等离子体范文10篇

时间:2023-03-31 18:53:20

等离子体范文篇1

关键词:低温等离子体;协同作用;大气污染控制

Abstract:Asanewprocesstechnology,Catalysis-assistednon-thermalplasmatechniquehasitsadvantages,suchaslessenergyconsumption,higherremovalefficiency,etc.ThetechniqueintreatingVOCs,NOxandengineoff-gaseshavelargedevelopmentprospects.Becauseoftheimmaturepracticalapplication,itneedtoincreaseeffortstoconductmorein-depththeoreticalandpracticalresearch.Catalysis-assistednon-thermalplasmatechniquewillbeabletoplaytheimportantroleinthetreatmentofwastegases.

Keywords:non-thermalplasma;synergisticeffect;airpollutioncontrol

目前,各种有毒有害气体的排放已造成严重的环境污染。低浓度有害气态污染物(如SO2、NOx、VOCs、H2S等)广泛地产生于能源转化、交通运输、工业生产等过程中。国际条例加强了对这些有害废气的限制。传统的治理方法如液体吸收法、活性炭吸附法、焚烧和催化氧化等已很难达到国际排放标准[1]。

近年来兴起的低温等离子体催化(non-thermalplasmacatalysis)技术解决了传统的净化方法所不能解决的问题。用该项技术处理有机废气具有以下优点:①能耗低,可在室温下与催化剂反应,无需加热,极大地节约了能源;②使用便利,设计时可以根据风量变化以及现场条件进行调节;③不产生副产物,催化剂可选择性地降解等离子体反应中所产生的副产物;④不产生放射物;⑤尤其适于处理有气味及低浓度大风量的气体。但以下两方面还有待改进:①对水蒸气比较敏感,当水蒸气含量高于5%时,处理效率及效果将受到影响;②初始设备投资较高。该项技术在环境污染物处理方面引起了人们的极大关注,被认为是环境污染物处理领域中很有发展前途的高新技术之一。本文将探讨其与污染气体的作用过程及两者协同作用机理,并概述这一技术在废气治理方面的进展。

1低温等离子体技术原理与协同作用机理

1.1低温等离子体技术原理

等离子体是含有大量电子、离子、分子、中性原子、激发态原子、光子和自由基等组成的物质的第四种形态。其总正负电荷数相等宏观上呈电中性,但具有导电和受电磁影响的性质,表现出很高的化学活性。根据体系能量状态、温度和离子密度,等离子体通常可分为高温等离子体和低温等离子体(包括热等离子体和冷等离子体)。高温等离子体的电离度接近,各种粒子的温度几乎相同,并且体系处于热力学平衡状态,它主要应用于受控热核反应研究方面。低温等离子体则处于热力学非平衡状态,各种粒子温度并不相同。

低温等离子体可通过前沿陡、脉宽窄(纳秒级)的高压脉冲放电在常温常压下获得,其中的高能电子和O、OH等活性粒子可与各种污染物如CO、HC、NOX、SOX、H2S、RSH等发生作用,转化为CO2、H2O、N2、S、SO2等无害或低害物质,从而使废气得到净化。它可促使一些在通常条件下不易进行的化学反应得以进行,甚至在极短时间内完成,故属低浓度VOCs治理的前沿技术。

1.2协同作用机理

低温等离子体和催化协同作用处理废气的主要原理如下:等离子体中可源源不断地产生大量极活泼的高活性物种,这在普通的热化学反应中不易得到,这些活性物种(特别是高能电子)含有巨大的能量,可以引发位于等离子体附近的催化剂,并可降低反应的活化能。同时,催化剂还可选择性地促进等离子体产生的副产物反应,得到无污染的物质。但是目前国内外在等离子体和催化协同作用机理方面的分析和研究比较少,在这方面的认识还远远不够。

有学者认为,固相催化剂的活性是由它们的化学和物相组成,晶体结构以及活性比表面所决定。在等离子体的作用下,催化剂表面将形成超细颗粒(平均颗粒直径为5-500nm,比表面约为100m2/g),这将大大增加催化剂的比表面积,并且破坏催化剂的晶体结构,拥有更多的空穴,从而导致高的催化活性。相比普通的催化剂,等离子体作用后的催化剂有如下独特之处:①具有高度分布的活性物种,②能耗减少,③加强了催化剂的活性和选择性,延长了催化剂寿命;④缩短了制备时间。另外,等离子体的作用可促进催化剂中的组分均匀分布,降低对毒物的敏感程度。这些特性将使得等离子体—催化技术有更大的应用前景。

2.研究进展

欧美和日本等国对低温等离子体催化技术的研究开展得比较早,主要把该技术应用于脱硫脱硝、消除挥发性有机化合物、净化汽车尾气、治理有毒有害化合物等方面。目前,很多国家的学术机构、政府和商业机构都在积极地开展此类研究。近年来,国内有很多学者在等离子体烟气脱硫脱硝、汽车尾气净化、有机废气处理等方面取得了较多实验结果,在这方面的研究已比较成熟。

3.1处理VOCs进展

国内外大量研究表明,等离子体-催化协同作用相比单个作用时能大大增强净化效果。KangM等人在常压下用等离子体/TiO2催化体系去除苯,催化剂的质量百分比为3%,苯的浓度为1000mg/m3,在仅有氧气等离子体没有TiO2催化剂时,40%的苯分解;在TiO2/O2等离子体下,脱除率达到70%;在O2等离子体中,TiO2负载于γ-Al2O3上时甲苯的转化率达到80%。

FutamuraS等[2]对有害大气污染物(HAP)在低温等离子体化学处理中金属氧化物的催化活性进行了研究,在没有MnO2作催化剂时,苯的摩尔转化率为30%,而在有MnO2作催化剂时,苯的摩尔转化率可以大大提高。FranekeKP等人[3]研究指出,在仅有催化剂时,20%的DCE(二氯乙烯)转化成CO2;仅放电条件下,转化70%的DCE;只有当两者协同作用时,有90%的DCE被去除,并且CO2为主要氧化产物。

秦张峰等[4]应用低温等离子体催化净化甲苯废气,采用了含CuO、Pd、Pt等活性组分的催化剂,当反应气流速为50-500mL/min,甲苯初始浓度为2000-20000mg/m3时,甲苯去除率为70%-95%,脱除量可达110mg/h。李锻等[5]将双极性脉冲高压引入介质阻挡反应器对氯苯和甲苯的分解特性进行了实验研究,而以冯春杨[6]、晏乃强[7]和黄立维[8]等人开展了脉冲电晕去除多种有机废气的研究,初始浓度为76.8mg/m3,苯的去除率达到61.4%,并对比了线—筒式和线—板式二种反应器对甲苯的去除率,在以Mn、Fe等作为催化剂时,可使去除率提高,催化剂活性的排序为Mn>Fe>Co>Ti>Ni>Pd>Cu>V,在去除各种有机废气中,甲醛最易去除,二氯甲烷最难,甲苯、乙醇、丙酮则处于其间。

3.2处理氮氧化合物进展

RajanikanthBS等[9]人对模拟气体在等离子体放电催化中NOx的去除进行了实验研究,指出介质填充床的存在可使NO在低电压下有更高的去除效率。实验对三种不同的催化剂(Al2O3、BaTiO3、Al2O3+Pd)进行了探讨,发现BaTiO3颗粒在气体组成为NO、O2、N2以及NO在N2中时有更高的去除效率。在NO的初始浓度为265mg/m3时,NO的去除效率几乎达到99%。在模拟汽车尾气(组成为NO∶O2∶CO2∶N2)中,相比其他介质,涂了Pd的Al2O3催化剂有更高的NO去除效率,在室温下NO去除效率相当于300℃甚至更高温度下尾气在惯常催化剂作用下的效率。

FranekeKP等[10]研究指出,仅在放电条件下,部分NO被氧化成NO2;在仅有氨作为还原剂,沸石作为催化剂时,可去除20%的NO;当等离子体置于催化之后,仅少量NO氧化成NO2;放电置于催化之前,约50%NO被去除;而当等离子体靠近催化放置时,有超过80%的NO转化成N2。

3.3净化机动车尾气进展

为实现美国环保局(EPA)提出的机动车尾气中NOx必须还原90%以上的目标,等离子体协同的催化体系在治理机动车排气方面有了很大进展。目前,用该项技术NOx的还原效率可达到65%以上,同时,该项技术还可脱除92%~96%的颗粒物,去除甲醛40%以上。

美国学者指出,在富氧废气中采用低温等离子体技术处理汽车尾气,可使NO在O2和碳氢化合物的协同作用下转变为NO2。而随后的金属氧化物催化剂可使NO2转化为N2。该方法强化了机动车排气中氮氧化物的还原,特别是那些有相对较高硫含量的汽车尾气。MiessnerH等[11]也指出,SCR和低温等离子体相结合净化机动车排气,加强了整体反应,在相对低的温度下就能有效地去除NOx。Al2O3和ZrO2作为催化剂的加入,促进了反应向有利方向进行。当供给每个NO分子30ever的能量,温度为300℃,气速为20000/h时,500mg/m3的NO能还原一半以上。

国内学者发明了一种后置式汽车尾气净化器,尾气经锥体分散后进入电场的催化剂中,在低温等离子体和催化剂的协同作用下,尾气净化率大大提高。该净化器一方面可使催化剂活性增加,转化率提高;另一方面可避免催化剂烧结,从而降低汽车尾气中有害气体的排放。与现有技术相比,该净化器具有以下优点:①将低温等离子体技术与催化技术相结合,技术得到升级;②适用于各种车型,不受汽车的原始排放限制,不同于现有的三元催化装置;③没有起燃温度限制,对冷车启动同样有效,且适用范围广;④结构紧凑,设计独特、新颖。

3.展望

低温等离子体技术应用的可行性和条件试验已较充分,也有了大量理论基础,已为这项工艺简单、适用性强、流程短、能耗低、易于操作和自动化的新技术早日工业化打下了充分的基础。但在低温等离子体技术与催化协同作用方面研究较少,是一项全新的处理技术,二者相结合,等离子体场产生高能量活性粒子,促进催化反应,减少能耗;催化主导反应方向,让反应具有选择性,并能大大减少反应副产物,该技术被认为在处理VOCs、氮氧化物、机动车尾气方面都有着广阔的发展前景,但实际应用还很不成熟,必须投入足够力量进行更加深入的理论和实践研究。

参考文献

[1]吕唤春,潘洪明,陈英旭.低浓度挥发性有机废气的处理进展[J].化工环保,2001,21(6):324-327.

