切削力测量技术范文10篇

时间:2023-04-03 17:39:32

切削力测量技术

切削力测量技术范文篇1

切削力测量系统一般由三部分构成:由测力仪、数据采集系统和PC机三部分组成,如图1所示。测力仪(测力传感器)通常安装在刀架(车削)或机床工作台上(铣削),负责拾取切削力信号,将力信号转换为弱电信号;数据采集系统对此弱电信号进行调理和采集,使其变为可用的数字信号;PC机通过一定的软件平台,将切削力信号显示出来,并对其进行数据处理和分析。

1.1切削测力仪

1.1.1应变式测力仪

应变式测力仪由弹性元件、电阻应变片及相应的测量转换电路组成,其工作原理如图2所示。把电阻应变片贴在弹性元件表面,并连接成某种形式的电桥电路,当弹性元件受到力的作用而产生变形时,电阻应变片便随之产生变形,从而引起其电阻阻值的变化ΔR,即

应变片电阻值的变化ΔR造成电桥不平衡,使电桥输出发生变化ΔU,通过标定建立输出电压与力之间的关系。使用时根据输出电压反算切削力的大小。

应变式测力具有灵活性大、适应性广、性能稳定等优点,而且配套仪表(如静态应变仪、动态应变仪等已标准化,因而得到广泛应用。但是其测量原理决定了测量精度和动态特性主要取决于弹性元件的结构,如何有效解决灵敏度和刚度之间的矛盾,是提高应变式测力仪测量精度和动态特性的关键。

1.1.2压电式测力仪

压电式测力仪是以压电晶体为力传感元件的切削测力仪,当石英晶体在外力作用下发生变形时,在它的某些表面上出现异号极化电荷。这种没有电场的作用、只是由于应变或应力在晶体内产生电极化的现象称为压电效应。通过测量产生电荷量即可以达到测量切削力的目的。

从动态测力的观点出发,压电式测力仪是一种比较理想的测力传感器,具有灵敏度高、受力变形小等优点。然而压电式测力传感器仍然存在一系列缺点:如由于电荷泄漏而不能测试静态力、固有频率的提高受装配接触刚度的限制、维护极不方便、价格昂贵,因此在使用上受到很大的限制。

1.1.3电流式测力仪

直接使用测力仪测量切削力有其局限性:①安装测力仪时,工艺系统结构遭到破坏从而导致其刚度发生变化,采集不到精确的切削力力信号;②测力仪的安装、调试技术复杂;③测试设备花费较高;④测力仪测试系统可靠性较低。

文献[4]提供了一种间接测量切削力的方法,即电流式测力仪,其测量原理是:切削力的变化会引起主轴电机电流的变化,通过测量主轴电机电流来估计切削力的大小。因机床主轴电机电流的测量比较容易和简单,所以这是一种经济而又简便的方法。

电流式测力仪的局限性体现在两个方面:①把主传动系统的运动学模型看作是一个线性模型,所以加工过程中的非线性因素会在一定程度上降低测量精度;②当切削力发生变化时,相应的主轴电流信号有一定的滞后现象,无法满足对切削力进行实时监测的较高要求。

1.2数据采集系统

如图3所示,数据采集系统通过一定的电子线路,对测力仪的输出信号进行放大、滤波等处理后,将其进行A/D转换,变为计算机的可用信号,再通过接口电路与PC机进行数据传输。

目前大多数切削力数据采集系统由放大器、滤波器、数据采集卡等分立元器件组成,体积较大,系统稳定性不高,测量精度和实时性也渐渐满足不了现代测力系统的要求。

1.3数据显示和分析处理

早期的数据显示和分析处理单元由指示仪表、示波器和记录仪等组成,其数据显示和分析处理功能都是很有限的。随着计算机技术的快速发展,目前数据显示和分析处理单元基本上被计算机终端所代替,显示功能更加丰富和强大,但软件的功能仅局限于数据拟合、图表显示和输出等,对测力仪各向力之间的耦合没有进行有效的处理,从一定程度上影响了测力精度。

2切削力测量技术的发展趋势

现代切削加工正在向高速强力切削、精密超精密加工方向发展,机床的振动频率也会远远高于系统的固有频率,这对切削力测量系统提出了新的要求:①测量范围大、高精度和高分辨率;②实时性好,能够在线实时测量;③数据处理和分析能力强,能够对复杂多变的切削力信号进行各种处理和分析。

针对这些方面的要求,切削力测量技术将朝着以下几方面发展:

(1)开发新型弹性元件,优化弹性元件结构及应变片布片方案,提高应变式测力仪固有频率,有效解决应变式测力仪刚度和灵敏度之间的矛盾问题,降低各向力之间的耦合程度;

(2)应用集成电路和微电子技术,使数据采集系统集成化,提高数据采集的速度与精度;

(3)完善数据处理分析软件的功能,例如通过解耦运算进一步减小测力仪各向力之间的耦合程度,以提高测量精度;将虚拟仪器技术引入切削力测试系统,以便对测量数据进行多种操作和数据库管理;建立专家系统,通过对测试数据的分析处理,对刀具磨损、切削颤振等情况做出预报并提出相应的治理措施。

参考文献

[1]罗学科.动态多维力传感器的理论研究与实践[D].北京航空航天大学博士论文,1995.1.

[2]姜术君.采用虚拟仪器技术构建测力系统的研究[D].北京航空航天大学硕士学位论文,2004.3.

[3]杨兆建,王勤贤.测力传感器研究发展综述[J].山西机械,2003,(1).

[4]周林,殷侠.数据采集与分析技术[M].西安:西安电子科技大学出版社,2005.

[5]张小牛,侯国平,赵伟.虚拟仪器技术回顾与展望[J].测控技术,2000,(9).

[6]苏建修.高速切削关键技术[J].机电国际市场,2001,(11).

切削力测量技术范文篇2

切削力测量系统一般由三部分构成:由测力仪、数据采集系统和PC机三部分组成,如图1所示。测力仪(测力传感器)通常安装在刀架(车削)或机床工作台上(铣削),负责拾取切削力信号,将力信号转换为弱电信号;数据采集系统对此弱电信号进行调理和采集,使其变为可用的数字信号;PC机通过一定的软件平台,将切削力信号显示出来,并对其进行数据处理和分析。

1.1切削测力仪

1.1.1应变式测力仪

应变式测力仪由弹性元件、电阻应变片及相应的测量转换电路组成,其工作原理如图2所示。把电阻应变片贴在弹性元件表面,并连接成某种形式的电桥电路,当弹性元件受到力的作用而产生变形时,电阻应变片便随之产生变形,从而引起其电阻阻值的变化ΔR,即

应变片电阻值的变化ΔR造成电桥不平衡,使电桥输出发生变化ΔU,通过标定建立输出电压与力之间的关系。使用时根据输出电压反算切削力的大小。

应变式测力具有灵活性大、适应性广、性能稳定等优点,而且配套仪表(如静态应变仪、动态应变仪等已标准化,因而得到广泛应用。但是其测量原理决定了测量精度和动态特性主要取决于弹性元件的结构,如何有效解决灵敏度和刚度之间的矛盾,是提高应变式测力仪测量精度和动态特性的关键。

1.1.2压电式测力仪

压电式测力仪是以压电晶体为力传感元件的切削测力仪,当石英晶体在外力作用下发生变形时,在它的某些表面上出现异号极化电荷。这种没有电场的作用、只是由于应变或应力在晶体内产生电极化的现象称为压电效应。通过测量产生电荷量即可以达到测量切削力的目的。

从动态测力的观点出发,压电式测力仪是一种比较理想的测力传感器,具有灵敏度高、受力变形小等优点。然而压电式测力传感器仍然存在一系列缺点:如由于电荷泄漏而不能测试静态力、固有频率的提高受装配接触刚度的限制、维护极不方便、价格昂贵,因此在使用上受到很大的限制。

1.1.3电流式测力仪

直接使用测力仪测量切削力有其局限性:①安装测力仪时,工艺系统结构遭到破坏从而导致其刚度发生变化,采集不到精确的切削力力信号;②测力仪的安装、调试技术复杂;③测试设备花费较高;④测力仪测试系统可靠性较低。

文献[4]提供了一种间接测量切削力的方法,即电流式测力仪,其测量原理是:切削力的变化会引起主轴电机电流的变化,通过测量主轴电机电流来估计切削力的大小。因机床主轴电机电流的测量比较容易和简单,所以这是一种经济而又简便的方法。

电流式测力仪的局限性体现在两个方面:①把主传动系统的运动学模型看作是一个线性模型,所以加工过程中的非线性因素会在一定程度上降低测量精度;②当切削力发生变化时,相应的主轴电流信号有一定的滞后现象,无法满足对切削力进行实时监测的较高要求。

1.2数据采集系统

如图3所示,数据采集系统通过一定的电子线路,对测力仪的输出信号进行放大、滤波等处理后,将其进行A/D转换,变为计算机的可用信号,再通过接口电路与PC机进行数据传输。

目前大多数切削力数据采集系统由放大器、滤波器、数据采集卡等分立元器件组成,体积较大,系统稳定性不高,测量精度和实时性也渐渐满足不了现代测力系统的要求。

1.3数据显示和分析处理

早期的数据显示和分析处理单元由指示仪表、示波器和记录仪等组成,其数据显示和分析处理功能都是很有限的。随着计算机技术的快速发展,目前数据显示和分析处理单元基本上被计算机终端所代替,显示功能更加丰富和强大,但软件的功能仅局限于数据拟合、图表显示和输出等,对测力仪各向力之间的耦合没有进行有效的处理,从一定程度上影响了测力精度。

2切削力测量技术的发展趋势

现代切削加工正在向高速强力切削、精密超精密加工方向发展,机床的振动频率也会远远高于系统的固有频率,这对切削力测量系统提出了新的要求:①测量范围大、高精度和高分辨率;②实时性好,能够在线实时测量;③数据处理和分析能力强,能够对复杂多变的切削力信号进行各种处理和分析。

针对这些方面的要求,切削力测量技术将朝着以下几方面发展:

(1)开发新型弹性元件,优化弹性元件结构及应变片布片方案,提高应变式测力仪固有频率,有效解决应变式测力仪刚度和灵敏度之间的矛盾问题,降低各向力之间的耦合程度;

(2)应用集成电路和微电子技术,使数据采集系统集成化,提高数据采集的速度与精度;

(3)完善数据处理分析软件的功能,例如通过解耦运算进一步减小测力仪各向力之间的耦合程度,以提高测量精度;将虚拟仪器技术引入切削力测试系统,以便对测量数据进行多种操作和数据库管理;建立专家系统,通过对测试数据的分析处理,对刀具磨损、切削颤振等情况做出预报并提出相应的治理措施。

参考文献

[1]罗学科.动态多维力传感器的理论研究与实践[D].北京航空航天大学博士论文,1995.1.

