膜用聚酯范文10篇

时间:2023-04-05 19:11:30

膜用聚酯范文篇1

2聚酯薄膜的生产与工艺

聚酯薄膜双向拉伸又可以分为一次拉伸和两次拉伸,比较多的采用后者,也就是使用挤出-纵横逐次拉伸法。拉伸的温度通常都是在聚酯的玻璃化温度以上和熔点温度以下,拉伸后的膜经过热定型,使得分子排列称为固定的,称为定型膜;不经过热定型,分子排列不固定的,则为收缩膜,这种膜加热时可以快速收缩。

2.1聚酯薄膜的种类

根据取向度的异同和性能,聚酯薄膜可以分为平衡膜和强化膜。平衡膜是纵横两向取向基本相同,拉伸强度、相对热收缩率相等;通常人们把两个方向的拉伸强达到2.7~3Mpa时,就称为超级平衡膜。强化膜是纵横两个方面中其中一个方向的取向度大于另一个方向的取向度,而且该方向的拉伸强度大于2.6MPa的称为强化膜;拉伸强度大于4Mpa的,则称为超级强化膜。

2.2聚酯薄膜的性能

聚酯薄膜通常为无色透明,有光泽,强韧性和弹性均好的薄膜。与其他塑料薄膜相比,具有相对密度大、拉伸强度高,延伸率适中,冲击强度大,透气性小,耐热性好和透明度高等特点。

3膜用树脂基料的开发

目前,市场上的聚酯薄膜大多数都是单层结构的薄膜。而生产这些薄膜所用的原料,基本上分以下三部分组成:一是空白切片(不含改性和其他添加剂的聚酯树脂);二是母切片(含有高浓度添加剂的聚酯树脂);三是回收切片。

3.1PET普通膜用光片的开发

原料切片的质量对聚酯薄膜的性能有直接的影响,一般可通过控制切片的特性粘度、熔点、二甘醇、水分、灰份、羧基、凝聚粒子等参数来保证聚酯薄膜的性能。

而用户在使用纤维级大有光切片加工BOPET过程中,存在拉膜慢、薄膜色泽发灰、薄膜表面不光滑等问题。开发膜用PET光片专用基料,在技术上主要是通过优化工艺,调整添加剂用量,实现对特性粘度、DEG及色值的控制。下表为普通大有光切片和膜用聚酯专用基料质量指标的对比。

膜用聚酯专用基料经使用后,在拉膜成型性能和薄膜透明度、色泽方面有了较大改善。下一步开发添加一定含量无机物的膜用切片,提高拉膜速率,进一步提高树脂基料的加工性能。

3.2PET/PTT共混膜用聚酯开发

聚对苯二甲酸丙二醇酯(PTT)是20世纪90年代末国际上开发成功的一种极具发展前途的新型聚酯材料,它是由对苯二甲酸二甲酯(DMT)或对苯二甲酸(PTA)和1,3-丙二醇(1,3-PDO)聚合而得的聚酯树脂。PTT具有良好的加工性能、电气性能、机械性能和尺寸的稳定性,可广泛应用于合成纤维和工程塑料领域,1998年被美国评为六大石化新产品之一。PTT和PET同属聚酯一族,两者具备共混改性的条件。当PET添加适量PTT熔融共混,可改善膜用PET的后加工性能及成品膜的机械性能,因此,PET/PTT共混已受到国内外膜用聚酯原料研究领域的关注。

观察不同配比的DSC热谱图,发现都只有一个介于PET和PTT玻璃化转变温度之间的Tg峰。根据Tg法对共混体系相容性的判断:相容体系①只有一个Tg;②Tg1<Tg<Tg2(若Tg1<Tg2);③Tg随共混物组成的变化而有规律的变化,满足FOX式或Gordon式,PET/PTT共混体系具有良好的相容性。

PTT与PET在分子构象上只差了一个碳原子,在晶态结构上与PET存在较大的差异。PTT的机械力学性能主要由亚甲基的内旋转和分子间力等因素决定的,PTT中的亚甲基呈螺旋排列方式,其晶格堆积却比PET的要疏松得多。因此相对PET而言,PTT具有良好的透明性、耐热性和加工性等特点,可用作薄膜。据日本公开专利报道,经改性的PTT可用于制作耐热容器,磁记录盘以及需要透明性好的包装薄膜等。

随着人们环保意识的增强,聚酯瓶回收已成为环保界关注的问题。聚酯瓶外包装膜多为PE或其它高分子热收缩膜,需分瓶体和外包装膜两道回收工艺,且外包装膜不能再利用,大大增加了聚酯瓶回收成本。目前国内PTT尚未工业化,价格较高。因此通过开发PET/PTT共混聚酯加工成外包装薄膜,将减少一道回收工艺,大大降低回收成本,具有良好的社会效益。

3.3添加第三单体改性PET

通过在对苯二甲酸和乙二醇的聚合过程中引入第三共聚单体,破坏整个分子结构的有序对称性,从而破坏其结晶性能,得到结晶度大大降低甚至得到完全非晶的PET,从而使产品具有优良的透明性。通过用CHDM替代部分EG或者用IPA替代部分TPA进行改性PET的生产,使产品获得优异的透明度,同时可以提高产品的玻璃化温度,改善其使用时的耐温性能,还降低了熔点,从而降低了加工温度,改善加工成型性,有广泛的开发和应用前景。

PETG的物理特性为非晶体,100%无定形,常温下为球状小颗粒,同扁平(或圆柱)状小颗粒相比具有更市制容积密度,更容易挤压输出,熔点可达到220℃,玻璃化转化温度为88℃,除具有耐热性、耐化学腐蚀性的特点,还具有优越的光学性能(高透光性、高光滑和低光晕)、突出的可印刷性、高韧性、高强度、易加工定型的综合特性,冷状态没有应力白。

PETG可专门应用于高性能收缩膜,有大于70%的最终收缩率,可制成复杂外形容器的包装,具有高吸塑力,高透明度,高光泽,低雾度,易于印刷,不易脱落,存储时自然收缩率低,应用于饮料瓶、食品和化妆品包装、电子产品标签,一改传统包装膜不透明或包装效果差的缺点。PETG易于加工、可回收使用及环保等性能,更符合了现代生产商家的要求。目前消费者对商品的外表包装要求越来越高,这就使化妆品包装设计显得越来越重要。要达到美观、质感良好及经久耐用,对设计者提出了很高要求,而PETG的良好加工性能使设计构思成为了可能。

4膜用聚酯开发市场前景

目前我国的BOPET膜消费水平平均为70克/人,日本平均为2500克/人,全球平均为220克/人。如中国人均消费水平达到全球人均水平,则我国的BOPET膜的市场需求将达到30万吨/年以上。根据国内聚酯产能统计,1999年我国薄膜用聚酯产量为9万吨,2001年为10万吨,2003年为20万吨,预计2006年我国BOPET产能为57万吨。随着社会经济的发展,人均消费水平将会有所增加。另一方,如果能够适当调整行业方向,用BOPET代替常规的PP、PVC膜,相信薄膜用聚酯市场还有很大的空间。

膜用聚酯切片专用料的生产在我国仍然处于起步阶段,现在聚酯薄膜生产商一般采用在纤维级切片中添加母粒的方式进行,这样既增加了生产成本,也影响了薄膜的开口性,更主要的是不能适应高速拉膜的需要。随着聚酯薄膜应用领域的不断拓宽和交互渗透,膜用聚酯原料品种不断丰富化,以录像切片、录音切片、普通包装切片、高透明切片、电容切片、超高速拉膜切片等专用料的出现,逐渐替代了母粒添加制膜方式。开发膜用聚酯将进一步增强上海石化聚酯技术实力,有利于产品结构的调整,为上海石化在激烈的聚酯行业竞争中开辟一条出路。相信在国家产业政策支持、宏观经济背景好的条件下,我国聚酯薄膜的发展空间将十分巨大,作为原料膜用聚酯开发市场前景广阔。

摘要:本文简述了聚酯薄膜的发展过程,介绍了BOPET膜的生产与工艺。重点叙述了普通PET光片、PET/PTT共混膜用聚酯、改性PET等薄膜用聚酯新产品的开发技术及应用,探讨膜用聚酯开发的市场前景。

关键词:BOPET膜用聚酯开发

参考资料:

1.赵耀明,非纤维用热塑性聚酯工艺与应用,化学工业出版社,2002

2.赵国梁,热收缩聚酯薄膜性能的研究,合成技术及应用,2000,4:1-5

3.叶春葆,塑料薄膜在包装上的应用,中国包装工业,1999,4:11-16

4.胡槐皓,共聚聚酯PETG的应用,化工新型材料,2000,3:39

5.杜志伟,PTT树脂——聚酯家族的新秀,纺织科学研究,2000,2:10-17

6.JP,315,152(1999)

7.US5429785

膜用聚酯范文篇2

关键词:BOPET膜用聚酯开发

1前言

1948年英国帝国化学公司(I.C.I)和美国的杜邦公司(DUPONT)制出聚酯薄膜以来,并于1953年实现了双向拉伸聚酯薄膜的工业化生产。双向拉伸聚酯薄膜(BOPET)具有优良的物理和化学特性,在电子、电器、磁记录、包装、装潢、制版印刷和感光材料等方面具有广泛的用途,在国内市场应用越来越多,特别是我国塑料包装制品业发展迅猛,远高于国内生产总值的增长速度,预计未来几年塑料包装制品生产总值年增长率将保持在10%以上。随着包装向高档化发展,BOPET膜的产量和消费量显著增加,其中包装薄膜是BOPET膜需求增长最快的应用领域。截至2002年底,全国共有20余家BOPET薄膜生产企业,各类生产线25条,年产能力约11万余吨。从2002年开始,国内BOPET薄膜市场供需两旺,增长迅速。与此同时,市场的迅速发展吸引了众多新投资者,国内有多家企业开始新建或扩建BOPET生产线。下为2002~2006年国内BOPET薄膜产能及预测表。

2003年,我国薄膜用聚酯产量为20万吨,基本满足了国内BOPET生产企业对原料的需求。使用膜用聚酯切片的用户主要分布在广东、江苏、上海、河南等地区。大部分直接生产薄膜加工烫金、复合、镀铝等包装材料出厂,2003年中国聚酯薄膜市场需求结构见图1。我国可以生产膜级切片的厂家主要有仪征化纤、辽化、燕化、天化等企业,年产量在25万吨左右,薄膜用聚酯已成为非纤用聚酯发展的一个重要方向。

2聚酯薄膜的生产与工艺

聚酯薄膜双向拉伸又可以分为一次拉伸和两次拉伸,比较多的采用后者,也就是使用挤出-纵横逐次拉伸法。拉伸的温度通常都是在聚酯的玻璃化温度以上和熔点温度以下,拉伸后的膜经过热定型,使得分子排列称为固定的,称为定型膜;不经过热定型,分子排列不固定的,则为收缩膜,这种膜加热时可以快速收缩。

2.1聚酯薄膜的种类

根据取向度的异同和性能,聚酯薄膜可以分为平衡膜和强化膜。平衡膜是纵横两向取向基本相同,拉伸强度、相对热收缩率相等;通常人们把两个方向的拉伸强达到2.7~3Mpa时,就称为超级平衡膜。强化膜是纵横两个方面中其中一个方向的取向度大于另一个方向的取向度,而且该方向的拉伸强度大于2.6MPa的称为强化膜;拉伸强度大于4Mpa的,则称为超级强化膜。

2.2聚酯薄膜的性能

聚酯薄膜通常为无色透明,有光泽,强韧性和弹性均好的薄膜。与其他塑料薄膜相比,具有相对密度大、拉伸强度高,延伸率适中,冲击强度大,透气性小,耐热性好和透明度高等特点。

3膜用树脂基料的开发

目前,市场上的聚酯薄膜大多数都是单层结构的薄膜。而生产这些薄膜所用的原料,基本上分以下三部分组成:一是空白切片(不含改性和其他添加剂的聚酯树脂);二是母切片(含有高浓度添加剂的聚酯树脂);三是回收切片。

3.1PET普通膜用光片的开发

原料切片的质量对聚酯薄膜的性能有直接的影响,一般可通过控制切片的特性粘度、熔点、二甘醇、水分、灰份、羧基、凝聚粒子等参数来保证聚酯薄膜的性能。

而用户在使用纤维级大有光切片加工BOPET过程中,存在拉膜慢、薄膜色泽发灰、薄膜表面不光滑等问题。开发膜用PET光片专用基料,在技术上主要是通过优化工艺,调整添加剂用量,实现对特性粘度、DEG及色值的控制。下表为普通大有光切片和膜用聚酯专用基料质量指标的对比。

膜用聚酯专用基料经使用后,在拉膜成型性能和薄膜透明度、色泽方面有了较大改善。下一步开发添加一定含量无机物的膜用切片,提高拉膜速率,进一步提高树脂基料的加工性能。

3.2PET/PTT共混膜用聚酯开发

聚对苯二甲酸丙二醇酯(PTT)是20世纪90年代末国际上开发成功的一种极具发展前途的新型聚酯材料,它是由对苯二甲酸二甲酯(DMT)或对苯二甲酸(PTA)和1,3-丙二醇(1,3-PDO)聚合而得的聚酯树脂。PTT具有良好的加工性能、电气性能、机械性能和尺寸的稳定性,可广泛应用于合成纤维和工程塑料领域,1998年被美国评为六大石化新产品之一。PTT和PET同属聚酯一族,两者具备共混改性的条件。当PET添加适量PTT熔融共混,可改善膜用PET的后加工性能及成品膜的机械性能,因此,PET/PTT共混已受到国内外膜用聚酯原料研究领域的关注。