[2]FutamuraS,ZhangAH,EinagaH,etal.Involvementofcatalystmaterialsinnonthermalplasmachemicalprocessingofhazardousairpollutants[J].CatalysisToday,2002,72:259-265.

[3]FranckeKP,MiessnerH,RudolphR.Plasmacatalyticprocessesforenvironmentalproblems[J].CatalysisToday,2000,59:411-416.

[4]秦张峰,关春梅,王浩静,等.有害废气的低温等离子体脱出研究[J].宁夏大学学报,2001,22(2):201-210.

[5]李锻,刘明辉,吴彦,等.双极性脉冲高压介质阻挡放电降解氯苯和甲苯[J].中国环境科学2006,26:23~26.

[6]冯春杨,赵君科.脉冲电晕技术在处理挥发性有机化合物中的应用研究[J].安全与环境学报,2004,4(1):59~61.

[7]晏乃强,吴祖成,谭天恩.脉冲电晕放电治理有机废气的研究—放电反应器结构[J].上海环境科学,2000,19(6):278~281.

[8]黄立维,林鑫海,顾巧浓,等.电晕-吸收法治理甲苯废气实验研究[J].环境科学学报,2006,26(1):17~21.

[9]RajanikanthBS,RoutS.Studiesonnitricoxideremovalinsimulatedgascompositionsunderplasma-dielectric/catalyticdischarges[J].FuelProcessingTechnology,2001,74:177-195.

等离子体范文篇2

一、等离子体隐身技术

等离子体隐身技术,是指产生并利用在武器装备(例如飞机、舰船等)表面形成的等离子体云来实现规避电磁波探测的一种隐身技术。它可以在武器装备几乎不作任何结构和性能上的改变的情况下,通过控制武器装备表面的等离子体云的特征参数,如能量、电离度、振荡频率等,来满足各种特定要求,使敌方雷达难以探测,甚至还能改变雷达反射信号的频率,使敌方雷达测到虚假信号,以实现信息欺骗,从而达到隐身目的。

运用等离子体隐身的方法主要有两种:一种是利用等离子体发生器产生等离子体,即在低温下,通过高频和高压提供的高能量产生间隙放电,以便将气体介质激活电离形成等离子体[1]。另一种是在飞行器的特定部位如强雷达散射区,涂一层放射性同位素,它的辐射剂量应确保它的α射线在电离空气时所产生的等离子体云具有足够的电离密度和厚度,以确保对雷达电磁波具有足够的吸收和散射能力。

等离子体隐身技术与目前已经广泛应用的隐身技术相比具有很多优势,它改变了常规隐身技术的被动实现手段,采取了主动控制方法实现隐身,使隐身系统便于维护;不需改变飞行器的气动外形设计,不会影响飞行器的飞行性能。等离子隐身方法不仅可以吸收雷达波,还可能吸收红外辐射,具有吸收频带宽、吸收率高的特点;俄罗斯克尔得什研究中心实验表明等离子体还能减少飞行阻力30%以上。

等离子体隐身技术作为新概念的飞行武器防御系统,目前在理论和实验上已经获得成功,如果在工程应用上一旦取得突破,将对未来空战产生革命性的影响。现有的一些大雷达截面飞行器,欲减小雷达散射截面积,可以采用等离子体作为隐蔽部件来实现,而无需做重大的结构改变。这样,在电子战中使一些老装备的服役寿命得以延长。同时还可以研制不同的等离子体隐身系统用于船舶、机载平台和卫星以抵御不同雷达的威胁。因此,等离子体隐身技术在军事上具有极高的潜在应用价值,将成为隐身技术发展的新的突破方向及世界各军事强国竞相研究的焦点。

二、国内外等离子体隐技术现状

自上个世纪五十年代开始,特别是近二十年来,以美国为首的西方国家和俄罗斯(前苏联)致力于发展军事用途的飞机隐身技术。20世纪90年代初,美国休斯实验室投资65万美元进行了一项为期两年的研究计划。1992年发表的美国国防文献中心研究报告《非磁化等离子体球中电磁波的传播》,描述了陶瓷球壳内用气体放电产生的等离子体球对电磁波的衰减多达100dB[2]。1997年,美国海军委托田纳西大学等单位发展等离子体隐身天线。该天线是将等离子体放电管作为天线元件,当放电管通电时就成为导体,能发射和接收无线电信号;当断电时便成为绝缘体,基本不反射敌探测信号[3]。

美国还在《国防部1997年基础研究计划》中提出了“中性等离子体效应可以为国防部的飞机和卫星提供隐身条件”[4]。法国的ONERA一个多学科研制小组已经研制成了一个非物质的全隐身的等离子体雷达反射器。它与通常的平面或抛物线天线不同,一个等离子体平面可确保在空间不同的方向中传输波束。等离子体反射器开创了雷达工作性能和特性的新纪元[5,6]。

我国尽管对隐身飞机的复合电磁吸收材料及表面涂层等方面有一定的研究,但对等离子体隐身技术的研究却处于起步阶段。

三、等离子体隐技术目前存在的问题

目前,用等离子体技术实现兵器隐身也存在着相当的难度和问题:

(1)兵器安装等离子体发生器的部位无法隐身。

(2)所需电源功率很高,设备体积大,产生等离子体并维持一定的电子密度和范围需要消耗能源。飞机利用其隐身会减小作战半径。美国休斯实验室在试验中只达到每20kw的功率产生1L等离子气体的水平。

(3)产生等离子体需要分子、原子作为电离对象,这给在真空中飞行的卫星和战略导弹利用等离子体隐身造成了困难。

(4)飞行器在较低高度飞行时等离子体隐身效果较差。

(5)用电弧放电的方法产生等离子体的同时,会产生射频辐射、强烈的闪光和紫外线,等离子体复合也会产生光辐射。这些信号泄露不仅对隐身不利,而且紫外线也可能使飞行员受到伤害。

等离子体范文篇3

关键词:气体放电;电弧等离子体;负阻特性;恒流特性

1概述

飞行器在高速飞入太空时,在其周围会形成一种极其复杂的等离子鞘套,鞘套厚度约为10cm左右,该鞘套会吸收或者反射电磁波,从而造成飞行器与外界的通信信号衰减甚至中断,即黑障效应。所以产生等离子体研究这种现象非常有意义。此外,电弧等离子体因具有温度高(达30000K)[1]、能流密度大和良好的控制性等特点,现已在节能、减排、增效、环保等多领域备受青睐[2]。目前,工业发达的国家已将等离子体技术应用在工业固废处理、切割、焊接、冶炼及点火等众多领域[3],国内也正在推广使用。要实现等离子体技术的全面推广,具有高可靠性和优良控制性能的大功率等离子体激励电源是其关键。在工业生产中,获取等离子的方式虽然有很多种,但是归结起来主要有3种[4]:即热电离、光辐射电离和放电电离,放电电离有时称场致电离,但在航空航天领域一般采用放电电离的方式来获取稳定的等离子体。根据电源-电弧理论以及等离子体在实际工况的应用情况,电弧等离子体负载呈一种负阻特性,要保证其能量可持续保持在几百千瓦或几兆瓦,放电电源需长时间工作在高压大电流状态。一般保持3mm左右的等离子体流,起弧电压约5kV,电流约1A;维持电压约300V,电流约160A,且需要在其范围内可连续可调。放电电源主功率电路采用了三相桥式全控整流电路,利用晶闸管较大的单管容量和较强的抗浪涌能力来满足电弧等离子体对放电电源这种苛刻的供电要求,并采用运算速度快、抗干扰能力强的数字控制系统对其进行控制,提高了放电电源的可靠性和灵活性。