[2]姜术君.采用虚拟仪器技术构建测力系统的研究[D].北京航空航天大学硕士学位论文,2004.3.

[3]杨兆建,王勤贤.测力传感器研究发展综述[J].山西机械,2003,(1).

[4]周林,殷侠.数据采集与分析技术[M].西安:西安电子科技大学出版社,2005.

[5]张小牛,侯国平,赵伟.虚拟仪器技术回顾与展望[J].测控技术,2000,(9).

[6]苏建修.高速切削关键技术[J].机电国际市场,2001,(11).

切削力测量技术范文篇3

关键词:数控加工;参数优化;分析

随着我国制造业不断发展,在精密制造领域对零件的精度要求也越来越高,尤其在发动机、减速器等关键零部件的制造过程中。通过数控加工可实现较高精度的零件的制造,但数控加工中依然存在加工精度无法满足设计需求的问题。除了数控加工中心的装配精度对零件加工精度影响较大之外,在机床加工过程中由于工艺参数的设置对零件加工精度的影响是制约零件精度进一步提高的关键因素。因此,零件最终的加工精度与数控加工中工艺参数的配置、调整以及优化存在直接关系。本文首先从机床加工过程中的检测入手,获取加工过程中机床的状态,并根据机床的工作状态调整机床的工艺参数,使机床工作在最优的加工状态下,在不增加数控机床功率和负载的基础上,提高机床的加工效率,并获得最终的高精度工件。

一数控加工中各参数检测

调整和优化工艺参数之前,首先应该获得机床当前的工作状态,若没有准确的机床的工作状态,机床的参数优化就没有依据,无法实现高精度的零件的加工。因此,本节主要介绍机床工作状态的检测方法和检测参数。

(一)切削力检测

机床的切削力与机床的振动状态和被加工零件的受力情况密切相关,保证机械加工中切削力的平稳变化,可以减少机床的抖动,减少零件表面的加工刀痕,保证零件表面的加工精度。切削力的检测方法有如下几种:刀具内部安装力传感器。切削力的主要来源是刀具与工件刚性接触产生的,因此,在刀具内部安装力传感器可直接检测切削力;通过力矩传感器间接测量。某些刀具形状结构复杂,无法直接在其内部安装力传感器,因此,通过在主轴上安装力矩传感器,可通过几何关系间接求出切削力;通过主轴功率检测切削力。主轴电机的功率可通过读取电机的参数得到,根据主轴的功率也可间接求出加工过程中切削力。

(二)机床振动检测

机床振动也是影响机床加工精度的最主要的原因之一。产生机床振动的原因主要有以下几种:1.机床主轴转速设置不合理。在低速切削加工时,机床会产生一定的抖动现象;2.进给量设置不合理。机床的进给量直接影响机床的切削力,机床的切削力大,导致主轴受力增加,在主轴高速旋转时产生振动。现阶段常用的机床振动检测大多数通过加速度传感器实现。在机床主轴位置安装加速度传感器直接进行主轴振动的检测,在机床各轴上安装加速度传感器可测量加工过程中哪根轴的振动现象最明显,在后续的参数优化过程中,主要针对此轴进行优化设计。

(三)机床温度检测

数控机床加工时,机床某些部位出现一定的温度变化,如主轴位置、工件、机床床身等。机床和工件的温度升高会导致机床和工件的热变形,影响工件的加工精度。通过在机床各个位置安装温度传感器对机床温度变化进行检测,并针对温度变化情况,调整机床的进给量和冷却液的开关等。

(四)刀具磨损检测

刀具磨损对零件最终的尺寸精度和表面精度有重要的影响。刀具磨损导致刀具的回转半径发生变化,若在加工过程中没有及时将刀具半径补偿加入数控代码中,将会直接导致零件的加工尺寸与设计尺寸出现较大的偏差。此外,由于刀具磨损,导致刀具的切削刃口磨钝,锋利程度与刀具未磨损时存在较大的差距,在工件加工时导致工件的变形质量不满足要求。在刀具从刀库中取出安装在主轴上之前对刀具进行尺寸检测,并将检测数据存入数控系统中作为输入应用在机床加工参数的优化中。

(五)工件加工精度检测

在零件加工过程中,加工工艺参数优化调整的主要目的是保证零件的尺寸精度,因此,在加工过程中检测零件的尺寸,并将检测尺寸与理论设计尺寸的差值补偿到加工过程的各个工艺参数中,实现数控加工的闭环控制,保证工件的尺寸精度。

二数控加工参数优化

(一)进给速度优化

机床的进给速度影响工件的去除量和表面精度,基于数控加工中心的零件制造可实现复杂曲面的加工,根据机床温度变化情况、工件的尺寸精度调整机床进给速度,机床主轴温度过高,提高机床的进给速度可避免刀具在零件上同一位置停留时间过长,防止工件出现过磨现象。在零件尺寸较小的位置或较薄的位置,应尽量提高进给速度,防止将零件较薄位置的材料切除,导致零件报废。主轴转速优化

(二)进给量优化

根据检测出的切削力的数据,适时地调整机床的进给量,保证切削力平稳的变化,避免出现切削力的突变,在工件表面产生刀痕。若在加工过程中检测到切削力突然变大,则证明切削深度急剧增大,此时,通过合理调整进给量使切削力保持平稳变化。

(三)主轴转速优化

在高速精密加工领域,大多数通过主轴的高速旋转实现工件精度的控制,且高速加工中工件的形变较小,避免了由于工件的热变形导致无法保证工件尺寸精度的现象。根据各个传感器数据,建立工件精度控制模型,对加工过程进行参数优化控制,保证零件的加工精度。首先,通过控制变量法对影响数控加工精度的各种因素进行单一变量的数学模型的建立,推导出各个因素与数控加工精度的数学公式,并根据对比分析,挑选出影响数控加工精度的关键因素,并根据影响的程度对各个影响因素划分影响等级,在后续的参数优化计算中,重点优化关键影响因素。针对第一节中影响零件加工精度的各种因素,结合上述工艺参数与零件加工精度的关系,根据单个变量与零件加工精度的关系可以得出相应的数学公式,将各个影响因素作为自变量、零件加工精度作为因变量建立出多参数的数学模型,根据数学模型中参数的影响程度,依次对数控加工过程中各个控制环节进行定量控制,保证零件的加工质量。

在数控加工中工艺参数的优化控制中最重要的优化依据就是各个传感器测量的数据,因此,进行参数优化控制前应通过各种传感器和监测技术对机床上各个影响零件加工精度的变量进行检测,将检测数据经过数据处理后,作为输入参数输入数控系统中,根据优化模型得到最终可人为控制的参数补偿量,实现零件加工精度的精确控制,保证零件的质量。数控加工参数优化控制模型可以根据零件加工精度要求设计,可以进行精确的调整控制,也可通过对各个参数变化趋势的微调实现控制。精确调整需将模糊算法、神经网络算法等智能算法应用在优化模型中,根据传感器的数据预测零件的加工状态,并根据传感器数据得到准确的参数数据。微调控制较为简单,即在各个工艺参数前乘以一个变量作为调整系数,根据传感器的数据,按照线性比例修改加工工艺参数,实现工艺参数的优化。

三结束语

尽管国内数控技术发展迅速,但国内数控加工精度与国外仍存在较大的差距,无法生产高精密的零件,严重阻碍了我国制造行业中精密加工技术的发展。通过数控加工过程中的工艺参数的优化,可在一定程度上提高零件的加工精度,实现数控加工的参数优化技术的研究对我国精密制造行业的发展具有重要意义,借鉴国外先进技术,并不断投入研发人员,一定可以实现精密零件的制造,打破国外技术垄断。

参考文献

[1]高亮,杨扬,李新宇.数控加工参数优化的研究现状与进展[J].航空制造技术,2010(22):48-51.

[2]许自力,梁萍.指挥系统专用设备的数控加工参数优化[J].指挥信息系统与技术,2011,02(3):72-74.

[3]王力爽.数控加工仿真及加工参数优化的研究[D].沈阳理工大学,2012.

[4]阎竞实.数控加工参数优化的研究现状与进展[J].山东工业技术,2014(23):303-303.

