漏电保护器范文10篇

时间:2023-03-23 11:52:55

漏电保护器

漏电保护器范文篇1

关键词:漏电保护器作用局限性等电位联结

0引言

八十年代以前,我国仍沿用前苏联模式一以零序保护作为接地故障保护。这种方式所检测的电流为零序电流,其可以用于包括TN-C系统在内的所有系统,但保护整定值必须大于N线和PEN线中流过的三相不平衡电流、谐波电流以及正常泄漏电流之和,其值约数十至数百安。这么大的整定值只能保护线路绝缘,而不能有效地防人身电击或接地电弧引起的电气火灾。八十年代后,采用了漏电保护器(以下简称RCD),它所检测的是剩余电流,即被保护回路内相线和中性线电流瞬时值的代数和(其中包括中性线中的三相不平衡电流和谐波电流),此电流即为正常的泄漏电流和故障时的接地故障电流。为此,RCD的整定值,即其额定动作电流In,只需躲开正常泄漏电流值即可,此值以毫安计,所以RCD能十分灵敏地切断保护回路的接地故障,还可用作防直接接触电击的后备保护。这在我国多年对RCD的实际使用中已得到了证明。然而,在对RCD的进一步使用中,应注意到它所存在的不足之处。

1RCD作用的局限性

1.1RCD不能防止从别处传导来的故障电压引起的电击事故

RCD对接地故障电流有很高的灵敏度,能在数十毫秒的时间内切断以毫安计的故障电流,即使接触电压高达220V,高灵敏度的RCD也能快速切断使人免遭电击的危险,这是众所周知的。但RCD只能对其保护范围内的接地故障起作用,而不能防止从别处传导来的故障电压引起的电击事故,见图1。

图1中乙户安装了RCD,,而相邻的甲户却是安装了熔断器(RD)来作为保护,在使用的过程中,若甲户随意将熔丝截面加大,并且使用电器不经心而导致电气设备绝缘损坏,由于故障电流不能使熔丝及时熔断而切断故障,此时故障电压通过PE线传导至乙户的用电设备上,由于RCD不动作,致使乙户存在了引起电击事故的不安全隐患。这种例子在当前的城市用电设计规范的前提下是不存在的。然而,在我国的乡镇,尤其是农村,笔者在调查中看到,因经济条件相差较大,加之用电设计不规范,此种现象则普遍存在,应当引起我们的高度重

视。

1.2有些场所和设备是不宜装设RCD

在某些供给数据处理设备的线路,其电源线路上常装的抗干扰的大容量滤电容器,见图2所示。

图2中电容器的一端是通过设备外壳和PE线接地的,其对地电容电流为:

按上两式计算,当C大于0.22µF时,正常工作的电容电流将超过15同mA,额定动作电流In为30mA的RCD可能误动,因其额定不动作电流Ino=(1/2)In=15mA。实际上电容器的初始充电电流远大于此,即若安装RCD为使它不误动,滤波电容的容量必须远小于0.22µF,这显然是不现实的,因此数据处理设备的防电击不能采用RCD。国际电工委员会在IEC364-4-707中为数据处理设备的电气安全制订了专门的标准。

1.3有些场所是不允许装设RCD

如医院的胸腔手术台,是不允许装设RCD的。因为新型的手术台是一种用电的医疗电气设备,其正常泄愤电流只允许为0.01mA,发生接地故障时泄漏电流仅允许为0.05mA,而RCD的灵敏度远不能满足这一要求,相反,它可能发生的误动却能引起供电中断而发生医疗事故。还有一些用电设备及场所不宜装设RCD,在这里就不再一一叙述了。

2RCD的选用和安装

2.1RCD的选用

虽RCD的作用具有一定的局限性,但它的功能优势却不能抹杀。为了防止接地故障引起电击和火灾事故,除断电将引起更严重后果的设备和线路外,全部电器装置都应按要求置于接地故障保护之下。末端插座回路不可避免地要接用一些移动式、手握式电气设备,这些最易发生接地故障,发生电击的危险也最大,为保证用电安全,不论那种接地系统,末端插座回路上都应装设RCD,并且它应为高灵敏度的普通型RCD,其额定动作电流In不大于30mA,.5倍In电流时的动用时间不大于0.04s。它既能防止电击(包括直接接触电击),也能防止电

弧性接地故障火灾。对固定式设备的过流保护若不能满足在5s内切断接地故障的要求也应装设此种RCD。而当建筑物电源总进线上的过流保护若不能在5s内切断接地故障时,应装设带少许延时的S(选择)型RCD,以保证与下级RCD的选择性,其In宜为100~500mA;且5倍In电流时的动作时间不大于0.15s。此S型RCD用以保护全部电气装置,但主要用于防接地故障引起的火灾,同时也作为插座回路RCD的后备。

2.2RCD的安装

对S型和普通型两级RCD的安装位置见图3所示。

图3中为某一住宅楼,每户配电箱的插座回路装一普通型的RCD,用于防火的S型RCD只在全楼电源总进线上安装。对大型电气装置可再加一级RCD,其In值和切断时间可以视具体情况确定。

对TT系统因接地故障电流小,必须装设RCD来防止接地故障引起的电气事故。IEC标准规定TT系统电气装置若只装一个RCD,则此RCD必须装设在电源总进线上,以确保整个电气装置都在其保护之下。而对TN系统电气装置电源总进线上的过流保护电器若能在5s内切断装置内发生的接地故障,可不在电源总进线上装设RCD。

3结论

RCD以其高灵敏的动作性能,能作为直接接触电击保护的后备措施。例如当人体不慎触及破损的灯头或插头的带220V的相线端子时,它也能迅速切断电源,使人免遭电击的危险。但这只是在绝缘外壳破损时的后备措施而不是正规的保护措施,不能由此误认为安装RCD后电气设备可以不接地,也可不作总等电位联结。综上所述可知,RCD尚非尽善尽美,它可能因为种种原因而拒动,和其他保护电器一样,并不完全可靠,如果作了接地,尤其是

作了等电位联结,其作用在于降低接触电压,则可使受电击的人往往免于致死。另外,如果绝缘损坏,使电气设备金属外壳带电压,设备接地可以为故障电流提供通路,RCD可在人体接触带电外壳前切断故障,从而使人体免遭一次电击危险,可见,不作接地和等电位联结是很危险的,两者应结合应用,相辅相成,从而获得最好的保护效果。

参考文献:

[1]IEC/TC64,国际电工委员会标准[S].

[2]曾保全,住宅接地设计的几个问题[J],建筑电气,2000,(4):9-11.

漏电保护器范文篇2

关键词:TN系统TT系统IT系统RCD保护接地接零

电能是一种即发即用、便于传输、使用的清洁能源。我国电力工业发展速度2000年全国发电量为1368.5TWH发电装机容量达到319GW,居世界第二位。电气化水平也得到了极大提高。电能已经成为我国各方面建设及人们生活中不可缺少的能源。电能的使用已遍及各行各业。如:电能用于金属熔炼、焊接、切割及金属热处理,用于电解、电镀及电化加工,电能还用于运输工业、医疗及农业灌溉等。现在,电能正愈来愈多地用来改善居住环境等。

1接地方式

长期以来,电力安全运行及正确使用电能一直是人们关心的问题,而配电系统的正确接地及有效保护技术又是安全利用电能的重要方面。

电力系统中,有两种接地方式,即中性点直接接地(亦称大电流接地系统),另一种是中性点不接地(或经消弧线圈接地,亦称小电流接地系统)。在110kV及以上的高压或超高压电力系统中,一般采用中性点直接接地,这是为了降低高压电器设备的绝缘水平,也可以防止在发生接地故障后产生的过电压,可免除单相接地后的不对称性。这种接地方式下,接地故障所产生的零序电流足够使继电保护灵敏动作,所以保护可靠。

中压配电系统一般中性点不接地,所以,一旦发生单相接地故障,系统还能在不对称方式下运行二个小时。但是地下电力电缆大量使用及城市用电负荷急增,不少地方已开始采用中性点接地方式。

对380/220V的低压配电系统,除某些特殊情况外,绝大部分是中性点接地系统,其目的是为了防止绝缘损坏后运行人员遭受触电的危险。

这里举一例说明(见图1),低压三相四线制变压器二次侧中性点经接地,电气设备外壳不接地。当外壳带电时,有人触及外壳,此时流过人体的电流为:

Iren=

式中:ux——相电压(V)

rren——人体电阻(Ω)

r0——接地装置电阻(Ω)

由于r0<<rren≈1500Ω,则Iren≈≌0.147A,结果远大于安全允许值。

2漏电保护器

国家标准GB16917.1—97《家用或类似用途带过电流保护的剩余电流动作断路器的一般要求》等标准规定,漏电保护器可分:

(1)漏电动作开关(仅有漏电保护的保护器);

(2)漏电动作断路器(带过载、短路和漏电三种功能保护器);

(3)漏电继电器(仅有漏电报警功能的保护器)。

2.1保护器的工作原理

漏电保护是一种电流动作型漏电保护,它适用于电源变压器中性点接地系统(TT和TN系统),也适用于对地电容较大的某些中性点不接地的IT系统(对相-相触电不适用)。

漏电保护器工作原理见图2。三相线A,B,C和中性线N穿过零序电流互感器,零序电流互感器的副边线圈接中间环节及脱扣器。

在正常情况下(无触电或漏电故障发生),由克氏电流定律知道:三相线和中性线的电流向量和等于零,即:

+++=O

因此,各相线电流在零序电流互感器铁芯中所产生磁通向量之和也为零,即:

+++=0

当有人触电或出现漏电故障时,即出现漏电电流,这时通过零序电流互感器的一次电流向量和不再为零,即:

Δ+++≠0

零序电流互感器中磁通发生变化,在其副边产生感应电动势,此信号进入中间环节,如果达到整定值,使励磁线圈通电,驱动主开关,立即切断供电电源,达到触电保护。

2.2漏电保护器性能参数说明

2.2.1额定漏电动作电流(I△n)

它是指在规定条件下,漏电保护器必须可靠动作的漏电动作电流值。国家标准(GB6829—86)规定为0.006、0.01、0.015、0.03、0.05、0.075、0.1、0.2、0.3、0.5、1、3、5、10、20A计15个等级,在0.03A(30mA)以下为高灵敏度,0.03~1A为中灵敏度,1A以上为低灵敏度。

2.2.2额定漏电不动作电流(I△n0)