2放电原理及系统构成

从电弧等离子体工作原理来分析,交流激励和直流激励均可使放电电极之间的气体被击穿[5],发生放电现象。交流激励一般采用工频变压器直接升压后将其气体击穿,但因存在体积大、消耗铁铜金属材料较多、对电网冲击厉害且功率因数极低而很少被采用。随着新电磁材料和新控制理论的不断出现并应用在开关电源中,以及与电力电子技术相关的其他学科不断改进和飞速发展,直流激励一般采用开关电源的方式获取直流电,但是由于开关电源在逆变环节所使用的开关器件大多为IGBT或MOSFET,因其单管容量较小,所以在大功率放电电源中只能采用开关器件串并联的方式工作,由于所选用开关器件的参数和静态特性不可能完全一致,实际使用时必须对其进行串联均压和并联均流的措施来弥补这种不足,不仅使电源系统复杂化而且因环节较多使系统的可靠性也大大地降低。基于现有等离子体激励电源的不足,设计了一种额定输出电压为500V,额定输出电流为300A的放电电源,主功率电路拓扑结构为三相全控整流桥,主电路原理图如图1所示。主电路主要内容涉及进线交流接触器、工频整流变压器、三相整流桥电路、RC吸收电路和低通LC滤波电路。工作原理为:当主电路上电且接收到外部控制面板的合闸信号时,进线侧的交流接触器触点吸收,主电路通电。工作时每个周期整流桥晶闸管器件均按照VT1、VT2→VT2、VT3→VT3、VT4→VT4、VT5→VT5、VT6→VT6、VT1的导通规律工作,每个晶闸管在一个工作周期内都导通120°。2.1整流桥输入线电压。(1-1)2.2整流臂晶。闸管平均通态电流(1-2)电力电子器件抗电流浪涌能力都较差,晶闸管也不例外,在其开关瞬间或过载工作时,会流过大于器件额定值的工作电流,器件极易因管芯温度迅速升高而烧坏,且过电流是电力电子电路最容易发生且最容易损坏器件的主要原因之一;同时电力电子器件对电压也是十分敏感,一旦外加电压超过器件最大额定电压时,器件会立即被损坏,而过电压在实际工作时经常发生,如激励电源进线交流接触器分/合闸、晶闸管换相和关断以及雷电均会引起过电压,所以为了确保电路可以安全可靠的工作,在工程实际中,选取管子额定电压和电流时一般都会考虑2~3倍的安全裕量[6]。此外,由于等离子体激励电源对效率的要求较高,如果选择容量较小的晶闸管让其在接近管子额定值时长期工作,不仅会缩短器件的寿命,且工作效率也较低。通过以上计算和分析,最终选择了中国中车集团公司生产的扁平式晶闸管,型号为:Y38KPJ,该晶闸管通态平均电流,IT(AV)=100(A),反向重复峰值电压VRRM=3000(V),dv/dt=1000V/μs,di/dt=100A/μs,断态漏电流范围为34~39mA。2.3RC吸收电路。激励电源整流桥晶闸管采用了RC吸收电路对其进行过电压保护,缓冲电路直接并联在其每个晶闸管的阴阳极之间,既能对整流臂晶闸管瞬态过电压吸收,又可抑制开关管在导通时正向电压上升率,RC参数计算如下:(1-3)(1-4)(1-5)式中:CS—整流桥RC吸收电路电容(μF)IT(AV)—阀侧器件额定正向平均电流(A)RS—整流桥RC吸收电路电阻(Ω)PRS—RC吸收电路功率损耗(W)f—电源频率(Hz)UARM—臂反向工作峰值电压(V)ns—每个整流臂串联晶闸管个数换相吸收电阻R01-R06最终选择了30W/10欧姆线绕电阻,换相吸收电容C01-C06为0.5μF/750V的CBB电容。

3控制系统

等离子体激励电源的控制系统是以CPLD和PLC为核心,将CPLD较强的运算能力、可灵活重复编程性和PLC超强的抗干扰能力结合在一起,设计了一套高效率、高性能、高精度的控制系统。控制系统结构及功能图如图2所示,内容涉及了同步信号采集电路、驱动电路、输出电压电流检测电路、保护电路、监控电路以及外部控制面板功能。两个控制器分工明确,CPLD主要负责将采集回来的各种信号通过运算并结合外部有无故障,给主功率电路发送触发脉冲[7];主电路正常工作时,将采集回来的电流信号经PID运算后发出相应移相角度的控制脉冲,实现系统的恒流调节;当检测到主电路有故障发生时,立刻封锁脉冲,对其进行保护。PLC主要负责与上位机通信,将系统在运行时实时情况传给上位机,便于后续工作人员对系统工作情况的分析;此外,还负责系统电流给定调节、分/合闸操作、上电解/封锁脉冲、本地控制和远程控制的切换以及复位功能。

4驱动电路

驱动电路作为功率主电路和控制电路的接口电路,是电力电子系统设计的重要环节,不仅需要有较强的隔离能力,还需将控制信号功率放大。隔离电路一般采用光隔离或电磁隔离;光隔离一般采用光耦器件,光耦实质是将发光二极管和光敏晶体管封装在一起,不仅会使控制发生延时还会使其波形发生畸变。在强激励下,前沿波形较好,后延畸变厉害;激励不足时,前沿波形畸变厉害,后沿波形较好。从而影响开关器件的开通和关断时间,所以实际用于中一般需将光耦输出的信号经整形电路后才可使用,整形电路一般采用施密特电路,这就会使控制系统复杂化。由CPLD直接输出的控制脉冲,因主电路三相整流桥中被触发的晶闸管阴极电位有很大的差别,所以控制脉冲不可直接送至被控晶闸管的门-阴极,更重要的晶闸管属于电流型器件,需要一定的功率才可将其可靠触发,而CPLD输出电流能为数10毫安,根本无法直接去驱动晶闸管。设计的驱动电路如图3所示。图3中当来自移相触发板的脉冲g1为低电平时,晶体管T1截止,脉冲变压器T0的原边无电流流过,此时二次侧无感应电压,所以驱动电路的端口(G1、K1之间)无触发脉冲出现;一旦控制脉冲g1变为高电平,晶体管T1导通,则脉冲变压器T0原边就会有电流流过,其二次侧便有感应电压,该脉冲电压经二极管VD2、VD3整形并削去负半波后提供给被触发晶闸管,使其被可靠触发。图3中二极管VD1及稳压管Z1、Z2构成给脉冲变压器在脉冲消失时的电感能量提供一通路,由于稳压管Z1、Z2的存在,保证了耦合到脉冲变压器T1二次侧的脉冲为正负脉冲,防止了脉冲变压器的饱和。另外电阻R2、C1构成抗干扰网络,防止干扰脉冲造成晶闸管的误触发;图3中R1、VL1支路用来为电路正常工作时提供指示,使在工作时,没有接入示波器的情况下仍可随时了解到触发脉冲是否正常。

5实验与分析

图4为在实际工况下主电路带载时测得晶闸管VT1门阴极两端的驱动信号,由图4可知,驱动脉冲前沿很陡,宽度为18°,最大幅值为3.5V,强触发时间约为250μs,稳定触发脉冲约为600mV,可以可靠、有效地控制晶闸管的导通。为了保证晶闸管可靠地导通,在上下桥臂晶闸管换相时,给还需继续导通的晶闸管补发一个脉冲,即采用双窄脉冲控制方法,如图5所示,从图5中可以看出两触发脉冲前后沿相差约60°。晶闸管导通角最大时,电弧等离子体负载两端的电压波形如图6所示。

6结语

所设计的电弧等离子体激励电源具有可靠性高、抗干扰能力强和结构简单的优点。经长时间在实际工况中的应用效果表明:该等离子体激励电源在气体放电过程中有良好的恒流特性和稳弧特性,即工作时电弧等离子体稳定、无抖动闪烁。

参考文献

[1]陈要玲.IGBT逆变式等离子弧切割电源[D].兰州理工大学,2008:2-4.

[2]王振民,等.高效电弧等离子体技术及其应用[M].华南理工大学出版社,2018.

[3]MurphyAB,ColomboV,MostaghimiJ.Arcwelding,plasmacuttingandplasmaspraying[J].JournalofPhysicsDAppliedPhysics,2013,46(46):220-301.

[4]郑春开.等离子体物理[M].北京:北京大学出版社,2009:20-21.

[5]王兆安,张明勋.电力电子设计和应用手册[M].北京:机械工业出版社,2009.

[6]王兆安,刘进军.电力电子技术[M].北京:机械工业出版社,2009.

等离子体范文篇4

[摘要]随着现代高科技的发展,探测技术和手段也越来越进步,对隐身技术的要求也越来越高。常规的隐身技术主要是采用电磁损耗材料,这类材料一方面受质量、面密度等的影响,另一方面这类材料对电磁波的损耗也是有限的。故新的隐身机理研究是研究新型隐身技术发展的必然趋势。介绍等离子体隐身技术的研究现状,及目前等离子体隐身技术存在的问题。

在军事高技术迅速发展的时代,以牺牲飞机的气动性能为代价的传统隐身技术正面临挑战。“等离子体隐身技术”正在逐渐从实验室走向实用化。与隐身外形、隐身材料和隐身结构等传统的隐身技术相比,等离子体隐身技术在许多方面具有独特的优势,是21世纪隐身技术的重要发展方向。

一、等离子体隐身技术

等离子体隐身技术,是指产生并利用在武器装备(例如飞机、舰船等)表面形成的等离子体云来实现规避电磁波探测的一种隐身技术。它可以在武器装备几乎不作任何结构和性能上的改变的情况下,通过控制武器装备表面的等离子体云的特征参数,如能量、电离度、振荡频率等,来满足各种特定要求,使敌方雷达难以探测,甚至还能改变雷达反射信号的频率,使敌方雷达测到虚假信号,以实现信息欺骗,从而达到隐身目的。

运用等离子体隐身的方法主要有两种:一种是利用等离子体发生器产生等离子体,即在低温下,通过高频和高压提供的高能量产生间隙放电,以便将气体介质激活电离形成等离子体。另一种是在飞行器的特定部位如强雷达散射区,涂一层放射性同位素,它的辐射剂量应确保它的α射线在电离空气时所产生的等离子体云具有足够的电离密度和厚度,以确保对雷达电磁波具有足够的吸收和散射能力。

