波形发生器范文10篇

时间:2023-03-24 18:30:46

波形发生器范文篇1

本系统采用TI公司生产的TMS320VC54X系列DSP作为核心控制器件,并采用Cypress工司生产的CY7C1021V(64K×16位RAM)来扩充DSP的外部数据存储空间。在DSP与ADC及RAM之间的数据接口加入74LVC16245(16位总线变换器)以增加DSP的驱动能力,并用来隔断器件间的干扰。DSP与DAC之间的逻辑控制采用CPLD实现,这样可以方便系统的设计与调试,本文中采用的CPLD为Altera公司的EPM7064SLC84-10。

整个系统的方框图如图1所示。

2器件简介

本系统所采用的数模转换器为AD7846,它是美国AD(AnalogDevice)公司基于LC2MOS工艺生产的16位数模转换器。它有VREF+和VREF-两个参考电平输入端以及一个片内放大器。标准情况下可以将其配置为单极性输出(0~+5V,0~+10V)或双极性输出(±5V,±10V)。当然,改变VREF+VREF-两个参考电平输入端的电平,也可以改变其输出的动态范围。如本文中的采用高精度电压参考芯片AD434提供参考电平,使D/A的动态范围设置为±4.096V。

AD7846采用分段式结构。DAC锁存器的高4位选通16个电阻串中的一段,段的两端接有运放作为缓冲,运放的输出反馈至12位的模数变换电路,并由该电路提供后12位分辨率。这种结构可以确保16位单调性,两个缓冲运放间输入失调电压的高度匹配还确保了优良的积分非线性。

除了优良的精度指标外,AD7846与微处理器的连接也非常方便。它有16位数据I/O以及4根控制线(CS,R/W,LDAC以及CLR)。R/W与CS用来控制对I/O锁存器的读写,LDAC信号用于多DAC系统中同步更新多片DAC数据,CLR用于将DAC的输出复位至0V。

3AD7846参考电压的设计

为了使系统的输出波形在幅度上能够精确到1mV,本文采用AD434为AD7846提供参考电压。ADR434为AD公司生产的低噪声、高精度、低温漂的电压参考芯片。它采用了AD公司的温漂曲率修正专利技术,可以使其电压对温度的非线性达到最小。二者的具体连接如图2所示。

图2所示的连接方式使AD7846工作在双极性输出状态下。AD434为D/A提供+4.096V的参考电平,D/A根据此电平经过双极十六位线性分解,所得的最低可调电压为4.096V/215=125μV。具体的编码表如表1所列。

表1AD7846编码表

DAC锁存器中的二进制数

模拟输出VOUT/V

1111111111111111+4.096C(32767/32768)=+4.0958751000000000001000+1.096V(8/32768)=+0.0011000000000000001+4.096V(1/32768)=+0.0001251000000000000000+4.096V(0/32768)=00111111111111111-4.096V(1/32768)=-0.0001250000000000000000-4.096V(32768/32768)=-4.096

4逻辑控制及软件实现

本文使用CPLD作为DSP控制D/A映射在DSP的I/O口,地址为4000H~7FFFH。AD7846一共有4根控制线,它们组成的控制逻辑如表2所列。

表2AD7846控制逻辑真值表

CSR/WLDACCLR

功能

1XXX使DAC的I/O锁存器呈高阻态00XX数据(DB1~5DB0)装入I/O锁存器01XXI/O锁存器中的数据输出到数据线上XX01I/O锁存器中的数据装入DAC锁存器X0X0DAC锁存器装入数据000...000X1X0DAC锁存器装入数据100...000

CPLD中烧入的逻辑图如图3所示。

对于波形的产生,通常有两种方法。一种方法为使用算法计算输出波形某点的幅度编码值(如正弦波可通过泰勒级数展开得到),这种方法可直接精确地计算出每个角度的波形值,所占用的存储空间小,但对于任意波形的输出,所需的算法较为复杂,系统实时性也会受到影响。另一种方法为查表法,该方法可能需要占用较大的存储空间,但软件控制却非常方便,实时性也更高。采用查表法的软件控制可由如下代码实现。

egs

.globalmain

main:nop

ori:stm#SINtable,ar2;将数据表头地址送入ar2

ld#13H,a;循环输出20个样点值

JUMP:portw*ar2+,4000h;AD4846被配置在I/O口的4000H~7FFFFH处

Rpt#1fffh;改变rpt的值可以改变正弦波的频率

Nop

Sub#1d,a

BcJUMP,aneq

bori

SINtable;正弦波幅度编码表

.word7FFFH.word0A78DH.word0CB3CH.word0EF8DH

.word0F9BCH.word0FFFFH.word0F9BCH.word0E78DH

.word0cB3CH.word0A78DH.word8000H.word5872H

.word34C3H.word1872H.word0643H.word0000H

.word0643H.word1872H.word34C3H.word5872H

.end

该段程序可使AD7846输出标准正弦波,幅度范围为±4.096V,频率可通过改变rpt的值加以调节。若提供大量采样点,可使其实时输出高精度的任意波形。当然,利用DSP强大的运算处理能力,也可用软件计算出所需波形的各点采样值,这样可以节省存储空间,降低系统硬件成本。