切削力测量技术范文篇4

为便于对后面高效模具加工刀具介绍的理解,有必要对模具材料及加工方式作一个简单介绍。

(一)模具类型

模具主要分为以下几个类型:大型汽车外覆盖件冲压模具、普通塑胶注塑模具、PVC注塑模具、吹塑模具、五金冲压及板金模具、热挤压模具、热锻模具等等。

(二)模具材料

每种不同的模具以及同一模具的不同部位所采用的材料有相当大的差别,其加工特性也有很大的区别。模具材料的种类极为繁多,这里只介绍与本文相关的被加工材料。

1.C45W中碳钢:牌号为S50C~S55C45钢,香港称为王牌钢,此钢材的硬度为HB170~220,模具有70%~80%的加工采用这种钢材,适用于大多数加工对象。

2.40CrMnMo7预硬塑胶模具钢:硬度HRC28~40,很适合做一些中低价模具的镶件,有些大批量生产的模具模架也采用此钢材,好处是硬度比中碳钢高,变形也比中碳钢稳定,这种钢在塑胶模具上被广泛采用,较为普遍的品牌有718S、718H、738H、NAK80、NAK55等,这种钢材的应用占模具的15%~20%左右,其加工难度大于45钢,主要为型芯和型腔加工。

3.fc250-fc350,fcd500-fcd700:材料中添加了Cu、Ni、Mo等合金,通过对总碳量、Si、Mn、P、S、Mg等组成元素进行控制,在分子结构上由于晶体易于变形,使之易于马氏体化。

一直以来,国内汽车行业所使用的模具材料主要包括铸态和锻态两大类。铸态材料常用的牌号为HT300、钼铬铸铁、铸态风冷钢(7CrSiMnMoV);铸铁材质主要用于模具基体,铸钢材质则用于镶块。锻态材质常用的牌号为锻态风冷钢(7CrSiMnMoV)、Cr12MoV,主要用于制造汽车外覆盖件模具。

二、汽车外覆盖件模具粗加工用球头铣刀

近年来,工业领域使用的刀具产品样式不断变化,且绝大多数企业本着降低制造成本的生产理念,要求生产高精度、高品质的产品。这种现象在汽车行业加工领域也不例外。针对客户的要求,株钻刀具技术公司采取的策略是不断提高刀具使用寿命以及缩短加工时间。株钻公司最新推出了几种新型高效刀具,在车门、保险杠、车架等零部件的冲压模加工时,能够大大提高刀具使用寿命、降低加工成本。其中BMR03系列刀具就是其中之一。

该款刀具适用于汽车外覆盖件模具粗加工时的型面轮廓强力仿形切削,一般来说,D50、D40的刀具进行型面开粗,D30的刀具进行型面的半精加工和圆弧过渡面的清根加工,被加工工件的材质主要是以上介绍的冷作模具钢和钼铬合金铸铁,为了降低成本,有些低档卡车模具也采用GCr15钢和灰口铸铁,甚至采用A3钢堆焊的毛坯生产。因此要求该刀具有极高的综合切削性能:(一)适用于各种被加工材质的刀片槽型和结构;(二)优秀的抗冲击性能,强力铣削加工时不能出现切削刃意外崩缺;(三)长的刀具使用寿命,一般客户希望能够在不更换刀片情况下不间断地加工完一个型面,对于加工一个大型模具意味着4~12小时的加工寿命;(四)低的切削振动,这是制约加工效率提高最难逾越的因素;(五)高的形状精度和高负荷加工下刀具的精度保持性;(六)高的刀体可靠性。

该刀片的槽型是综合考量各种实际切削因素,并且通过长达两年的用户试验,不断优化而最终定型的。具体而言,主要在以下几个方面进行了优化设计。

比传统刀具更高的精度,刀片安装在刀体上后,与理想球体的理论误差应尽可小,而且曲线不能太复杂,以免造成研磨困难。株钻球头铣刀的球形刃设计精度(所有系列)均为≤0.005mm,制造轮廓误差≤0.05mm(ZOLLER测刀仪检测)。

中心刀片的刀尖设计保证更低的切削振动和抗冲击性能,过中心区域切削速度极低(接近于零)。切削阻力极大,非常容易出现刀尖崩缺现象。必须进行大量试验室试验和客户实际试验来提高刀片性能。举例来说,其中有一项为切削阻力和切削振动对比试验,试验方案如下:试验刀具为A、B两种国外D40球头铣刀,被加工材料为P20HRC35,切削参数:Vn=3000,ap=0.5mm,ae=1mm,f=3000mm/min,测试仪器:KISTLER动态电荷测力仪。

由试验结果可知:

(一)在其他条件相同的情形下,f=0.5mm/z时,A刀具的最大主切削力Fx=400N,最大主切削力Fx=50N,最大振幅为350N,平均切削力为230N;

(二)在其他条件相同的情形下,f=0.8mm/z时,A刀具的最大主切削力Fx=600N,最大主切削力Fx=80N,最大振幅为520N,平均切削力为290N;

(三)在其他条件相同的情形下,f=0.5mm/z时,B刀具的最大主切削力Fx=800N,最大主切削力Fx=160N,最大振幅为640N,平均切削力为400N;

(四)在其他条件相同的情形下,f=0.8mm/z时,B刀具的最大主切削力Fx=1000N,最大主切削力Fx=200N,最大振幅为800N,平均切削力为500N。

由以上四点可知,在1mm的小切深情况下,在所有切削条件相同的情况下,B刀具的刀尖受力情况明显比A差很多,平均受力大了几乎一倍,刀具在同等频率下振动的振幅也明显大得多,而上述切削参数在大多场合都是正常切削参数,这说明在刀具刀尖的处理上A刀具的设计方案明显优越。而B刀具由于切削阻力和切削振动太大,且刀尖的切削前角仅为-20°,刀尖过于单薄,刀具的过中心刀尖非常容易崩缺。

因此刀尖的形状设计非常重要,对刀具的实际切削效果有显著的影响。实际上优化设计刀尖形状和参数是一个非常繁杂的过程,要平衡诸多因素,如切削振动、刃部强度、刀具使用的工艺特点、刀片材料特性、本身的工艺性等等,很难一蹴而就,要往返多次不断完善。

刀片的槽型优化设计,球头铣刀的圆弧切削刃各点的切削线速度都不相同,轴心区低,外部高,线速度的变化极大,因此各点承受切削阻力相差很大。

当切削速度低于某个值时,切削阻力会急剧增大,而高过此值时,变化会比较平缓,因此设计主切削刃棱带、槽型主参数时必须遵循这个规律。对于球头刀来说,设计为变棱宽棱带、光滑曲面的切屑导流槽、连续变化的前角、槽宽等最为合适,配合前刀面的减振凸台设计可以在保证刃口强度的基础上尽可能减少棱宽,从而最大化减少切削阻力和抑制振动。分屑槽刀片,对于大直径刀具D50、D40刀具和大悬长刀具来说,在进行过渡全刃接触铣削时,几乎难以加工,排屑非常困难。刀片极易被挤缺。这时需要采用分屑技术的刀片。在实际验证时,加工效率得到2倍以上的提高。

极限过载和疲劳破损校验,进一步改进刀具结构,确保刀具能够长期稳定切削。极限试验主要用于检测刀具在推荐切削参数下的安全性能,包括一系列的超载试验。这需要投入极大的物力和精力,一个产品的开发必须包含此项验证。这里列举其中一项试验:

检验刀具:BMR03-040-G32-XP30-02-M;刀片:XPHT40R2004;牌号:YBG302

被加工材料:NAK80(HRC40)

切削参数:Vn=2500,ap=5mm,ae=4mm,f=2000mm/min

试验结果:加工16小时后,刀具出现疲劳损坏裂纹。刀体上部安装刀片的刀槽底面与侧面出现明显裂痕,刀体已经无法继续使用。

正是疲劳试验发现了该刀具的内在缺陷,为此进行了四次大的改进来解决这个问题,其中包括(一)面与面间采用圆弧过渡,消除应力集中;(二)更高精度的锁进螺纹配合,提高刀片的安装刚性;(三)采用优质耐热合金钢制造刀体;(四)改变表面处理和热处理工艺,提高抗疲劳性能。改进产品小批量客户试验证明,消除缺陷的产品完全可以满足实际使用要求,现在大批量订货也没有出现问题。

新型球头铣刀较传统刀具有较大优势,加工实例证明了其高效切削性能,比原来传统球头铣刀提高加工效率2倍以上,且刀具寿命更长,性能可与国外先进厂家相当;批量应用证明该刀具性能稳定可靠,由于性价比高,节约了刀具消耗成本。

三、新型大进给铣刀

株钻刀具公司推出的新型大进给铣刀几乎已成为HPM的狭义对等词。这种大进给铣刀结合了低振动切削和高进给切削两种切削形式的优点,能够进一步提高刀具的切削性能。刀片基本形状为类三角形,三个边完全对称,每个边由修光刃、第一主切削刃、突起过渡区、第二主切削刃和刀尖圆弧等组成。刀具的原理及形状专利正在申请中。

(一)低振动大进给铣刀的原理及特色

所谓低振动切削是指刀具采用大的悬伸量加工深的部位,而刀具的刚性与悬伸长度的四次方成反比,加工效率的主要制约因素是因为加工振动而不得不降低走刀速度。FEETE公司的理论研究和试验证明,通过改变切屑的形状,可以在切屑截面不变的情况下提高走刀速度,或者说在同等金属去除率的情况下,可以降低切削阻力和消耗功率15%~25%。这是一个非常可观的数据,实际上由于受到几何形状以及残余加工区域面积的限制,产品应用达不到这一理论值。

株钻公司开发的新型大进给铣刀成功地将小的主偏角与切屑形状控制理论结合起来。该铣刀在切削深度ap小于凸起过渡区到修光刃时,参与切削的为第一主切削刃,这与传统的大进给铣刀并无任何区别。