等离子体隐身技术与目前已经广泛应用的隐身技术相比具有很多优势,它改变了常规隐身技术的被动实现手段,采取了主动控制方法实现隐身,使隐身系统便于维护;不需改变飞行器的气动外形设计,不会影响飞行器的飞行性能。等离子隐身方法不仅可以吸收雷达波,还可能吸收红外辐射,具有吸收频带宽、吸收率高的特点;俄罗斯克尔得什研究中心实验表明等离子体还能减少飞行阻力30%以上。

等离子体隐身技术作为新概念的飞行武器防御系统,目前在理论和实验上已经获得成功,如果在工程应用上一旦取得突破,将对未来空战产生革命性的影响。现有的一些大雷达截面飞行器,欲减小雷达散射截面积,可以采用等离子体作为隐蔽部件来实现,而无需做重大的结构改变。这样,在电子战中使一些老装备的服役寿命得以延长。同时还可以研制不同的等离子体隐身系统用于船舶、机载平台和卫星以抵御不同雷达的威胁。因此,等离子体隐身技术在军事上具有极高的潜在应用价值,将成为隐身技术发展的新的突破方向及世界各军事强国竞相研究的焦点。

二、国内外等离子体隐技术现状

自上个世纪五十年代开始,特别是近二十年来,以美国为首的西方国家和俄罗斯(前苏联)致力于发展军事用途的飞机隐身技术。20世纪90年代初,美国休斯实验室投资65万美元进行了一项为期两年的研究计划。1992年发表的美国国防文献中心研究报告《非磁化等离子体球中电磁波的传播》,描述了陶瓷球壳内用气体放电产生的等离子体球对电磁波的衰减多达100dB。1997年,美国海军委托田纳西大学等单位发展等离子体隐身天线。该天线是将等离子体放电管作为天线元件,当放电管通电时就成为导体,能发射和接收无线电信号;当断电时便成为绝缘体,基本不反射敌探测信号。

美国还在《国防部1997年基础研究计划》中提出了“中性等离子体效应可以为国防部的飞机和卫星提供隐身条件”。法国的ONERA一个多学科研制小组已经研制成了一个非物质的全隐身的等离子体雷达反射器。它与通常的平面或抛物线天线不同,一个等离子体平面可确保在空间不同的方向中传输波束。等离子体反射器开创了雷达工作性能和特性的新纪元。

我国尽管对隐身飞机的复合电磁吸收材料及表面涂层等方面有一定的研究,但对等离子体隐身技术的研究却处于起步阶段。

三、等离子体隐技术目前存在的问题

目前,用等离子体技术实现兵器隐身也存在着相当的难度和问题:

(1)兵器安装等离子体发生器的部位无法隐身。

(2)所需电源功率很高,设备体积大,产生等离子体并维持一定的电子密度和范围需要消耗能源。飞机利用其隐身会减小作战半径。美国休斯实验室在试验中只达到每20kw的功率产生1L等离子气体的水平。

(3)产生等离子体需要分子、原子作为电离对象,这给在真空中飞行的卫星和战略导弹利用等离子体隐身造成了困难。

(4)飞行器在较低高度飞行时等离子体隐身效果较差。

(5)用电弧放电的方法产生等离子体的同时,会产生射频辐射、强烈的闪光和紫外线,等离子体复合也会产生光辐射。这些信号泄露不仅对隐身不利,而且紫外线也可能使飞行员受到伤害。

(6)飞行器所用的等离子体在吸收对方雷达波的同时,对其本身的通信、导航、雷达和敌我识别信号的传输都能造成衰减,甚至中断。公务员之家

等离子体隐身技术是随着等离子体物理学的发展而迅速发展起来的,虽说只有短短几十年的历史,却发挥着越来越广泛的作用。随着科学技术的飞速发展,等离子体隐身技术的应用为武器装备的隐身带来了突破性的革命,它不仅可以应用于各种武器平台的雷达隐身,还可以应用于光电对抗等方面。当然等离子体隐身是一项十分复杂的系统工程,是大气等离子体技术、电磁理论与工程、空气动力学、机械与电气工程等的交叉学科。如何设计一种易于产生、易于控制的等离子体发生器,并能适应各种武器平台的技战术要求成为实现有效隐身的关键。一旦关键技术被突破,等离子体隐身技术很有可能替代现有的靠外形和材料隐身的技术,为隐身兵器开创一片新天地。

参考文献:

孙宗祥,等离子体隐身技术的发展现状及关键技术.流体力学实验与测量.2000,14(2):115-116.

R.J.Vidmar.PlasmaCloaking:AirChemistry,BroadbandAbsorption,AndPlasmaGeneration.AD-A222044.1990.

M.S.Danoel,etal.IEEElntemationalConferenceonPlasma,Bostm,Massachusetts,1996:3-5.

孙和敏等,对抗等离体隐身子技术的探讨.电子对抗.2003.5:92-96.

等离子体范文篇5

关键词:等离子体物理,汤姆孙散射,动力学形状因子,等离子体参数

Thomsonscattering:apowerfuldiagnostictoolofplasmaphysics

ZHENGJianYUChang\|Xuan

(KeyLaboratoryofBasicPlasmaPhysics,ChineseAcademyofSciences,DepartmentofModernPhysics,UniversityofScienceandTechnologyofChina,Hefei230026,China)

AbstractThomsonscatteringistheprocessinwhichalow\|energyphotonscattersfromafreeelectron.Whenalaserpulsepropagatesthroughaplasma,thespectrumofthescatteredlightduetotheThomsonscatteringisproportionaltothepowerspectrumoftheelectrondensityfluctuations,i.e.,dynamicformfactor,fromwhichvariousplasmaparameterscanbeinferred,suchaselectrontemperatureandplasmaflowvelocity.Afteryearsofdevelopment,Thomsonscatteringhasnowbecomeapowerfuldiagnostictoolofplasmaphysics.

Keywordsplasmaphysics,Thomsonscattering,dynamicformfactor,plasmadiagnostics

1引言

精确测量等离子体的状态参数是深入研究等离子体物理过程的基本前提之一.对于高温高密度的等离子体,由于受到可接近性的限制,实验室常用的主动诊断手段(如探针)是无法接近需要探测的等离子体的.当然也有其他被动诊断方式可以提供众多等离子体参数的测量手段,如X射线能谱测量.相对被动诊断手段,汤姆孙散射作为一种主动诊断手段有其独特的一面:它可以高时空分辨地测量等离子体参数,且实验结果的解释相对简单,即散射光谱以比较直接的方式与等离子体参数有关.后者特别重要,因为有些诊断方法严重依赖于对实验数据的解释和处理,导致获得的等离子体参数的置信度较低.经过多年的发展,特别是由于激光技术以及高速高灵敏度探测器的进步,汤姆孙散射已经逐渐演化成为惯性约束聚变等离子体的标准诊断手段,成为精确研究等离子体行为的强大工具.

2汤姆孙散射的基本原理

汤姆孙散射是低能光子(光子能量远远小于0.511MeV)与低能自由电子之间的弹性散射.该过程的经典物理图像是,在入射电磁波场中振荡的电子发射电磁波——散射电磁波.若电子有一运动速度v,散射电磁波的频率将不同于入射电磁波的频率,其差别为

这里k=ks-k0是散射波的波矢与入射电磁波的波矢之差,称为散射差矢.由这个简单的公式可以看到,散射电磁波携带了电子的运动信息,这就是汤姆孙散射可以用来诊断等离子体的基本原因.当然,当我们采用汤姆孙散射诊断等离子体时,我们测量到的散射光谱来自许多电子产生的散射电磁波的相干叠加.叠加的结果是,散射光谱与电子密度涨落功率谱成正比,d2PdωdΩ=NeI0r2esin2θS(k,ω)

这里S(k,ω)就是所谓的动力学形状因子,它是电子密度涨落自相关函数的谱密度;I0是入射电磁波的功率密度;Ne是发生汤姆孙散射的电子数;re是经典电子半径;θ是入射电磁波的极化方向与散射波矢之间的夹角.若电子彼此之间是完全无关的,那么散射光谱就是各个电子散射光谱的简单相加,此时散射光谱反映了电子在散射差矢方向上的速度分布.若等离子体中存在集体运动,电子之间不是彼此完全相互无关的,干涉效应会导致散射光谱在相应于等离子体集体运动模式的频率和波矢处出现尖锐的极大值.对于无磁化的等离子体,我们知道等离子体中的集体运动模式有两个:高频的电子等离子体波和低频的离子声波.这两种集体运动模式的色散关系为

ω2epw=ω2pe(1+3k2λ2De),ω2ia=11+k2λ2DeZTemi+3Timi,

这里ωpe是朗谬尔振荡频率,λDe是电子德拜长度,Te,i是电子/离子温度,Z是离子电荷数,mi是离子温度.经过适当的实验安排,以满足k2λ2De1,那么我们就能够从散射光谱中获得电子密度ne以及电子密度与离化态乘积ZTe的信息.此外,散射光谱的宽度与集体运动模式的阻尼有关,而阻尼也取决于等离子体的状态参数,因此通过散射光谱的宽度,原则上也可以推断出等离子体的参数.例如,通过电子等离子体波的散射光谱的宽度,可以测量电子温度Te.