这是为防止漏电保护器误动作的必需技术参数,即在电网正常运行时允许的三相不平衡漏电流。国家标准规定I△n0不得低于I△n的1/2。

2.2.3漏电动作分断时间

动作时间是从突然施加漏电动作电流开始到被保护主电路完全被切断为止。为达到人身触电时的安全保护作用和适应分级保护的需要,漏电保护器分快速型、延时型及反时限型三种。

2.2.4灵敏度α

一般漏电信号电流不可能很大,又要保证人身安全,我国规定的30mA信号电流可直接接触保护,国外可小到6mA。

漏电互感器的灵敏度由下式表示:

α=

式中:

E——副边绕组中感应电动势模;

I——一次漏电流的模。

α反应了漏电互感器对漏电流的反应能力。根据电磁感应原理计算得到:

=1/

采取加大铁芯截面积,增加匝数N1,可以增加励磁阻抗Zm,及增加负载阻抗ZL,则可以得到高的灵敏度。3低压配电系统的接地

3.1三种接地系统

在我国的《民用电气设计规范》(JGJ/T16—92)标准中将低压配电系统分为三种,即TN、TT、IT三种形式。其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地。第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。

TN系统:电源变压器中性点接地,设备外露部分与中性线相连。

TT系统:电源变压器中性点接地,电气设备外壳没有专用保护接地线(PE)。

IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳没有专用保护接地线(PE)。

3.2TN系统

电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN—S系统、TN—C—S系统。下面分别进行介绍。

3.2.1TN—C系统(见图3)

其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。

(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。TN—C系统一般采用零序电流保护;

(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;

(3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。

3.2.2TN—S系统(见图4)

整个系统的中性线(N)与保护线(PE)是分开的。

(1)当电气设备相线碰壳,直接短路,可采用过电流保护器切断电源,如果线路较长,可在线路首端装设RCD,靠它切断故障电流;

(2)当N线断开,如三相负荷不平衡,中性点电位升高,但外壳无电位,PE线也无电位;

(3)TN—S系统不必重复接地,因为重复接地后对N线断后保护设备作用不明显;

(4)TN—S系统适用于工业企业、大型民用建筑。

3.2.3TN—C—S系统(见图5)

它由两个接地系统组成,第一部分是TN—C系统,第二部分是TN—S系统,其分界面在N线与PE线的连接点。

(1)当电气设备发生单相碰壳,同TN—S系统;

(2)当N线断开,故障同TN—S系统;

(3)TN—C—S系统中PEN应重复接地,而N线不宜重复接地。

PE线连接的设备外壳在正常运行时始终不会带电,所以TN—C—S系统提高了操作人员及设备的安全性。

3.3TT供电系统(见图6)

如图6,电源中性点直接接地,电气设备的外露导电部分用PE线接到接地极(此接地极与中性点接地没有电气联系)。

(1)当电气设备发生相碰壳接地,环路阻抗Z=ZL+ZPE+Zf+RA+RB

式中:

ZL——相线阻抗;

ZPE——PE线阻抗;

Zf——相线与外壳间接触电阻;

ZA——用电设备接地电阻;

ZB——电源中性点接地电阻。

由于ZL、ZPE、Zf很小,可忽略,接地电流:

Id==

按JGJ/T16—92标准规定RA·I'd≤50V,及I'd=

U——相电压;

I'd——为低压断路器瞬时或延时过电流脱扣整定值(A);

Id——单相短路电流(A)。

∴RA≤(15/29)·RB

如果RB≤4Ω,则:RA≤·RB=2.07Ω;接地电阻的要求极其苛刻,较难实现,因此一般要求RA取值范围为4Ω~10Ω。

如果RA≤4Ω,则Ia≈12.5A。

由RL1型熔断器特性曲线与自动开关保护特性曲线得到的保护装置允许最大整定值列于下表。

由表可知RA≤4Ω时,熔断器熔体的额定电流Ie≤4A或Ie≤2A,而低压断路器瞬时动作整定值Ie≤11A才能保证在规定时间内切断故障回路。在工程上,这么小的整定值是没有实际意义的,另外,容量较大的分支负荷或支路负荷也无法采用熔断器或自动开关作这种TT接地系统的保护电器,因此要采用RCD保护电器。

(2)TT系统在国外被广泛应用,在国内仅限于局部对接地要求高的电子设备场合,如果在负荷端和首端装设RCD而干线末端装有断零保护,则可适用于农村居住区、工业企业及分散的民用建筑等场所。

3.4IT系统

电力系统的带电部分与大地间无直接连接(或经电阻接地),而受电设备的外露导电部分则通过保护线直接接地(如图7)。

图7(a)配电中性点与地绝缘;图7(b)配电中性点经电阻(阻抗)接地;图7(c)配电中性点经阻抗接地而设备外露导电部分接到电源的接地体上。

下面分析发生单相短路故障时的情况这里只论述图7(b)。在发生第一次接地故障时。

Id≤U/(Z+RA+RB+ZL+Zf)

式中:

Z——配电系统中性点的阻抗

RA——用电设备的接地电阻,一般RA≤4Ω

RB——配电设备中性点的接地电阻,一般RB≤4Ω

U——电源相电压,220V

ZL——相线电阻

Zf——相线与外壳之间接触电阻

ZL、Zf数值很小,略去不计。按IEC标准,Z的阻抗推荐5倍于相线电压数值,

Z=5×2201000Ω

Id≤220/(1000+4+4)=0.218(A)

设备外露部分的电压:Uf≤Id·RA=0.218×4=0.872V,这个电压不会造成触电伤害,因此第一次出现这种情况,不用切断电源,而是发一个声光告警。

在发生第二次接地故障时(图8),M1设备的L3相接地,M2设备的L2相接地时,必须满足RA·Ia≤50V及RC·IC≤50V,式中Ia、IC分别为M1,M2保护器的动作电流。

在一般情况下,RA=RC=4Ω,则Ia=Ic≈50V/4Ω=12.5A;如果采用熔断器或空气断路器作保护时,IT系统只能提供小容量负荷。如果采用RCD,则IT系统可以提供较大负荷量。4漏电保护器的配置

4.1漏电保护器的配置技术

一般仅有一级保护,额定动作电流I△n≤Vr/Rs。式中:Vr——安全触电电压,特别潮湿场所为2.5V,潮湿场所取25V,而干燥场所取56V;Rs为设备外露导电部分接地电阻。

如果有二级保护,图9表示了两级保护的动作时间和动作电流的配合关系。其第一级的目的是为了防止人身间接接触触电,被保护电网面积大负载电流大,通常150kVA变压器总出线电流216A,动作电流取100~300mA,而动作时间为0.2s以上;其第二级的目的是防止直接接触触电事故,被保护电网覆盖小,动作电流选30mA,动作时间≥0.04s。

如果多级漏电保护时,多级漏电保护I△n1≥3I△n2t1≥tfd,式中,I△n1是上一级,I△n2为下一级RCD额定动作电流,tfd为上一级RCD可返回的时间;tfd为下一级RCD分、合断时间。

如果要采取三级保护,则(1)末线路端用电设备I△n=30mAt≤0.1s;(2)分支路选择RCD,取I△n=100mAt≤0.3s;(3)干线选择I△n=300mAt≤1s。

4.2安装漏电保护器的注意事项

(1)漏电保护器能否正常工作,它与接地方式及安装方式有很大关系。这里仅举一例说明I△n=100mAt≤1s。

由于两个漏电保护器出线后的线路混用(见图10),而造成两个漏电保护器不能同时供电。

图中,由于临时将照明灯泡跨接在两个漏电保护器出线后的相线与中性线之间,它是跨接在2LDB中的相线与的1LDB中性线之间,当灯泡亮后,其相线电流流经2LDB和1LDB回到中线,很明显2LDB使出现不平衡电流,1LDB中也出现差流,从而2LDB和1LDB一起动作,切断了电源,因此造成两个回路都无法正常工作。

(2)安装漏电保护器时,一定要注意线路中中性线的正确接法,即工作中性线一定要穿过漏电电流互感器,而保护中性线决不能穿过漏电电流互感器,如图4—(a)(即TN-S系统)。5结论

(1)不同的接地方式应选用不同的接地保护器。TT系统中,RCD是接地故障的适合保护器;而在TN-C系统,就不宜采用RCD;在TN-S,TN-C-S系统,均可采用RCD作保护器。

漏电保护器范文篇3

摘要:漏电电流碰壳短路相地短路

随着改革开放不断深入发展,人民的生活水平也在不断地提高。如电冰箱、洗衣机、电视机、空调、电饭煲、微波炉……多种多样的电气设备越来越多地进入千家万户,被众多居民普遍使用。这些众多的家用电器,对于保护人身和设备的平安意识,引起了国内外人士的广泛关注。因此,对建筑电气的设计和施工也提出了更高的要求。当前,在中性点直接接地的380/220V的低压配电系统中,已经开始采取将质量合格参数合格的漏电保护器和接地保护或接零保护正确地配合使用,较好地防止了漏电电击等事故的发生。

1漏电保护器安装的必要性

保护接零一般采用TN-C-S系统或TN-S系统,也就是在电源入户之前将零线重复接地,且重复接地电阻≤10Ω。而在进户之后,工作零线N和保护零线PE则须分开。此时,PE线和所有用电设备金属外壳通过三孔插座的接地孔连接起来。而零线在引入配电箱后,应当和相线一样对地绝缘。假如发生相线碰壳短路情况时,短路电流则经零线和接地极构成闭合回路。这时回路阻抗很小,短路电流很大,从而此较大的短路电流致使保护开关跳闸,切断电源回路,达到平安保护的目的。如图1所示。短路电流

IK=U/Zd式中摘要:

IK—相线碰壳短路电流,A

U—相电压,

Zd—零线阻抗和重复接地电阻之和,Ω

但是,TN-C-S系统只能对用电设备的外壳在带电时起到保护功能,而对相地短路的情况则不能起到保护功能。其原因是摘要:在相地短路时(即设备绝缘破损发生的单相对地短路,简称故障短路),短路电流要经过设备和地面的自然接触,电阻流向电源中性点。由于这时自然接触电阻很大,而短路电流很小,不足以使熔断器、断路器动作,切断电路,却能使故障引发的电弧火花持续很长时间,甚至着火。如图2所示。