观察不同配比的DSC热谱图,发现都只有一个介于PET和PTT玻璃化转变温度之间的Tg峰。根据Tg法对共混体系相容性的判断:相容体系①只有一个Tg;②Tg1<Tg<Tg2(若Tg1<Tg2);③Tg随共混物组成的变化而有规律的变化,满足FOX式或Gordon式,PET/PTT共混体系具有良好的相容性。

PTT与PET在分子构象上只差了一个碳原子,在晶态结构上与PET存在较大的差异。PTT的机械力学性能主要由亚甲基的内旋转和分子间力等因素决定的,PTT中的亚甲基呈螺旋排列方式,其晶格堆积却比PET的要疏松得多。因此相对PET而言,PTT具有良好的透明性、耐热性和加工性等特点,可用作薄膜。据日本公开专利报道,经改性的PTT可用于制作耐热容器,磁记录盘以及需要透明性好的包装薄膜等。

随着人们环保意识的增强,聚酯瓶回收已成为环保界关注的问题。聚酯瓶外包装膜多为PE或其它高分子热收缩膜,需分瓶体和外包装膜两道回收工艺,且外包装膜不能再利用,大大增加了聚酯瓶回收成本。目前国内PTT尚未工业化,价格较高。因此通过开发PET/PTT共混聚酯加工成外包装薄膜,将减少一道回收工艺,大大降低回收成本,具有良好的社会效益。

3.3添加第三单体改性PET

通过在对苯二甲酸和乙二醇的聚合过程中引入第三共聚单体,破坏整个分子结构的有序对称性,从而破坏其结晶性能,得到结晶度大大降低甚至得到完全非晶的PET,从而使产品具有优良的透明性。通过用CHDM替代部分EG或者用IPA替代部分TPA进行改性PET的生产,使产品获得优异的透明度,同时可以提高产品的玻璃化温度,改善其使用时的耐温性能,还降低了熔点,从而降低了加工温度,改善加工成型性,有广泛的开发和应用前景。

PETG的物理特性为非晶体,100%无定形,常温下为球状小颗粒,同扁平(或圆柱)状小颗粒相比具有更市制容积密度,更容易挤压输出,熔点可达到220℃,玻璃化转化温度为88℃,除具有耐热性、耐化学腐蚀性的特点,还具有优越的光学性能(高透光性、高光滑和低光晕)、突出的可印刷性、高韧性、高强度、易加工定型的综合特性,冷状态没有应力白。

PETG可专门应用于高性能收缩膜,有大于70%的最终收缩率,可制成复杂外形容器的包装,具有高吸塑力,高透明度,高光泽,低雾度,易于印刷,不易脱落,存储时自然收缩率低,应用于饮料瓶、食品和化妆品包装、电子产品标签,一改传统包装膜不透明或包装效果差的缺点。PETG易于加工、可回收使用及环保等性能,更符合了现代生产商家的要求。目前消费者对商品的外表包装要求越来越高,这就使化妆品包装设计显得越来越重要。要达到美观、质感良好及经久耐用,对设计者提出了很高要求,而PETG的良好加工性能使设计构思成为了可能。

4膜用聚酯开发市场前景

目前我国的BOPET膜消费水平平均为70克/人,日本平均为2500克/人,全球平均为220克/人。如中国人均消费水平达到全球人均水平,则我国的BOPET膜的市场需求将达到30万吨/年以上。根据国内聚酯产能统计,1999年我国薄膜用聚酯产量为9万吨,2001年为10万吨,2003年为20万吨,预计2006年我国BOPET产能为57万吨。随着社会经济的发展,人均消费水平将会有所增加。另一方,如果能够适当调整行业方向,用BOPET代替常规的PP、PVC膜,相信薄膜用聚酯市场还有很大的空间。

膜用聚酯切片专用料的生产在我国仍然处于起步阶段,现在聚酯薄膜生产商一般采用在纤维级切片中添加母粒的方式进行,这样既增加了生产成本,也影响了薄膜的开口性,更主要的是不能适应高速拉膜的需要。随着聚酯薄膜应用领域的不断拓宽和交互渗透,膜用聚酯原料品种不断丰富化,以录像切片、录音切片、普通包装切片、高透明切片、电容切片、超高速拉膜切片等专用料的出现,逐渐替代了母粒添加制膜方式。开发膜用聚酯将进一步增强上海石化聚酯技术实力,有利于产品结构的调整,为上海石化在激烈的聚酯行业竞争中开辟一条出路。相信在国家产业政策支持、宏观经济背景好的条件下,我国聚酯薄膜的发展空间将十分巨大,作为原料膜用聚酯开发市场前景广阔。

参考资料:

1.赵耀明,非纤维用热塑性聚酯工艺与应用,化学工业出版社,2002

2.赵国梁,热收缩聚酯薄膜性能的研究,合成技术及应用,2000,4:1-5

3.叶春葆,塑料薄膜在包装上的应用,中国包装工业,1999,4:11-16

4.胡槐皓,共聚聚酯PETG的应用,化工新型材料,2000,3:39

5.杜志伟,PTT树脂——聚酯家族的新秀,纺织科学研究,2000,2:10-17

6.JP,315,152(1999)

7.US5429785

膜用聚酯范文篇3

1.1填料加入量的影响

填料的添加量影响木纹清晰度,但并不是越多越好。为了得到满意的涂膜外观和性能,必须确定合适的填料品种,同时还要考虑填料用量。填料用量较大有利于降低粉末涂料的产品成本和提高涂膜硬度等性能,但会降低涂膜的冲击强度和致密性。

1.2不同厂家的聚酯树脂的影响

在聚酯粉末涂料配方中,聚酯树脂是粉末涂料和涂膜性能的主要成分。目前聚酯粉末涂料用聚酯树脂的品种很多,而且不同厂家之间的价格和质量的差别也很大,所以根据粉末涂料性能和涂装工艺条件的要求选择合适的树脂品种是很重要的。不同厂家的聚酯树脂其胶化时间、熔融水平流动性均有一定的差别。有些树脂的差别较大,这是因为不同厂家的聚酯树脂在原材料成分、结构、反应活性、熔融黏度等方面均存在差别,导致粉末涂料之间的差别。因此为了得到涂膜性能满意的产品,必须选择合适的、相匹配、质量稳定的聚酯树脂品种。

1.3羟烷基酰胺HAA固化剂的影响

不同用量的HAA对涂膜性能的影响在同一固化剂体系中,对粉末涂料的熔融水平流动性影响不大,但固化剂的用量会影响胶化时间和涂膜的冲击强度,当固化剂的用量减少时,涂膜的抗冲击强度降低。因此在设计粉末配方时,应以原料厂家推荐的用量为基础,再通过试验选择合理的固化剂用量。

1.4填料品种的影响

不同填料品种对HAA固化的聚酯粉末涂料胶化时间有一定的影响,对熔融水平流动性的影响以及对涂膜外观、光泽、铅笔硬度和冲击强度的影响比较大。究其原因是填料品种之间吸油量、粒度大小和分布、密度和硬度以及分散性等差别较大。选择不同的硫酸钡或碳酸钙,对木纹清晰度的影响不是太大。根据聚酯粉末涂料耐候性要求,选择分散性好,耐候性好的填料,最好不要选用耐酸、耐碱性差,又容易粉化的填料,例如碳酸钙、滑石粉等。另外又根据涂膜的特殊性能,相应选择特殊性能的填料,例如要求涂膜硬度高时,选用高岭土、硅微粉和云母粉等填料;对于消光涂膜可以选用消光硫酸钡等填料。

1.5流平剂的影响

流平剂是对于得到高光、有光、半光和无光等平整涂膜外观不可缺少的成分,主要功能是粉末涂料熔融流平时降低表面张力,避免成膜过程中形成缩孔。如果流平剂的用量少,分散不均匀使表面张力分布不均,流平效果不好;当流平剂用量过多时,一方面影响粉末涂料贮存的稳定性,另一方面迁移到涂膜表面影响涂膜的光泽,往往降低涂膜光泽,手摸时容易产生手印,因此需要添加合适的用量。考虑到颜料和填料对流平剂的吸附作用,当使用吸油量大的颜填料或者颜填料含量高时,可以适当增加流平剂的加入量。当配方中没有流平剂或流平剂用量少时,涂膜会有个别缩孔。而用量在成膜物质的1%以上时,涂膜无缩孔而且平整。由于流平剂是黏稠状液体,可以降低粉末涂料的熔融黏度,有利于改善涂料的流平性。但是,加入量过多会降低粉末涂料的贮存稳定性,而且流平剂较易浮到涂膜表面,从而降低涂膜的涂膜光泽和耐污染性。不同品种的流平剂和加入量对木纹清晰度的影响不是太大。

1.6其他助剂的影响

粉末涂料常用的脱气剂是安息香。熔融状态下,安息香具有较低的表面张力,能有效地消除粉末涂料中因被涂工件表面吸附的挥发物或小分子物质在烘烤过程中逸出而形成的针孔或气孔等缺陷。脱气剂的添加量和品种对木纹清晰度的影响不是太大。

1.7钛白粉添加量对木纹清晰度的影响

规格不同的钛白粉会影响聚酯粉末熔融水平流动性和涂料胶化时间,特别是金红石型和锐钛型钛白粉之间的差别较大,金红石型钛白粉品种之间的差别则相对较小。在设计粉末涂料配方时,不能忽略钛白粉规格对涂膜性能的影响,应根据钛白粉品种选择能满足涂膜性能的配方。钛白粉的加入量对木纹清晰度的影响很大,应适当减少加入量。

2结语

膜用聚酯范文篇4

试验结果及比较通过炉温跟踪仪的测试,箱式固化炉固化后冷轧板涂膜颜色明显比U形通过式固化炉所固化涂膜发白。对两块冷轧板做划格、附着力试验,未出现脱落;对马口铁板涂膜作50kg冲击试验,涂膜未出现明显裂纹。从炉温跟踪仪曲线看出喷涂工件在仪表显示温度达180℃,固化时间20min的情况下,通过式固化炉到达180℃实际平均时间为14min(见图1),箱式固化炉到达180℃温度实际平均时间为10min(见图2)。涂膜实际发生交联固化的时间长短不一致及温度均匀性差导致出现零件涂膜色差。

解决方法

(1)箱式固化炉设定温度参数由原来的185℃提高到190℃,提高涂膜的实际固化时间。(2)由于箱式固化炉空间限制无法增加热循环装置,通过对箱式炉底部改造为轨道进出烤炉,底部增加远红外辐射器,辐射器上层覆盖篦子进行安全防护。这样,减少了固化炉底部与高部的温度差,使炉内整体温度相对均匀。(3)通过对设定参数的改进及固化炉底部增加热辐射器,改进固化炉温度的均匀性后,再一次采用上述方法用炉温跟踪仪进行测试,从炉温跟踪仪曲线图看出箱式炉实际固化温度在180℃以上的时间基本与U形通过固化炉取得了一致,对两烤炉固化试板涂膜颜色进行对比,颜色光泽无明显差异。

同一固化炉固化后薄厚冷轧板零件色差

1常见涂膜色差分析

色差一般出现在用不同批次粉末涂料喷涂的涂装产品之间;或者用同样批次的粉末,涂装不同材质、不同形状、不同大小和厚度的工件之间;原材料由于批次间的色度、参数的不同,粉末涂料生产过程中操作者调色经验的不足,浅色粉末的泛黄及其助剂(如低温固化剂,流平剂等)自身易泛黄;生产混料时间长也会使粉末整体颜色加深等都能引起粉末批次间色差问题。以上涂膜色差问题,都会影响组装产品的颜色,最后影响到涂装产品的质量。通常为减少调色次数提高生产效率,对影响调色的原材料进行相应库存,以减少调色色差;薄厚板材在相同的条件下涂膜固化,由于吸热快慢的不同使涂膜反应时间差异,但以前没有引起色差故障。经过初步排查并未找到出现色差的真正原因后,我们决定对对容易引起涂膜色差的原材料(钛白粉和低温固化剂)重点进行试验排查。

2环氧-聚酯粉末制造工艺流程称量配料→预混合→熔融挤出压片→粉碎→过筛→加浮花剂混合→包装

3低温固化剂206影响试验

环氧-聚酯粉末其固化反应是由环氧树脂中的环氧基团与聚酯树脂中的羟基交联成膜,因此配方中的低温固化剂206实际上为促进剂,是降低环氧和聚酯反应温度,缩短固化时间,它是环脒类化合物,其化学结构中含有叔氮原子和活泼的氢原子,能够在相对低的温度下使环氧基聚合。依据表1“试验方案”中配方一和配方二,分别生产粉末各500g。然后,制作200mm×400mm板材厚度为1mm和2mm冷轧板各3块(其中两块薄厚板另做试验)经脱脂磷化后,采用配方一粉末和配方二制作的粉末喷涂薄厚板材各一块,做好标识,在固化炉温度达到180℃下固化20min,取出试板冷却后进行颜色对比,两配方薄厚板材涂膜依然存在色差,两配方之间同一厚度板材涂膜颜色一致。排除了低温固化剂引起的故障。

4钛白粉对比试验

我公司生产的中高压开关柜使用环境主要为户内,因此在粉末原材料中为了降低成本选择了锐钛型BA01-01钛白粉。钛白粉在所有白色颜料中具有最高的遮盖力,同时吸收紫外线,确保涂料的耐候性能,因此在粉末生产中被广泛应用。但作为颜料的一种,其色泽在温度、时间和反应性介质的作用下,通常会发生显著变化。为了验证薄厚板材色差故障,重新采购了金红石型R″-996钛白粉进行对比试验。依据粉末涂料制作的工艺流程,将配方一中BA01-01替换为R″-996,制作粉末500g,喷涂经过磷化前处理的薄厚板材各一块,在固化温度180℃下烘烤20min,取出样板冷却后对比颜色,薄厚冷轧板涂膜颜色均匀一致,并且同标准色卡比较无色差。以上试验说明导致薄厚板材出现色差的原因在于钛白粉原材料的热稳定性影响。