3汤姆孙散射实验结果

中国科学技术大学基础等离子体物理重点实验室的研究小组与中国工程物理研究院激光聚变研究中心的同事们同心协力,先后在“星光II”装置[1—3]和“神光II”装置[4,5]上完成了汤姆孙散射实验.图1是“星光II”装置上的实验安排示意图[3].实验中,我们采用波长为351nm的激光脉冲辐照金平面靶,产生等离子体,采用波长为526.5nm的激光脉冲作为汤姆孙散射探测束.主激光的能量在100J左右,探针束的能量在10J左右.

我们得到的典型汤姆孙散射光谱如图2(a)所示.由于采用了具有高时间分辨的探测设备,得到的是随时间的演化汤姆孙散射光谱,由此我们可以得到等离子体参数随时间的演化.

在“神光II”装置上,我们进一步利用汤姆孙散射测量了腔靶等离子体的状态参数[5].实验安排如图3所示.在圆柱形腔靶的侧壁上,我们开设了一个探针光注入口,散射光由圆柱的端面出射.由于封闭的几何位形,腔靶内等离子体的离子温度一般要远远高于平面靶产生的等离子体的离子温度.导致汤姆孙散射光谱严重展宽,以至于两个离子声波散射峰融合,如图4所示.

4总结

本文回顾了中国科学技术大学等离子体物理学科点在汤姆孙散射方面的实验研究工作的主要结果.对于该项诊断技术的掌握,使我们对激光聚变等离子体的演化有了更加深入的了解,有助于我们精确预言激光等离子体的行为.

致谢本文报告的工作是多人共同努力协作的结果.作者对以下人员的贡献表示感谢:白波、王哲斌、蒋小华、李文洪、刘永刚、曹柱荣、丁永坤、郑志坚等,同时感谢中国工程物理研究院激光聚变中心的制靶人员,“星光II”装置全体运行人员,以及“神光II”装置全体运行人员.

参考文献

[1]BaiB,ZhengJ,YuCXetal.Chin.Phys.Lett.,2001,18:936

等离子体范文篇6

关键词:室内空气;有毒有害物;净化关键技术

1概述

随着国家发展、生活水平的提高,人们越来越重视居住、学习、办公场所的空气质量。目前,室内空气污染已成为危害人类身体健康的“隐形杀手”。与此同时,室内空气污染净化技术研究被提到议事日程。以过滤净化技术为代表的空气净化器的发展大致经历了三个时期[1-3]:(1)以机械过滤除尘和活性炭吸附等物理性能设计的第一代净化器;(2)增加了静电除尘、离子交换、臭氧杀菌等功能的第二代净化器;(3)采用高效光催化技术的第三代净化器。从身体健康的角度来看,要想能很好地保持室内空气的洁净度,室内进排风系统要能有效地过滤掉进入室内的雾霾,吸附中和有害物质,除掉气溶胶团中的病毒等,才能保持教室内空气的洁净度。从技术角度来看室内空气净化关键技术是:一是空气雾霾污染高效的精密过滤技术;二是空气病毒及有毒有害污染去除技术。从近年来空气过滤技术发展来看,超细玻璃纤维球过滤技术能够较好地对PM2.5雾霾进行有效过滤;紫外线能有效地去除病毒。

2空气灰尘污染和化学污染处理技术

2.1空气灰尘污染超细玻璃纤维过滤技术

所谓“空气灰尘污染超细玻璃纤维过滤技术”是指使用纤维线径≤1μm的亚微米超细玻璃纤维,对分子级空气PM2.5雾霾污染物进行高效过滤。这种超细玻璃纤维,最大的优点是单丝直径超细、柔韧性好、挠曲性能好,可以承受5万~8万次的过滤冲击。分子级空气污染纳米级超细玻璃纤维结构如图1所示。

2.2空气灰尘和病毒污染超细玻璃纤维过滤+紫外线复合作用处理技术

近年来,新兴的超细纤维过滤+紫外线杀菌复合作用环境净化技术具有操作简单、耗能少、降解速率快、处理范围广、无二次污染、净化效果好等优点,尤其紫外线对消杀效果明显[4-5]。超细纤维+紫外线复合作用气体净化工作原理如图2所示。图2超细纤维过滤+紫外线杀菌复合作用原理该技术运用了超细纤维阻挡过滤+紫外线消毒技术。在换气风扇(或风机)作用下,室外的新风首先穿过超细纤维过滤网,PM2.5的微细灰尘及雾霾被超细纤维过滤网微孔阻挡过滤掉了,紧接着空气再经过紫外线杀菌消毒,进入室内的空气得到了较好的净化。

3空气灰尘污染、化学、病毒等污染处理创新设计研究

3.1过滤精度可调、自动再生超细纤维球高效过滤器的创新设计

从上述对“空气灰尘污染超细玻璃纤维过滤技术”的研究来看,超细玻璃纤维球对灰尘的过滤原理是利用超细玻璃纤维球的多层交叉重叠布置来实现对超细灰尘和雾霾过滤的。虽然采用这种超细玻璃纤维球可用于对灰尘和雾霾进行有效过滤,但是其反吹再生效率随时间延长会越来越差。针对超细玻璃纤维球过滤介质再生难的问题,在多年研究的基础上,改进创新设计了图3所示的“一种过滤精度可调、自动再生超细纤维球高效过滤器”。从图3可以看出,该过滤器内填满了超细纤维球,在过滤器超细纤维球中间设计了一个水囊,通过水囊充水加压来调节纤维球过滤精度。通过进气口压力传感器,自动启动反吹功能,当给水囊泄压后纤维球处于松散自由状态,通过反吹可以较好地实现对超细纤维球清洁再生。

3.2超细纤维球+低温离子体一体化除尘、杀毒、有害物降解集成创新技术

从课题总体思路来看,要想能很好地解决人群密集场所室内空气净化方案,还需要进行细致的思考。通过前面对“超细纤维过滤+紫外线杀菌复合作用环境净化技术”的研究可以看出,虽然采用紫外线可以杀菌,但是对室内有毒有害物质如室内装修残留的甲醛、苯、聚氨酯漆、醇酸类漆污染物等,超细纤维球过滤+紫外线杀菌方法是无法去除的[6]。针对室内有毒有害物质,结合多年对低温等离子技术的研究,利用低温等离子具有分解降解功能,研究集成设计了一种集超细纤维球高效过滤、低温等离子体一体化的人群密集场所空气除尘、杀菌、有毒有害气体降解净化技由图4可以看出,室外的新风首先穿过超细纤维球过滤器,PM2.5的微细灰尘及雾霾被超细纤维过滤网微孔阻挡过滤掉了,紧接着空气再经过低温等离子体发生器,气体再经过低温等离子体的放电作用,对有毒有害气体进行杀菌、解毒、分子降解作用。低温等离子体净化空气污染物,主要是利用粒子间及粒子与物相表面碰撞所产生的高能量使气体污染物分子化学键断裂,同时使污染物分子在分解过程中产生的高活性自由基转化为无害物质[7-9]。

4总结

通过上述研究可以看出,本文针对人群密集场所室内空气净化问题,从空气过滤和消除病毒角度出发,对人群密集场所室内空气净化,空气污染超细玻璃纤维过滤,低温等离子体复合作用除尘、杀菌消毒等关键技术进行了较为深入的探讨,为人群密集场所室内空气净化环境设计提供了技术基础。主要研究内容归纳如下:(1)通过对国内外室内空气净化技术发展现状的研究,首先确立了超细玻璃纤维球过滤+紫外线除病毒的人群密集场所室内空气净化初始方案。(2)依据初始方案,通过对超细纤维过滤和紫外线杀菌相关技术的研究,构建了超细纤维+紫外线复合作用气体净化方案。(3)在超细纤维+紫外线复合作用气体净化方案研究的基础上,结合多年研究的经验,创新设计了一种“过滤精度可调、自动再生超细纤维球高效过滤器”。该过滤器通过中间充水胶囊的加压或泄压,调节空气过滤精度和效率。通过对低温等离子体技术的研究,利用低温等离子体同时具备杀菌、解毒的特点,最后集成创新设计了超细纤维球+低温离子体一体化除尘、杀毒、有害物降解技术系统,为人群密集场所室内空气净化设计,提供了一种集成技术。

参考文献:

[1]裴晶晶,薛人玮,刘俊杰.气态分子污染及控制技术[M].天津:天津大学出版社,2020.

[2]涂有,涂光备.对国内与国际洁净室节能新标准的综合评述[J].洁净与空调技术,2022(02):1-5.

[3]刘根,蒋澄灿,芮晓光,等.工业超洁净环境设计关键技术的研究[J].机械设计与制造工程,2016,45(11):86-91.

[4]王一帆,钱晓明.气体过滤用纤维材料的设计与选用[J].化纤与纺织技术,2016,45(04):22-26.

等离子体范文篇7

束流由单一的电子、光子、电子和离子或二种以上的粒子组合而成。属于高功率密度的热源有:等离子弧、电子束、激光束及复合热源激光束+Arc(TIG、MIG、Plasma)。

当前高能束流焊接被关注的主要领域是:①高能束流设备的大型化—功率大型化及可加工零件(乃至零件集成)的大型化。②新型设备的研制,诸如,脉冲工作方式以及短波长激光器等。③设备的智能化以及加工的柔性化。④束流品质的提高及诊断。⑤束流、工件、工艺介质相互作用机制的研究。⑥束流的复合。⑦新材料的焊接。⑧应用领域的扩展。

1、激光焊接的最新进展

1.1新型激光器

(1)直流板条式(DCSlab)CO2激光器、(2)二极管泵浦的YAG激光器、(3)CO激光器、(4)半导体激光器、(5)准分子激光器。

1.2激光器功率的大型化、脉冲方式以及高质量的光束模式

以美国PRC公司为例,几年前,用于切割的CO2激光器功率主要是1500~2000W,而近期的主导产品是4000~6000W,6000W可切割的不锈钢厚度、碳钢厚度分别为35mm和40mm.