但当切削深度ap超过这一临界值时,切屑的形状发生改变,传统的大进给铣刀应为一段较长的切屑,而新型铣刀为两段切屑,这种断屑方法称为自台阶断屑。下面通过一个试验来证明对新型刀具性能的阐述。

试验机床:MIKRONUCP1000

被加工材料:NAK80(HRC40)

对比试验刀具:进口D32大进给铣刀(加长型);株钻D32大进给铣刀

测量仪器:KISTLER电荷测力仪

加工参数:ap=1.7mm,ae=25mm,V=120m/min,f=0.8mm/z

试验结果:由于受到机床功率的限制,f=0.8mm/z时机床已经达到极限功率,株钻D32大进给铣刀MR01-063-A22-ZD16-04的切屑成两段排出,切削状态正常。

对比的进口刀具已经完全丧失了继续切削的能力,出现强烈的振动甚至抖动。这就证实采用分屑技术与大进给相结合的新型刀具有着更加优越的切削性能。

株钻刀具每刃平均切削寿命为3.5小时,进口刀具为3.7小时,寿命基本相当;株钻刀具的切削振动声音相对较小;株钻刀具切屑细碎,容易被压缩空气吹走,切屑刮擦相对较轻。另外值得一提的是,在采用大进给加工前,采用RDKW1204M0刀片进行加工,大进给刀具有着明显的优势,主要体现在以下几个方面:(一)加工效率提高1~2倍,机床占用率大大降低,大大降低固定资产成本;(二)拐角处振动和大模具加工的优势更加明显,提高效率3倍以上;(三)刀片消耗量大大降低,原来RDKW刀片每月消耗2万片,而大进给刀片消耗量不到3000片。

新型大进给铣刀可以通过分屑方法有效抑制振动,从而进一步提高加长刀具的加工性能;合理的外形设计使该刀具的切削性能和使用寿命达到了预期目的;较传统刀具而言,新刀具的加工效率提高2~3倍,而刀具消耗量仅为原来的1/5,效益相当可观。

切削力测量技术范文篇5

关键词:细长杆;装夹方式;车刀;加工工艺

细长杆零件通常是指长度与直径之比大于或等于25的零件[1]。车削细长杆零件一直是一个难题,再加上如果是TC11这种难加工材料,更加剧了问题的严重性。但TC11(Ti-6Al-3.5Mo-1.8Zr)属于一种马氏体强化型α+β型两相钛合金。可以在400~500℃下长期使用,具有非常强的工艺塑性、组织稳定、抗蠕变能力和抗高温变形能力,抗拉强度可以达到1030MPa,多为航空航天零件材料的良好选择[2-4]。与普通零件相比,TC11钛合金细长杆切削性能差,主要表现为钛合金材料切削变形系数小,切削中刀具和材料局部之间会产生高温、高压、冷作硬化严重、切削力大,这些情况加剧烈了刀具磨损,再加上细长杆刚度较差、受热变形较大严重影响了加工精度和表面质量[5-6]。喻红中[7]在折析细长杆件车削加工方法中,充分分析了零件的结构、工艺特点以及零件产生的缺陷原因,采用合理的工艺路径,探索出细长轴的加工方法。宋宏明[8]在细长杆的车削加工技术浅析中,归纳了车削常见缺陷及其原因,并在切削加工方面提出了改进措施。梁满营等[9]在细长轴切削加工工艺方案研究中,一边用三爪卡盘,一边用弹性顶尖的装夹方式,直线插补和圆弧插补相结合的加工方法来加工细长轴。以上的研究方法都适用加工比较容易切削的材料和小型零件,但实际生产中,往往会碰到大型、甚至中间有孔的难加工材料零件,比如钻杆之类的就不太适应了。针对以上问题,本文对TC11钛合金细长杆零件在实际生产中,对加工工艺、装夹方式、受力情况以及刀具选择等方面,作出了合理的分析,并通过试验验证得出,该种工工艺可以达到预期的加工效果。

1细长杆在加工过程中工艺性分析

细长杆在车削过程中的热扩散性能比较差,在车削过程中,会在切削热的作用下刀具发生黏结磨损,从而影响工件的表面粗糙度和加工精度[10]。并且钛合金TC11材料由两相组织组成,在切削过程中由于硬度比较大,因此在加工中需要比较大的切削力。以图1所示的零件为例,只对细长杆外圆车削部分进行进行工艺性分析,内外螺纹以及键槽部分不做分析处理。

1.1加工难点

1.1.1加工的尺寸公差要求TC11材料的化学成分如表1所示。TC11具有难加工性。同轴度要求为0.03mm,外径为ϕ1780-0.4mm和ϕ143+0.50mm,长度为550+20mm、11500-2mm、760+20mm、6110+100mm,粗糙度为Ra3.2µm,与18°的锥度,R38mm的圆角。1.1.2细长杆加工特性细长杆广泛应用于生活中,主要起到传递扭矩、输出动力源和承担载荷的作用。但细长杆在加工过程中受到切削力和切削热的作用,容易造成杆的弯曲,出现直线度、同轴度、径向圆跳动和尺寸精度等不合格的现象,废品率很高。

1.2加工过程工艺路线的分析

TC11钛合金细长杆车削的目的:从实现基准转换的角度,来保证零件的同轴度与尺寸。因此可以通过打表的方式,将孔的轴线放置与车床导轨平行。再用超声波测厚仪测量出壁厚,利用粗车将原来孔的轴线基准转化到圆柱的表面上,用半精车修正外圆。最后在经过精车与抛光的方式,达到尺寸和粗糙度的要求。外圆加工过程中,将背吃刀量按照几乎均匀等分的方式进行粗车与精车加工,来保证最后的加工精度以及削弱刀具的磨损。加工R38mm的倒角与18°的锥角时,利用四方刀架旋转成固定的18°并且采用特制的R38mm的外圆车刀进行加工。

1.3装夹方式的选择

(1)双顶尖法装夹法。采用双顶尖装夹,工件定位准确,同轴度容易得到保证。但是细长杆的刚度差,两端都用顶尖,细长杆容易在刀具切削力的作用下产生弯曲。(2)一端夹紧另外一端顶尖的装夹法。如果顶的太紧,孔的内部容易在端口变形,并且还会导致细长杆往外弯曲的可能,并且三爪卡盘和顶尖的同轴度也不能保证。细长杆在受热以后,会产生膨胀,从而加剧了细长杆的弯曲,而这种装夹方式可以改善,即三爪卡盘夹紧端采用开口的钢丝圈减小夹紧的接触长度,顶端采用弹性顶端来缓解弯曲变形。(3)三爪卡盘和中心架。采用一端加紧,一端用中心架支撑,支撑架合理的摆放位置,能够极大的减小切削过程中的振动,减小了径向切削力。由于6m长的细长杆和车床的长度大致一样长,有一端无法采用顶尖。这里的装夹方式采用的为一端三爪卡盘夹紧,中间用两个中心架支撑。为了方便装夹,这个零件自带100mm的工艺夹头,待零件加工完成之后可进行切除,装夹方式如图2所示。对图中装夹方式中的零件进行受力分析,由于中心架是限制零件的轴向移动,并且底盘与轨道进行固定,可视为固定铰支座,得到了零件XZ和YZ两个平面方向的受力分析图,如图3~4所示。其中MA为主轴箱传来的扭矩,q为均布载荷重力,A点为三爪卡盘,B、C两个点为中心架辅助,D点为装夹的自由端,FP为刀具的径向分力。

1.4刀具选择

为了减小细长杆切削中产生的弯曲变形,就要求在车削过程中产生的切削力越小越好,为了减小刀具损坏,使刀具和钛合金材料不发生亲和,刀具材料选为不含钛元素的硬质合金。而在刀具的选择中,刀具的角度会直接影响细长杆的质量和断屑的难易程度[11]。(1)前角(γ0)。前角的大小影响切削力、切削产生的振动以及零件表面的加工质量。使用较大的前角会降低切削力,减小加工过程中的振动,提高零件表面质量,但是过大的前角会让刀头和刀尖的强度降低,容易破坏刀具。其次,TC11钛合金属于难加工材料,难以断屑,因此车刀的前刀面应有断屑槽,附加负倒棱。(2)主偏角(Kr)。主偏角是主要影响刀具径向力的因素,较大的主偏角会降低刀具的径向力,减小细长杆的变形,不容易振动。并且小的刀尖圆弧半径也会减小径向分力。(3)刃倾角(λs)。刃倾角影响铁屑的流向,正的刃倾角,铁屑流向待加工表面;负的刃倾角,铁屑会流向已加工表面。车削细长杆,应取正的刃倾角,并且较大的刃倾角,会增加实际的工作前角。(4)后角越大,刀具越锋利,可降低工件与刀具的摩擦,提高工件表面的粗糙度,但是较大的后角同样会使得刀具的强度降低,后角的大小一般为α0=α01=4°~60°。钛合金属于强度较高的材料,应选择较小的后角。本次试验采用机夹刀具,采用机夹式结构如图6所示,方便更换磨损的刀片。为了加工出R38mm的圆角,采用了特制的一体化刀具如图7所示。加工钛合金材料刀片材料为YG8[12],刀片型号为CCMT120404-SF刀尖角为80°,后角为7°,R=0.4mm的刀尖半径,HQ型断屑槽。1.5合理的切削用量选用切削用量是切削运动过程中的切削参数选择,其中包括切削速度、进给量、背吃刀量。切削量选取的原则为:在能保证的尺寸精度的情况下,尽可能提高生产效率和降低成本。(1)背吃刀量(ap)。在刀具和机床确定前提下,切削深度增加,车削过程中的切削力会增大,并且过多的切削深度会产生大量的热,容易引起切削变形。因而,在图1的零件加工过程中尽可能减少背吃刀量,将粗加工时进刀的背吃刀量设为3mm、半精加工时为2mm、精加工时设为0.5mm。(2)进给量(f)。切屑厚度与进给量成正比,过大的进给量会增加切屑的厚度,增加切削力。精加工阶段,进给量主要与表面的粗糙度有关。粗车用大的进给量0.15~0.20mm/r,精车用小的进给量0.08~0.10mm/r。(3)切削速度(υ)。普通车床的切削速度不会很大,不容易产生积屑瘤,对刀具的磨损度有利。对于细长杆来说,过高的切削速度,会增加离心力,加剧切削的振动。因此,车削中应该选择较低的切削速度60~150r/min。1.6切削液的选择切削液在车削过程中起到润滑、防绣、降低刀具后刀面与工件的摩擦、减少切削热的产生。故这里选用的切削液为COOlancutO-11加水稀释而成,COOlancutO-11的典型数据如表2所示。