结语

膜用聚酯范文篇5

耐久性粉末涂料具有很好的耐光致老化与降解性能,它即可用于室内制品的涂装,也可用于室外制品的涂装。为了得到良好的室外涂膜性能,粉末涂料所有组份包括交联剂,必须具有良好的耐光致老化与降解性能。氨基树脂交联剂如密胺类树脂具有优异耐久性能而广泛应用于液体涂料工业;由于几十年来良好的记录,它们成为液体涂料的首选交联剂,并且可得到低成本、耐久的、光稳定的坚硬涂膜。

Powderlink1174树脂(氰特工业有限公司生产,以下简称1174)是另一种氨基树脂交联剂,它是以甘脲而不是以密胺为基础的。人们都知道甘脲型氨基树脂涂料具有优异的室外耐久性能,而1174它主要是单体的四甲氧基甲基甘脲(TMMGU),它是高熔点的非粘性、不结块、易粉碎的固体,特别适合于室外型耐久粉末涂料的配制。产品1174其熔点高于90℃,它的主要成份TMMGU结构如图一所示。本论文我们将对Powderkink1174固化的粉末涂料配方研究和开发的最新成果作一论述(1)。

二、Powderlink1174交联剂和催化剂的特殊作用

在酸催化剂的存在下,氨基树脂交联剂包括1174,能够和含有羟基、羧基、酰胺基、氨基甲酸酯、硫醇基及氨基官能团的聚合物反应并交联。酸催化剂如PowderlinkMTSI催化剂(甲苯基甲基磺酰亚胺,氰特工业有限公司生产),可促进TMMGU中甲氧基甲基官能团与聚合物链上反应性官能团的交换反应,形成交联网络并生成甲醇。该反应如图二所示。前文中(2,3)我们讨论了几种有效催化剂,通过选择不同的催化剂,使用1174可得到多种多样的粉末涂料,如高光的、无光的和皱纹的粉末涂料。另外使用添加剂常常可以改变指定酸催化剂的强度,采用这种方式也可以使涂料的性能和外观得到明显的改善。我们发现使用磺酰亚胺催化剂MTSI,可以得到平滑的、无缺陷的、高光泽的厚膜涂料(4)。

三、高光泽无缺陷厚膜粉末涂料

对绝大多数最终用途来说,粉末涂层的典型膜厚不超过3密耳,近几年来粉末涂料涂膜厚度的发展趋势是趋于薄层化。很明显如果1.5∽2密耳的涂层能得到同样的外观和保护效果,3∽4密耳的涂层就有点浪费了。但是在某些用途中要求厚膜涂层,例如欧洲建筑涂料就有这种特殊要求。在欧洲建筑涂料要标上“合格”标签需要经过严格审批,合格涂料要求最低膜厚为2.4密尔(60微米)。为了达到上述膜厚,并考虑到法拉第屏蔽效应(在工件某些区域粉末的静电排斥效应),施工者不得不喷涂得比所需膜厚更厚,偶尔膜厚高达5密耳,图三描绘了这种情况。尽管用TMMGU和MTSI制造的粉末涂料固化时挥发份只有典型聚氨酯粉末涂料的一半左右(3),如果不使用助剂,甲醇的挥发将在膜比较厚(>3.5密耳)的地方造成针孔。为了使Powderlink1174粉末涂料能够得到厚度大于5密耳的无缺陷涂膜,我们做了很多努力研究其配方。

为了膜厚达到3.5密耳的涂膜充分脱气,防止针孔,1174粉末涂料必须有足够的流动性并且有足够时间让涂料在固化前充分‘愈合’其缺陷。粉末涂料,包括TMMGU粉末涂料固化时的流动性和流度,都可以用流变仪方便地测定(5)。

四、流变性、添加剂和厚膜涂层

本研究中平板流变仪使用RheometricRMS-605力学谱图仪,试验中复合粘度地测定在升温速度2℃/min,切变频率10rad/s,并改变应力的条件下进行。流变仪测定每一剪切应力下的弹性模量(G′)和损失模量(G″)。从这些数据我们可计算出流动指数、平均流度、固化起始温度和最低粘度。再将这些数据与粉末涂料性质即凝胶时间和斜板流动性以及固化膜性质,特别是外观和无针孔时的膜厚进行比较。

图四是一典型固化流变图,图的纵坐标为动力粘度(η,其定义见表一),横坐标为温度。实验的开始,温度很低,粘度非常大;开始加热后,粘度随着温度的上升几乎是以指数级地下降;达到一定温度后,交联反应开始,粘度不再下降;然后随者温度的进一步上升;粘度急剧上升;最终,交联反应停止,动力粘度保持为常数。固化起始温度是按图四所示方式确定的。

表1、流变学定义

G′弹性剪切模量

G″损失剪切模量

ω切变频率

η′动力粘度G″/ω

η″复合粘度模拟部分G′/ω

η*复合动力粘度η*=(η′2+η″2)0.5

流动指数计算方式如图五所示,粘度代表阻止流动的能力,流度代表流动的能力。图五是流度既粘度的倒数对样品在2℃/min加热速度下加热时间作图所得。动力粘度η对于描述低粘度(高流度)下的流变性能比较好。粉末涂料的流平性不仅取决于低的粘度,而且取决于它保持在低粘度下的时间长短。对流度时间曲线下一直到凝胶点的区域进行积分,所得到的数值即流动指数。流动指数的单位压力的倒数,1/Pa,它可以被认为是单位压力下每密耳厚的膜侧向流动的距离(密耳)。

表2、1174粉末涂料标准配方及其涂膜性能

聚酯树脂Crylcoat310994.00

安息香1.40

催化剂PowderlinkMTSI0.50

钛白粉R-960

40.00

流平剂ResiflowP-671.30

固化剂Powderlink1174(TMMGU)6.00

涂膜性质

烘烤温度(℃)175190

烘烤时间(min)2020

底材(磷酸铁处理CRS)BO1000BO1000

甲基乙基酮擦拭200+200+

涂膜外观致密桔皮致密桔皮

涂膜厚度(密耳)2.0/2.21.8/2.8

KNOOP硬度11.811.9

正/反冲击(in*lb)160/160160/160

60°光泽78.594.1

20°光泽45.677.2

盐雾试验,1008小时

蠕变性00

外观99

耐湿性,60℃,504小时无变化无变化

表二列出了用Powderlink1174交联剂配制的粉末涂料配方及其性能。图六显示了安息香,一种常用的粉末涂料脱气剂对流变性质的影响。标有1的曲线没有加安息香,标有2的曲线加了配方量的1.4%,标有3的曲线加了2.4%的安息香。安息香的加入降低了玻璃化温度,增加了固化起始温度。使用增塑剂是配制厚膜PMMGU粉末涂料的途径之一,但是安息香用量超过配方量的1.4%后对性能几乎没有改善;安息香用量为1.4%和2.4%时都可以得到3.2-3.5密耳厚的无针孔涂膜。

低溶解性的弱碱如碳酸钙和氧化镁可很好的延缓酸催化作用、调节固化进程,以使涂料完全固化前厚膜部位得以充分脱气。图七和表三说明碳酸钙的加入可以增加流动指数、平均流度和固化起始温度,最小粘度略有下降。结果是凝胶时间变长,在不改变斜板流动性情况下可得到外观更好的无针孔厚膜(∽4密耳)涂层。

好在甘脲型氨基树脂的固化速度率可以通过加入催化剂以及对催化剂有作用的助剂来调节。TMMGU粉末涂料中使用胺添加剂可提供更为广阔的配方范围。例如在使用氨基树脂固化剂的热固性液体涂料中,常常使用‘封闭胺’作为催化剂体系的一部分以获得更好的包装稳定性(6)。一般来讲使用胺封闭的体系要比不封闭的体系固化速率低;这是因为在这种体系中实际上存在着质子化的胺,即一种弱酸(高的pKa)。当喷涂好的涂料烘烤时,胺挥发导致催化剂有效解封闭,酸强度增加(低的pKa),从而促使氨基树脂交联反应以较高速度进行。胺封闭酸催化剂体系的pKa和挥发性对固化进程有决定性的影响。

表3、碳酸钙的影响

碳酸钙用量(wt.%)

02537.550

流动指数(1/P)21426890

平均流度(1/Pa*s)0.0110.0190.0260.032

最小粘度(Pa*s)49161915

起始固化温度(℃)185192210219

凝胶时间(s)358457774775

斜板流动性(cm)7.78.87.48.2

无针孔膜厚(密耳)∽3.44.04.03.9

涂膜外观致密桔皮平滑桔皮平滑桔皮平滑桔皮

在MTSI催化的TMMGU粉末涂料配方中,DABCO三乙烯二胺(一种非泛黄性固体胺,缩写为TED,空气产品和化工公司生产)的影响如图八和表四所示。TED的加入会导致流动指数(流度对时间的积分

)和平均流度(平均粘度的倒数)增加,另外最低粘度会降低,起始固化温度会上升。结果使凝胶时间变长,斜板流动性更好,从而使外观得到改善(平滑桔皮)的厚膜涂层。TED用量最大(0.5%重量)时,不发生固化反应,因此表中没有列出其数据。

在甘脲固化的粉末涂料中,加入那些能够提高酸催化剂pKa的非泛黄性胺添加剂,虽然不能完全但基本可以防止粉末涂料在其粒子开始熔融阶段和聚结阶段发生交联反应。熔融膜可以达到较低的粘度和更好的流平。随着进

表4、TED浓度的影响

TED用量(wt.%)

0.00.330.41

流动指数(1/P)2772112

平均流度(1/Pa*s)0.0130.0350.053

最小粘度(Pa*s)391411

起始固化温度(℃)172200214

凝胶时间(s)358515775

斜板流动性(cm)7.79.718.7

无针孔膜厚(密耳)∽3.4>3.8>4.7

涂膜外观致密桔皮平滑桔皮平滑桔皮

一步的加热,封闭胺的挥发也可防止膜表面过早的热固化或‘结皮’,促进‘表面愈合’。四甲基哌醇(TAA-o1,赫斯公司生产),一种作为阻位胺光稳定剂中间体而出售的非泛黄性固体胺有类似作用。用上述两种添加剂都可以得到非常平滑的、高光泽的、厚达5密耳的无针孔膜。(见表五和表六)

表5、TAA-ol和DABCO催化的无缺陷1174粉末涂料配方

组份WtWt

聚酯树脂Crylcoat349392.094.0

DABCO(三乙烯二胺)0.23

TAA-ol(四甲基哌醇)0.3

催化剂PowderlinkMTSI0.50.4

流平剂Modaflow20001.3

流平剂ResiflowP671.4

安息香1.51.3

钛白粉R-96040.040.0

固化剂Powderlink11748.06.0

采用复合添加剂的方式甚至可以得到更厚的无缺陷膜。加入配方量5%的增塑剂单硬酸铝和0.3%的TED的效果如图九所示。TED和单硬脂酸铝复合使用可大幅度的降低最低粘度(3.1Pa?s),提高流动性;这样可以得到厚达17

表6、无缺陷涂膜性质

涂膜性质TAA-olDABCO

烘烤温度(℃)190190

最大无针孔厚度(密耳)5.04.5

测试涂膜厚度(密耳)2.2/2.71.8/2.5

甲基

乙基酮擦拭200+200+

涂膜外观光滑光滑

黄变指数-0.56-1.08

KNOOP硬度12.512.4

正/反冲击(in*lb)160/160160/160

60°光泽92.394.7

20°光泽78.888.4

储存稳定性(40℃,天)>21>21

盐雾试验,500小时

蠕变性00

外观1010

耐湿性,60℃,504小时无变化无变化

表7、TAA-ol或DABCO/单硬脂酸铝催化的1174粉末涂料配方

组份DABCO/DABCO/TAA-ol/

单硬脂酸铝单硬脂酸铝单硬脂酸铝

聚酯树脂Crylcoat310994.0

聚酯树脂Crylcoat349394.092.0

单硬脂酸铝5.05.03.0

DABCO(三乙烯二胺)0.30.2

TAA-ol(四甲基哌醇)0.3

催化剂PowderlinkMTSI0.50.40.5

流平剂Modaflow20001.31.3

流平剂ResiflowP671.4

安息香1.41.41.5

钛白粉R-96040.040.040.0

固化剂Powderlink11746.06.08.0

密耳的无针孔涂膜,在正常膜厚(1∽3密耳)时其性能保持良好。当这个复合添加剂应用于高Tg,高分支聚酯树脂Crylcoat3493(UCB化学公司生产)配制的粉末涂料时,流动性仍然很好(最低粘度31Pa?s),无针孔膜厚度可达10密耳;该配方的优点是具有极好的储存稳定性,它既可以在较高温度下快速固

化,也可以在较低温度下固化。TAA-o1和单硬脂酸铝复合添加剂也有相似效果(参见表七和表八)。

表8、TAA-ol或DABCO/单硬脂酸铝催化的1174粉末涂料涂膜性质

涂膜性质DABCO/DABCO/TAA-ol/

单硬脂酸铝单硬脂酸铝单硬脂酸铝

烘烤温度(℃)200190190

最大无针孔厚度(密耳)171012

测试涂膜厚度(密耳)1.9/3.02.8/3.92.5/2.8

甲基乙基酮擦拭200+20

0+200+

涂膜外观光滑光滑光滑

黄变指数0.670.36-0.56

KNOOP硬度10.111.812.2

正/反冲击(in*lb)160/16030/5160/160

60°光泽81.090.099.5

20°光泽50.052.070.5

储存稳定性(40℃,天)>10>60>21

盐雾试验,500小时

蠕变性000

外观101010

耐湿性,60℃,504小时无变化无变化无变化

五、平滑的TMMGU无光粉末涂料

Powderlink1174固化的粉末涂料的一个独特性能是通过催化剂的选择能够将涂膜外观由光滑的表面改变为所希望的外观如平滑无光和皱纹表面,这一点是其他粉末涂料很难做到的。这种特性是不久前用环已烷基氨基磺酸(Cyclamicacid,Abbott实验室提供)作TMMGU粉末涂料催化剂时发现的(3,7),在与某些聚酯树脂搭配时,不用加蜡或二氧化硅就可得到60度光泽为35%∽45%平滑无光膜,并且具有良好的性能(参见表九和表十)。

表九和表十还列出了另外两个通过选择催化剂得到的无光粉末涂料配方及其涂膜性质。各种金属的磺酸盐用作1174粉末涂料的催化剂都可以得到很好的无光膜,甲磺酸锡是一种特别好的催化剂,它可以给出非常平滑的无光膜,且具有很好的耐冲击性能和其他机械性能。另外该涂料通过烘烤后不泛黄,且具有极好的耐老化性能。

表9、平滑无光1174粉末涂料配方

组份wt.wt.wt.