1.3设备的智能化及加工的柔性化

尤其是对YAG激光,由于可用光纤传输,给加工带来了极大的方便。

其主要特点是:①一机多用。②采用一台激光机可进行多工位(可达6个)加工。③光纤长度最长可达60m.④开放式的控制接口。⑤具有远距离诊断功能。

1.4束流的复合

最主要的是激光-电弧复合。深熔焊接时,熔池上方产生等离子体,复合加工时,激光产生的等离子体有利于电弧的稳定;复合加工可提高加工效率;可提高焊接性差的材料诸如铝合金、双相钢等的焊接性;可增加焊接的稳定性和可靠性;通常,激光加丝焊是很敏感的,通过与电弧的复合,则变的容易而可靠。

激光-电弧复合主要是激光与TIG、Plasma以及GMA.通过激光与电弧的相互影响,可克服每一种方法自身的不足,进而产生良好的复合效应。

GMA成本低,使用填丝,适用性强,缺点是熔深浅、焊速低、工件承受热载荷大。激光焊可形成深而窄的焊缝,焊速高、热输入低,但投资高,对工件制备精度要求高,对铝等材料的适应性差。Laser-GMA的复合效应表现在:电弧增加了对间隙的桥接性,其原因有二:一是填充焊丝,二是电弧加热范围较宽;电弧功率决定焊缝顶部宽度;激光产生的等离子体减小了电弧引燃和维持的阻力,使电弧更稳定;激光功率决定了焊缝的深度;更进一步讲,复合导致了效率增加以及焊接适应性的增强。

从能量观点看,激光电弧复合对焊接效率的提高十分显著。这主要基于两种效应,一是较高的能量密度导致了较高的焊接速度;二是两热源相互作用的叠加效应。

GMA、激光加丝和激光电弧复合三种方法焊接时线能量、焊缝断面以及能量利用率的比较。

Laser-TIGHybrid可显著增加焊速,约为TIG焊接时的2倍;钨极烧损也大大减小,寿命增加;坡口夹角亦减小焊缝面积与激光焊时相近。阿亨大学弗朗和费激光技术学院研制了一种激光双弧复合焊接,与激光单弧复合焊相比,焊接速度可增加约1/3,线能量减小25%.

英国Conventry大学现代连接中心亦有Laser-plasma复合焊接的报导。其优点是:提高焊接速度和熔深;由于电弧加热,金属温度升高,降低了金属对激光的反射率,增加了对光能的吸收。在小功率CO2激光试验基础上,还要在12000WCO2激光以及光纤传输的2kWYAG激光器上进行,并为机器人进行PALW打基础。

1.5激光、工件与保护气体相互作用的研究

1.6铝合金的激光焊接

铝合金由于比强度高、抗腐蚀性好而得以广泛应用。CO2激光焊接铝合金的困难主要在于高的反射率以及导热性好,难以达到蒸发温度、难于诱导小孔的形成(尤其是对Mg含量比较小时)以及容易产生气孔。提高吸收率的措施除了表面化学改性(如阳极氧化)、表面镀层、表面涂层等外,也有用激光-TIG、激光-MIG的报道,其中MIG-DCelectrodeposition方法由于表面的清理作用强和加丝的合金化作用效果为好。

最近,比利时的LCretteur和法国的SMarya对6061铝合金进行了混合气和焊剂的CO2激光焊。在给定的试验条件下表明:70%He+30%Ar、气流方向与焊接方向相反时效果为好;针对穿透焊接时焊缝背面容易产生下垂缺陷,采用75%LiF+25%LiCl的焊剂,起到了祛除氧化、改善熔化金属与背面母材的接合,使背面焊缝具有“上翘”效应,在较宽的参数区间内形成了规整的焊道。对6061铝合金的焊接表明,焊缝强度可达到母材的90%.

1.7激光熔覆

激光熔覆与其它表面改性方法相比,加热速度快、热输入少,变形极小;结合强度高;稀释率低;改性层厚度可精确控制,定域性好、可达性好、生产效率高。

激光熔覆除用于民品外,英、美等国也已用于航空机发动机Ni基涡轮叶片的耐热、耐磨层的熔覆及修复。

2、电子束焊接和等离子弧焊接的最新进展

国外电子束焊接发展可归结为:超高能密度装置研制、设备智能化柔性化、电子束流特性诊断、束流与物质作用机制研究以及非真空电子束焊设备及工艺的研究等。

在日本,加速电压600kV、功率300kW的超高压电子束焊机已问世,一次可焊200mm的不锈钢,深宽比达70:1.

日、俄、德开展了双枪及填丝电子束焊技术的研究。在对大厚度板第一次焊接的基础上,通过第二次填丝来弥补顶部下凹或咬边缺陷;日本采用双抢实现了薄板的超高速焊接,反面无飞溅,成形良好。法国研制成功的双金属和三金属薄带材电子束焊接机也颇引人关注。

关于非真空电子束焊接,德国实现了母材为AlMg0.4Si1.2的旋转件的填丝焊接,加丝材料为AlMg4.5Mn,送丝速度35m/min,焊接速度高达60m/min.该研究在斯图加特大学的25kW电子束焊机上完成。

非真空电子束焊接在汽车制造领域一直倍受重视。例如,手动变速器中同步环与齿轮的非真空电子束焊接,生产率已超过500件/小时。

最近,德国和波兰的学者共同研制了真空电子束焊接时安装于真空室中的非接触测温装置,测量点最小直径1.8mm,主要用于陶瓷和硬质合金的钎焊,该装置可排除随机的热流的干扰,测量精度高。

在等离子弧焊接方面,变极性等离子弧焊以及铝合金穿孔等离子立焊是关注点之一。

3、国内高能束流焊接现状

在国内,高能束流焊接越来越引起更多相关人士诸如焊接、物理、激光、材料、机床、计算机等工作者的关注。国内在设备水平上,与国外有一定差距,但在工艺研究上,水平则较为接近,甚至在某些方面还有自己的特色。

3.1激光焊接

在设备生产与研究上,主要生产千瓦级的CO2激光设备和1千瓦以下的固体YAG激光设备。

国内对激光焊接研究主要集中在激光焊接等离子体形成机理、特性分析、检测、控制、深熔激光焊接模拟、激光-电弧复合热源的应用、激光堆焊等。清华大学从声和电的角度,分析了熔透状态的声信号,提出了激光焊接等离子体的等效电路及电特性数学模型;在抑制等离子体的负面效应方面,清华大学张旭东、陈武柱等提出了侧吸法;国家产学研激光技术中心的肖荣诗、左铁钏提出了双层内外圆管吹送异种气体法;西北工业大学的刘金合提出了外加磁场法。

3.2电子束焊接

我国自行研制电子束焊机始于1960年代,至今已研制生产出不同类型和功能的电子束焊机上百台,并形成了一支研制生产的技术队伍,能为国内市场提供小功率的电子束焊机。

近年来,出现了关键部件(电子枪,高压电源等)引进、其它部件国内配套的引进方式,这种方式的优点是:设备既保持了较高的技术水平,又能大大降低成本,同时还能对用户提供较完善的售后服务。

目前,以科学院电工所的EBW系列为代表的汽车齿轮专用电子束焊机占据了国内汽车齿轮电子束焊接的主要市场份额;我国的中小功率电子束焊机已接近或赶上国外同类产品的先进水平,而价格仅为国外同类产品的1/4左右,有明显的性能价格比优势。

在机理及工艺研究上,北京航空工艺研究所、北京航空航天大学、天津大学、上海交通大学、西北工业大学、中国科学电工所、桂林电器科学研究所、西安航空发动机公司、航天材料及工艺研究所开展的工作涉及熔池小孔动力学、电子束钎焊、接头疲劳裂纹扩展行为、接头残余应力、填丝焊接、局部真空焊接时的焊缝轨迹示教等。

等离子体范文篇8

关键词水稻;全程机械化;生产技术

水稻是我国主要粮食作物之一。为稳定和提高水稻综合生产能力,促进水稻增产、增收和节本增效,应大力推广应用水稻生产全程机械化技术。

1等离子体种子处理技术

等离子体种子处理技术,是国家“863”科研成果,为国内首创,属原始创新,达到国际同等领域先进水平。DL-2型等离子体种子处理机,采用高压电弧等离子体与交变电磁场相结合,在机器内部形成宇宙等离子体环境,种子通过自由落体运动垂直流过机器,接受光辐射、电磁辐射和臭氧的共同作用,种子的生命力被激活,病菌被杀死,离子交换能力增强,酶的转化加速,可溶性糖和可溶性蛋白增加,提高种子的发芽势、发芽率,苗期提前1~3d,增强作物的抗旱、抗病能力。根瘤菌增多,有效促进作物后期生长。植株粗壮,生长旺盛,增加有效分蘖,促进早熟,改善品质,可提高产量8~12%。

水稻种子采用DL-2型等离子体种子处理机处理时,应采用电流强度为1.0A,连续处理2次。处理后5~12d内播种。等离子体处理种子作物的后代不能做种子。处理后的种子超过播期不能重复处理,不能处理已经萌动的种子。