2试验验证

最后确定该零件的加工工艺方案为:粗车-半精车-精车-抛光。整个切削过程都采用切削液,带走切削热和润滑已加工表面。粗车的切削参数为v=60r/min,f=0.1mm/r,ap=3mm;半精车v=80r/min,f=0.2mm/r,ap=2mm;半精车v=80r/min,f=0.2mm/r,ap=0.5mm。图7所示为粗车加工,图8所示为粗车切屑,图9所示为半精加工。图10所示为精车完成,图11所示为抛光效果,图12所示为加工完成。将最终加工出来的零件通过测量,检验产品是否合格。同轴度采用的量具为内径百分表,粗糙度采用对比的方法,长度方向的尺寸用游标卡尺,外径用外径千分尺以及角度尺。测量报告如图13所示。通过上述检测报告以及实际加工情况可以看出,该细长杆加工工艺方案可行。

3结束语

切削力测量技术范文篇6

随着现代先进制造技术的高速发展,薄壁零件能够具有高强度、重量轻、高承载性等特点,在汽车、国防等工业领域得到了越来越广泛的应用。特别是在要求降低自身重量又不失强度、刚度的航空航天工业中得到很好的应用[1,2]。

2零件工艺分析

图1为某壳体的局部腔体结构示意图,该零件采用铝合金2A12整体加工而成,外形尺寸102mm×170mm×250mm,六面均要加工,且需要多次装夹,加工完后重量约为1190g,材料去除率高达90%。该零件腔体最深处为95mm,中间筋2mm,四周壁最薄处达2mm,底部为5mm×94mm×80mm的凸面,凸面周边为异型减重腔,底部凸面的加工精度要求是平面度为0.012、腔内4根筋的平面度为0.025及两腔壁平面的平行度为0.04。零件加工后的尺寸相差较大,整体刚度较差,加工时极易产生振动,故该零件在铣削过程中或者铣削后都会产生较大的变形误差,从而会导致零件的形位公差等难以达到要求。要保证该零件的加工精度,关键是控制零件在加工过程中由于各类应力(切削力和切削热产生的应力、装夹产生的应力以及毛坯的残余应力等)引起的变形。

3工艺流程

从加工工艺角度出发,合理安排加工工序、加工位置、余量分配、加工路径等,能减小整体结构件的加工变形[3]。根据上述分析,加工工艺流程确定如下:备料→粗铣外形及内腔→去应力退火→精铣外形→数控铣半精加工→铣削缺口→钳工→数控铣精加工→钳工→研磨→三坐标测量。该零件工艺流程主要控制点在数控铣工艺。为保证加工质量及精度:(1)安排粗、精加工及钳工矫形;(2)先加工内腔,再加工外形,以利于提高刚度,防止振动;(3)合理安排热处理,以提高尺寸稳定性;(4)零件底部凸面设计工艺加强筋,以提高零件的装夹刚度;(5)采用小直径铣刀加工,以减小切削力。

4加工工艺措施

4.1装夹方式的改进。室温下,2A12合金的弹性模量约为70MPa,约为钢的1/3,在装夹力的作用下零件会发生变形,切削过程中易出现“过切”或“欠切”现象;而该壳体结构复杂、自身刚度差,也易引起装夹变形。该壳体装夹时利用平口钳,因零件底面为5mm×94mm×80mm小凸台,在底面周边增加工艺加强筋,钳口夹紧零件的实体位置,以便提高零件整体的刚性。在做最后一次的加工之前,应松开被夹紧的零件,重新分布内应力,再夹紧,最后进行精加工;夹紧力也不要过大,应在确保切削力不能够使零件产生位移的基础上,采用的夹紧力要尽量小。4.2刀具材料及切削参数选择。切削刀具材料应耐磨,抗冲击能力好,硬度高,能适应在更高的切削速度下工作。因此,刀具材料采用带有PVD镀层的整体硬质合金立铣刀。精加工时采用“小切深,快走刀”的切削方式,使刀具在高速旋转时,利用铣削中产生的高温(600~1000℃),使工件加工表面软化[4],切屑成碎屑状,切削力迅速下降,加工变得很轻快;同时切削热在第一时间被碎屑迅速带走,使工件表面基本保持在室温状态,从而减小因切削而导致的零件变形。此外,根据刀具形状及切削条件,优化、调整切削工艺参数的大小可以调整动态切削力大小并控制切削状态,使因切削力影响造成薄壁零件的加工变形量能满足公差要求,并使加工状态始终处于稳定,从而降低切削振动造成的变形。4.3进刀方式和走刀路线。合适的进刀方式,能有效降低加工变形。加工深腔时,选择铣刀从零件腔体的中间位置下刀,在深度方向铣到加工要求的尺寸,然后一次走刀由中间向四周侧壁延伸,按此方法分多层加工。本文对侧壁进刀方式进行改进,由螺旋线进刀方式替代垂直进刀方式。采用优化后的螺旋线方式进刀,零件的加工面在铣削时受力没有明显的变化,从而有效降低了切削变形;并且零件与刀具的相互作用力变小,不易引起零件的弹性变形,从而减小了切削振动的发生,显著提高了零件的表面加工质量。走刀路线反映了工序的加工过程,确定合理的走刀路线是保证铣削加工精度和表面质量的重要工艺措施之一[5],也是确定数控编程的前提。

本文选用加工软件CimatronE建立制造数据库;设置机床、夹具、刀具和地址参数等项目;演示刀路轨迹并生成CL数据,以便查看和修改,生成满意的刀具路径;最后生成数控加工NC代码。5结语薄壁腔体类零件的加工精度在机械制造业中占有很重要的地位,在机械加工过程中,变形的产生几乎是不可避免的,应该在实践中了解并掌握切削变形的规律,采取有效措施,控制零件的加工变形,使加工过程始终处于一个良好的状态,确保零件的表面质量和加工精度。

【参考文献】

【1】石广丰,王景梅,宋林森,等.薄壁零件的制造工艺研究现状[J].长春理工大学学报,2012,35(1):68-72.

【2】艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.

【3】赵如福.金属机械加工工艺人员手册[K].上海:上海科学技术出版社,1979.

【4】郑英华,何华妹.CimatronE8.0数控编程加工入门一点通[M].北京:清华大学出版社,2007.

切削力测量技术范文篇7

1零件加工误差的分析

引起加工误差的工艺因素(原始误差)很多,影响因素不同,加工误差的特征也不同,采取的控制措施也不同。1.1误差分析方法和思路。根据零件加工误差的特点,推断出影响误差的主要因素,从而采取相应措施。这种分析方法称为单因素分析法。但是在生产中,影响加工精度的因素常常是非常复杂的,采用单因素分析法很难判断其因果关系,更不能从单个工件的检查得出结论,而是要运用数理统计方法进行归纳、分析、判断、总结,找出其中的主要原因,采取针对性的措施。在具体的生产实践中,通常采用综合分析法,将单因素和统计分析法结合起来。一般先用统计分析方法,寻找误差出现的规律,初步判断产生误差的可能原因,然后再用单因素分析法进行分析、试验,找出影响加工精度的主要因素。加工误差的分析思路如图1所示。第一步,列举出所有可能的误差源,并取得量化数据;第二步,根据量化数据,分析研究原始误差到零件加工误差之间的数量转换关系;第三步,采用合适的手段和方法,测量出零件的实际误差值;第四步,对误差进行统计分析,并判断误差性质,找出其中规律;第五步,采取相应的工艺措施消除或减少加工误差;最后,再次检验零件误差[1]。1.2误差分析的具体步骤。误差分析的关键在于能否在具体条件下,找出误差的规律,判断产生加工误差的主要因素,现在结合生产实践的经验,详细阐述综合分析加工误差的具体步骤。1.2.1误差调查。误差调查的目的在于调查误差产生的前因后果及环境,摸清误差产生的规律。可以召集有关人员,召开各种形式的调查会,大家可以自由讨论,集思广益。通过讨论可以了解误差究竟是一贯存在的,还是最近出现的。如果是最近出现的,是在什么条件下出现的,误差大小是否有变化,变化有何规律,等等。误差出现时,切削过程是否有所改变,切削用量是否进行了调整,机床是否进行了调整,刀具是否有所更换,夹具工艺位置是否有所移动,工件材料、毛坯质量有无变化,等等。此外,还必须到现场仔细观察机床、夹具、工件、刀具及实际加工情况。在调查时,尽量多的测量一些零件样本,摸清工件的误差情况,包括其尺寸、形状或位置的误差大小及误差规律,为分析研究提供第一手的原始资料。1.2.2误差分析。根据调查结果,采用综合分析法进行初步误差分析。首先,采用统计分析法,对测量数据进行整理,作分布曲线图和点图,从而分析误差的性质、大小及加工过程的稳定性。其次,查找出在具体的工艺条件下可能产生这类误差的所有因素,并对每一项因素采用单因素分析法进行分析。分析内容包括每项因素所产生的误差的特征、大小和方向,它们与误差调查情况是否吻合。如果不吻合,可以排除;如果吻合,需要进一步分析影响的大小,找出可能的主要影响因素。为了便于分析,可以做出因果分析图,具体做法如图2所示。误差分析时,应用分布图可以判断误差的性质和规律,应用点图X--R,不仅可以判断加工误差随时间变化的规律和趋势,而且还可以判断工艺过程的稳定性。1.2.3误差的论证。误差论证的目的主要是针对上述分析得到的主要影响因素产生的误差进行实际测量,得到量化数据。根据实际测得的误差数据,判断上述因素对加工误差的关联关系,进行进一步判断,排除非主要影响因素,找出其中主要影响因素。误差论证时,关键是要设定合理的测量条件,只有在合理的测量条件下测量的数据才有分析价值。比如论证刀具热伸长对外圆圆柱度的影响,可以测量刀具加工工件的平均升温,计算出刀具的热伸长量,测量零件的圆柱度误差,根据圆柱度误差与刀具伸长量的对比分析,判断关联关系。再如,论证误差复映对加工误差的影响时,可以选择加工余量不同的几个零件,加工后测量误差大小,然后分析误差大小与加工余量的关系,从而判断两者之间的关联性。1.2.4误差的验证。通过误差论证,找出影响误差的主要因素,然后采取相应的控制措施,控制加工误差。为了验证判断的正确性和措施的合理性,最后还要进行误差验证,只有在采取措施后误差减小或消除了,才能肯定判断是正确的,采取的工艺措施是合理的。