为了克服以上存在新问题,在建筑电气设计、施工中采用安装漏电保护器,就成为一种有效的触电或漏电保护手段。

另外,在居民住宅中安装漏电保护器,也是当今我国按照国标GB6829295标准要求,进行设计和施工的需要。

2漏电保护器的工作原理

漏电保护器是由零序电流互感器、漏电脱扣器、脱扣机构、主开关、实验按钮等五部分组成。倘若发生被保护设备的接地故障电流功能于漏电保护器的漏电脱扣器上的情况,其电流超过预定值时,则会立即出现开关跳闸,从而切断了故障电路。如图3所示。一般来说在正常情况下,各相电流的相量和等于零。由此,各相电流在零序电流互感器铁芯中感应的磁通量之和也等于零。这时,由于零序电流互感器的二次侧绕组无信号输出,主开关仍处于闭合状态,电源继续向负载方向供电。

当发生接地故障,或设备绝缘损坏、漏电,或人触及带电体时,主回路中各相电流的相量和不再为零。则会出现故障电流在零序电流互感器的环形铁芯中产生磁通,从而导致二次侧感应电压迫使脱扣线圈励磁,强令主开关跳闸,切断供电回路。

由上可知,电流型漏电保护器是基于基尔霍夫第一定律摘要:流入电路中任一节点的复电流代数和等于零,即∑I=0。

3漏电保护器的功能及使用范围

漏电保护器具有动作灵敏,切断时间迅速的性能。在建筑电气设计施工中只要合理选用和正确安装,对保护人身平安和防止设备损坏,以及预防火焰将会有明显的功能。

(1)当人体直接触及220V带电体时,漏电保护器迅速以0.1秒的时间快速切断电路。这时流过人体(一般人体电阻为1000Ω左右)的触电电流为220/1000=220(mA),其电击能量为摘要:220(mA)×0.1(S)=22mA·S%26lt;30mA·S。目前我国现行规定摘要:对人体平安的电击能量为摘要:1·T=30mA·S,可以明显看出,当人们一旦触及220V带电体时,漏电保护器会在0.1秒时间内迅速作出反应,而不致出现生命危险。

(2)在TN-C-S或TN-S系统中,未装漏电保护器时,假如发生接地故障情况,设备外壳会产生对人身有危险的接触电压;当装有漏电保护器之后,即使发生了接地故障,接触电压在还没有达到危及人身生命时,漏电保护器就会立即切断电源回路。其理由是摘要:在住宅建筑电气设计时,设计者已为用户所安装的漏电保护器选择了额定动作电流小于或等于30mA,动作时间为0.1秒。当发生接地故障时,只要有漏电电流产生,就会在漏电电流小于或等于30mA时,漏电保护器就马上动作,切断了电源回路。同时,30mA的电流在0.1秒时间内功能于人体不会危及生命平安。

(3)安装漏电保护器对配电线路的绝缘水平起到监察功能。假如设备出现碰壳故障或绝缘损坏,就会有漏电电流产生。当漏电电流达到漏电保护器的额定动作电流时,将立即动作切断电源回路。也就是说,在人尚未触及故障设备危险的接触电压之前,就已经将故障线路切断了。从而提前避免了触电死亡及火灾事故的发生。

(4)一旦出现发生接地故障时,由于切断故障线路因素不是依靠过电流保护,而是依靠漏电保护。再则,漏电保护的额定动作电流数值很小,和过电流相比,相差1000倍~10000倍。

因此,出现在设备外壳的接触电压也很低,一般小于50V,大大提高了平安性。

4漏电保护器使用时应注重事项

(1)漏电保护器适用于电源中性点直接接地或经过电阻、电抗接地的低压配电系统。对于电源中性点不接地的系统,则不宜采用漏电保护器。因为后者不能构成泄漏电气回路,即使发生了接地故障,产生了大于或等于漏电保护器的额定动作电流,该保护器也不能及时动作切断电源回路;或者依靠人体接能故障点去构成泄漏电气回路,促使漏电保护器动作,切断电源回路。但是,这对人体仍不平安。显而易见,必须具备接地装置的条件,电气设备发生漏电时,且漏电电流达到动作电流时,就能在0.1秒内立即跳闸,切断了电源主回路。

(2)漏电保护器保护线路的工作中性线N要通过零序电流互感器。否则,在接通后,就会有一个不平衡电流使漏电保护器产生误动作。

(3)接零保护线(PE)不准通过零序电流互感器。因为保护线路(PE)通过零序电流互感器时,漏电电流经PE保护线又回穿过零序电流互感器,导致电流抵消,而互感器上检测不出漏电电流值。在出现故障时,造成漏电保护器不动作,起不到保护功能。

(4)控制回路的工作中性线不能进行重复接地。一方面,重复接地时,在正常工作情况下,工作电流的一部分经由重复接地回到电源中性点,在电流互感器中会出现不平衡电流。当不平衡电流达到一定值时,漏电保护器便产生误动作;另一方面,因故障漏电时,保护线上的漏电电流也可能穿过电流互感器的个性线回到电源中性点,抵消了互感器的漏电电流,而使保护器拒绝动作。

(5)漏电保护器后面的工作中性线N和保护线(PE)不能合并为一体。假如二者合并为一体时,当出现漏电故障或人体触电时,漏电电流经由电流互感器回流,结果又雷同于情况(3),造成漏电保护器拒绝动作。

(6)被保护的用电设备和漏电保护器之间的各线互相不能碰接。假如出现线间相碰或零线间相交接,会马上破坏了零序平衡电流值,而引起漏电保护器误动作;另外,被保护的用电设备只能并联安装在漏电保护器之后,接线保证正确,也不许将用电设备接在实验按钮的接线处。

以上叙述的几条注重事项,都是很轻易在使用中出现错误的地方,故在本文中特地提出来,希望读者在使用漏电保护器时格外注重。

5结论

漏电保护器的使用对低压供电系统的平安可靠性起到了很重要的功能,它弥补了IN-C-S和IN-S系统的不足。但是,还不能说用了漏电保护器,在供电系统中就万无一失了。它并不是防止电击事故的惟一办法,也不是特效办法。譬如,在高层建筑中,往往把高低压配电室的电气设备金属外壳、金属板、建筑物钢筋基础网连接起来。假如高压电气设备外壳碰壳带电,便会产生一个120V的危险电压(10KV对地电容电流为30A,接地电阻4Ω,∴30×4=120(V)),该电压通过PE线窜到低压设备的外壳,漏电保护器对PE线无法检测,造成保护失效。欲要克服这种不足,则应通过实施用国际电工委员会的标准及GB50054-95规范中推行的等电位联结的方法去解决。

参考文献

漏电保护器范文篇4

关键词:漏电保护器rcd电气火灾

1防人身电击只需装用动作电流为30mA的rcd

国际电工委员会标准IEC4.79(电流通过人体的效应)确定,通过人体的交流50Hz电流不超过30mA时,人体不会因发生心室纤维性颤动而死亡,它与人体潮湿程度、接触电压高低无直接关系。因此,国际电工标准在所有防人身电击的条文中,都规定采用动作电流不大于30mA的rcd。据此在医院手术室、浴室等电击危险大的场所都可装用动作电流为30mA的rcd来防人身电击。

农村用电不必装用灵敏度更高的rcd,例如10mA的rcd。因为10mA的rcd和30mA的rcd在防人身电击的效果上是相同的,都可以使人免于发生心室纤颤而死亡。10mArcd的价格很贵,不适于广泛采用,而其额定不动作电流仅5mA,农村低压电网设备因常处于户外和潮湿场所,正常泄漏电流较大,容易引起误动作。频繁的误动作停电的后果往往是将rcd短接或拆除,使线路失去接地故障保护,导致危险的后果。

2只有手握式和移动式电气设备才需装用30mA高灵敏度的rcd

手握式和移动式电气设备的电击危险大。这是因为这些设备使用中经常挪动,绝缘容易破损而发生碰外壳接地故障,握持设备的手掌肌肉通电收缩使人无法甩脱外壳带电的设备,人体通电时间稍长即易发生心室纤颤致死。固定安装的设备较少发生碰外壳接地故障,人的手掌抓握不住设备外壳,在遭电击时可立即甩脱,与带电设备外壳脱离接触。不论有无装用30mArcd,固定式设备发生电击事故时都可使人站立不稳摔倒,但不会因发生心室纤颤而电击致死。因此对手握式和移动式设备必须装用30mA瞬动rcd,而对固定式设备如吊灯、固定安装的户内水泵则无此要求。国际电工标准对两者加以区分是避免滥装30mA瞬动rcd,以节省不必要的投资和减少因装用不当而招致rcd的误动停电。

3常用的两级漏电保护

在线路短路中大部分是接地故障,即相线与大地、电气设备外壳、金属结构管道之间的短路。接地故障既能引起人身电击事故,也比相间短路、单相短路容易引起电气火灾。我国《低压配电设计规范》(GB50054-95)规定,配电线路都应有接地故障保护,而rcd是最有效的接地故障保护电器。当发生电弧性接地故障起火时,因电弧电流小,断路器、熔断器往往不能在火灾发生前切断电源,而rcd则能立即动作切断电源。因此,除在手握式、移动式设备终端线路上安装30mA瞬动rcd外,还应在电源总干线上安装带少许延时的漏电保护功能的断路器,如图1所示。它主要用于防接地故障引起的电气火灾和线路对地电位升高事故,保护范围无死区。

图中rcd1和rcd2的动作应有选择性,以避免越级跳闸扩大停电面。选择性不能靠rcd动作电流的大小来提供。如果rcd1和rcd2的动作电流差2~3倍,但如果都是瞬时动作,当线路末端发生故障电流为几十安的接地故障时,故障电流都超过动作电流的百倍以上,两级rcd都瞬时动作,无法保证选择性。因此各个级次rcd间的动作选择性只能靠动作时间的长短不同来保证,即图1中的rcd2的动作应带有适当的延时,例如图中所示rcd1的动作时间t1≤0.04s,rcd2的动作时间t2=0.3s。

4带延时漏电保护的断路器的技术要求

装设在电源干线上带延时漏电保护的断路器其接线如图2所示。由图可知,这种断路器只是在原用作短路保护和过载保护的断路器的下端,增装一变比为1∶1的零序电流互感器和脱扣器。当被保护回路内发生接地故障时,互感器检测出剩余电流(俗称漏电电流),由脱扣器使断路器跳闸。

我国《低压配电设计规范》规定,此级rcd的动作电流不大于500mA最为安全,因500mA以下电弧的能量不足以引燃起火。但当线路正常泄漏电流大时也可取为大于500mA,以免发生不必要的跳闸停电。此断路器漏电动作延时一般取为0.3s左右。因从发生接地电弧到引燃近旁可燃物质起火有一较长时间过程,这一0.3s左右的延时,既能有效防止起火,又不扩大停电面,也不致引起所保护线路的过热烧损。