2简塑盘育苗技术

2.1床土准备

最好选用山地腐殖土,其次是水田土和旱田土;用土数量:根据育苗数量决定用土量,一般每盘床土4kg;水田土和旱田土做床土应加入适量草炭,土与草炭以4∶1的比例均拌[1]。

2.2床土配制

加入营养土,根据比例要求均拌,每盘床土含氮、磷、钾各l.0~1.5g。床上调酸,pH值以4.5~5.0为宜。床土结合浇水进行消毒,用敌克松1500倍液每盘浇0.7kg,敌克松数量每盘不得超过0.5g。提倡用“水稻育苗营养土母剂”,按说明拌匀。

2.3机械化播种

用2SB-500型自动播种机,或用2BD-840手推式播种机机械化播种,保证芽种2.3粒/m2;底土厚度为2.0~2.5cm,覆土厚度为0.5~1.0cm。

2.4秧苗管理

出苗至1.5片叶时,应保证白天温度28℃,不能超过30℃,夜间不能低于5℃,1~2d浇1次透水;1.5~2.5片叶时,白天棚内温度应保证22℃,防高温徒长;2.5~3.5片叶时,白天棚内温度20℃,夜间不低于10℃,可昼夜通风炼苗;1.5~3.5片叶时,每天浇2次水。分别在1.5、2.5叶和插秧前期,结合浇水每盘追纯Nlg之后水洗。

3水田机械化旋耕技术

水田旋耕可一次性完成水田机翻、机耙,降低机械作业成本,减少作业环节,省工,省时,省油,而且节省泡田用水,可节水30%~50%。其旋耕作业碎土能力强,地表平整。稻茬覆盖严密,工效高,油耗低,一次旋耕能达到一般犁耕和耙地作业几次的碎土效果,耕层透气、透水性好,有利于根系发育[2]。其技术要求:一是水田旋耕,一般在当地插秧前(5月)20d左右进行,待水灌田后,加以平整即可插秧;二是耕作时,尾轮内管伸出处管的长度不能超过100mm,同时操作时应站着手扶扶手架,使犁刀离地过田埂或过沟,以免内管弯曲;三是操作时,勿使杂草在旋耕刀上缠绕过多,否则将消耗拖拉机的功率和增加零件的磨损;四是清除杂草时,需关小油门,将离合、制动手柄放在“离”的位置上,将变速手柄和旋耕刀操作手柄放在空档的位置,然后清除杂草[3]。

4机械化整地插秧技术

田块要耙平、耙细,水深2~4cm,一般沉淀1~2d,视不同土壤而定。土壤要耙细、整平、泥烂、无杂物,水深2~4cm,耙后需沉淀一定时间,一般为1~2d;插秧的行距为30cm,株距根据品种调试。插2~4株/穴,后期插5~7株/穴。插秧深度以2~3cm为宜,不能过深,以免影响分蘖。

5机械化田间管理技术

东方红牌抛秧机可一机多用,既可抛秧,又可施肥和喷药,达到防病、虫、草害等效果[4]。

6水稻机械化收获技术

水稻机械化收获是实现水稻全程机械化的重要环节之一。采用联合收割机收获,一次可完成收割、脱粒、清选等工序。与人工收割相比,水稻机械化收获。可提高劳动生产率,降低收获损失、节省费用,降低劳动强度,改善农民生产条件。公务员之家

7参考文献

[1]杨文,王春生,苏勋利,等.高寒地区水稻机械化栽培不同盘播量对水稻秧苗素质及产量的影响[J].垦殖与稻作,2006(5):27-29.

[2]项霞.浅析水稻机械化栽培技术[J].农业装备技术,2006,32(4):14.

等离子体范文篇9

合肥经济技术开发区于1993年设立,2000年经国务院批准为部级经济技术开发区。开发区2009年实现地区生产总值370亿元,工业总产值1029亿元。在2009年《经济观察报》和中国区域经济学会评选的“中国最具投资潜力开发区”中,合肥经济技术开发区位居第五,荣登中西部各开发区榜首。2010年,国家工业和信息化部确定合肥经济技术开发区全国首批“国家新型工业化产业示范基地”之一①。合肥经济技术开发区非常重视战略性新兴产业的培育,重点发展新一代信息技术产业、生物医药产业、新材料产业、新能源产业、住宅产业化等战略性新兴产业。

(1)新一代信息技术产业合肥经济技术开发区加快核心技术的突破和产业化步伐,抢占软件、集成电路等产业的战略制高点,努力打造等离子产业园、高亮度LED产业园等科技园区,拥有如联想集团、仁宝电脑、航嘉、宝龙达、捷敏、芯硕半导体、泰瑞达等一批典型企业。它们分属两类产业,一是等离子产业。等离子产业主要以等离子产业成熟技术应用项目为主,兼顾发展与之相关的电子产业。主要项目包括关键技术的应用和设备制造:等离子体灭菌设备制造;等离子体无害化热解处置危险废物设备;热等离子体技术;低温等离子体种子处理技术;等离子体清洗技术;火力发电等离子体点火;大气压低温等离子体表面处理;等离子体环境技术;等离子体工程以及在材料工程方面的应用。二是高亮度LED产业。重点引进国内外LED产业上游的外延材料和高亮度LED芯片制造企业入园投资,计划用2-3年的时间建成每月可生产高亮度GaNLED氮化镓蓝绿光外延片15000PCS(片)、高亮度AlGaInPLED四元外延片20000PCS(片);若全数投产成芯片,则每月可生产GaNLED芯片400KK(4亿粒),AlGaInPLED芯片1000KK(10亿粒)的工厂[3]。

(2)生物医药产业坚持自主创新和产业化方向,重点发展生物医药,鼓励发展生物制造,积极培育生物环保产业;支持企业建立研发中心,鼓励企业以承接跨国公司的研发外包(CRO)、制造外包(CMO)、营销外包(CSO)等方式参与全球市场的竞争;建成集研发、生产、销售和服务为一体的国内一流、世界重要的现代生物产业制造基地和关键技术研发转化基地;努力打造生命科技园、医药健康产业园,拥有如赛真、拜通、尼普洛医疗器械等一批代表企业。其中一类是生命科技产业。生命科技产业园区位于开发区东部,占地约180亩,重点发展生物医药制造产业和生物医药产品创新与研发机构。目前园区正在建设基因重组人胰岛素项目,项目总投资约1亿美元,主要合作方包括波兰拜通公司、新加坡赛真公司。项目主要从事胰岛素、乙肝疫苗的研究与生产,园区将陆续引入基因重组人胰岛素注射液和乙肝疫苗、赛真公司白介素-2、干扰素-2、人生长激素产品、拜通公司的长效胰岛素、抗肿瘤药等产品。另一类是医药健康产业。医药健康产业园项目一期工程完成用地77亩、建筑面积6万平米,2008年7月份交付使用,主要用于中小企业仓储和办公。首批15家医药企业已正式入园,年销售额达20亿元。二期工程正在建设,预计今年6月交付使用,目前签订入园协议的企业已有20多家。开发区积极推动入园企业做大做强,力争经过3-5年的建设,努力打造一个以药品为主,医疗器械、保健品为辅的综合性产业集散中心,形成华东地区最大的设施配套齐全、交易电子化、信息网络化、管理一体化的百亿元现代化医药物流产业园区。

(3)新材料产业以产业发展需求为导向,发展化工新材料、电子信息材料、新能源材料、航空航天材料、纳米材料、先进复合材料、先进陶瓷材料、生态环境材料、新型功能材料、高性能结构材料、智能材料;建立以企业为主体的新材料产业创新体系,促进新材料产业集群向创新集群转化;努力打造新材料产业基地,拥有如杰事杰工程塑料、铜冠铜材、库尔兹压烫等一批典型企业。新材料产业园位于部级经济技术开发区,初步规划面积约1500亩,建设项目包括轻质高强节能墙体材料、环保室内装饰材料、化学建材和防水材料等新型建材;光通讯、半导体发光等信息功能材料;太阳能电池、燃料电池、电容器等与能源相关的新材料;纳米材料应用等产品。

(4)新能源产业合肥新能源(节能科技)产业基地位于部级经济技术开发区,初步规划面积约1500亩,建设项目包括光伏电池晶片生产、光伏电池制造、模组封装、太阳能聚光跟踪技术产业应用、太阳能照明设备、风力发电设备制造、生物质发电设备、热泵等节能技术产品,将逐步形成光能、风能及节能技术应用为主的产业集聚。

(5)住宅产业化合肥经济技术开发区国家住宅产业化基地按照“四节一环保”的原则,在区内规划建设一个产业园区,打造全国住宅产业化基地;建立一批示范点,形成全国住宅产业化示范基地;建立一个研发中心,形成全国住宅产业化产品开发和理论研究中心;建立一个物流与信息平台,打造全国住宅产业化物流与信息平台之一。目前,已有康拜环保秸秆板项目、蒙达科技园、西伟德建材、仁创砂产业园、罗宝墙板等企业入区建设,总投资10亿美元的中国阳光集团也已签约,一大批住宅产业化及关联企业正在积极商谈。与此同时,中国建材研究总院合肥研发中心和合肥建材质量检测中心已建成。以住宅产业化生产、研发、示范、物流基地建设为核心的合肥经济技术开发区国家住宅产业化基地,将快速形成节能省地型住宅及相关产业集群,成为合肥市乃至安徽省的新的经济增长点。