聚酯树脂Crylcoat310994.0

聚酯树脂Crylcoat349377.4

聚酯树脂Kuotex1000H63.6

安息香1.41.41.4

催化剂Cyclamicacid0.3

催化剂(2%甲磺酸锡母料)20.030.0

流平剂ResiflowP671.31.31.3

钛白粉R-96040.040.040.0

固化剂Powderlink11746.06.07.0

表10、平滑无光1174粉末涂料涂膜性质

涂膜性质CyclamicCrylcoatKuotex

acid34931000H

烘烤温度(℃)190190185

甲基乙基酮擦拭200+200+200+

涂膜外观光滑光滑光滑

涂膜厚度(密耳)2.52.42.0

黄变指数

-2.4-3.9

KNOOP硬度10.712.812.4

膜用聚酯范文篇6

耐久性粉末涂料具有很好的耐光致老化与降解性能,它即可用于室内制品的涂装,也可用于室外制品的涂装。为了得到良好的室外涂膜性能,粉末涂料所有组份包括交联剂,必须具有良好的耐光致老化与降解性能。氨基树脂交联剂如密胺类树脂具有优异耐久性能而广泛应用于液体涂料工业;由于几十年来良好的记录,它们成为液体涂料的首选交联剂,并且可得到低成本、耐久的、光稳定的坚硬涂膜。

Powderlink1174树脂(氰特工业有限公司生产,以下简称1174)是另一种氨基树脂交联剂,它是以甘脲而不是以密胺为基础的。人们都知道甘脲型氨基树脂涂料具有优异的室外耐久性能,而1174它主要是单体的四甲氧基甲基甘脲(TMMGU),它是高熔点的非粘性、不结块、易粉碎的固体,特别适合于室外型耐久粉末涂料的配制。产品1174其熔点高于90℃,它的主要成份TMMGU结构如图一所示。本论文我们将对Powderkink1174固化的粉末涂料配方研究和开发的最新成果作一论述(1)。

二、Powderlink1174交联剂和催化剂的特殊作用

在酸催化剂的存在下,氨基树脂交联剂包括1174,能够和含有羟基、羧基、酰胺基、氨基甲酸酯、硫醇基及氨基官能团的聚合物反应并交联。酸催化剂如PowderlinkMTSI催化剂(甲苯基甲基磺酰亚胺,氰特工业有限公司生产),可促进TMMGU中甲氧基甲基官能团与聚合物链上反应性官能团的交换反应,形成交联网络并生成甲醇。该反应如图二所示。前文中(2,3)我们讨论了几种有效催化剂,通过选择不同的催化剂,使用1174可得到多种多样的粉末涂料,如高光的、无光的和皱纹的粉末涂料。另外使用添加剂常常可以改变指定酸催化剂的强度,采用这种方式也可以使涂料的性能和外观得到明显的改善。我们发现使用磺酰亚胺催化剂MTSI,可以得到平滑的、无缺陷的、高光泽的厚膜涂料(4)。

三、高光泽无缺陷厚膜粉末涂料

对绝大多数最终用途来说,粉末涂层的典型膜厚不超过3密耳,近几年来粉末涂料涂膜厚度的发展趋势是趋于薄层化。很明显如果1.5∽2密耳的涂层能得到同样的外观和保护效果,3∽4密耳的涂层就有点浪费了。但是在某些用途中要求厚膜涂层,例如欧洲建筑涂料就有这种特殊要求。在欧洲建筑涂料要标上“合格”标签需要经过严格审批,合格涂料要求最低膜厚为2.4密尔(60微米)。为了达到上述膜厚,并考虑到法拉第屏蔽效应(在工件某些区域粉末的静电排斥效应),施工者不得不喷涂得比所需膜厚更厚,偶尔膜厚高达5密耳,图三描绘了这种情况。尽管用TMMGU和MTSI制造的粉末涂料固化时挥发份只有典型聚氨酯粉末涂料的一半左右(3),如果不使用助剂,甲醇的挥发将在膜比较厚(>3.5密耳)的地方造成针孔。为了使Powderlink1174粉末涂料能够得到厚度大于5密耳的无缺陷涂膜,我们做了很多努力研究其配方。

为了膜厚达到3.5密耳的涂膜充分脱气,防止针孔,1174粉末涂料必须有足够的流动性并且有足够时间让涂料在固化前充分‘愈合’其缺陷。粉末涂料,包括TMMGU粉末涂料固化时的流动性和流度,都可以用流变仪方便地测定(5)。

四、流变性、添加剂和厚膜涂层

本研究中平板流变仪使用RheometricRMS-605力学谱图仪,试验中复合粘度地测定在升温速度2℃/min,切变频率10rad/s,并改变应力的条件下进行。流变仪测定每一剪切应力下的弹性模量(G′)和损失模量(G″)。从这些数据我们可计算出流动指数、平均流度、固化起始温度和最低粘度。再将这些数据与粉末涂料性质即凝胶时间和斜板流动性以及固化膜性质,特别是外观和无针孔时的膜厚进行比较。

图四是一典型固化流变图,图的纵坐标为动力粘度(η,其定义见表一),横坐标为温度。实验的开始,温度很低,粘度非常大;开始加热后,粘度随着温度的上升几乎是以指数级地下降;达到一定温度后,交联反应开始,粘度不再下降;然后随者温度的进一步上升;粘度急剧上升;最终,交联反应停止,动力粘度保持为常数。固化起始温度是按图四所示方式确定的。

表1、流变学定义

G′弹性剪切模量

G″损失剪切模量

ω切变频率

η′动力粘度G″/ω

η″复合粘度模拟部分G′/ω

η*复合动力粘度η*=(η′2+η″2)0.5

流动指数计算方式如图五所示,粘度代表阻止流动的能力,流度代表流动的能力。图五是流度既粘度的倒数对样品在2℃/min加热速度下加热时间作图所得。动力粘度η对于描述低粘度(高流度)下的流变性能比较好。粉末涂料的流平性不仅取决于低的粘度,而且取决于它保持在低粘度下的时间长短。对流度时间曲线下一直到凝胶点的区域进行积分,所得到的数值即流动指数。流动指数的单位压力的倒数,1/Pa,它可以被认为是单位压力下每密耳厚的膜侧向流动的距离(密耳)。

表2、1174粉末涂料标准配方及其涂膜性能

聚酯树脂Crylcoat310994.00

安息香1.40

催化剂PowderlinkMTSI0.50

钛白粉R-96040.00

流平剂ResiflowP-671.30

固化剂Powderlink1174(TMMGU)6.00

涂膜性质

烘烤温度(℃)175190

烘烤时间(min)2020

底材(磷酸铁处理CRS)BO1000BO1000

甲基乙基酮擦拭200+200+

涂膜外观致密桔皮致密桔皮

涂膜厚度(密耳)2.0/2.21.8/2.8

KNOOP硬度11.811.9

正/反冲击(in*lb)160/160160/160

60°光泽78.594.1

20°光泽45.677.2

盐雾试验,1008小时

蠕变性00

外观99

耐湿性,60℃,504小时无变化无变化

表二列出了用Powderlink1174交联剂配制的粉末涂料配方及其性能。图六显示了安息香,一种常用的粉末涂料脱气剂对流变性质的影响。标有1的曲线没有加安息香,标有2的曲线加了配方量的1.4%,标有3的曲线加了2.4%的安息香。安息香的加入降低了玻璃化温度,增加了固化起始温度。使用增塑剂是配制厚膜PMMGU粉末涂料的途径之一,但是安息香用量超过配方量的1.4%后对性能几乎没有改善;安息香用量为1.4%和2.4%时都可以得到3.2-3.5密耳厚的无针孔涂膜。

低溶解性的弱碱如碳酸钙和氧化镁可很好的延缓酸催化作用、调节固化进程,以使涂料完全固化前厚膜部位得以充分脱气。图七和表三说明碳酸钙的加入可以增加流动指数、平均流度和固化起始温度,最小粘度略有下降。结果是凝胶时间变长,在不改变斜板流动性情况下可得到外观更好的无针孔厚膜(∽4密耳)涂层。

好在甘脲型氨基树脂的固化速度率可以通过加入催化剂以及对催化剂有作用的助剂来调节。TMMGU粉末涂料中使用胺添加剂可提供更为广阔的配方范围。例如在使用氨基树脂固化剂的热固性液体涂料中,常常使用‘封闭胺’作为催化剂体系的一部分以获得更好的包装稳定性(6)。一般来讲使用胺封闭的体系要比不封闭的体系固化速率低;这是因为在这种体系中实际上存在着质子化的胺,即一种弱酸(高的pKa)。当喷涂好的涂料烘烤时,胺挥发导致催化剂有效解封闭,酸强度增加(低的pKa),从而促使氨基树脂交联反应以较高速度进行。胺封闭酸催化剂体系的pKa和挥发性对固化进程有决定性的影响。

表3、碳酸钙的影响

碳酸钙用量(wt.%)

02537.550

流动指数(1/P)21426890

平均流度(1/Pa*s)0.0110.0190.0260.032

最小粘度(Pa*s)49161915

起始固化温度(℃)185192210219

凝胶时间(s)358457774775

斜板流动性(cm)7.78.87.48.2

无针孔膜厚(密耳)∽3.44.04.03.9

涂膜外观致密桔皮平滑桔皮平滑桔皮平滑桔皮

在MTSI催化的TMMGU粉末涂料配方中,DABCO三乙烯二胺(一种非泛黄性固体胺,缩写为TED,空气产品和化工公司生产)的影响如图八和表四所示。TED的加入会导致流动指数(流度对时间的积分)和平均流度(平均粘度的倒数)增加,另外最低粘度会降低,起始固化温度会上升。结果使凝胶时间变长,斜板流动性更好,从而使外观得到改善(平滑桔皮)的厚膜涂层。TED用量最大(0.5%重量)时,不发生固化反应,因此表中没有列出其数据。

在甘脲固化的粉末涂料中,加入那些能够提高酸催化剂pKa的非泛黄性胺添加剂,虽然不能完全但基本可以防止粉末涂料在其粒子开始熔融阶段和聚结阶段发生交联反应。熔融膜可以达到较低的粘度和更好的流平。随着进

表4、TED浓度的影响

TED用量(wt.%)

0.00.330.41

流动指数(1/P)2772112

平均流度(1/Pa*s)0.0130.0350.053

最小粘度(Pa*s)391411

起始固化温度(℃)172200214

凝胶时间(s)358515775

斜板流动性(cm)7.79.718.7

无针孔膜厚(密耳)∽3.4>3.8>4.7

涂膜外观致密桔皮平滑桔皮平滑桔皮

一步的加热,封闭胺的挥发也可防止膜表面过早的热固化或‘结皮’,促进‘表面愈合’。四甲基哌醇(TAA-o1,赫斯公司生产),一种作为阻位胺光稳定剂中间体而出售的非泛黄性固体胺有类似作用。用上述两种添加剂都可以得到非常平滑的、高光泽的、厚达5密耳的无针孔膜。(见表五和表六)

表5、TAA-ol和DABCO催化的无缺陷1174粉末涂料配方

组份WtWt

聚酯树脂Crylcoat349392.094.0

DABCO(三乙烯二胺)0.23

TAA-ol(四甲基哌醇)0.3

催化剂PowderlinkMTSI0.50.4

流平剂Modaflow20001.3

流平剂ResiflowP671.4

安息香1.51.3

钛白粉R-96040.040.0

固化剂Powderlink11748.06.0

采用复合添加剂的方式甚至可以得到更厚的无缺陷膜。加入配方量5%的增塑剂单硬酸铝和0.3%的TED的效果如图九所示。TED和单硬脂酸铝复合使用可大幅度的降低最低粘度(3.1Pa·s),提高流动性;这样可以得到厚达17

表6、无缺陷涂膜性质

涂膜性质TAA-olDABCO

烘烤温度(℃)190190

最大无针孔厚度(密耳)5.04.5

测试涂膜厚度(密耳)2.2/2.71.8/2.5

甲基乙基酮擦拭200+200+

涂膜外观光滑光滑

黄变指数-0.56-1.08

KNOOP硬度12.512.4

正/反冲击(in*lb)160/160160/160

60°光泽92.394.7

20°光泽78.888.4

储存稳定性(40℃,天)>21>21

盐雾试验,500小时

蠕变性00

外观1010

耐湿性,60℃,504小时无变化无变化

表7、TAA-ol或DABCO/单硬脂酸铝催化的1174粉末涂料配方

组份DABCO/DABCO/TAA-ol/

单硬脂酸铝单硬脂酸铝单硬脂酸铝

聚酯树脂Crylcoat310994.0

聚酯树脂Crylcoat349394.092.0

单硬脂酸铝5.05.03.0

DABCO(三乙烯二胺)0.30.2

TAA-ol(四甲基哌醇)0.3

催化剂PowderlinkMTSI0.50.40.5转

流平剂Modaflow20001.31.3

流平剂ResiflowP671.4

安息香1.41.41.5

钛白粉R-96040.040.040.0

固化剂Powderlink11746.06.08.0

密耳的无针孔涂膜,在正常膜厚(1∽3密耳)时其性能保持良好。当这个复合添加剂应用于高Tg,高分支聚酯树脂Crylcoat3493(UCB化学公司生产)配制的粉末涂料时,流动性仍然很好(最低粘度31Pa·s),无针孔膜厚度可达10密耳;该配方的优点是具有极好的储存稳定性,它既可以在较高温度下快速固