这一级保护不能采用一般的漏电保护器,也不能采用漏电继电器与接触器组合的漏电保护,因为电源干线上金属性接地故障电流可能以千安计,接触器和断流能力为300A的一般rcd是难以切断如此大的电流的。

我国不少厂家生产这种带延时漏电保护功能的塑壳式断路器,其额定电流为100~400A,漏电保护动作电流为30mA~2A,延时动作时间0.2~0.8s,短路电流开断能力为3~6.5kA,可以满足前述的一般要求。

5三级漏电保护的应用

当供电范围和电源干线电流较大时,有时需装用三级漏电保护,即在图2中的rcd2前再加一级rcd3如图3所示。它由分离的零序电流互感器、漏电继电器和断路器(或信号器)组成。互感器的变比也为1∶1。它通过的回路电流受回路4根导线通过的互感器贯穿孔直径的限制。漏电继电器检测的电流即一次侧的剩余电流,其动作电流和延时均可调整。

我国现时已生产附装漏电继电器的漏电保护零序电流互感器,其贯穿孔直径为25~100mm,相应回路电流为100~800A,所带漏电继电器的动作电流为50mA~3A,延时为0.2~2s。这种互感器也适宜于在现有线路上补加漏电保护。

对供电范围大的电源干线上的漏电保护往往不希望所保护范围内发生电弧性接地故障时立即跳闸,以避免大面积的停电。这时可将漏电继电器作用于信号,以便找出故障回路,局部切断电源。回路内如出现金属性短路的大短路电流,则由断路器内的电磁脱扣器动作来切断电源,以保护线路。

漏电保护器范文篇5

关键词:现场漏电保护器频繁跳闸原因

1引言

施工现场的用电环境一般比较差,使用的设备、线路本身安全隐患比较多,流动性、重复性、临时性较强,参加施工的用电人员甚至管理人员的素质参差不齐,在施工现场强制采用TN—S三相五线式供电方式的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成各级漏电保护器的频繁跳闸。这不仅严重影响了施工现场的正常施工,而且使施工现场用电的安全无法得到有效的保障。通过在施工现场对施工用电的管理和体验,对施工现场漏电保护器频繁跳闸的原因进行了以下的分析。

2施工现场漏电保护器频繁跳闸的原因

2.1漏电保护器布局不合理

根据《施工现场临时用电安全技术规范》JCJ46—88,在临时用电总配电箱和开关箱中应装设漏电保护器,形成三级配电二级漏电保护的模式。由于施工现场所具有的特殊性,如电工素质差、接线错误、非电工接线、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱及施工现场管理不善等原因,以及漏电保护器本身不可避免的误动和拒动,再加上在实际施工中没有按照工地的实际情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸,停电范围较大。在施工高峰期,总漏电保护器的频繁跳闸不仅严重影响了工地的正常施工,而且让处理故障的电工疲于奔命,甚至束手无策。对于这种情况除了加强施工现场的管理外,需要从技术的角度,根据施工现场实际情况对漏电保护器进行合理布置。在一些住宅楼工地、工业项目等比较大的施工现场,需要将整个工地按专业或不同的施工队划分为若干个小的漏电保护范围,在每个保护范围内形成二级漏电保护,必要时形成三级漏电保护,这样可以提高每个保护范围内二或三级漏电保护的保护灵敏度,提高保护范围内故障漏电时的漏电保护器的动作率,减少总漏电保护器跳闸。合理的布置也可以促使各个施工队自主管理和方便项目部的统下管理。这样工地进线总电源上的漏电保护器,可主要做为施工现场防止电气火灾隐患和电气短路的总保护,兼做每个小的漏电保护范围的后备保护,它的额定漏电动作电流可根据施工现场的大小在200~500mA之间选择,额定漏电动作时间可选择0.2—0.3s,可极大地减少浪涌电压、电流、电磁干扰对总漏电保护器的影响,提高总漏电保护器动作的选择性和可靠性。如果能通过加强对工地漏电保护器的管理,使每个漏电保护范围内的二级漏电保护处于有效保护状态,就可以大大地减少工地总漏电保护器的频繁跳闸机率。

2.2在保护范围内没有形成有效的二或三级漏电保护

开关箱内的末级漏电保护器是用电设备的主保护,如果末级漏电保护器不装、损坏或选型不当,将可能导致上级漏电保护器频繁跳闸。如施工现场有的照明部分相当混乱,存在很多问题:工地照明线经常随施工部位的改变而重新敷设,乱拉乱挂现象比较多,导线绝缘不是很好,经常漏电;现场办公室照明线虽然比较固定,但是一般固定的比较低,人很容易触及,还带有一些插座回路,在很多时候都不装漏电保护器,特别是在天刚黑需要照明的时候,经常造成了总漏电保护器频繁跳闸。施工现场移动设备比较多,如振捣棒、手电钻、小型切割机、打夯机、小型电焊机等随机使用性比较强,有的时候使用这些设备时没有接入开关箱,这也增加了总漏电保护器频繁跳闸的几率。只有在每个保护范围内形成有效的二或三级漏电保护模式,才能有效地减少漏电保护器的频繁跳闸。

2.3漏电保护器本身有一定的局限性

(1)目前的漏电保护器,不论是电磁型还是电子型均采用磁感应电压互感器拾取用电设备主回路中的漏电流,三相或三相四线在磁环中不可能布置完全均衡,在施工现场有较多的电焊机等双相或单相负荷,三相电流也不可能完全平衡,甚至会相差很大,在大电流下或较高的过电压下,会在有很高导磁率的磁环中感应出一定的电动势,这个电动势大到一定程度,就会导致漏电保护器跳闸。又由于额定电流越大的漏电保护器采用相对较大的磁环,产生的漏磁通也相对较大,且漏电流要克服磁环本身的磁化力,导致实际使用的漏电保护器额定电流越大,灵敏度越低,误动或拒动率也越大。

(2)漏电保护器在额定漏电动作电流和额定漏电不动作电流之间有一段动作不确定区域,漏电保护器的漏电流在此区域内波动时,可能导致漏电保护器无规律跳闸。

2.4漏电保护器选型不合理

(1)开关箱内使用的额定漏电动作电流超过了30mA或者是超过用电设备额定电流两倍以上的漏电保护器,或是选用了带延时型的漏电保护器,由于额定漏电动作电流的提高或保护灵敏度的下降,发生漏电故障时,末级漏电保护器没有动作,上级漏电保护器就可能动作。

(2)有些随机使用性负载没有专用的开关箱,如I、Ⅱ类电锤、电钻、小型切割机等手持电动工具,在接人有较大额定电流的漏电保护器后,在发生漏电或故障时,末级漏电保护器就可能拒动,或者和上一级漏电保护器同时跳闸。

(3)施工现场电焊机比较多,电焊机的漏电保护器按电焊机的额定电流选用,在电焊机起焊时的大电流可能会使漏电保护器跳闸,这是部分电焊机漏电保护器跳闸的原因。对于这类用电设备一般应选用对浪涌过电压、过电流不太敏感的电磁型漏电保护器;或选用比电焊机额定电流大1.5-2倍的电子式漏电保护器,但作为末级漏电保护,额定漏电动作电流不应大于30mA。

(4)塔吊是施工现场较大的施工设备,有多台电动机,虽然起动过程采用了Y-Δ起动和转子回路串人电阻起动,降低了起动电流,但仍然会有较大的起动电流。Y-Δ起动和电动机换速时会随机产生一定的过电压,塔吊配电箱和配电线路处于高空中,长年日晒雨淋,绝缘难免有一定的损伤,导致漏电流相应增大,这些因素都可能造成塔吊的漏电保护器频繁跳闸。在考虑采用电子式漏电保护器时应适当将它的额定电流放大1.5-2倍,以降低漏电保护器本身的灵敏度,减少频繁跳闸的几率。

(5)末级漏电保护的上级漏电保护额定漏电动作电流和额定漏电不动作电流选择过小,没有考虑漏电保护器后的配电线路上可能有相对较大的正常漏电流。一般上级漏电保护的额定漏电动作电流选择为下级额定漏电动作电流的两倍左右。如对于末级的上一级漏电保护,在保护范围较小时,上级漏电保护器额定漏电动作电流可选择50mA或75mA;保护范围较大或在上一级漏电保护器后有较多的单相或双相负载如电焊机时,应考虑众多单、双相负载接线不平衡时,可能有相对较大的漏电流,上一级漏电保护器额定漏电动作电流可选择75mA或100mA。有条件时,这一级漏电保护器应带有0.2s的延时,这样可提高漏电保护范围内末级和其上一级漏电保护器动作的选择性。

2.5漏电保护器的接线有问题

(1)使用单相负载,而中性线未穿过漏电保护器。

(2)中性线穿过漏电保护器后,直接接地或通过用电设备等接地,漏电保护器将保护跳闸;中性线对地绝缘不良或接地不良,似接非接,导致漏电保护器无规律跳闸,故障难找。

(3)中性线穿过漏电保护器后,同其他漏电保护器的中性线或与其他没有装设漏电保护器的中性线连在一起。

(4)选用三相四线或四极的电子式漏电保护器用于三相或双相负载,中性线未引人漏电保护器或虽引入但虚接,致使漏电保护器控制回路无电源而拒动。一旦发生漏电事故,引起上级漏电保护器动作。

(5)三相负载如电动机一般不接中性线,使用四芯电缆,其中有一芯应接PEN保护线和电动机外壳,但在有些情况下,这根PEN保护线接在了PE中性线上,实际上是把中性线通过电机外壳接地,在只有三相负载或有双相负载但三相平衡时系统能正常运行,在有单相负载或负载不平衡,中性点发生偏移时,就会使上级漏电保护器跳闸,如果中性线电阻较大时,可能造成漏电保护器无规律跳闸,查找故障困难。

(6)漏电保护器后的负载没有平均分配。施工现场电焊机大部分使用交流380V电源,漏电保护器后的电焊机一次线路对地漏电流矢量和不为零,对于末级保护的上级漏电保护,如果多台电焊机接线极不平衡,就会使通过它的漏电流增加,同时使中性线对地电位抬高,增加了中性线漏电的机率,增加了电焊机上级保护跳闸几率。在用电设备和线路发生漏电故障或漏电流增加时,会造成上级漏电保护先于电焊机末级漏电保护或两漏电保护同时跳闸。