二、合肥经济开发区战略性新兴产业投融资瓶颈及对策研究

(1)规模小

合肥经济开发区战略性新兴产业大部分行业处于初创期,企业规模较小,如捷敏电子员工总数400人左右,2007年年销售额500万美元;又如罗宝建材,员工人数150人,销售额最多的2008年年销售额也只有4000万元人民币。由于企业规模较小,难以从大银行那里得到贷款,而中小金融机构比较愿意为中小企业提供金融服务。这一方面是因为它们资金少,无力为大企业提供服务;更为重要的一方面是,中小金融机构在向中小企业提供服务方面拥有信息和成本上的优势。中小金融机构往往局限在一定的地域范围开展业务,对当地中小企业的经营情况和业主能力比较了解,并且管理层面少,经营方式灵活,这也使得它们贷款的交易成本较低。建立一个以民营中小银行为主体的中金融机构体系是从根源上解决中小企业融资难的关键;同时为了解决中小企业融资难问题,鼓励民营企业建立社区信用组织是一个风险和成本均较低的选择。当然对于中小金融机构所承担的财务风险,开发区政府应该给予一定比例的补助。

(2)风险大

在战略性新兴产业初创期,技术成熟度低,市场不确定性因素多,企业短期偿债能力弱,融资主体希望通过出让部分股权,以找到能与其共担风险、共享未来收益的投资合伙人。风险投资、私募股权投资、创业板上市等风险偏好型的股权融资模式则更为适合。我国总结国外经验教训的基础上,大胆探索,积极推进,设立了创业板,使之成为培育有良好发展前景的战略性新兴产业中小企业孵化器。同时还借鉴美国等发达国家成功经验,鼓励设立按市场化规范运行、主要投资中小企业的风险投资基金和创业基金,多渠道、多形式扩大战略性新兴产业中小企业直接融资范围;开发区政府对于风险投资、私募股权投资的投资亏损也应该给予一定比例的补助。

(3)信用体系不健全

目前我国信用体系建设还比较落后,如何做好战略性新兴产业中小企业信用管理、信用评级是急需解决的现实问题。而战略性新兴产业中小企业直接融资方式中风险投资的引入,也会对缓解战略性新兴产业中小企业融资的困难起到极大的推动作用。开发区应进一步健全战略性新兴产业企业信用评级体系,积极引进权威的第三方信用评估机构,以消除投融资双方在信用信息方面的不对称。

(4)高级金融管理专业人才缺乏

战略性新兴产业的发展需要现代金融体系的支持,投融资体系的创新则需要大量高级金融管理专业人才。合肥经济开发区应该积极引进大量高级金融管理专业人才,充盈到各投资机构、银行、评估机构及相关政府机构中,为战略性新兴产业的投融资出谋划策,制定出具有开发区特色、切实可行、针对战略性新兴产业的投融资策略。

三、建立与合肥经济开发区与战略性新兴产业发展相适应的现融资服务体系

合肥经济开发区内战略性新兴产业大部分行业还处于初创期,技术成熟度低,市场不确定性因素多,企业短期偿债能力弱。针对战略性新兴产业当前发展阶段和产业链不同环节的特点,开发区应建立相应的现融资服务体系:

(1)健全财税金融政策支持体系,加大扶持力度一是制订税收激励政策。开发区地税国税应响应国务院关于加快培育和发展战略性新兴产业的决定,结合税制改革方向和税种特征,针对战略性新兴产业的特点,研究完善鼓励创新、引导投资和消费的税收支持政策。二是开发区应设立政府专项资金给予新兴产业政策上的扶助,专项资金实行总量控制,预算管理。开发区已每年从创新资金中安排资金,作为有偿资金滚动使用,用于支持战略性新兴产业发展。三是鼓励开发区内金融企业向区内主营战略性新兴产业的中小企业贷款,如区内国元小额贷款股份有限公司为满足战略性新兴产业的中小企业资金需求,根据战略性新兴产业的中小企业信用状况、生产经营状况、还款意愿及还款来源、可提供的担保等相关因素,向中小企业发放流动资金贷款。

(2)引导和鼓励社会资金投入首先,开发区设立了创业风险投资引导基金,通过制定相应的引导性政策,促进并引导一大批民营性的风险投资基金进入合肥经济开发区,进而带动民营高新技术企业进入合肥经济开发区,最终促进合肥经济开发区战略性新兴产业的快速发展。通过阶段参股、跟进投资、风险补偿等方式,引导各类创业投资机构投资战略性新兴产业。其次,积极引进风险投资公司和私募基金。为规避风险投资公司、私募基金的投资风险,对其因投资战略新兴产业执行国家相关税收优惠政策后仍有风险亏损的,给予风险亏损额一定比例的资助。

(3)政府鼓励与支持下的金融创新第一,建立健全适应战略性新兴产业特点的信贷管理体系。支持金融机构和担保机构联合开展知识产权质押、股权质押、动产质押等新型质押贷款,上述质押贷款发生风险亏损的,政府给予风险亏损额一定比例的资助。如2006年,合肥杰事杰新材料有限公司落户合肥经济技术开发区时,需要总投资4.3亿元,企业却只拿得出占投资总额1/3的资金。合肥经开区在充分评估杰事杰新材料前期巨大的技术研发投入以及落户所必需的设备投入,由该区下属的国资公司海恒集团直接出资入股合肥杰事杰,占8%的股份,待项目正式投产后择机退出,条件是上海杰事杰把11项专利的知识产权质押给海恒集团,由海恒集团向银行担保贷款,并由海恒集团为其代建厂房。这种通过知识产权质押融资的模式的方式极大解决了企业资金缺口。第二,发行中小企业集合债券,支持战略性新兴产业。战略性新兴产业大部分行业处于初创期,企业规模不大,融资有困难。合肥经济开发区鼓励区内战略性新兴企业申报中小企业集合债券,对中小企业集合债券走单独程序,不要求列具体项目,扩大了企业直接融资规模,有效缓解战略性新兴产业初创期融资难问题。

(4)加快发展和完善与之相适应的资本市场平台加快发展和完善与战略性新兴产业相适应的资本市场平台,帮助合肥经济开发区符合条件的民营高新技术企业到深圳的中小板和创业板市场上市融资,为合肥经济开发区符合条件的与战略性新兴产业发展相关的民营高新技术企业融资,并为一些风险投资基金的退出提供平台。

等离子体范文篇10

1981年,自这个从××地区农机化学校毕业的小伙子意气风发地踏进了××农机技术推广站的大门后,他便与农机推广结下了不解之缘,无论是在乡镇农机技术推广站,还是在市农机技术推广站,一干就是20多年。1986年,他以优异的成绩考入了中央农业管理干部学院××农业机械化分院,两年后,他又重新回到了自己熟悉的工作岗位,并逐渐成长一名年轻的站长。

立波站长经常对从事农机推广的人员强调,作为县级农机推广部门,是农机化项目的主要实施单位,发挥着承上启下的重要作用,只有选准、选好农机化项目,才能带动农机推广工作的不断发展,提高和壮大全市的整体农机化水平。他亲自主抓农机化项目工作,经常往返于省州之间,协调有关部门,跑资金、跑项目。几年来,经他主持完成的农业部、省、州、市科研推广项目达40余项,争取农机科研推广资金达150万元。

他注重对农机新技术、新机具的研制开发。亲自组织科技人员,先后开发了前单轮拖拉机、扣种犁、大豆单体精点机、化肥深施器、烟叶机械刨埯机、覆膜机、马铃薯播种机、挖掘机、贝母分选机等一大批新机具,为全市农业产业化的发展提供了坚强的机具保障。其中,前单轮拖拉机通过了省级鉴定,生产推广达120台;马铃薯播种、收获机械获吉林省首届职工经济技术创新成果三等奖、获延边州经济技术创新二等奖;化肥机械深施技术获省政府农业技术推广一等奖;大豆机械化综合增产技术获省农业技术推广成果一等奖;2bf深施肥播种机获省农业技术推广成果二等奖;玉米精少量播种技术、烟叶机械整地施肥技术获省政府农业技术推广成果三等奖;主要农作物节本增效综合生产机械化技术获国家农业部农业技术推广成果三等奖、省农业丰收计划二等奖。在他主持实施的“节本增效工程技术”、“丰收计划”项目中取得了显著经济效益、社会效益和生态效益。共新增各类农机具20600台(套),节约玉米种子1400多吨,大豆种子4200多吨,相对节约化肥施用量(标准n)5000多吨。增产粮豆9.5万多吨,节省工日320多万个,节支增收近2亿元。

在每引进、开发、研制一项新技术、一种新机具,他都要求建立试验示范田,掌握准确详实的理论数据后,再大面积推广应用。2004年,在他的争取下,省农机局无偿调拔给××等离子体种子处理机1台。为做好等离子体种子处理技术的推广,他分别在江南、官地、贤儒、沙河沿等四个乡镇建立试验示范田10公顷,确定试验示范农户8户。通过一年的全程跟踪管理指导,获得了宝贵的数据和资料,水稻平均增产幅度为27.83%,大豆平均增产幅度为8.87%,玉米平均增产幅度为23.27%,为今后大范围推广等离子体种子处理技术提供了理论依据。由于他精心组织,大量细致的工作得到了省农机局领导的肯定,为此,省农机局专门为该站拔付了2000元的推广经费。为大面积推广此项增产技术,他继续协调省局及大连等离子体公司,积极引进该机具。在他的努力下,三年共为该市引进等离子体种子处理机达19台,年可处理各类作物种子20万公斤,播种面积达3000公顷,辐射全市15个乡镇。