化,也可以在较低温度下固化。TAA-o1和单硬脂酸铝复合添加剂也有相似效果(参见表七和表八)。

表8、TAA-ol或DABCO/单硬脂酸铝催化的1174粉末涂料涂膜性质

涂膜性质DABCO/DABCO/TAA-ol/

单硬脂酸铝单硬脂酸铝单硬脂酸铝

烘烤温度(℃)200190190

最大无针孔厚度(密耳)171012

测试涂膜厚度(密耳)1.9/3.02.8/3.92.5/2.8

甲基乙基酮擦拭200+200+200+

涂膜外观光滑光滑光滑

黄变指数0.670.36-0.56

KNOOP硬度10.111.812.2

正/反冲击(in*lb)160/16030/5160/160

60°光泽81.090.099.5

20°光泽50.052.070.5

储存稳定性(40℃,天)>10>60>21

盐雾试验,500小时

蠕变性000

外观101010

耐湿性,60℃,504小时无变化无变化无变化

五、平滑的TMMGU无光粉末涂料

Powderlink1174固化的粉末涂料的一个独特性能是通过催化剂的选择能够将涂膜外观由光滑的表面改变为所希望的外观如平滑无光和皱纹表面,这一点是其他粉末涂料很难做到的。这种特性是不久前用环已烷基氨基磺酸(Cyclamicacid,Abbott实验室提供)作TMMGU粉末涂料催化剂时发现的(3,7),在与某些聚酯树脂搭配时,不用加蜡或二氧化硅就可得到60度光泽为35%∽45%平滑无光膜,并且具有良好的性能(参见表九和表十)。

表九和表十还列出了另外两个通过选择催化剂得到的无光粉末涂料配方及其涂膜性质。各种金属的磺酸盐用作1174粉末涂料的催化剂都可以得到很好的无光膜,甲磺酸锡是一种特别好的催化剂,它可以给出非常平滑的无光膜,且具有很好的耐冲击性能和其他机械性能。另外该涂料通过烘烤后不泛黄,且具有极好的耐老化性能。

表9、平滑无光1174粉末涂料配方

组份wt.wt.wt.

聚酯树脂Crylcoat310994.0

聚酯树脂Crylcoat349377.4

聚酯树脂Kuotex1000H63.6

安息香1.41.41.4

催化剂Cyclamicacid0.3

催化剂(2%甲磺酸锡母料)20.030.0

流平剂ResiflowP671.31.31.3

钛白粉R-96040.040.040.0

固化剂Powderlink11746.06.07.0

表10、平滑无光1174粉末涂料涂膜性质

涂膜性质CyclamicCrylcoatKuotex

acid34931000H

烘烤温度(℃)190190185

甲基乙基酮擦拭200+200+200+

涂膜外观光滑光滑光滑

涂膜厚度(密耳)2.52.42.0

黄变指数-2.4-3.9

KNOOP硬度10.712.812.4

正/反冲击(in*lb)90/60160/160160/160

60°光泽485043.1

20°光泽13118.8

盐雾试验,1008小时

蠕变性000

外观999

耐湿性,60℃,504小时无变化无变化无变化

图十一是一涂履环已烷基氨基磺酸催化的Powderlink1174无光粉末涂料样板的照片,很明显该涂料外观平滑,流平极佳。图十二是同一样板45倍显微照片。尽管手摸眼看样板是平滑的,但显微照片表明涂膜表面上布满了微小花纹,外观几乎是微粒状的。正是这种表面使光线发生有效散射,导致宏观平滑无光的涂膜表面。

六、耐久性TMMGU皱纹、花纹粉末涂料

皱纹、花纹粉末涂料正在赢得某些液体涂料甚至平滑粉末涂料所占据的传统市场,这种涂料令人爽心悦目,手感可从柔软的改变到坚韧的甚至粗糙或毛糙的。人们发现Powderlink1174粉末涂料用几种不同的胺封闭磺酸催化时,可得到外观极好的耐候皱纹粉末涂料(8)。虽然人们都知道有同类型的环氧基粉末涂料(9),但到目前为止,这类涂料还很难得到耐候性皱纹涂料。由于Powderlink1174粉末涂料本身具有极佳的耐候性能,因此使用胺封闭磺酸催化剂就可配制耐候性优异的皱纹粉末涂料。另外高的聚酯树脂/固化剂比(94/6)也使它具有经济优势。它的用途包括收录机、影碟机、计算机、家用电器及其它电子、电气产品、室外家具、栅栏、球场设施及卡车工具箱也是其潜在用途。

表十一列出了皱纹性TMMGU粉末涂料配方,在这些配方中用胺封闭磺酸作催化剂。配方A中催化剂为二甲基乙醇胺封闭的对甲苯磺酸盐(DMEA/P-TSA盐),配方B为二甲胺基丙醇封闭的对甲苯磺酸盐(DMAMP/P-TSA盐,氰特工业有限公司产,商品名为WL-catalystX-320)。配方C为三氟甲磺酸二乙胺盐(3M化工公司产品,商品名为FluoradFC-520催化剂)(10),所有这些催化剂都是以溶液形成得到的,必须与聚酯树脂通过熔融混合做成母料并除去溶剂。

表11、耐久的皱纹型1174粉末涂料配方

组份wt.wt.wt.

聚酯树脂Crylcoat310981.881.878.5

安息香2.42.42.4

DMEA/p-TSA(2.4%母料)12.50

DMAMP/p-TSA(2.4%母料)12.50

FC-520(1.9%母料)15.80

流平剂ResiflowP671.301.301.30

钛白粉R-96040.040.040.0

固化剂Powderlink11746.06.06.0

表12、耐久的皱纹型1174粉末涂料涂膜性质

涂膜性质DMEA/p-TSADMAMP/p-TSAFC-520

烘烤温度(℃)190175175

甲基乙基酮擦拭200+200+200+

涂膜外观重皱纹柔软皱纹粗糙皱纹

涂膜厚度(密耳)3.4/4.13.4/4.12.9/3.8

KNOOP硬度12.412.412.0

正/反冲击(in*lb)160/160130/130130/110

60°光泽12.07.94.3

20°光泽2.82.52.4

盐雾试验,1008小时

蠕变性000

外观999

耐湿性,60℃,504小时无变化无变化无变化

从表一十二可知,上述配方制备的皱纹粉末涂料性能都很好。配方A加入了0.3%的DMEA/p-TSA催化剂,得到仿皮感的重皱纹涂膜;配方B加入了0.3%DMAMP/p-TSA催化剂,得到一种令人愉快的无规花纹涂膜,它手感柔软更为平滑;而配方C加入了0.3%的FluoradFC-520催化剂,得到一种有点星状的皱纹涂膜,它手感较为粗糙或毛糙,令人联想起古老的铸铁表面。图一十三和一十四分别为WL-catalystX-320和FluoradFC-520封闭磺酸催化的1174粉末涂料样板的照片,他们都具有令人悦目的外观,只是花纹象上面所说的有点不同。他们的显微照片更能说明问题,图一十五是X-320的显微照片,其皱纹花样为无规状,宽度0.25∽0.50mm,平均膜厚5∽8密耳,无针孔(我们发现膜厚超过10密耳也没有针孔)。图一十六是FC-520的显微照片,它显示星状外观;星状花纹中心没有针孔,它只是好几条皱纹的会聚点;我们发现不论星形出现与否,该涂料都具有很好的性能。

采用新的聚酯树脂如Crylcoat3493,Kuotex1000H(产协企业股份有限公司产)和Rucote620(Ruco聚合物公司产)配制1174皱纹性粉末涂料,其性能具有良好的重现性。最近UCB化工公司推出的一种新的聚酯树脂Crylcoat820和一种新的皱纹性催化剂Crylcoat120,是为配制耐久性的1174皱纹粉末涂料专门设计的。另一途径是采用Synthron公司的SI32-18a催化剂,它是以附载在固体负载物上的形式提供的。所有以上产品与TMMGU正确配合的话都可以得到性能优异的美丽的皱纹性粉末涂料。表一十三和表一十四列出了一些配方及其涂膜性质。加入少量的着色颜料,则可以得到各种漂亮动人的彩色皱纹涂料。(见表一十五和表一十六

表13、耐久的皱纹型1174粉末涂料配方

组份wt.wt.wt.wt.

安息香1.41.41.41.4

聚酯树脂Crylcoat349382.994.0

聚酯树脂Crylcoat82087.2

聚酯树脂Kuotex1000H82.9

催化剂X-320(2.5%母料)11.411.4

催化剂SI-32-18a1.5

流平剂ResiflowP671.31.31.31.3

钛白粉R-96040.040.040.040.0

固化剂Powderlink11746.06.06.36.0

表14、耐久的皱纹型1174粉末涂料涂膜性质

涂膜性质3493/1000H/820/3493/

X-320X-32012032-18a

烘烤温度(℃)190190190190

烘烤时间(min)20202020

甲基乙基酮擦拭200+200+200+200+

涂膜外观无规皱纹平滑皱纹无规皱纹无规皱纹

涂膜厚度(密耳)2.1/2.93.4/3.83.8/4.43.2/4.1

KNOOP硬度13.412.612.612.7

正/反冲击(in*lb)160/160160/160160/160160/160

60°光泽4.13.92.73.4

20°光泽2.32.22.22.2

盐雾试验,1008小时

蠕变性0000

外观10101010

耐湿性,60℃,504小时无变化无变化无变化无变化

表15、耐久的彩色皱纹型1174粉末涂料配方

组份蓝色洋红色绿色黑色

聚酯树脂Crylcoat349382.982.982.982.9

安息香1.41.41.41.4

X-320(2.6%母料)11.411.411.411.4

流平剂ResiflowP671.31.31.31.3

钛白粉R-96040.040.040.01.0

固化剂Powderlink11746.06.06.06.0

蓝颜料NCNF2.0

红颜料1226.0

绿颜料GLN2.0

碳酸钙20.0

黑颜料FW2002.0

表16、耐久的彩色皱纹型1174粉末涂料涂膜性质

涂膜性质蓝色绿色洋红色黑色

烘烤温度(℃)190190190190

烘烤时间(min)20202020

甲基乙基酮擦拭200+200+200+200+

涂膜厚度(密耳)3.03.02.03.2

KNOOP硬度12-1312-1312-1312.5

正/反冲击(in*lb)160/160160/160160/160160/160

60°光泽2.42.82.43.9

20°光泽0.81.80.80.4

盐雾试验,1008小时

蠕变性0000

外观10101010

耐湿性,60℃,504小时无变化无变化无变化无变化

七、结论

Powderlink1174作为一种耐久性粉末涂料交联剂,给粉末涂料工业带来了新的配方选择,该交联剂能提供普通的耐候高光厚涂膜、平滑无光和皱纹涂膜。通过使用添加剂可以调节酸催化剂强度和固化前的流变性能,从而得到非常厚的、性能良好的高光无缺陷粉末涂料。使用环己烷基氨基磺酸或其他催化剂配制无光粉末,使用胺封闭磺酸催化剂配制皱纹粉末,这点在粉末涂料工业是独特的。皱纹性粉末涂料最终外观和性能取决于胺封闭磺酸的类型和浓度,皱纹的深浅和手感也是一样。

总之,含有Powderlink1174交联剂的粉末涂料具有化学多样性,各种方式包括加入添加剂和催化剂都可以改善其流动性能,最终得到所需要的涂膜性质和外观,以满足不同的应用要求。

膜用聚酯范文篇7

二、Powderlink1174交联剂和催化剂的特殊作用

在酸催化剂的存在下,氨基树脂交联剂包括1174,能够和含有羟基、羧基、酰胺基、氨基甲酸酯、硫醇基及氨基官能团的聚合物反应并交联。酸催化剂如PowderlinkMTSI催化剂(甲苯基甲基磺酰亚胺,氰特工业有限公司生产),可促进TMMGU中甲氧基甲基官能团与聚合物链上反应性官能团的交换反应,形成交联网络并生成甲醇。该反应如图二所示。前文中(2,3)我们讨论了几种有效催化剂,通过选择不同的催化剂,使用1174可得到多种多样的粉末涂料,如高光的、无光的和皱纹的粉末涂料。另外使用添加剂常常可以改变指定酸催化剂的强度,采用这种方式也可以使涂料的性能和外观得到明显的改善。我们发现使用磺酰亚胺催化剂MTSI,可以得到平滑的、无缺陷的、高光泽的厚膜涂料(4)。

三、高光泽无缺陷厚膜粉末涂料

对绝大多数最终用途来说,粉末涂层的典型膜厚不超过3密耳,近几年来粉末涂料涂膜厚度的发展趋势是趋于薄层化。很明显如果1.5∽2密耳的涂层能得到同样的外观和保护效果,3∽4密耳的涂层就有点浪费了。但是在某些用途中要求厚膜涂层,例如欧洲建筑涂料就有这种特殊要求。在欧洲建筑涂料要标上“合格”标签需要经过严格审批,合格涂料要求最低膜厚为2.4密尔(60微米)。为了达到上述膜厚,并考虑到法拉第屏蔽效应(在工件某些区域粉末的静电排斥效应),施工者不得不喷涂得比所需膜厚更厚,偶尔膜厚高达5密耳,图三描绘了这种情况。尽管用TMMGU和MTSI制造的粉末涂料固化时挥发份只有典型聚氨酯粉末涂料的一半左右(3),如果不使用助剂,甲醇的挥发将在膜比较厚(>3.5密耳)的地方造成针孔。为了使Powderlink1174粉末涂料能够得到厚度大于5密耳的无缺陷涂膜,我们做了很多努力研究其配方。