(7)中性线断线或接触不良,致使中点电位偏移零电位,增加了中性线漏电和引发其他故障的几率。

2.6用电设备及用电线路漏电

施工现场的用电设备使用环境比较恶劣,保养、维修也很有限,质量参差不齐,绝缘有好有坏,有些设备漏电流比较大;用电线路也是如此,有些线路使用了质量很差的绝缘导线,不按规定敷设,接头包扎不好,如导线直埋、电缆过路不穿保护管等,造成了末级漏电保护器跳闸,如果末级漏电保护器损坏或将末级漏电保护器退出,将造成上级漏电保护器的频繁跳闸。

3结束语

总之,漏电保护器频繁跳闸是施工现场各种因素综合作用的结果,最主要的是要合理布置漏电保护器,缩小二或三级漏电保护器的保护范围,正确选择漏电保护器和接线,使每个范围内的二或三级漏电保护器处于有效保护状态;另一方面就是加强施工现场的临时用电管理和通过培训提高用电人员的自身素质,这样就可以既满足工地用电的安全性,又可以减少漏电保护器的频繁跳闸,给正常的施工创造较好的供电条件。

参考文献

1潘毅.电磁式剩余电流保护装置讲座.电工技术杂志,1999

漏电保护器范文篇6

关键词:剩余电流动作保护器漏电保护器鉴幅鉴相型分级保护

1剩余电流动作保护器(以下简称漏电保护器)发展的历史回顾

我国漏电保护器的发展,经历了从无到有,从自发到自觉,从供电企业自己研制到工厂专业化生产,从电压型到电流型,从农村电网一级保护到分级保护的发展历程。广大的电业职工、生产厂家、高等院校和科研院所的科技人员付出了艰辛的劳动,贡献了他们的聪明才智,甚至毕生的精力,使我国农村漏电保护器技术得到了健康而有序的发展。回顾漏电保护器的发展历程,大体经历了四个阶段。

1.1自发的发展阶段

进入70年代,农村触电死亡事故逐年上升,仅1973年,全国不完全统计,农村触电死亡人数高达7020人,电气火灾频繁发生,给死难者家庭带来极大的痛苦,给群众的财产造成巨大的损失。为此,广大电业职工从事业心责任感出发,土法上马,自发性地开展了漏电保护器的研制和推广工作。在我国农村首先推广使用了简易电压型漏电保护器,如重垂式、打闸式等多种形式。这些漏电保护器的推广,拉开了漏电保护器大发展的序幕。尽管这些产品存在着这样或那样的缺陷,但在避免人身触电伤亡事故的大量事例中,确实起到了很大的作用,因此有些农民朴实地把它称之为“保命器”。

1.2政府发动和正确引导阶段

群众自发研制的漏电保护器在运行中确实起到了保安作用的事实,引起了各级政府主管部门的重视。1975年原水利电力部农电司在河北省望都县召开了“全国农电技术革新经验交流会”,并举办了漏电保护器的展览,会后各地组织技术人员到望都县参观并对安装现场进行考察。自此,全国各地掀起了群众性的研制漏电保护器的高潮。

为了使群众性的研制工作向着健康的方向发展,原水利电力部、劳动部、机械部等政府部门高度重视,先后拨出了大量的研制、试运经费,成立了产品联合攻关设计小组。有关方面组织联合调查组,深入农村,了解我国农村人身触电死亡事故的特点,并对我国农村低压电网绝缘电阻的变化状况进行了测试,初步总结出了低压电网绝缘电阻变化的规律。此外,还多次召开了全国性的漏电保护器学术研讨会,针对我国漏电保护器存在的问题和农村人身触电伤亡事故的规律以及低压电网的特点,提出了电流型漏电保护器是我国农村漏电保护器的发展方向。通过政府主管部门的正确领导,使我国漏电保护器的研究工作,不断向着正确科学的方向发展,逐步走上了健康而正规的发展轨道。

1.3制订“标准”和“规程”,规范产品质量阶段

为使漏电保护器的研制、生产、安装和运行进一步规范化、标准化,甚至与国际标准接轨,1983年经国家电气安全标准化委员会批准,将制订漏电保护器国家标准和安装运行规程纳入工作计划,以机械部为主,劳动部和水利电力部参加组织编写国家标准《漏电电流动作保护器》,于1986年由国家标准局以GB6829-86正式颁发。以水利电力部为主,机械部和劳动部参加,组织编写了《漏电保护器农村安装运行规程》,于1987年由水利电力部正式颁发。1992年颁发了GB13955-92《漏电保护器安装和运行》;为了使漏电保护器的技术标准与

IEC国际标准接轨,1997年又颁发了GB169171、21、22-1997《家用和类似用途的带过电流保护的剩余电流动作断路器(RCBO)》;为保证漏电保护器产品的制造质量,1988年三部联合颁发了《漏电保护器质量管理规定》,成立了低压电器质量检测中心,负责漏电保护器的质量检测,并定期向用户通报检测情况。

通过上述“标准”、“规程”和“规定”的颁发,使漏电保护器的研制、生产和产品性能得以规范,产品的质量得以提高,使安装、运行、维护、管理工作有章可循,为漏电保护器的健康发展奠定了基础。

1.4健康发展阶段

随着漏电保护器的标准和规程、规定的颁发与实施,使漏电保护器步入了健康发展的轨道。从发展的型式来看,由电压型已经发展为电流型,在普通的电流型基础上,又派生了交流脉冲型、鉴幅鉴相型;漏电保护的方式,由全网单一总保护发展到末端保护,向建立完备的分级保护系统过渡;从单一功能漏电保护变成了漏电、过流、短路等多功能保护。到目前为止,据14个省的不完全统计,农村电网已安装漏电保护器3587万台。随着漏电保护器的发展,其生产厂家日益增多,目前我国已超过了300多家,年产量达到1000多万台,在产品的品种上,基本上形成了系列化,初步满足了农村电网发展的需要,为我国农村低压电网大力发展创造了极为有利的条件。

2我国农村推广漏电保护器取得了明显效果

2.1大幅度降低了农村人身触电伤亡事故

据不完全统计,从1994~1998年,漏电保护器正确动作319万次,其中由于人及动物直接触电28.6万次,避免了大量的人身触电伤亡事故,使人身触电死亡事故连年下降。1980年我国农村触电死亡高达4000人之多,到1998年下降到167人,下降了几十倍。

2.2促进了农村电网的管理,消除了大量触电事故隐患,降低了线损农村安装漏电保护器后,为保证漏电保护器的高投运率,广大农电职工加强了管理,改造不合格线路、清除碰线树枝,及时处理导线落地拉线带电故障和电器设备外壳带电,消除了绝大部分因接地故障而引起的人身触电事故苗头,同时提高了电网的绝缘水平,降低了电网的电能损失。

2.3培养了一支懂技术会管理的骨干队伍

漏电保护器安装较多的县供电企业,都有一定数量的检修维护管理人员,能及时修复损坏的保护器,及时查找和处理故障,为今后漏电保护器进一步发展,培养了一支技术骨干队伍。

3当前漏电保护器发展中存在的主要问题

在我国农村低压电网中,推广使用漏电保护器虽然取得了一定的成绩,但在推广当中也存在不少问题。其一是漏电保护器投运率低,损坏率高,维修费用大,巩固困难。有的地方总保护投运率不到70%,有的地方漏电保护器年损坏率高达20%~30%左右,因而自然淘汰严重。其二是在产品类型发展上都有不同看法,有的认为普通电流动作型是发展方向,有的认为脉冲型和鉴幅鉴相型适合我国国情,至今未能得出比较确切的答案,造成用户选型困难。其三是对额定动作电流值,各地也有不同见解,有的地方建议把总保护或分路保护额定动作电流值放大到几百毫安,有的则整定在40~60mA以下。其四是保护方式论点不一,有的认为只装全网一级保护,有的则认为应发展分级保护,有的认为仅发展末端保护。其五是对低压电网绝缘电阻水平要求也不统一,有的提出绝缘电阻几十千欧以上,有的要求几个千欧即可。产生上述问题的原因,主要是我国各地农村用电水平差异较大,从技术经济管理上对漏电保护有不同的要求。我们要以科学的态度,从理论上认真研究探讨,通过实践总结,达到共识。

4我国农村漏电保护器发展展望

党的十五届三中全会明确提出了农业和农村跨世纪发展的目标和方针,制定了重大政策措施,将推进农业现代化的发展进程,使农村全面实现小康,并逐步向更高的水平前进,也必将带来农村电气化的快速发展,使电力在发展农村经济和改善农民生活质量等方面发挥更重要作用。推广使用先进科学的技术装备,保证安全供用电,提高供电可靠性,建设现代化农村低压电网是发展的必然。

4.1漏电保护器在新形势下将有更大的发展

为贯彻农业是基础地位的方针,加强农业基础设施建设,党中央、国务院确定对农电实施“两改一同价”工作,将三大目标作为当前扩大内需,拉动经济增长的有效手段。扩大农村电力市场,用电量将快速增长,用电水平将大幅度提高。与此同时,农民对用电安全的要求也越来越高,保护农民的生命财产的安全将提到重要议事日程。国家电力公司在《农村电网建设与改造技术原则》中明确要求,在配电变压器低压侧出线处要加装漏电保护器,对每一用电农户也要加装漏电保护器。农村电网改造完成后,达到台台配电变压器有保护,家家户户装保护的新局面,漏电保护器的需求将大幅度增加。因此,大力推广漏电保护是农村经济发展和“两改一同价”的需要。

4.2建立完善漏电保护系统,实现分级保护是发展方向

随着农村电力市场的扩大和用电水平的提高,在保证安全用电的基础上,农户对供电可靠性的要求也越来越高,提出不要因某处发生事故而造成大面积停电,因此仅有全网一级保护已不适应农村生产生活的需要,借鉴国外已实现分级保护的成熟经验,结合我国的实际情况,建立健全漏电保护系统,实现分级保护,提高用电的安全和可靠性是今后的发展方向。

4.3漏电保护器的品种将进一步增多,功能会更加齐全

随着漏电保护器的发展,各科研院所、制造厂为满足各种不同的安装场所和各种不同性能的要求,将进一步研制,开发相适应的产品,其功能将从单一功能向多功能发展,从独立单一电器向成套组合智能化电器发展,实现整体功能的最佳化。这些品种,将为广泛推广漏电保护器创造有利条件。

