰其它负荷,应用时要特别注意。

5、电压控制起动是用在轻载起动的场合,在保证起动压降下发挥电动机的最大起动转矩,尽可能的缩短了起动时间,是最优的轻载软起动方式。

综上所述不难看出,最适用最先进的起动方式应是电压控制起动和转矩控制起动及转矩加突跳控制起动。目前的软起动器多是限电流起动和斜波电压起动,它是最原始最低级最简单的起动方式,还有的是限流起动和转矩加突跳控制起动。唯有电压控制和纯转矩控制及转矩加突跳控制起动较为先进。

常用停机方式有三种:一是自由停车,二是软停车,三是制动停车。

1、自由停车传统的控制方式都是通过瞬间停电完成的。即惯性停车(断电自停);

2、软停车电动机停机时,软起动器将额定电压按软停车设定的时间缓慢降至起始电压Us后停止输出的一种停车方式,它可以消除了由于自由停车带来的拖动系统反惯性冲击。

如皮带运输机、升降机等许多负荷并不宜突然停机,软停车功能正好能满足此要求。晶闸管在收到软停机信号后,导通角渐减,经一定时间才过渡到全关,即电动机端电压渐减至零。停车时间可按实际需要设定。

3、制动停车向电机输入直流电流,从而加快制动,制动时间可调,主要用于惯性力矩大的负载或需快速停机的场合,在一定的场合代替了反接制动停车。

三、软起动器的选型及注意事项

目前软起动器的生产厂家很多,有进口也有国产的,原理基本相同。软起动器是一种新型的、性能优良的起动装置,它结合了电力电子技术、自动控制技术和微处理器技术,与传统起动设备相比,具备完善的电机软启动和软停车功能,可保证电机连续而平滑的启动,消除了机械冲击和大电流冲击,有效的延长了电机的寿命和保护了用电线路和负载。目前在市场上有影响力的基本上都是国外产品,如施耐德的TE、罗克韦尔的A-B、ABB、西门子的产品等。

水泥企业在选用软起动器时应主要考虑以下问题:

1、选择软起动器注意负载是标准负载还是重载负载。根据负载性质的不同来选择不同类型的起动器。

(1)如果负载是离心泵(消防泵、喷淋泵、水泵等),则需利用泵控制功能,减少起动和停止时液流冲击所产生的系统水锤现象的发生,所以必须用选带泵控制功能的软起动器,如另带欠载保护或相位颠倒保护的则更好;

(2)负载是通风机的话,利用软起动功能,减少皮带磨损和机械冲击,并可利用停机时制动转矩功能;

(3)负载是搅拌机、破碎机、提升机等,利用双斜坡起动和预置低速运行,避免机械损坏;

(4)负载是输送设备,可利用软起动和预置低速功能,实现平滑开停,软停车消除了由于自由停车带来的拖动系统反惯性冲击,避免产品移位和液体溢出;

(5)具有通讯端口可实现网络通讯与远程控制。若有计算机联网要求,在选择软起动器时注意它的智能化程度,是否带微机接口,接口是否带有通讯地址和程序,是否能达到通讯控制以及故障自珍诊断功能等。

2、根据电动机的标称功率、电流及负载性质选择起动器。一般软起动器容量稍大于电动机工作电流即可,对水泥厂的一些重载负荷时应加大一档使用,如:破碎机、球磨机、提升机、长皮带、搅拌机、风机等,同时适当考虑散热因素。

3、其他方面,还要考虑是否保护功能完备

(1)如过电流保护、过压保护、单项接地保护、上下口断相保护、三相不平衡保护、相位颠倒保护等。不带过载保护的,必须另加热继电器保护。

(2)有的软起动器一般不带短路保护,需外加快速熔断器并与晶闸管容量匹配,它能使晶闸管在连接负载发生短路时受到保护,低压断路器一般不能保护软起动器。进线电抗器可限制主电源的谐波干扰,当几台起动器接于同一电源时建议使用进线电抗器。

(3)软起动器至电动机的接线要特别注意,大部分是3根出线,但部分产品也有6根出线的。软起动器可安装在有功率因素补偿器的系统中,但电容器必须位于软起动器的电源进线一侧,以避免电容器放电损坏软起动器的晶闸管,另外在电源和电容之间接入电感线圈。软起动器大多带正常运行和故障信号辅助触点,供工程设计选用。

(4)软起动器允许长期在额定负载工况下运行,可以用旁路接触器,在起动完毕后把它短接。切除后要注意电动机运行回路是否还有过载热保护功能。在实际应用过程中,若工艺条件许可,用一台软起动器起动多台电动机时,其容量应根据电动机中最大的起动负荷考虑,可大大节省投资费用。

(5)机柜内安装软起动器时要考虑散热空间。软起动器在通过电流时将会产生热耗散,安装时应注意在其上、下方留出一定空间,软起正上方不能放电器元件,以使空气能流过其功率模块。当软起动器额定电流较大时,要采用风机降温,风机的电源可取自电机控制系统的二次回路。机械风冷的还要考虑倾斜度等。自然风冷的无此要求。运行方式分在线型和非在线型,选型时尽量选用非在线型。

(6)参数测试功能

部分品牌软起动器还带有参数显示窗口,可以通过按键在显示窗口选择显示电机的运行参数,如三相电压值、三相电流值、功率因数、运行时间等,而无需增加任何仪表,此功能可使用户很方便地查询电机在运行过程中的各种参数。