为了膜厚达到3.5密耳的涂膜充分脱气,防止针孔,1174粉末涂料必须有足够的流动性并且有足够时间让涂料在固化前充分‘愈合’其缺陷。粉末涂料,包括TMMGU粉末涂料固化时的流动性和流度,都可以用流变仪方便地测定(5)。

四、流变性、添加剂和厚膜涂层

本研究中平板流变仪使用RheometricRMS-605力学谱图仪,试验中复合粘度地测定在升温速度2℃/min,切变频率10rad/s,并改变应力的条件下进行。流变仪测定每一剪切应力下的弹性模量(G′)和损失模量(G″)。从这些数据我们可计算出流动指数、平均流度、固化起始温度和最低粘度。再将这些数据与粉末涂料性质即凝胶时间和斜板流动性以及固化膜性质,特别是外观和无针孔时的膜厚进行比较。

图四是一典型固化流变图,图的纵坐标为动力粘度(η,其定义见表一),横坐标为温度。实验的开始,温度很低,粘度非常大;开始加热后,粘度随着温度的上升几乎是以指数级地下降;达到一定温度后,交联反应开始,粘度不再下降;然后随者温度的进一步上升;粘度急剧上升;最终,交联反应停止,动力粘度保持为常数。固化起始温度是按图四所示方式确定的。

表1、流变学定义

G′弹性剪切模量

G″损失剪切模量

ω切变频率

η′动力粘度G″/ω

η″复合粘度模拟部分G′/ω

η*复合动力粘度η*=(η′2+η″2)0.5

流动指数计算方式如图五所示,粘度代表阻止流动的能力,流度代表流动的能力。图五是流度既粘度的倒数对样品在2℃/min加热速度下加热时间作图所得。动力粘度η对于描述低粘度(高流度)下的流变性能比较好。粉末涂料的流平性不仅取决于低的粘度,而且取决于它保持在低粘度下的时间长短。对流度时间曲线下一直到凝胶点的区域进行积分,所得到的数值即流动指数。流动指数的单位压力的倒数,1/Pa,它可以被认为是单位压力下每密耳厚的膜侧向流动的距离(密耳)。

表2、1174粉末涂料标准配方及其涂膜性能

聚酯树脂Crylcoat310994.00

安息香1.40

催化剂PowderlinkMTSI0.50

钛白粉R-96040.00

流平剂ResiflowP-671.30

固化剂Powderlink1174(TMMGU)6.00

涂膜性质

烘烤温度(℃)175190

烘烤时间(min)2020

底材(磷酸铁处理CRS)BO1000BO1000

甲基乙基酮擦拭200+200+

涂膜外观致密桔皮致密桔皮

涂膜厚度(密耳)2.0/2.21.8/2.8

KNOOP硬度11.811.9

正/反冲击(in*lb)160/160160/160

60°光泽78.594.1

20°光泽45.677.2

盐雾试验,1008小时

蠕变性00

外观99

耐湿性,60℃,504小时无变化无变化

表二列出了用Powderlink1174交联剂配制的粉末涂料配方及其性能。图六显示了安息香,一种常用的粉末涂料脱气剂对流变性质的影响。标有1的曲线没有加安息香,标有2的曲线加了配方量的1.4%,标有3的曲线加了2.4%的安息香。安息香的加入降低了玻璃化温度,增加了固化起始温度。使用增塑剂是配制厚膜PMMGU粉末涂料的途径之一,但是安息香用量超过配方量的1.4%后对性能几乎没有改善;安息香用量为1.4%和2.4%时都可以得到3.2-3.5密耳厚的无针孔涂膜。

低溶解性的弱碱如碳酸钙和氧化镁可很好的延缓酸催化作用、调节固化进程,以使涂料完全固化前厚膜部位得以充分脱气。图七和表三说明碳酸钙的加入可以增加流动指数、平均流度和固化起始温度,最小粘度略有下降。结果是凝胶时间变长,在不改变斜板流动性情况下可得到外观更好的无针孔厚膜(∽4密耳)涂层。

好在甘脲型氨基树脂的固化速度率可以通过加入催化剂以及对催化剂有作用的助剂来调节。TMMGU粉末涂料中使用胺添加剂可提供更为广阔的配方范围。例如在使用氨基树脂固化剂的热固性液体涂料中,常常使用‘封闭胺’作为催化剂体系的一部分以获得更好的包装稳定性(6)。一般来讲使用胺封闭的体系要比不封闭的体系固化速率低;这是因为在这种体系中实际上存在着质子化的胺,即一种弱酸(高的pKa)。当喷涂好的涂料烘烤时,胺挥发导致催化剂有效解封闭,酸强度增加(低的pKa),从而促使氨基树脂交联反应以较高速度进行。胺封闭酸催化剂体系的pKa和挥发性对固化进程有决定性的影响。

表3、碳酸钙的影响

碳酸钙用量(wt.%)

02537.550

流动指数(1/P)21426890

平均流度(1/Pa*s)0.0110.0190.0260.032

最小粘度(Pa*s)49161915

起始固化温度(℃)185192210219

凝胶时间(s)358457774775

斜板流动性(cm)7.78.87.48.2

无针孔膜厚(密耳)∽3.44.04.03.9

涂膜外观致密桔皮平滑桔皮平滑桔皮平滑桔皮

在MTSI催化的TMMGU粉末涂料配方中,DABCO三乙烯二胺(一种非泛黄性固体胺,缩写为TED,空气产品和化工公司生产)的影响如图八和表四所示。TED的加入会导致流动指数(流度对时间的积分)和平均流度(平均粘度的倒数)增加,另外最低粘度会降低,起始固化温度会上升。结果使凝胶时间变长,斜板流动性更好,从而使外观得到改善(平滑桔皮)的厚膜涂层。TED用量最大(0.5%重量)时,不发生固化反应,因此表中没有列出其数据。

在甘脲固化的粉末涂料中,加入那些能够提高酸催化剂pKa的非泛黄性胺添加剂,虽然不能完全但基本可以防止粉末涂料在其粒子开始熔融阶段和聚结阶段发生交联反应。熔融膜可以达到较低的粘度和更好的流平。随着进

表4、TED浓度的影响

TED用量(wt.%)

0.00.330.41

流动指数(1/P)2772112

平均流度(1/Pa*s)0.0130.0350.053

最小粘度(Pa*s)391411

起始固化温度(℃)172200214

凝胶时间(s)358515775

斜板流动性(cm)7.79.718.7

无针孔膜厚(密耳)∽3.4>3.8>4.7

涂膜外观致密桔皮平滑桔皮平滑桔皮

一步的加热,封闭胺的挥发也可防止膜表面过早的热固化或‘结皮’,促进‘表面愈合’。四甲基哌醇(TAA-o1,赫斯公司生产),一种作为阻位胺光稳定剂中间体而出售的非泛黄性固体胺有类似作用。用上述两种添加剂都可以得到非常平滑的、高光泽的、厚达5密耳的无针孔膜。(见表五和表六)

表5、TAA-ol和DABCO催化的无缺陷1174粉末涂料配方

组份WtWt

聚酯树脂Crylcoat349392.094.0

DABCO(三乙烯二胺)0.23

TAA-ol(四甲基哌醇)0.3

催化剂PowderlinkMTSI0.50.4

流平剂Modaflow20001.3

流平剂ResiflowP671.4

安息香1.51.3

钛白粉R-96040.040.0

固化剂Powderlink11748.06.0

采用复合添加剂的方式甚至可以得到更厚的无缺陷膜。加入配方量5%的增塑剂单硬酸铝和0.3%的TED的效果如图九所示。TED和单硬脂酸铝复合使用可大幅度的降低最低粘度(3.1Pa?s),提高流动性;这样可以得到厚达17

表6、无缺陷涂膜性质

涂膜性质TAA-olDABCO

烘烤温度(℃)190190

最大无针孔厚度(密耳)5.04.5

测试涂膜厚度(密耳)2.2/2.71.8/2.5

甲基乙基酮擦拭200+200+

涂膜外观光滑光滑

黄变指数-0.56-1.08

KNOOP硬度12.512.4

正/反冲击(in*lb)160/160160/160

60°光泽92.394.7

20°光泽78.888.4

储存稳定性(40℃,天)>21>21

盐雾试验,500小时

蠕变性00

外观1010

耐湿性,60℃,504小时无变化无变化

表7、TAA-ol或DABCO/单硬脂酸铝催化的1174粉末涂料配方

组份DABCO/DABCO/TAA-ol/

单硬脂酸铝单硬脂酸铝单硬脂酸铝

聚酯树脂Crylcoat310994.0

聚酯树脂Crylcoat349394.092.0

单硬脂酸铝5.05.03.0

DABCO(三乙烯二胺)0.30.2

TAA-ol(四甲基哌醇)0.3

催化剂PowderlinkMTSI0.50.40.5

流平剂Modaflow20001.31.3

流平剂ResiflowP671.4

安息香1.41.41.5

钛白粉R-96040.040.040.0

固化剂Powderlink11746.06.08.0

密耳的无针孔涂膜,在正常膜厚(1∽3密耳)时其性能保持良好。当这个复合添加剂应用于高Tg,高分支聚酯树脂Crylcoat3493(UCB化学公司生产)配制的粉末涂料时,流动性仍然很好(最低粘度31Pa?s),无针孔膜厚度可达10密耳;该配方的优点是具有极好的储存稳定性,它既可以在较高温度下快速固

化,也可以在较低温度下固化。TAA-o1和单硬脂酸铝复合添加剂也有相似效果(参见表七和表八)。

表8、TAA-ol或DABCO/单硬脂酸铝催化的1174粉末涂料涂膜性质

涂膜性质DABCO/DABCO/TAA-ol/

单硬脂酸铝单硬脂酸铝单硬脂酸铝

烘烤温度(℃)200190190

最大无针孔厚度(密耳)171012

测试涂膜厚度(密耳)1.9/3.02.8/3.92.5/2.8

甲基乙基酮擦拭200+200+200+

涂膜外观光滑光滑光滑

黄变指数0.670.36-0.56

KNOOP硬度10.111.812.2

正/反冲击(in*lb)160/16030/5160/160

60°光泽81.090.099.5

20°光泽50.052.070.5

储存稳定性(40℃,天)>10>60>21

盐雾试验,500小时

蠕变性000

外观101010

耐湿性,60℃,504小时无变化无变化无变化

五、平滑的TMMGU无光粉末涂料

Powderlink1174固化的粉末涂料的一个独特性能是通过催化剂的选择能够将涂膜外观由光滑的表面改变为所希望的外观如平滑无光和皱纹表面,这一点是其他粉末涂料很难做到的。这种特性是不久前用环已烷基氨基磺酸(Cyclamicacid,Abbott实验室提供)作TMMGU粉末涂料催化剂时发现的(3,7),在与某些聚酯树脂搭配时,不用加蜡或二氧化硅就可得到60度光泽为35%∽45%平滑无光膜,并且具有良好的性能(参见表九和表十)。

表九和表十还列出了另外两个通过选择催化剂得到的无光粉末涂料配方及其涂膜性质。各种金属的磺酸盐用作1174粉末涂料的催化剂都可以得到很好的无光膜,甲磺酸锡是一种特别好的催化剂,它可以给出非常平滑的无光膜,且具有很好的耐冲击性能和其他机械性能。另外该涂料通过烘烤后不泛黄,且具有极好的耐老化性能。

表9、平滑无光1174粉末涂料配方

组份wt.wt.wt.

聚酯树脂Crylcoat310994.0

聚酯树脂Crylcoat349377.4

聚酯树脂Kuotex1000H63.6

安息香1.41.41.4

催化剂Cyclamicacid0.3

催化剂(2%甲磺酸锡母料)20.030.0

流平剂ResiflowP671.31.31.3

钛白粉R-96040.040.040.0

固化剂Powderlink11746.06.07.0

表10、平滑无光1174粉末涂料涂膜性质

涂膜性质CyclamicCrylcoatKuotex

acid34931000H

烘烤温度(℃)190190185

甲基乙基酮擦拭200+200+200+

涂膜外观光滑光滑光滑

涂膜厚度(密耳)2.52.42.0

黄变指数-2.4-3.9

KNOOP硬度10.712.812.4

正/反冲击(in*lb)90/60160/160160/160

60°光泽485043.1

20°光泽13118.8

盐雾试验,1008小时

蠕变性000

外观999

耐湿性,60℃,504小时无变化无变化无变化

图十一是一涂履环已烷基氨基磺酸催化的Powderlink1174无光粉末涂料样板的照片,很明显该涂料外观平滑,流平极佳。图十二是同一样板45倍显微照片。尽管手摸眼看样板是平滑的,但显微照片表明涂膜表面上布满了微小花纹,外观几乎是微粒状的。正是这种表面使光线发生有效散射,导致宏观平滑无光的涂膜表面。

六、耐久性TMMGU皱纹、花纹粉末涂料

皱纹、花纹粉末涂料正在赢得某些液体涂料甚至平滑粉末涂料所占据的传统市场,这种涂料令人爽心悦目,手感可从柔软的改变到坚韧的甚至粗糙或毛糙的。人们发现Powderlink1174粉末涂料用几种不同的胺封闭磺酸催化时,可得到外观极好的耐候皱纹粉末涂料(8)。虽然人们都知道有同类型的环氧基粉末涂料(9),但到目前为止,这类涂料还很难得到耐候性皱纹涂料。由于Powderlink1174粉末涂料本身具有极佳的耐候性能,因此使用胺封闭磺酸催化剂就可配制耐候性优异的皱纹粉末涂料。另外高的聚酯树脂/固化剂比(94/6)也使它具有经济优势。它的用途包括收录机、影碟机、计算机、家用电器及其它电子、电气产品、室外家具、栅栏、球场设施及卡车工具箱也是其潜在用途。

表十一列出了皱纹性TMMGU粉末涂料配方,在这些配方中用胺封闭磺酸作催化剂。配方A中催化剂为二甲基乙醇胺封闭的对甲苯磺酸盐(DMEA/P-TSA盐),配方B为二甲胺基丙醇封闭的对甲苯磺酸盐(DMAMP/P-TSA盐,氰特工业有限公司产,商品名为WL-catalystX-320)。配方C为三氟甲磺酸二乙胺盐(3M化工公司产品,商品名为FluoradFC-520催化剂)(10),所有这些催化剂都是以溶液形成得到的,必须与聚酯树脂通过熔融混合做成母料并除去溶剂。

表11、耐久的皱纹型1174粉末涂料配方

组份wt.wt.wt.