4.4产品质量将进一步提高

为保证漏电保护器的产品质量,国家技术监督局把IEC标准转化为GB标准颁发,与国际接轨;同时国家近期对制造厂推行了ISO9000质量保证和质量认证体系,它具有更科学的质量体系。为防止伪劣产品进入农网建设与改造领域,国家经贸委对产品质量进行审查认证推荐;实施工程的供电企业对工程质量包括使用的产品质量的保证实行终身制,工程实施人员采用各种手段对产品进行的质量跟踪、监督考察,保证了产品质量,淘汰了劣质产品。在市场竞争的大潮中,生产厂自觉地严格生产工艺、选择优质原材料,加强检测手段等,确保产品的可靠性能,为用户提供优质产品,以便更多地占领市场,因而,将普遍提高产品质量。4.5增强供电企业安全供用电的责任感

漏电保护器范文篇7

关键词:水利工程;泵站;漏电保护器;设计应用

漏电保护器作为安全防护设备被广泛应用于很多行业当中,不过在我国的水利工程泵站电气设计方面的却略显不足,相对经验匮乏。水利工程运行作业时,意外漏电情况引发了不少安全事故,漏电保护器的使用越来越受到各方重视。因此,必须加强对水利工程泵站电气的安全性设计策划,改善漏电保护器的设计应用。

1水利工程泵站电气设计中漏电保护器基本原理

漏电保护器的主要作用是在电器设备发生漏电情况后,其原本的电压、电流信号会发生异常,从而断开电源,使得设备或者人能够免受伤害。漏电保护器主要构成部分包括检测元件、执行元件、中间环节和试验元件,图1为漏电保护器的工作原理图。图中1是供电变压器,2是主开关,3是试验按钮,4是零序电流互感器,5是压敏电阻,6是放大器,7是晶闸管,8是脱扣器。三相负荷电流和对地漏电流基本平衡,流过互感器一次线圈电流的相量和约为零,即由它在铁芯中产生的总磁通为零,零序互感器二次线圈无输出。当发生触电时,触电电流通过大地成回路,亦即产生了零序电流。这个电流不经过互感器一次线圈流回,破坏了平衡,于是铁芯中便有零序磁通,使二次线圈输出信号。这个信号经过放大、比较元件判断,如达到预定动作值,即发执行信号给主开关1掉闸,切断电源。

2水利工程泵站电气设计中漏电保护器的分类

水利工程泵站电气设计中备选的漏电保护器,主要有两种:电压动作型和电流动作型。但是,电压动作型漏电器稳定性和精确度难以满足要求,容易引发二次事故,已逐渐被淘汰。当前的水利工程泵站电气设计过程中多数选用电流动作型漏电保护器,其稳定性和精确度很好,综合工作性能和安全性能有保障。再进一步划分,电流漏电保护器依据原理和结构不同分为两类:电子、电磁漏电保护器。电子式漏电断路器需要辅助电源,该辅助电源来源于漏电断路器的出线端(负载端),跟线路的工作电压有关,如果电压过低(具体多少电压不动作需要厂家确定),就是线路中产生了漏电电流,并达到了开关的漏电电流动作值,开关也不会动作。总结:电子式漏电断路器,抗干扰性没有电磁式漏电断路器好;但电子式漏电断路器比较便宜;电磁式漏电断路器不需要辅助电源,里面没有线路板组件,跟开关的工作电压无关,只要线路产的漏电电流达到电磁式的漏电动作电流,漏电断路器就动作,切断后面电源,保护人身安全。目前市场上最普遍地就是电子式漏电断路器。而如果从功能实现方法上来区分,漏电保护器又可分为漏电保护继电器、漏电保护开关、漏电保护插座等三种类型。2.1漏电保护继电器。它主要是检测元件、试验元件、脱扣装置、触头和固定元件构成,其基本原理是在电设备进线上加上一个磁环,让电源线套在磁环内。正常状态下,电线负载一端未与地面形成闭合回路,磁环中是没有电流的,相应地也就不会形成磁通。假如负载端连接地面形成有效回路电流,那磁环也会产生电流,根据麦克斯韦电场理论,漏电电流与产生磁通形成一定正比关系,并且通过线圈形成了感应电势。感应电势越大,则漏电的电流越大。漏电形成的感应电流作用脱扣装置衔铁进行漏电保护。2.2漏电保护开关。漏电保护开关与漏电保护继电器工作原理差不多一样,区别是它在工作期间发生漏电或接地短路时,直接断开主回路的开关。2.3漏电保护插座。它主要是插座内增加额外的漏电保护装置,额定电流不超过16A,限制电流6mA。用电设备提供人身触电保护,防止用电设备意外接地构成电流回路,避免发生电气火灾,能避免负载端接地的中性线多次接地。对于一些常用的移动或者便携用电设备提供非常有效触电保护措施。在实际水利工程泵站电气设计过程中,要根据使用环境和条件要求来选择相应最合适的漏电保护器。

3水利工程泵站电气设计中使用漏电保护器的必要性

3.1避免发生接地故障。在水利工程泵站漏电保护器设计应用时,很多时候会发生接地故障的问题,通常情况下,当回路中产生电流偏大的情况时,理论上说预先设置的电流保护器会发挥自身切断电路的功能,以避免造成更严重的事故和损失。不过在实际运用过程中,根据欧姆定律,线路内部本身的电流数值不但和电线自身的质量、横截面积以及连接长度之间都有着一定的联系和相互影响,而且在现场布线走向和交叉作业管理方面也有很直接的关系。所以,当泵站出现金属接地故障时,设备外壳附带极其危险的接触电压,一旦有工作人员不慎接触到的话,引发的生命财产事故及其后果不堪设想,因此在泵站的漏电保护设计过程中,要充分考虑如何做好金属接地的工作环节。3.2设计两级漏电保护器。在并联的电线回路装上设计安装漏电保护器,仅仅只能保证该单一回路的漏电保护。但是其它并联电路一旦产生故障则难以得到保障,所以,在实际方案设计过程中,通常会考虑电源进线加上一级漏电保护控制设备,其一般有0.15s的延时并且要和单一并联回路上的漏电保护器配合协调。设计一级漏电保护器虽然会增加成本,但对防范整个电路的安全风险有极大的好处。而且,如果泵站配电线路发生电弧性和金属性的接地故障时,也可以及时起到保护作用。

4漏电保护器的应用

在日常工作中,要制定合理有效的漏电保护器管理办法,保障其使用安全可靠性。按照规定要求使用和维护漏电保护器,定期做好检查保养记录,确保其能正常工作。需要特别注意,当回路中出现跳闸情况时,可再试送电一次,绝不允许连续闭合开关多次送电。当确定漏电保护器已经损坏时,必须由专业电工落实检查维修直至恢复正常方可使用。4.1三级漏电保护器的设计应用。根据设计方案要求,供电范围和电源干线电流超出一定的界限时,就要设计安装三级漏电保护器。它是由分离的零序电流互感器、漏电继电器和断路器组成的。供电范围大的电源干线,在设计安装漏电保护方案时,首先要考虑所保护范围内电路出现接地故障时能够即刻跳闸,防止更大范围的停电情况出现。为了实现这一关键性需求,在做设计安装时,要从漏电继电器作用信号入手,及时发现故障回路,从而顺利的实现局部电源切断动作。如果电线回路内产生了金属性短路的大短路电流,那么切断电源的任务就会落在断路器内的电磁脱扣器身上,它可以迅速切断电源以保护线路,以上就是三级漏电保护的设计应用。4.2四级和二级漏电保护器的应用。在水利工程泵站的电气设计应用中,从安全性基本要求出发,必须最大限度的降低开关电器的级数,并尽可能减少触头和线路的连接点数量。因为假如出现导电不良情况时,触头连接和线路连接位置都是最容易产生电路事故的位置,特别是三相回路的中性线,导电功能出现故障时,产生的后果将不堪设想。一般情况下,泵站的相关设备都还是会继续工作的的,常规观察不容易发现安全隐患,三相负荷严重不平衡时将导致三相电压出现严重异常,单相设备将遭到严重的损坏。因此,限制保护触头的数量在设计时要着重进行考虑。一些电气设计方案,不少设计师有错误的观点:三相的负载难保持平衡,通常中性线截面积略小于相线,所以加装四级开关避免中性线负荷过大。另一种误解是,他们觉得单相负载的三相漏电保护器要安装四极的。根本上说,常见的电子漏电保护器就是“剩余电流动作保护器”,其基本原理是在回路中利用剩余电流作出保护动作,跟整个回路的电流是否平衡没有直接关系。所以,继续按照以上的错误观点滥用四级漏电保护器是有问题的,对安全保护作用会大打折扣。设计四极(单相为二极)漏电保护器的系统回路时,要注意如果有一相出现接地故障问题时,故障电流在电源接地形成的电阻中产生了电压,那么使中性线也就带上一定的电压,不过中性线一般是绝缘的,并不会产生事故,可是如果电气设备的外壳接了地,一样会发生故障,导致漏电保护器跳闸,电流将被传导在设备外壳。而中性线并未切断,漏电保护器即使正常断开,由非常有可能由中性线引发电击事故。如果系统采用四极或二极漏电保护器,确保带电压电路和中性线在同一时间内及时断开,这样就可以直接阻断电路的传导线路。所以,四极或二极漏电保护器的应用与被保护回路三相负荷是否平衡并无直接关系,在实际设计应用中要更加关注与回路接地系统类型。

5用电子式漏电保护器应注意的事项

电子式漏电保护器制作工艺成熟,成本较低,在我国很多行业受到广泛的应用,在使用效果上与电磁式漏电保护器有明显的区别。电磁式漏电保护器是利用故障电流产生的能量实现断路,而电子式漏电保护器是用故障回路的残压来脱扣(发生接地故障时。回路电压下降,此残压指故障时漏电保护器接线端子上的电压,不是指公用电网的电压负偏差)。如果接地故障点距离漏电保护器非常近的情况下,压差不够,漏电保护器很可能无法动作而失效。所以,设计安装电子式漏电保护器方案时,漏电保护器设计安装位置距离插座要有一定的距离,以保证漏电保护器处有足够的故障残压。同时,当回路的中性线出现故障时,回路上的电子式漏电保护器也将无法正常工作,当工作人员在附近进行作业时,很容易引发触电事故。所以,设计安装电子式漏电保护器的时候,要综合考虑前面所提到的各种问题。

6结语

总体来说,通过文章的论述,对于漏电保护器的设计应用有了较系统的认识,这对于水利工程的设计安全应用起到非常重要的作用,持续改进,从而提升我国水利工程中泵站的设计安全应用水平。

参考文献:

[1]段政.工程泵站建设过程中的漏电保护器设计[J].门窗,2017,07:130.