2减少误差、提高加工精度的工艺措施

减少加工误差,提高零件加工精度,关键在于两个环节,第一个环节是找出误差规律或主要影响因素,第二个环节就是针对第一环节的分析结果采取合理的工艺措施,最后达到减小误差的目的。影响零件加工精度的因素(原始误差)很多,需要对症下药才能有效。2.1减少原始误差对加工精度影响的常用措施。2.1.1调整误差。工艺系统中的调整主要是指工件安装位置和刀具对刀位置的调整。调整的目的是保证工件和刀具在加工过程中保持正确的相对位置。减少这类误差的主要措施有:(1)采用先进的装置、正确的方法和认真负责的态度进行调整,确保工件和刀具的正确位置;(2)粗、精加工分开,减小由于切削力的变化引起工件和刀具的位置偏移变化;(3)零件的精加工工序采用基准统一,减少工件的装夹次数。2.1.2刀具误差。刀具误差主要是指切削过程中刀具磨损引起的加工误差。减少这种误差的常用措施有:(1)选择高硬度的刀具材料,提高刀具刃磨质量,减缓刀具磨损;(2)合理选择刀具几何参数和切削参数,合理安排加工工序,充分使用冷却液等,降低切削温度,减缓刀具磨损;(3)尽量选用多刃刀具,增加切削过程的平稳性,减少冲击磨损。2.1.3度量误差。度量时产生的误差称为度量误差。减少度量误差的常用措施有:(1)根据零件加工精度要求选择合适的度量工具;(2)采用正确的度量方法和认真负责的工作态度,对于零件的关键尺寸采取多人测量等措施均可减少度量误差。同时要注意平时对量具进行定期鉴定和保养,以便保证量具的精度和使用寿命。2.1.4机床几何误差。机床几何误差主要是指机床加工时主轴回转误差、导轨导向误差和传动链的传动误差等引起的加工误差。减少这类误差的主要措施有:(1)对于提高主轴的回转精度,可以换用高精度的静压轴承,更换高精度的滚动轴承,对滚动轴承进行预紧等措施;(2)导轨的导向误差一旦出现,一般情况下不方便调整,只能采取预防措施,确保安装正确,合理使用,注意及时保养和检测等措施来推迟这类误差的出现。(3)机床传动链误差只影响内联传动,对于外联传动加工,可以不考虑传动链的误差。和导轨误差一样,一旦机床传动链出现误差,一般情况下不方便调整,只能采取预防措施推迟这类误差的出现。(4)调整加工方式,将机床几何误差转移到误差非敏感方向或完全不影响加工精度的方向。2.1.5工艺系统的受力变形产生的误差。减少这类误差的常用措施有:(1)提高工艺系统的刚度。调整机床主轴和导轨,提高机床的刚度;减少刀具的悬伸长度,提高刀具的刚度;合理的装夹和加工方式,提高工件的刚度;(2)采用合理的工艺措施,减小切削力的大小及切削力的变化。如合理选择刀具角度和切削用量,可以减小切削力;毛坯分组,使加工余量均匀,可以减小切削力的变化。2.1.6工艺系统的受热变形产生的误差。工艺系统在各种热因素的影响下产生热膨胀变形,导致工件和刀具之间的理想位置发生偏移,引起加工误差。减少这类误差的常用措施有:(1)控制机床的热变形。空运转预热机床,达到热平衡,在热平衡状态下进行加工;(2)合理选择切削用量、加工方式、切削刀具,减少切削热;(3)在工艺上,粗、精加工分开;(4)控制温度环境,在恒温条件下进行加工;(5)采取充分冷却和强制冷却措施进行散热。2.1.7内应力变形误差。减少内应力引起的误差,常用措施有:(1)采取时效处理和振动消除应力;(2)粗、精阶段分开加工,并安排在不同的工序中进行;(3)对于精密零件,不允许采用冷校直,只能采用热校直。减少原始误差对加工精度的影响,除了采用上述控制误差措施外,通常还可以采用均分原始误差、均化原始误差、转移原始误差等方法来减少原始误差对加工精度的影响。2.2误差补偿措施。在实际生产中,影响加工精度的因素常常非常复杂,要找到主要的影响因素并不容易,有时即使找到了主要影响因素,也不便于直接调整,这时可以考虑采用误差补偿措施。从提高加工精度考虑,在现有工艺系统条件下,误差补偿技术是一种行之有效的方法。误差补偿的常用措施有:在线测量与在线补偿、采用校正装置及其他补偿方法等。

3结语

随着科技的发展,对零件的精度要求越来越高,除了在传统工艺基础上采取合理工艺措施减少误差,提高精度,还可以通过融入高新技术,创新更多的新工艺新方法,形成先进制造技术,实现精密和超精密加工及纳米加工,确保零件在使用过程中的安全性、可靠性、稳定性。

参考文献:

[1]李玉平.机械加工误差的分析[J].新余高专学报,2005(4).

[2]王先逵.机械制造工艺学[M].北京:机械工业出版社,2014.

[3]刘学杰,王进,田玉艳.机械加工原始误差分析与控制措施[J].环球市场,2014(11).

[4]朱冬伟.机械加工误差的综合分析与评判[J].环球市场,2018(8).

[5]李笑梅,万腾,梁佳慧.机械加工误差产生原因分析及应对策略[J].农机使用与维修,2018(12).

切削力测量技术范文篇8

机械产品某一零件的制造方法绝不像“自古华山一条道”是唯一的,而是我们应该如何去选择及组合不同的加工方法,以达到降低成本、提高生产效率的效果。以简单的平面加工为例,它可以采取刨、铣、磨、车等方法。到底要采用哪种方法加工,需要根据现场机床设备情况、工件的质量要求及功效高低等来分析、比较决定。

一、车削加工

(一)车削加工时不宜形成挤裂或单元切屑。车削加工时,如果形成挤裂切屑,在加工表面上会留下挤裂痕迹,加工表面粗糙度值大,切削力波动也大。如果形成单元切屑,则表明在切屑剪切面上的应力超过了材料的强度极限。裂纹贯穿了整个切屑厚度,形成了一个个梯形单元切屑。切削力的波动更大,加工表面的粗糙度值也更大。如果形成崩碎切屑,表明切削层材料未经塑性变形就产生脆性崩裂,形成不规则的碎块状切屑,切削力波动很大,并且集中在切削刃上,容易损坏刀具。

在加工过程中可以通过观察切屑形态来判断切削条件是否合适。同时在加工塑性材料时,如果出现挤裂或单元切屑,则可用改变刀具几何角度、切削用量等方法,使切屑转化成带状切屑。

(二)精车时不允许存在积屑瘤。积屑瘤会使工件表面粗糙度值增大,这是精车工件时所不允许的。可以采取的措施:

1.控制加工时的速度,使用很低或很高的切削速度,避开产生积屑瘤的速度范围。2.适当加大刀具前角、减小进给量、提高刀具表面刃磨质量、选用润滑性能良好的切削液等。3.材料塑性太大的工件,切削时塑性变形大,容易产生积屑瘤。因此,加工前可将材料进行正火或调质处理,以提高硬度、降低塑性,以抑制积屑瘤的产生。

二、铣削加工

(一)工件平面度超差问题。原因是铣削中工件变形,工件在夹紧中产生变形和铣刀轴线与工件不垂直等。因此,要合理选择切削用量;增加辅助支承,提高工件刚度;减小夹紧力,精铣前放松工件后再加紧;并注意定位基面是否有毛刺、杂物,是否接触良好;校准铣刀轴线与工件平,面的垂直度,避免工件表面铣削时下凹,保持平面度符合要求。

(二)垂直度超差问题。用立铣刀铣侧面时,铣刀直径偏小,或振动、摆动,三面刃铣刀垂直于轴线进给铣侧面时刀杆刚度不足,都会引起垂直度超差。因此,应选直径较大的立铣刀,适当减小三面刃铣刀直径,增大刀杆直径,适当降低进给量或提高铣削速度,检查并消除铣刀安装中可能产生的歪斜。