聚酯树脂Crylcoat310981.881.878.5

安息香2.42.42.4

DMEA/p-TSA(2.4%母料)12.50

DMAMP/p-TSA(2.4%母料)12.50

FC-520(1.9%母料)15.80

流平剂ResiflowP671.301.301.30

钛白粉R-96040.040.040.0

固化剂Powderlink11746.06.06.0

表12、耐久的皱纹型1174粉末涂料涂膜性质

涂膜性质DMEA/p-TSADMAMP/p-TSAFC-520

烘烤温度(℃)190175175

甲基乙基酮擦拭200+200+200+

涂膜外观重皱纹柔软皱纹粗糙皱纹

涂膜厚度(密耳)3.4/4.13.4/4.12.9/3.8

KNOOP硬度12.412.412.0

正/反冲击(in*lb)160/160130/130130/110

60°光泽12.07.94.3

20°光泽2.82.52.4

盐雾试验,1008小时

蠕变性000

外观999

耐湿性,60℃,504小时无变化无变化无变化

从表一十二可知,上述配方制备的皱纹粉末涂料性能都很好。配方A加入了0.3%的DMEA/p-TSA催化剂,得到仿皮感的重皱纹涂膜;配方B加入了0.3%DMAMP/p-TSA催化剂,得到一种令人愉快的无规花纹涂膜,它手感柔软更为平滑;而配方C加入了0.3%的FluoradFC-520催化剂,得到一种有点星状的皱纹涂膜,它手感较为粗糙或毛糙,令人联想起古老的铸铁表面。图一十三和一十四分别为WL-catalystX-320和FluoradFC-520封闭磺酸催化的1174粉末涂料样板的照片,他们都具有令人悦目的外观,只是花纹象上面所说的有点不同。他们的显微照片更能说明问题,图一十五是X-320的显微照片,其皱纹花样为无规状,宽度0.25∽0.50mm,平均膜厚5∽8密耳,无针孔(我们发现膜厚超过10密耳也没有针孔)。图一十六是FC-520的显微照片,它显示星状外观;星状花纹中心没有针孔,它只是好几条皱纹的会聚点;我们发现不论星形出现与否,该涂料都具有很好的性能。

采用新的聚酯树脂如Crylcoat3493,Kuotex1000H(产协企业股份有限公司产)和Rucote620(Ruco聚合物公司产)配制1174皱纹性粉末涂料,其性能具有良好的重现性。最近UCB化工公司推出的一种新的聚酯树脂Crylcoat820和一种新的皱纹性催化剂Crylcoat120,是为配制耐久性的1174皱纹粉末涂料专门设计的。另一途径是采用Synthron公司的SI32-18a催化剂,它是以附载在固体负载物上的形式提供的。所有以上产品与TMMGU正确配合的话都可以得到性能优异的美丽的皱纹性粉末涂料。表一十三和表一十四列出了一些配方及其涂膜性质。加入少量的着色颜料,则可以得到各种漂亮动人的彩色皱纹涂料。(见表一十五和表一十六)

表13、耐久的皱纹型1174粉末涂料配方

组份wt.wt.wt.wt.

安息香1.41.41.41.4

聚酯树脂Crylcoat349382.994.0

聚酯树脂Crylcoat82087.2

聚酯树脂Kuotex1000H82.9

催化剂X-320(2.5%母料)11.411.4

催化剂SI-32-18a1.5

流平剂ResiflowP671.31.31.31.3

钛白粉R-96040.040.040.040.0

固化剂Powderlink11746.06.06.36.0

表14、耐久的皱纹型1174粉末涂料涂膜性质

涂膜性质3493/1000H/820/3493/

X-320X-32012032-18a

烘烤温度(℃)190190190190

烘烤时间(min)20202020

甲基乙基酮擦拭200+200+200+200+

涂膜外观无规皱纹平滑皱纹无规皱纹无规皱纹

涂膜厚度(密耳)2.1/2.93.4/3.83.8/4.43.2/4.1

KNOOP硬度13.412.612.612.7

正/反冲击(in*lb)160/160160/160160/160160/160

60°光泽4.13.92.73.4

20°光泽2.32.22.22.2

盐雾试验,1008小时

蠕变性0000

外观10101010

耐湿性,60℃,504小时无变化无变化无变化无变化

表15、耐久的彩色皱纹型1174粉末涂料配方

组份蓝色洋红色绿色黑色

聚酯树脂Crylcoat349382.982.982.982.9

安息香1.41.41.41.4

X-320(2.6%母料)11.411.411.411.4

流平剂ResiflowP671.31.31.31.3

钛白粉R-96040.040.040.01.0

固化剂Powderlink11746.06.06.06.0

蓝颜料NCNF2.0

红颜料1226.0

绿颜料GLN2.0

碳酸钙20.0

黑颜料FW2002.0

表16、耐久的彩色皱纹型1174粉末涂料涂膜性质

涂膜性质蓝色绿色洋红色黑色

烘烤温度(℃)190190190190

烘烤时间(min)20202020

甲基乙基酮擦拭200+200+200+200+

涂膜厚度(密耳)3.03.02.03.2

KNOOP硬度12-1312-1312-1312.5

正/反冲击(in*lb)160/160160/160160/160160/160

60°光泽2.42.82.43.9

20°光泽0.81.80.80.4

盐雾试验,1008小时

蠕变性0000

外观10101010

耐湿性,60℃,504小时无变化无变化无变化无变化

七、结论

膜用聚酯范文篇8

环氧聚酯粉末依靠静电吸附到工件的磷化膜层后,在固化烘箱中产生熔融、胶化、流平、固化四个过程。其中,熔融、胶化、流平三个过程中的粉末出现液体特征,会渗入磷化膜形成的孔洞中,从而粉末层与磷化膜层紧密结合,那么,工件在受到很少外力作用下会出现塑层脱离钢板磷化膜层的现象,出现掉塑问题。

二、掉塑影响原因

造成掉塑的因素有以下几个方面:

1、磷化膜严重发黄、发花。在电子显微镜下观察可以发现:发黄、发花的磷化膜层结晶不规则。

2、局部没有磷化膜。这样的膜层会造成掉塑。

3、固化烘箱温度过高或过低。

固化烘箱温度过低,会造成环氧聚酯粉末交连不完全。

固化烘箱温度过高,会使环氧聚酯粉末碳化。温度过高或过低都会造成喷塑层发脆,抗冲击能力下降,出现掉塑现象。

4、前处理水洗工序冲洗不彻底,会造成磷化膜有化工残液或盐类残留。残留的残液或盐类会渗入磷化膜层中并吸取磷化结晶中的结晶水,对钢板产生腐蚀。这样的工件掉塑会发现钢板表面有锈蚀现象。

5、烘干烘箱温度低会造成磷化结晶中含水量过高。粉末固化后水分被封闭在喷塑层内。工件表面出现起泡现象,经过一段时间后,钢板会出现锈蚀现象,工件出现掉塑。三、掉塑的解决方法

要解决掉塑问题,必须保证磷化膜均匀、细密,膜厚在3-6um左右;并且还要保证烘箱温度稳定在一定范围内。

1、解决磷化膜发黄、发花现象。

由于造成磷化膜发黄、发花现象的原因很多,这里暂不讨论。如果发现工件磷化膜发黄、发花现象,将工件摘下,用30#水砂纸将发黄、发花部分打磨干净后,重新进行前处理即可。

2、解决固化烘箱温度不稳定问题。

在固化烘箱安装温度自动控制装置;操作工每1小时对烘箱温度进行记录,发现异常立即通知维修人员进行维修。

3、解决前处理水洗工序冲洗不彻底问题。

如果是由于水洗喷嘴及管路不畅通造成的水洗工序冲洗不彻底,对水洗喷嘴及管路进行酸洗(稀释的盐酸加缓蚀剂);如果是设备压力小,将水洗离心泵更换为大流量低转速泵。如果发现磷化膜烘干后有白色的盐类残印,用30#水砂纸将残印打磨掉后,再进行喷涂。

4、解决烘干烘箱温度低的问题。

烘干烘箱温度低的解决方法与固化烘箱温度低的解决方法相同。

四、如何预防掉塑问题的发生

应立刻观察前处理工件磷化膜状况及烘箱温度情况,通过时刻观察、及时处理,可以避免掉塑问题的发生。

1、设立喷前检查岗

2、对喷粉工件进行检查

在工件喷涂前,对磷化膜表面进行检查,发现磷化膜发黄、发花现象或磷化膜层有化工残液或盐类残印,必须将工件摘下,处理后,重新上线磷化。

3、对烘箱温度定期进行检查。

膜用聚酯范文篇9

环氧聚酯粉末依靠静电吸附到工件的磷化膜层后,在固化烘箱中产生熔融、胶化、流平、固化四个过程。其中,熔融、胶化、流平三个过程中的粉末出现液体特征,会渗入磷化膜形成的孔洞中,从而粉末层与磷化膜层紧密结合,那么,工件在受到很少外力作用下会出现塑层脱离钢板磷化膜层的现象,出现掉塑。

二、掉塑原因

造成掉塑的因素有以下几个方面:

1、磷化膜严重发黄、发花。在显微镜下观察可以发现:发黄、发花的磷化膜层结晶不规则。

2、局部没有磷化膜。这样的膜层会造成掉塑。

3、固化烘箱温度过高或过低。

固化烘箱温度过低,会造成环氧聚酯粉末交连不完全。

固化烘箱温度过高,会使环氧聚酯粉末碳化。温度过高或过低都会造成喷塑层发脆,抗冲击能力下降,出现掉塑现象。

4、前处理水洗工序冲洗不彻底,会造成磷化膜有化工残液或盐类残留。残留的残液或盐类会渗入磷化膜层中并吸取磷化结晶中的结晶水,对钢板产生腐蚀。这样的工件掉塑会发现钢板表面有锈蚀现象。

5、烘干烘箱温度低会造成磷化结晶中含水量过高。粉末固化后水分被封闭在喷塑层内。工件表面出现起泡现象,经过一段时间后,钢板会出现锈蚀现象,工件出现掉塑。

三、掉塑的解决

要解决掉塑,必须保证磷化膜均匀、细密,膜厚在3-6um左右;并且还要保证烘箱温度稳定在一定范围内。

1、解决磷化膜发黄、发花现象。

由于造成磷化膜发黄、发花现象的原因很多,这里暂不讨论。如果发现工件磷化膜发黄、发花现象,将工件摘下,用30#水砂纸将发黄、发花部分打磨干净后,重新进行前处理即可。

2、解决固化烘箱温度不稳定问题。

在固化烘箱安装温度自动控制装置;操作工每1小时对烘箱温度进行记录,发现异常立即通知维修人员进行维修。

3、解决前处理水洗工序冲洗不彻底问题。

如果是由于水洗喷嘴及管路不畅通造成的水洗工序冲洗不彻底,对水洗喷嘴及管路进行酸洗(稀释的盐酸加缓蚀剂);如果是设备压力小,将水洗离心泵更换为大流量低转速泵。如果发现磷化膜烘干后有白色的盐类残印,用30#水砂纸将残印打磨掉后,再进行喷涂。

4、解决烘干烘箱温度低的问题。

烘干烘箱温度低的解决方法与固化烘箱温度低的解决方法相同。

四、如何预防掉塑问题的发生

应立刻观察前处理工件磷化膜状况及烘箱温度情况,通过时刻观察、及时处理,可以避免掉塑问题的发生。

1、设立喷前检查岗

2、对喷粉工件进行检查

在工件喷涂前,对磷化膜表面进行检查,发现磷化膜发黄、发花现象或磷化膜层有化工残液或盐类残印,必须将工件摘下,处理后,重新上线磷化。

3、对烘箱温度定期进行检查。

膜用聚酯范文篇10

耐久性粉末涂料具有很好的耐光致老化与降解性能,它即可用于室内制品的涂装,也可用于室外制品的涂装。为了得到良好的室外涂膜性能,粉末涂料所有组份包括交联剂,必须具有良好的耐光致老化与降解性能。氨基树脂交联剂如密胺类树脂具有优异耐久性能而广泛应用于液体涂料工业;由于几十年来良好的记录,它们成为液体涂料的首选交联剂,并且可得到低成本、耐久的、光稳定的坚硬涂膜。

Powderlink1174树脂(氰特工业有限公司生产,以下简称1174)是另一种氨基树脂交联剂,它是以甘脲而不是以密胺为基础的。人们都知道甘脲型氨基树脂涂料具有优异的室外耐久性能,而1174它主要是单体的四甲氧基甲基甘脲(TMMGU),它是高熔点的非粘性、不结块、易粉碎的固体,特别适合于室外型耐久粉末涂料的配制。产品1174其熔点高于90℃,它的主要成份TMMGU结构如图一所示。本论文我们将对Powderkink1174固化的粉末涂料配方研究和开发的最新成果作一论述(1)。