[2]刘正江.泵站机电设备安装施工要点探讨[J].内燃机与配件,2017(07):91-92.

漏电保护器范文篇8

关键词:漏电保护装置选择使用

选用漏电保护装置应当考虑多方面的因素。其中,首先是正确选择漏电保护装置的漏电动作电流。在浴室、游泳池、隧道等触电危险性很大的场所,应选用高灵敏度、快速型漏电保护装置(动作电流不宜超过10mA)。如果安装场所发生人触电事故时,能得到其他人的帮助及时脱离电源,则漏电保护装置的动作电流可以大于摆脱电流;如系快速型保护装置,动作电流可按心室颤动电流选取。如果是前级保护,即分保护前面的总保护,动作电流可超过心室颤动电流。如果作业场所得不到其他人的帮助及时脱离电源,则漏电保护装置动作电流不应超过摆脱电流。在触电后可能导至严重二次事故的场合,应选用动作电流6mA的快速型漏电保护装置。为了保护儿童或病人,也应采用动作电流10mA以下的快速型漏电保护装置。对于Ⅰ类手持电动工具,应视其工作场所危险性的大小,安装动作电流10~30mA的快速型漏电保护装置。选择动作电流还应考虑误动作的可能性。保护器应能避开线路不平衡的泄漏电流而不动作;还应能在安装位置可能出现的电磁干扰下不误动作。选择动作电流还应考虑保护器制造的实际条件。例如,由于纯电磁式产品的动作电流很难做到40mA以下而不应追求过高灵敏度的电磁式漏电保护装置。在多级保护的情况下,选择动作电流还应考虑多级保护选择性的需要,总保护宜装灵敏度较低的或有少许延时的漏电保护装置。

用于防止漏电火灾的漏电报警装置宜采用中灵敏度漏电保护装置。其动作电流可在25~1000mA内选择。

连接室外架空线路的电气设备应装用冲击电压不动作型漏电保护装置。

对于电动机,保护器应能躲过电动机的起动漏电电流(100kW的电动机可达15mA)而不动作。保护器应有较好的平衡特性,以避免在数倍于额定电流的堵转电流的冲击下误动作。对于不允许停转的电动机应采用漏电报警方式,而不应采用漏电切断方式。

对于照明线路,宜根据泄漏电流的大小和分布,采用分级保护的方式。支线上选用高灵敏度的保护器,干线上选用中灵敏度保护器。

在建筑工地、金属构架上等触电危险性大的场合,Ⅰ类携带式设备或移动式设备的应配用高灵敏度漏电保护装置。

电热设备的绝缘电阻随着温度变化在很大的范围内波动。例如,聚乙烯绝缘材料60℃时的绝缘电阻仅为20℃时的数十分之一。因此,应按热态漏电状况选择保护器的动作电流。

对于电焊机,应考虑保护器的正常工作不受电焊的短时冲击电流、电流急剧的变化、电源电压的波动的影响。对高频焊机,保护器还应有良好的抗电磁干扰性能。

对于有非线性零件而产生高次谐波以及对有整流零件的设备,应采用零序电流互感器二次侧接有滤波电容的保护器,而且互感器铁心应选用剩磁低的软磁材料制成。

漏电保护装置的极数应按线路特征选择。单相线路选用二极保护器,仅带三相负载的三相线路或三相设备可选用三极保护器,动力与照明合用的三相四线线路和三相照明线路必须选用四极保护器。

漏电开关的额定电压、额定电流、分断能力等性能指标应与线路条件相适应。漏电保护装置的类型与供电线路、供电方式、系统接地类型和用电设备特征相适应。

漏电保护装置安装和运行

一、漏电保护装置安装

漏电保护装置的防护类型和安装方式应与环境条件和使用条件相适应。有金属外壳的Ⅰ类移动式电气设备和手持电动工具、安装在潮湿或强腐蚀等恶劣场所的电气设备、建筑施工工地的电气施工机械设备、临时性电气设备、宾馆类的客房内的插座、触电危险性较大的民用建筑物内的插座、游泳池或浴池类场所的水中照明设备、安装在水中的供电线路和电气设备,以及医院直接接触人体的电气医用设备(胸腔手术室的除外)等均应安装漏电保护装置。

对于公共场所的通道照明电源和应急照明电源、消防用电梯及确保公共场所安全的电气设备、用于消防设备的电源(如火灾报警装置、消防水泵、消防通道照明等)、用于防盗报警的电源,以及其他不允许突然停电的场所或电气装置的电源,漏电时立即切断电源将会造成事故或重大经济损失。在这些情况下,应装设不切断电源的漏电报警装置。

从防止电击的角度考虑,使用安全电压供电的电气设备、一般环境条件下使用的具有双重绝缘或加强绝缘结构的电气设备、使用隔离变压器供电的电气设备、在采用不接地的局部等电位联结措施的场所中使用的电气设备,以及其他没有漏电危险和电击危险的电气设备可以不安装漏电保护装置。

漏电保护装置的安装应符合生产厂产品说明书的要求。

装有漏电保护装置的电气线路和设备的泄漏电流必须控制在允许范围内。所选用漏电保护装置的额定不动作电流应不小于电气线路和设备的正常泄漏电流的最大值的2倍。当电气线路或设备的泄漏电流大于允许值时,必须更换绝缘良好的电气线路或设备。当电气设备装有高灵敏度的漏电保护装置时,电气设备单独接地装置的接地电阻可适当放宽,但应限制预期的接触电压在允许范围内。安装漏电保护装置的电动机及其他电气设备在正常运行时的绝缘电阻值不应低于0.5MΩ。

安装漏电保护装置前,应仔细检查其外壳、铭牌、接线端子、试验按钮、合格证等是否完好。

用于防止触电事故的漏电保护装置只能作为附加保护。加装漏电保护装置的同时不得取消或放弃原有的安全防护措施。

安装带有短路保护的漏电开关,必须保证在电弧喷出方向留有足够的飞弧距离。漏电保护装置不宜装在机械振动大或交变磁场强的位置。安装漏电保护装置应考虑到水、尘等因素的危害,采取必要的防护措施。

安装漏电保护装置后,原则上不能撤掉低压供电线路和电气设备的基本防电击措施,而只允许在一定范围内作适当的调整。

二、漏电保护装置接线

漏电保护装置的接线必须正确。接线错误可能导致漏电保护装置误动作,也可能导致漏电保护装置拒动作。

接线前应分清漏电保护装置的输入端和输出端、相线和零线,不得反接或错接。输入端与输出端接错时,电子式漏电保护装置的电子线路可能由于没有电源而不能正常工作。

组合式漏电保护装置控制回路的外部连接应使用铜导线,其截面积不应小于1.5mm2,连接线不宜过长。

漏电保护装置负载侧的线路必须保持独立,即负载侧的线路(包括相线和工作零线)不得与接地装置连接,不得与保护零线连接,也不得与其他电气回路连接。在保护接零线路中,应将工作零线分开;工作零线必须经过保护器,保护零线不得经过保护器,或者说保护装置负载侧的零线只能是工作零线,而不能是保护零线。TN-S系统工程中,四极式漏电保护装置的正确接线见图5-5。

图5-6是几种典型的错误接线。图中,凡虚线部分都是错误的。总保护不能像a那样采用三极式漏电保护器。否则,如果各相负荷不平衡,不平衡的零序电流将导致保护器动作。b处将重复接地与N连接起来,虽然大部分不平衡的零序电流经过保护装置返回电源,但小部分零序电流经重复接地电阻RR和工作接地电阻RS构成回路,使得相线及工作零线上的电流之和不为零,而可能导致保护器动作。c、d的连接,将使得流经一条支路相线(或零线)上的负荷电流经两台保护器返回零干线(或相干线),两台保护器都可能误动作。图中,除1、2两盏灯的接法是正确的外,3、4、5、6、7、8、9灯的接法都是错误的,读者可以自己分析。

应当指出,漏电保护器后方设备的保护线不得接在保护器后方的零线上。否则,设备漏电时的漏电流经保护器返回,保护器拒不动作。

三、误动作和拒动作

误动作是指线路或设备未发生预期的触电或漏电时漏电保护装置的动作;拒动作是指线路或设备已发生预期的触电或漏电时漏电保护装置拒绝动作。误动作和拒动作是影响漏电保护装置正常投入运行,充分发挥作用的主要问题之一。

1、误动作

误动作的原因是多方面的。有来自线路方面的原因,也有来自保护器本身的原因。误动作的主要原因及分析如下:98

(1)接线错误例如,在TN系统中,如N线未与相线一起穿过保护器,一旦三相不平衡,保护器即发生误动作;保护器后方的零线与其他零线连接或接地,或保护器后方的相线与其他支路的同相相线连接,或负荷跨接在保护器电源侧和负载侧,则接通负载时,也都可能造成保护器误动作。

(2)绝缘恶化保护器后方一相或两相对地绝缘破坏,或对地绝缘不对称降低,都将产生不平衡的泄漏电流,导致保护器误动作。

(3)冲击过电压迅速分断低压感性负载时,可能产生20倍额定电压的冲击过电压,冲击过电压将产生较大的不平衡冲击泄漏电流,导致快速型漏电保护装置误动作。

(4)不同步合闸不同步合闸时,首先合闸的一相可能产生足够大的泄漏电流,使保护器误动作。

(5)大型设备起动大型设备的堵转电流很大,如保护器内零序电流互感器的平衡特性不好,则起动时互感器一次线的漏磁可能造成误动作。

(6)偏离使用条件环境温度、相对湿度、机械振动等超过保护器设计条件时可造成其误动作。

(7)保护器质量低劣由于零件质量不高或装配质量不高均会降低保护器的可靠性和稳定性,并导致误动作。

(8)附加磁场如保护屏蔽不好,或附近装有流经大电流的导体,或装有磁性元件或较大的导磁体,均可能在互感器铁心中产生附加磁通量导致误动作。

2、拒动作

拒动作比误动作少见,但拒动作造成危险性比误动作大,拒动作的主要原因及分析如下:

(1)接线错误用电设备外壳上的保护线(PE线)接入保护器将导致设备漏电时拒动作。

(2)动作电流选择不当保护器动作电流选择过大或整定过大将造成保护器拒动作。

(3)产品质量低劣互感受器二次回路断路、脱扣元件沾粘等质量缺陷可造成保护器拒动作。

(4)线路绝缘阻抗降低或线路太长由于部分电击电流不沿配电网工作接地或保护器前方的绝缘阻抗而沿保护器后方的绝缘阻抗流经保护器返回电源,将导致保护器拒动作。

四、使用和维护

运行中的漏电保护装置外壳各部及其上部件、连接端子应保持清洁,完好无损。连接应牢固,端子不应变色。漏电保护开关操作手柄灵活、可靠。

漏电保护装置安装完毕后,应操作试验按钮检验漏电保护器的工作特性,确认可以在正常动作后才允许投入使用。使用过程中也应定期试验按钮试验其可靠性。为了防止烧坏试验电阻,不宜过于频繁地试验。

漏电保护器范文篇9

关键词:漏电保护配电装置电气设计漏电保护器

漏电保护器(RCD)在我国应用已多年,积累了不少经验。但是在中小型民用建筑物,特别是住宅的电气设计中,应用尚不够重视。由于强制性国家标准《住宅设计规范》(GB50096-1999)自1999年6月1日起实施,进一步强调了居民用电的安全性和可靠性。因此,我们应重视中小型民用建筑物供配电线路设计中对漏电的保护。

一、安装漏电保护器的必要性

接地故障(接地短路)有金属性和电弧性两种形式。故障点熔焊,故障点阻抗可忽略不计的接地故障为金属性接地故障。这时设备外壳对地故障电压Uf为PEN线和PE线上电压降之和△U

Uf=△U=Id(ZPEN+ZPE)

=(ZPEN+ZPE)U0/Zs

=[U0(ZPEN+ZPE)]/[ZL+ZPEN+ZPE]

式中Id——接地故障电流(A);

U0——相电压(220V);

ZL、ZPEN、ZPE——各为相线、PEN线、PE线阻抗(Ω)

ZS——接地故障回路总阻抗(Ω)

计算中忽略了变压器阻抗。如果相线和PEN线截面相同,则ZPEN+ZPE=ZL

Uf=0.5U0=110V

考虑建筑物内等电位联结减少触电压的作用,按IEC61200-413间接接触防护-自动切断电源)标准,一般情况下,可减少约20%的接触电压,则接触电压UC为:

UC=0.8Uf=0.8*110=88V>50V;此UC足以引起人身电击事故。因此,金属性接地故障能使设备外壳带危险接触电压,其主要后果是人身电击。

当故障电流Id足够大时,回路首端的过流保护器(断路器、熔断器)也能瞬间动作,避免事故的发生。但Id值不仅与线路截面、长度有关,也与线路连接质量、布线方式以及维护管理水平等难以估量的因素有关,所以靠过流保护电源并不可靠。这就是不论TT系统还是TN系统,要求在手握式、移动式设备供电的插座回路上必须安装额定动作电流I△n大于30mA的瞬动漏电保护器的原因所在。

发生接地故障时,故障点不熔焊而是产生电弧、电火花(密集的电火花即是电弧)的接地故障为电弧性接地故障,如图2所示。电弧、电火花具有很大的阻抗,它限制了接地故障电流Id,使过流保护电器不能动作或延缓许久才能动作,但故障点或连接不良的PE线接头上通过Id时迸发的电弧、电火花的局部高温可高达2000-3000℃,很容易引燃近旁可燃物质,引起电气火灾。

由于故障电弧的阻抗大,220V相电压大部分降落在电弧上,分配在线路上的电压降大大减少,其结果是UC和Uf大大小于50V,因此电弧性接地故障只能引起电气火灾而不会招致人身电击事故。

二、安装两级漏电保护器

只在插座回路上安装漏电保护器的做法不能防范插座回路以外电气线路和设备电弧性接地故障引起的电气火灾,为此应按IEC60364-4-482(火灾防护)和我国《低压配电设计规范》(GB50054-95)要求,在电源进线上再安装一级漏电保护器,其额定动作电流一般为300mA,并带有约0.15s的延时,以与插座回路上的漏电保护器有选择性配合。增加这一级漏电保护器对电气投资虽略有增加,但对防范常见多发的危险接地电弧火灾却是至关重要的。另外不可实现地建筑物配电线路电弧性和金属性的接地故障进行保护。

三、四极和二极漏电保护器的应用

电气安全的一个基本要求是尽量减少开关电器的级数和触头数以及线路的连接点。开关触头之类的活动连接和线路的固定连接由于种种原因都可能因导电不良而成为事故起因,而三相回路中的中性线导电不良危险尤甚,这是因为中性线导电不良时设备依然运转,隐患不易被发现,当三相负荷严重不平衡时将导致三相电压也严重不平衡而烧坏单相设备。所以,应尽可能限制在中性线增加触头。

目前存在一种误解,即认为由于三相负荷不平衡,而中性线截面又小于相线截面,为防中性线过截而装四极开关。但IEC364-4-473(过电流防护措施)标准和我国低压配电设计规范都规定不必为此断开中性线,只需在中性线上装设过流检测元件来断来三根相线,使中性线不再有电流,过载问题自然迎刃而解了。另一种误解,即认为带有单相负荷的三相漏电保护器应采用四极的。其实漏电保护器的标准名称是“剩余电流动作保护器”,它只能在回路中出现剩余电流(如绝缘损坏引起的对地泄漏电流)时动作,而与回路不平衡电流毫不相干。因此,这些误解造成了现时一些四级漏电保护器的应用过滥。

四极(单相为二极)漏电保护器主要用于TT系统,这可用图3来说明。TT系统回路有一相发生接地故障,故障电流Id在电源接地电阻Rb上产生电压降,使中性线带故障电压Uf=Id*Rb,因中性线是绝缘的,此Uf一时并不引起事故,但此时若电气设备又发生碰外壳接地故障,漏电保护器跳闸,Uf将沿着图中虚线所示路径传导至设备外壳。因中性线未被切断,如果Uf大于50V,则漏电保护器跳闸后仍难免发生电击事故。如果TT系统采用的是四极或二极漏电保护器,则在断开线的同时中性线也被断开,从而切断Uf的传导路径,事故就不致发生。TN-C系统因不允许PEN线通过漏电保护器而无法装设漏电保护器。TN-S和TN-C-S系统内设备外壳与N线相连通,不存在上述漏电保护器动作后外壳反而出现故障电压的问题。由此可知,四极或二极漏电保护器的应用与被保护回路三相负荷是否平衡无关,而与回路接地系统类型有关。

漏电保护器范文篇10

一、剩余电流末级保护器动作电流值的整定

剩余电流末级保护器是根据触电引起心室颤动的电流极值确定的,主要是以防止人身直接接触触电为主要目的,安装在家庭用电气设备、移动式电力设备、手持电动工具和临时用电设备上,按《农村低压电力技术规程》规定,家用电器、固定安装电器、移动式电器及临时用电设备,其动作值≤30毫安;手持式电动器具为其动作值≤10mA;特别潮湿的场所其动作值≤6mA。因此,末级保护应选择高灵敏快速动作型剩余电流保护器。高灵敏快速动作型剩余电流保护器,当漏电流达到一倍以上二倍以下时,其动作时间为0.2s;当漏电流达到二倍以上五倍以下时,其动作时间为0.1s;当漏电流达到五倍及以上时,其动作时间为0.04s。

二、剩余电流中级保护器动作电流值的整定

中级保护的目的防止分支线(含进户线)发生接地漏电或用电设备外壳漏电而引起的间接接触触电及电气火灾,其动作电流应满足以下两个条件:

Im△n≥2Im0Im△n≥2I△ns

式中:Im△n-剩余电流中级保护器的额定动作电流值,毫安;

Im0-被保护分支网路的正常漏电流,毫安。

I△ns-剩余电流末级保护器的额定动作电流值,毫安。

选择同时满足以上两个条件的最大额定动作电流值,作为中级保护的额定动作电流值。

作为中级保护的剩余电流保护器,应选用具有0.2s~0.4s延时动作时间且固定分档可调的延时型剩余电流保护器。

三、剩余电流总保护器动作电流值的整定

总保护的目的是防止干线断线、金属性接地等故障和电气火灾及间接接触触电事故,其动作电流应满足以下两个条件:

I∑△n≥2I∑0I∑△n≥2Im△n

式中:I∑△n-剩余电流总保护器的额定动作电流值,毫安;

I∑0-被保护的低压电网的正常漏电流,毫安。

Im△n-剩余电流中级保护器的额定动作电流值,毫安。

用于总线路保护的剩余电流保护器,为防止越级跳闸或频繁动作,影响供电可靠性,动作电流值除按上述两条件选择,同时为更好地与下级保护配合,应选用具有动作时间大于0.4秒且固定分档可调的延时型剩余电流保护器。

《农村低压电力技术规程》5.5.1规定:剩余电流总保护在躲过农村低压电网正常剩余电流情况下,额定剩余动作电流应尽量选小,以兼顾人身间接接触触电保护和设备的安全。剩余电流总保护的额定剩余动作电流宜为固定分档可调,其最大值可参照下表确定。

表1:剩余电流总保护额定剩余动作电流(mA)

注:剩余电流动作保护器主要特性参数见附录B。

农村低压电网正常剩余电流,系指农村低压电网的正常漏电,是非故障情况下各项对地的总的合成泄漏电流。它有容性泄漏电流和阻性泄漏电流组成。如下图所示:

农村低压电网正常漏电流有电阻通路和电容通路,其中电阻通路是经过供电导线的绝缘层、支持绝缘子、套管、墙壁、电气设备外壳、外壳接地线等处,最后经大地返回电源中性点的。因此,在整定总保护的电流动作值时应对低压电网的正常的不平衡泄漏电流进行测量,其测量方法如下图所示,将配电线路的中性接地线断开,将电流表接在中性线和地线之间,即可测得低压电网的不平衡泄漏电流。

天气变化低压电网的不平衡泄漏电流的影响非常显著,雨天湿度增大,不平衡泄漏电流大,反之,不平衡泄漏电流小。所以,应根据阴雨季节和非阴雨季节时的现场实测值进行调节,但应不大于《农村低压电力技术规程》5.5.1所规定数值,见表1。如大于表1所列值,应对低压电网进行整修。

根据以上所述,举例加以说明,如实际测得一分支不平衡泄漏电流为30mA,整个电网的不平衡泄漏电流为50mA,便可以确定各级保护的动作电流和动作时间:

末级保护:I△ns=30mA、t△n=0.1s