(三)工件的尺寸超差问题。立铣刀、键槽铣刀、三面刃铣刀等刀具本身的摆动会造成尺寸的超差。检查铣刀刃磨质量,及时更换已磨损的刀具;检查铣刀安装后的摆动是否在精度容许的范围内,检查铣刀刀杆是否弯曲,检查铣刀与刀杆套筒接触面之间是否有毛刺、异物,铣刀端面与刀杆轴线是否垂直等。

(四)铣削速度。1.粗铣时,切削负载大,铣削速度应取较小值。精选时,为降低表面粗糙度值,铣削速度应取较大值。2.采用机夹式铣刀或不重磨式铣刀铣削加工时,铣削速度可取较大值。3.在铣削过程中,如发现铣刀寿命较低时,应尽量减小铣削速度。4.先到结构及几何角度改进后,铣削速度可以容许适当增加。

三、磨削加工

由于高速、微小,反复切削的结果,在磨削区域产生极高的温度。被磨削表面的极表层会因高温而产生许多不良的影响,最常见的是经磨削的表层金相组织发生变化,产生残余应力,更严重的是产生磨削烧伤或裂纹等,因此在磨削中关键是如何防止因热引起的各种问题。磨削加工的特性是磨屑量少,砂轮又是热的不良导体,所以,大部分磨削热传入工件。通过实践得知,传入工件的约85%,传入切屑的约15%。为防止升温,应采取下列措施:(1)大量使用冷却能力强的冷却液;(2)尽量使用大粒度砂轮;(3)降低砂轮速度;(4)减小磨削深度;(5)增大进给量;(6)及时修整表面变钝、气孔被堵塞的砂轮。以上条件的选择与精度的提高会产生矛盾,在磨削加工时必须谨慎。

四、机械加工中的测量误差

(一)系统测量误差。指在相同的测量条件下总是以相等大小出现的测量误差。是可以把握的一种误差,例如在车削或磨削加工的自动测量中所产生的温度误差总是一个恒定的值。这样一种误差可以经过计算从测量结果中消除掉。

(二)随即测量误差。这种误差大小不一、无法消除,要反复进行测量求平均值,从而减小误差。

切削力测量技术范文篇9

1加热切削技术及现状

加热切削技术的出现及发展

加热切削加工方法巧妙地利用了高能热源的热效应,对被切削材料进行加热,使材料切削部位受热软化,硬度、强度下降,易产生塑性变形(图1)。由于加热温升后工件材料的剪切强度下降,使切削力和功率消耗降低,振动减轻,因而可以提高金属切除率,改善加工表面的粗糙度。又因刀具耐用度与工件温度存在一定的关系(通常,当工件温度在810℃左右时刀具的耐用度最大),所以还可延长刀具寿命。

早在1890年就出现了对材料进行通电的加热切削,并获美国和德国专利。20世纪40年代,加热切削在美、德开始进入工业应用实践,证明高温能使“不可能”加工的金属提高加工性能,并取得经济效益。但这个时期加热切削尚处于发展的初步阶段,加工质量难以保证,基本上没有应用到生产实际中。60年代以后,利用刀具与工件构成回路通以低压大电流,实现了导电加热切削,使切削能顺利进行。70年代初,出现了一种有效的等离子弧加热切削,最初由英国研制成功。80年代以后,开发了激光加热切削,由于激光束能快速局部加热,较好地满足了加热切削的要求,因而提高了加热切削技术的实用价值。

一般热源

加热切削所用热源,如通电加热、焊矩加热、整体加热、火焰和感应局部加热及导电加热,通称为一般热源。这些热源都能对被加工材料加热,对加热切削技术的出现和发展起了重要作用,但它们存在加热区过大、热效率低、温控困难、加工质量难以保证等问题,使切削不理想,难以甚至未能应用到生产实际中去。

等离子弧及激光热源

等离子弧加热切削,用等离子弧喷枪中的钨作阴极,工件材料作阳极,通电后形成高温的等离子弧,其特点是加热温度高,能量集中,可对难加工材料进行高效切削。研究表明,在加热切削冷硬铸铁和高锰钢等难加工材料时,切削速度高达100~150m/min,刀具耐用度可提高1~4倍。这种方法存在的问题是加热点必须与刀具有一定距离,加热效果难控制;加工条件恶劣,需要防护装置。

激光加热切削以激光束为热源,对工件进行局部加热,其优点是热量集中,升温迅速;热量由表及里逐渐渗透,刀具与工件交界面的热量较低;激光束可照射到工件的任何加工部位并形成聚焦点,便于实现可控局部加热。研究结果表明,激光加热切削可使切削力下降25%左右,还能有效改善工件的表面粗糙度。存在的主要问题是大功率激光器价格昂贵,能量转换效率低,金属材料对激光吸收能力差,吸收率一般只有15%~20%左右,经磷酸处理后,吸收能力可提高到80%~90%,但经济可行性差,这是这种加热方法难以推广应用的原因之一。

以上两种热源的出现,大大推动了加热切削技术的发展,国内外已进行了大量卓有成效的研究工作。但要顺利地用于生产,达到预期的切削效果,还有一些问题需要解决,尤其是切削机理还需进一步探索和研究,如加工过程中还存在由于一定的热扩散而影响加工质量,功率消耗多,温度控制困难,热源装置不理想,价格昂贵等问题,所以生产上实用进程不快。加热切削技术的关键在于加热,目前,一般的目标是加热到难加工材料熔化前处于软化的温度,但这一温度是否合适,怎样达到和控制这个温度,还需进一步探索、分析和研究。

2加热切削的研究及关键技术

研究目标和意义

研究课题以难加工材料组织相变理论、金属切削原理和热学传导为基础,以难加工材料难切削的机理为出发点,着重分析和寻找温度、材料组织形态的变化以及与切削力之间的关系,摸索切削规律,确定改善材料可切削性的对策,进而从根本上解决难加工材料的切削问题。

研究工作的前提条件之一是,目前已有了激光和等离子弧这类热梯度很陡的热源,加热温度能在几毫秒内达到需要值,容易控制、调节温度的高低。前提条件之二是,相当部分材料组织具有相变时的超塑特征,在这种状态下,材料组织分子的结合力最低,而此状态的温度又大大低于材料熔化前软化的温度,所以有可能摆脱难加工材料切削加工目前所处的困境。因为,如果难加工材料实现加热切削必须达到材料软化温度的话,实践已证明很难取得预期的切削效果。

研究的意义在于提出的基于改变组织形态的切削方法,是将材料科学的固态相变理论扩展用于切削加工领域。这种深入的机理探讨和研究,是金属切削原理的创新,也是制造技术发展方向上的新思路。另外,如果能使难加工材料的加热切削技术朝着比目前的切削温度更低、加工精度更高、加工速度更快的方向发展,无疑能推进加热切削的实用进程。

关键技术

材料的相变超塑性能力及变化规律。

金属材料超塑性状态的特点,是在一定条件下呈粘性或半粘性,没有或只有很小的应变硬化现象,流动性和填充性很好,超塑变形为宏观均匀变形,变形后表面光滑,没有起皱、凹陷、微裂及滑移痕迹等。金属材料在超塑状态进行切削是否也呈现上述现象,或者是否还有其他特殊现象是需要搞清楚的。材料在超塑状态下切削时的超塑性能力及其变化规律是需要研究的关键技术之一,这对提高难加工材料的切削效果有着重要意义。

一般钢铁材料都有相变超塑性(图2),它是在相变发生和进行时产生的,依存于加热)冷却速度。黑色金属超塑性变形有一定的温度区,这个温度区比较狭窄,可以有1个,也可以有2个以上。如30CrMnSiA只在处于770℃才出现较好的超塑性,此时a与b两相的体积比率接近于1,最大应力降到30MPa,温度区窄;在700℃左右的一个范围内,超过临界温度就没有超塑性了。在超塑区域内,温度值应该稳定,不应起伏波动,恒温持续时间也不应过长,否则超塑现象会消失。钢从奥氏体区域以大于临界冷却速度进行淬火,可得到马氏体。由于加工应变诱发和进行马氏体相变,产生相变超塑性。马氏体转化与温度有关,并有一定限度。超塑性是在某一适当的温度范围才出现的状态,若想有效利用超塑性,必须在0.5T熔以上到相变温度以下的温度范围内进行加工。

加热温度的影响因素及控制方法。金属材料的相变超塑性对温度有苛刻的要求,在温度循环中的应变、应变速度、作用应力及加热速度等都会对温度产生影响,这是研究的关键技术之二。激光辐射材料时,其光能被材料吸收,并转换为热能。激光加热的热传导是一个非常复杂的过程,激光以很高的速度穿透表面进入材料深处,其初始速度可达5~20cm/s。热量在材料中传导扩散,造成一定的温度场。用数学方法分析计算热传导,对把握激光加热效果有重要意义。可以利用激光辐射形成的线状热源的变长度和变热源的性质,用数学分析方法来研究,寻找热源的温度场。根据上述理论建立的传热数学模型与激光加热切削过程进行仿真,对各主要参数作出精确的预测,加热切削的研究是非常重要的,也是取得良好效果的有力保证。

等离子弧加热切削淬火钢的试验表明,如果等离子枪安置在切削刀具前适当的位置,其倾斜角度、离加工面的距离及距切削刀尖的弧长等均可调节,并与适当的电压、电流、压缩气体压力和流量相配合,这样来控制加热温度,实现超塑组织状态下的切削,可以获得好的加工质量。