二、Powderlink1174交联剂和催化剂的特殊作用

在酸催化剂的存在下,氨基树脂交联剂包括1174,能够和含有羟基、羧基、酰胺基、氨基甲酸酯、硫醇基及氨基官能团的聚合物反应并交联。酸催化剂如PowderlinkMTSI催化剂(甲苯基甲基磺酰亚胺,氰特工业有限公司生产),可促进TMMGU中甲氧基甲基官能团与聚合物链上反应性官能团的交换反应,形成交联网络并生成甲醇。该反应如图二所示。前文中(2,3)我们讨论了几种有效催化剂,通过选择不同的催化剂,使用1174可得到多种多样的粉末涂料,如高光的、无光的和皱纹的粉末涂料。另外使用添加剂常常可以改变指定酸催化剂的强度,采用这种方式也可以使涂料的性能和外观得到明显的改善。我们发现使用磺酰亚胺催化剂MTSI,可以得到平滑的、无缺陷的、高光泽的厚膜涂料(4)。

三、高光泽无缺陷厚膜粉末涂料

对绝大多数最终用途来说,粉末涂层的典型膜厚不超过3密耳,近几年来粉末涂料涂膜厚度的发展趋势是趋于薄层化。很明显如果1.5∽2密耳的涂层能得到同样的外观和保护效果,3∽4密耳的涂层就有点浪费了。但是在某些用途中要求厚膜涂层,例如欧洲建筑涂料就有这种特殊要求。在欧洲建筑涂料要标上“合格”标签需要经过严格审批,合格涂料要求最低膜厚为2.4密尔(60微米)。为了达到上述膜厚,并考虑到法拉第屏蔽效应(在工件某些区域粉末的静电排斥效应),施工者不得不喷涂得比所需膜厚更厚,偶尔膜厚高达5密耳,图三描绘了这种情况。尽管用TMMGU和MTSI制造的粉末涂料固化时挥发份只有典型聚氨酯粉末涂料的一半左右(3),如果不使用助剂,甲醇的挥发将在膜比较厚(>3.5密耳)的地方造成针孔。为了使Powderlink1174粉末涂料能够得到厚度大于5密耳的无缺陷涂膜,我们做了很多努力研究其配方。

为了膜厚达到3.5密耳的涂膜充分脱气,防止针孔,1174粉末涂料必须有足够的流动性并且有足够时间让涂料在固化前充分‘愈合’其缺陷。粉末涂料,包括TMMGU粉末涂料固化时的流动性和流度,都可以用流变仪方便地测定(5)。

四、流变性、添加剂和厚膜涂层

本研究中平板流变仪使用RheometricRMS-605力学谱图仪,试验中复合粘度地测定在升温速度2℃/min,切变频率10rad/s,并改变应力的条件下进行。流变仪测定每一剪切应力下的弹性模量(G′)和损失模量(G″)。从这些数据我们可计算出流动指数、平均流度、固化起始温度和最低粘度。再将这些数据与粉末涂料性质即凝胶时间和斜板流动性以及固化膜性质,特别是外观和无针孔时的膜厚进行比较。

图四是一典型固化流变图,图的纵坐标为动力粘度(η,其定义见表一),横坐标为温度。实验的开始,温度很低,粘度非常大;开始加热后,粘度随着温度的上升几乎是以指数级地下降;达到一定温度后,交联反应开始,粘度不再下降;然后随者温度的进一步上升;粘度急剧上升;最终,交联反应停止,动力粘度保持为常数。固化起始温度是按图四所示方式确定的。

流动指数计算方式如图五所示,粘度代表阻止流动的能力,流度代表流动的能力。图五是流度既粘度的倒数对样品在2℃/min加热速度下加热时间作图所得。动力粘度η对于描述低粘度(高流度)下的流变性能比较好。粉末涂料的流平性不仅取决于低的粘度,而且取决于它保持在低粘度下的时间长短。对流度时间曲线下一直到凝胶点的区域进行积分,所得到的数值即流动指数。流动指数的单位压力的倒数,1/Pa,它可以被认为是单位压力下每密耳厚的膜侧向流动的距离(密耳)。

表二列出了用Powderlink1174交联剂配制的粉末涂料配方及其性能。图六显示了安息香,一种常用的粉末涂料脱气剂对流变性质的影响。标有1的曲线没有加安息香,标有2的曲线加了配方量的1.4%,标有3的曲线加了2.4%的安息香。安息香的加入降低了玻璃化温度,增加了固化起始温度。使用增塑剂是配制厚膜PMMGU粉末涂料的途径之一,但是安息香用量超过配方量的1.4%后对性能几乎没有改善;安息香用量为1.4

%和2.4%时都可以得到3.2-3.5密耳厚的无针孔涂膜。

低溶解性的弱碱如碳酸钙和氧化镁可很好的延缓酸催化作用、调节固化进程,以使涂料完全固化前厚膜部位得以充分脱气。图七和表三说明碳酸钙的加入可以增加流动指数、平均流度和固化起始温度,最小粘度略有下降。结果是凝胶时间变长,在不改变斜板流动性情况下可得到外观更好的无针孔厚膜(∽4密耳)涂层。

好在甘脲型氨基树脂的固化速度率可以通过加入催化剂以及对催化剂有作用的助剂来调节。TMMGU粉末涂料中使用胺添加剂可提供更为广阔的配方范围。例如在使用氨基树脂固化剂的热固性液体涂料中,常常使用‘封闭胺’作为催化剂体系的一部分以获得更好的包装稳定性(6)。一般来讲使用胺封闭的体系要比不封闭的体系固化速率低;这是因为在这种体系中实际上存在着质子化的胺,即一种弱酸(高的pKa)。当喷涂好的涂料烘烤时,胺挥发导致催化剂有效解封闭,酸强度增加(低的pKa),从而促使氨基树脂交联反应以较高速度进行。胺封闭酸催化剂体系的pKa和挥发性对固化进程有决定性的影响。

在MTSI催化的TMMGU粉末涂料配方中,DABCO三乙烯二胺(一种非泛黄性固体胺,缩写为TED,空气产品和化工公司生产)的影响如图八和表四所示。TED的加入会导致流动指数(流度对时间的积分)和平均流度(平均粘度的倒数)增加,另外最低粘度会降低,起始固化温度会上升。结果使凝胶时间变长,斜板流动性更好,从而使外观得到改善(平滑桔皮)的厚膜涂层。TED用量最大(0.5%重量)时,不发生固化反应,因此表中没有列出其数据。

在甘脲固化的粉末涂料中,加入那些能够提高酸催化剂pKa的非泛黄性胺添加剂,虽然不能完全但基本可以防止粉末涂料在其粒子开始熔融阶段和聚结阶段发生交联反应。熔融膜可以达到较低的粘度和更好的流平。随着进

一步的加热,封闭胺的挥发也可防止膜表面过早的热固化或‘结皮’,促进‘表面愈合’。四甲基哌醇(TAA-o1,赫斯公司生产),一种作为阻位胺光稳定剂中间体而出售的非泛黄性固体胺有类似作用。用上述两种添加剂都可以得到非常平滑的、高光泽的、厚达5密耳的无针孔膜。(见表五和表六)

采用复合添加剂的方式甚至可以得到更厚的无缺陷膜。加入配方量5%的增塑剂单硬酸铝和0.3%的TED的效果如图九所示。TED和单硬脂酸铝复合使用可大幅度的降低最低粘度(3.1Pa·s),提高流动性;这样可以得到厚达17

密耳的无针孔涂膜,在正常膜厚(1∽3密耳)时其性能保持良好。当这个复合添加剂应用于高Tg,高分支聚酯树脂Crylcoat3493(UCB化学公司生产)配制的粉末涂料时,流动性仍然很好(最低粘度31Pa·s),无针孔膜厚度可达10密耳;该配方的优点是具有极好的储存稳定性,它既可以在较高温度下快速固

化,也可以在较低温度下固化。TAA-o1和单硬脂酸铝复合添加剂也有相似效果(参见表七和表八)。

五、平滑的TMMGU无光粉末涂料

Powderlink1174固化的粉末涂料的一个独特性能是通过催化剂的选择能够将涂膜外观由光滑的表面改变为所希望的外观如平滑无光和皱纹表面,这一点是其他粉末涂料很难做到的。这种特性是不久前用环已烷基氨基磺酸(Cyclamicacid,Abbott实验室提供)作TMMGU粉末涂料催化剂时发现的(3,7),在与某些聚酯树脂搭配时,不用加蜡或二氧化硅就可得到60度光泽为35%∽45%平滑无光膜,并且具有良好的性能(参见表九和表十)。

表九和表十还列出了另外两个通过选择催化剂得到的无光粉末涂料配方及其涂膜性质。各种金属的磺酸盐用作1174粉末涂料的催化剂都可以得到很好的无光膜,甲磺酸锡是一种特别好的催化剂,它可以给出非常平滑的无光膜,且具有很好的耐冲击性能和其他机械性能。另外该涂料通过烘烤后不泛黄,且具有极好的耐老化性能。

涂履环已烷基氨基磺酸催化的Powderlink1174无光粉末涂料样板的照片,很明显该涂料外观平滑,流平极佳。图十二是同一样板45倍显微照片。尽管手摸眼看样板是平滑的,但显微照片表明涂膜表面上布满了微小花纹,外观几乎是微粒状的。正是这种表面使光线发生有效散射,导致宏观平滑无光的涂膜表面。

六、耐久性TMMGU皱纹、花纹粉末涂料

皱纹、花纹粉末涂料正在赢得某些液体涂料甚至平滑粉末涂料所占据的传统市场,这种涂料令人爽心悦目,手感可从柔软的改变到坚韧的甚至粗糙或毛糙的。人们发现Powderlink1174粉末涂料用几种不同的胺封闭磺酸催化时,可得到外观极好的耐候皱纹粉末涂料(8)。虽然人们都知道有同类型的环氧基粉末涂料(9),但到目

前为止,这类涂料还很难得到耐候性皱纹涂料。由于Powderlink1174粉末涂料本身具有极佳的耐候性能,因此使用胺封闭磺酸催化剂就可配制耐候性优异的皱纹粉末涂料。另外高的聚酯树脂/固化剂比(94/6)也使它具有经济优势。它的用途包括收录机、影碟机、计算机、家用电器及其它电子、电气产品、室外家具、栅栏、球场设施及卡车工具箱也是其潜在用途。

表十一列出了皱纹性TMMGU粉末涂料配方,在这些配方中用胺封闭磺酸作催化剂。配方A中催化剂为二甲基乙醇胺封闭的对甲苯磺酸盐(DMEA/P-TSA盐),配方B为二甲胺基丙醇封闭的对甲苯磺酸盐(DMAMP/P-TSA盐,氰特工业有限公司产,商品名为WL-catalystX-320)。配方C为三氟甲磺酸二乙胺盐(3M化工公司产品,商品名为FluoradFC-520催化剂)(10),所有这些催化剂都是以溶液形成得到的,必须与聚酯树脂通过熔融混合做成母料并除去溶剂。

配方制备的皱纹粉末涂料性能都很好。配方A加入了0.3%的DMEA/p-TSA催化剂,得到仿皮感的重皱纹涂膜;配方B加入了0.3%DMAMP/p-TSA催化剂,得到一种令人愉快的无规花纹涂膜,它手感柔软更为平滑;而配方C加入了0.3%的FluoradFC-520催化剂,得到一种有点星状的皱纹涂膜,它手感较为粗糙或毛糙,令人联想起古老的铸铁表面。图一十三和一十四分别为WL-catalystX-320和FluoradFC-520封闭磺酸催化的1174粉末涂料样板的照片,他们都具有令人悦目的外观,只是花纹象上面所说的有点不同。他们的显微照片更能说明问题,图一十五是X-320的显微照片,其皱纹花样为无规状,宽度0.25∽0.50mm,平均膜厚5∽8密耳,无针孔(我们发现膜厚超过10密耳也没有针孔)。图一十六是FC-520的显微照片,它显示星状外观;星状花纹中心没有针孔,它只是好几条皱纹的会聚点;我们发现不论星形出现与否,该涂料都具有很好的性能。

采用新的聚酯树脂如Crylcoat3493,Kuotex1000H(产协企业股份有限公司产)和Rucote620(Ruco聚合物公司产)配制1174皱纹性粉末涂料,其性能具有良好的重现性。最近UCB化工公司推出的一种新的聚酯树脂Crylcoat820和一种新的皱纹性催化剂Crylcoat120,是为配制耐久性的1174皱纹粉末涂料专门设计的。另一途径是采用Synthron公司的SI32-18a催化剂,它是以附载在固体负载物上的形式提供的。所有以上产品与TMMGU正确配合的话都可以得到性能优异的美丽的皱纹性粉末涂料。表一十三和表一十四列出了一些配方及其涂膜性质。加入少量的着色颜料,则可以得到各种漂亮动人的彩色皱纹涂料。

七、结论

Powderlink1174作为一种耐久性粉末涂料交联剂,给粉末涂料工业带来了新的配方选择,该交联剂能提供普通的耐候高光厚涂膜、平滑无光和皱纹涂膜。通过使用添加剂可以调节酸催化剂强度和固化前的流变性能,从而得到非常厚的、性能良好的高光无缺陷粉末涂料。使用环己烷基氨基磺酸或其他催化剂配制无光粉末,使用胺封闭磺酸催化剂配制皱纹粉末,这点在粉末涂料工业是独特的。皱纹性粉末涂料最终外观和性能取决于胺封闭磺酸的类型和浓度,皱纹的深浅和手感也是一样。

总之,含有Powderlink1174交联剂的粉末涂料具有化学多样性,各种方式包括加入添加剂和催化剂都可以改善其流动性能,最终得到所需要的涂膜性质和外观,以满足不同的应用要求。