采用上述两种热源加热,使金属(尤其是Fe-C合金系)中亚共析钢容易实现超塑性,低碳钢等材料较易处于相变超塑状态,可以达到加热作用时间短、热源对材料作用区域小的目的,其面积、形状、大小都可调节,为金属超塑组织形态应用于切削加工创造了条件。

应用前景

使金属处于一定组织形态的加热切削有着广阔的应用前景:(1)实现难加工材料的切削加工,并提高切削质量,这是主要的应用领域;(2)对于低碳钢、纯金属等材料的切削,可以改善加工表面粗糙度;(3)对于常用金属材料,如45钢的切削,因为切削力降低,可节省能源消耗;(4)可有效解决机修工业中高硬度堆焊层的难切削问题;(5)在航宇工业等尖端科学的制造技术研究工作中有独特的作用。

切削力测量技术范文篇10

关键词:燃气涡轮轴承座;电极;焊接;检验

燃气涡轮轴承座是航空发动机关键零部件之一,整体材料为铸造高温合金,其内部结构异常复杂,其内型腔中的异型槽加工是其制作难点之一。该异型槽的槽子宽度在2.4mm,深度达30mm,尺寸公差需控制在0.05mm以内,在轴承座中呈三处均布,三个槽子位置度要求控制在Φ0.05以内。常用的冷加工技术手段很难保证其相关尺寸合格,目前业内普遍采用电火花技术进行加工。电火花加工技术的难点其一是电火花加工参数的控制,其二是电极加工质量的控制。如何制造出合格的电极是保证燃气涡轮轴承座加工质量的前提,本文介绍一种圆环形并带有三处矩形槽的电极加工技术研究。

1电极制造的难点分析

如图1所示,该航空发动机轴承座电极为45号钢与紫铜焊接件,其型面呈圆环形并带有三处矩形槽,电极有效工作部分壁厚最薄处仅2.1mm,而其高度达30mm,尺寸公差要求在±0.03mm以内,三处矩形槽的位置度要求控制在Φ0.05以内。在电极的生产制造过程中受焊接、加工应力等多种因素的影响极易产生形变,尺寸公差及位置度很难控制。特别是电极工作部分紫铜厚度薄、材料软,在制造、转工过程很容易造成电极变形、划伤、碰伤,且三段不完整的圆弧形轮廓测量困难等一系列问题是造成燃气涡轮轴承座电极制造难度的重点原因。

2电极的加工过程控制

2.1电极的加工工艺路线分析

如图2所示,该燃气涡轮轴承座电极的工作部位相较于其他部位处壁厚薄,壁厚分布不均匀,同时在壁厚相对较薄的区域开有三处相对较深呈均布形态的矩形槽,此处由45钢钢制本体与紫铜焊接而成。在加工过程中,首先应对钢体部分及紫铜部分分别进行粗车去除余量,并在钢制部分与紫铜部分两者相结合处做焊接倒角;在焊接时应充分考虑到焊接变形的影响,制作二级工具进行上下两部分定心,同时采取时效处理的方式消除焊接完成后电极内部释放的焊接应力;焊接件时效处理完成后进行精车及数控铣加工三处矩形槽,加工三处矩形槽时,要采取措施降低切削力,避免造成矩形槽槽口形变;最终在最后一道机加工序磨削时,应注意装夹方式对加工造成的影响,同时应充分考虑砂轮与紫铜之间磨削时易发生粘结,造成砂轮表面堵塞的情况。电极的加工工艺路线主要分为以下几道工序:粗车—热处理—焊接—人工时效—精车—数控铣—电火花—立磨—钳工—检验其中关键工序主要集中在焊接、数控铣、电火花加工、立磨、检验、转工等6个环节。

2.2电极的焊接变形控制

燃气涡轮轴承座电极在焊接完成后由于焊缝之间集中了大量的焊接应力,随着时间的推移,其内部的焊接应力会不断释放,电极发生形变导致加工余量不足,容易导致成批产品报废。针对电极焊接变形后无加工余量问题主要采取了以下两方面措施:一是设计了专用焊接夹具来保证电极钢制件与紫铜部件两者同心;如图3所示,电极主要由钢体(黑色部分)与紫铜环(黄色部分)两部分组成,焊接过程中由于焊接应力的不断释放,会导致钢体部分及紫铜部分不同心,焊接完成后导致后序工序无余量加工,故设计了二级工具芯棒(绿色部分),用来确保钢体部分与紫铜部分定心后再进行焊接。同时在焊接工序进行前,应对钢体与紫铜相互接触的坡口处加工焊接倒角,确保两者之间焊接牢固。二是为了彻底的消除焊接完成后电极内部的焊接应力,一般在焊接完成后进行时效处理。时效处理分为人工时效与自然时效两种处理方式,均是为了能够消除机械加工、热处理后与焊接后工件内部产生或者遗留的残余应力。自然时效需要在自然环境条件下随着时间的推移释放应力,周期长不适用于工厂内部的产品生产。而人工时效是一种通过人为控制的方法,通过一定的技术手段对工件进行加热或者深冷处理来消除工件内部残余的应力。由于深冷处理相对于人工加热的成本较高,在对电极进行人工时效处理时选取加热方式来进行应力释放。在电极焊接完成后,焊接夹具随被焊电极一同进入电炉中人工时效处理(如图4),时效温度控制在400℃,保温时长为4h。

2.3矩形槽的加工控制

电极在加工其内外圆表面三处矩形槽时,一是由于铣削过程中铣削产生的切削力大,造成矩形槽开口处敞开变形;二是因为电极由本体与紫铜两部分焊接而成,本体材质为45钢,热处理后硬度为HRC35~40,相较紫铜硬度高,在铣削二者结合处时由于材质不同,刀具在铣削过程中容易出现振刀现象,对于矩形槽槽口尺寸精度影响较大。三处矩形槽主要用于避让开被加工零件非加工出,因而电极矩形槽开口尺寸必须要进行严格的尺寸控制。根据以往加工类似零件的经验,首先通过数控铣对该矩形槽进行粗铣,单边留0.5mm的余量;其次再利用电火花机床电加工时切削力小的特点,通过制造专用电极放电将电极矩形槽尺寸加工到位,电火花加工时应将电极竖直摆放加工,即专用电极从燃气涡轮轴承座电极的径向方向加工(如图6所示),避免了从轴向方向加工时加工时间长的缺点,缩短了加工时间,提高了生产效率。

2.4电极内外圆的磨削控制

针对电极型面内外圆在磨削过程中产生变形问题,经过分析,主要由三个方面的原因造成:一是在磨削加工过程中由于内外圆型面不是整圆,电极被加工处壁厚薄,受切削力及磨削热的影响造成磨削过程中的变形;二是受装InternalCombustionEngine&Parts夹方式的影响,电极易装夹变形,加工完成后发生回弹;三是砂轮在磨削过程中极易与铜屑发生粘结,磨削产生的铜屑嵌入砂轮砂粒中,堵塞砂轮,磨削效率低。经过分析采取以下三种手段:①装卡方式采用磁盘吸紧的方式(如图7),避免三爪卡盘的装卡带来的回弹变形;②采用的是单晶刚砂轮,因其砂粒细腻,不仅使电极磨削力减小,而且被加工出来工件表面粗糙度好;③增加冷却液,在磨削过程中,砂轮与被加工件之间由摩擦产生的铜屑极易嵌入砂轮砂粒中,堵塞砂轮。通过添加冷却液不仅将粘在砂轮中的铜粉冲走,起到了冲洗的效果;同时降低了砂轮的温度,带走了大部分切削热量。

2.5电极的检验

电极的内外圆上的矩形槽呈三处均布不对称结构,利用常规手段检测很难找到电极的最高点,做不到全型面检测,容易造成漏检与错检;同时由于电极内外圆之间的壁厚薄,在用卡尺测量矩形槽尺寸时,卡尺卡脚会对矩形槽两侧有一定的挤压,导致测量不准确同时相对不稳定,对操作者的水平相对较高。为提高电极的检验质量和效率,改变传统测量方式,利用三坐标扫描电极型面内外圆及槽的轮廓(如图8),将得到的型面轮廓数据与设计图纸进行比对来判定其尺寸是否合格,这样有效的杜绝了检验过程中的错检、漏检的漏洞,消除了相关质量隐患,还能提高检测效率。2.6电极的运输、存储过程控制由于电极的壁厚较薄,在零件周转过程中极其容易发生磕碰,所以电极在转工过程中应轻拿轻放,放入专用的电极转工箱中(如图9所示)来进行转运;特别是三坐标检验完成后,表面应均匀涂抹防锈油,并放入木盒中实施定置管理,并贴好相应的标签。这样在转工、运输及储存过程取拿方便,而且有效避免了电极表面遭到划伤、碰撞、塌边等磨损情况发生,确保电极在运输及储存的过程中质量状态稳定。

3结论

本文针对一种燃气涡轮轴承座电极的结构特点及其相关尺寸要求,从电极的焊接技术、矩形槽的加工技术、型面内外圆的磨削技术、电极的检测及运输存储五个方面开展制造工艺技术研究。结合生产现场的实际加工情况,详细分析和阐述了燃气涡轮轴承座电极的加工制造工艺方法及运输难点,在解决该电极制造难题的同时,有效提高了电极的生产效率。同时,也为类似零件的加工制造、检测及运输提供了借鉴方案和经验。

参考文献:

[1]王先逵主编.机械制造工艺学[M].机械工业出版社,2011.

[2]彭福泉主编.机械工程材料手册[M].机械工业出版社,1991.

[3]李森林主编.机械制造基础[M].化学工业出版社,2007.

[4]杨殿英主编.机械制造工艺[M].机械工业出版社,2009.

[5]杨建明.电火花加工工具电极制备技术研究进展[J].机床与液压,2007,35(11):151-154