波形发生器范文篇2

关键词:波形发生器高精度AD7846DSP

引言

随着电子技术的发展,波形发生器已经广泛的应用在通信、控制、测量等各个领域。在很多地方,如测试测量领域,需要输出的波形能够精确地定位在某一整数值上,但通常由于ADC参考电平的限制,使之很难达到所需的精度,给系统的调试及软件设计带来诸多不便。本文采用了高精度的电压参考芯片ADR434为模数变换器提供参考电平,使波形发生器的最低可调电压达到125μV,为精确地输出数据值电压及其相应波形提供了方便的硬件环境。本设计具有输出精确,控制灵活方便等特点。

1系统设计

本系统采用TI公司生产的TMS320VC54X系列DSP作为核心控制器件,并采用Cypress工司生产的CY7C1021V(64K×16位RAM)来扩充DSP的外部数据存储空间。在DSP与ADC及RAM之间的数据接口加入74LVC16245(16位总线变换器)以增加DSP的驱动能力,并用来隔断器件间的干扰。DSP与DAC之间的逻辑控制采用CPLD实现,这样可以方便系统的设计与调试,本文中采用的CPLD为Altera公司的EPM7064SLC84-10。

整个系统的方框图如图1所示。

2器件简介

本系统所采用的数模转换器为AD7846,它是美国AD(AnalogDevice)公司基于LC2MOS工艺生产的16位数模转换器。它有VREF+和VREF-两个参考电平输入端以及一个片内放大器。标准情况下可以将其配置为单极性输出(0~+5V,0~+10V)或双极性输出(±5V,±10V)。当然,改变VREF+VREF-两个参考电平输入端的电平,也可以改变其输出的动态范围。如本文中的采用高精度电压参考芯片AD434提供参考电平,使D/A的动态范围设置为±4.096V。

AD7846采用分段式结构。DAC锁存器的高4位选通16个电阻串中的一段,段的两端接有运放作为缓冲,运放的输出反馈至12位的模数变换电路,并由该电路提供后12位分辨率。这种结构可以确保16位单调性,两个缓冲运放间输入失调电压的高度匹配还确保了优良的积分非线性。

除了优良的精度指标外,AD7846与微处理器的连接也非常方便。它有16位数据I/O以及4根控制线(CS,R/W,LDAC以及CLR)。R/W与CS用来控制对I/O锁存器的读写,LDAC信号用于多DAC系统中同步更新多片DAC数据,CLR用于将DAC的输出复位至0V。

3AD7846参考电压的设计

为了使系统的输出波形在幅度上能够精确到1mV,本文采用AD434为AD7846提供参考电压。ADR434为AD公司生产的低噪声、高精度、低温漂的电压参考芯片。它采用了AD公司的温漂曲率修正专利技术,可以使其电压对温度的非线性达到最小。二者的具体连接如图2所示。

图2所示的连接方式使AD7846工作在双极性输出状态下。AD434为D/A提供+4.096V的参考电平,D/A根据此电平经过双极十六位线性分解,所得的最低可调电压为4.096V/215=125μV。具体的编码表如表1所列。

表1AD7846编码表

DAC锁存器中的二进制数模拟输出VOUT/V

1111111111111111+4.096C(32767/32768)=+4.095875

1000000000001000+1.096V(8/32768)=+0.001

1000000000000001+4.096V(1/32768)=+0.000125

1000000000000000+4.096V(0/32768)=0

0111111111111111-4.096V(1/32768)=-0.000125

0000000000000000-4.096V(32768/32768)=-4.096

4逻辑控制及软件实现

本文使用CPLD作为DSP控制D/A映射在DSP的I/O口,地址为4000H~7FFFH。AD7846一共有4根控制线,它们组成的控制逻辑如表2所列。

表2AD7846控制逻辑真值表

CSR/WLDACCLR功能

1XXX使DAC的I/O锁存器呈高阻态

00XX数据(DB1~5DB0)装入I/O锁存器

01XXI/O锁存器中的数据输出到数据线上

XX01I/O锁存器中的数据装入DAC锁存器

X0X0DAC锁存器装入数据000...000

X1X0DAC锁存器装入数据100...000

CPLD中烧入的逻辑图如图3所示。

对于波形的产生,通常有两种方法。一种方法为使用算法计算输出波形某点的幅度编码值(如正弦波可通过泰勒级数展开得到),这种方法可直接精确地计算出每个角度的波形值,所占用的存储空间小,但对于任意波形的输出,所需的算法较为复杂,系统实时性也会受到影响。另一种方法为查表法,该方法可能需要占用较大的存储空间,但软件控制却非常方便,实时性也更高。采用查表法的软件控制可由如下代码实现。

.mmregs

.globalmain

main:nop

ori:stm#SINtable,ar2;将数据表头地址送入ar2

ld#13H,a;循环输出20个样点值

JUMP:portw*ar2+,4000h;AD4846被配置在I/O口的4000H~7FFFFH处

Rpt#1fffh;改变rpt的值可以改变正弦波的频率

Nop

Sub#1d,a

BcJUMP,aneq

bori

SINtable;正弦波幅度编码表

.word7FFFH.word0A78DH.word0CB3CH.word0EF8DH

.word0F9BCH.word0FFFFH.word0F9BCH.word0E78DH

.word0cB3CH.word0A78DH.word8000H.word5872H

.word34C3H.word1872H.word0643H.word0000H

.word0643H.word1872H.word34C3H.word5872H

.end

该段程序可使AD7846输出标准正弦波,幅度范围为±4.096V,频率可通过改变rpt的值加以调节。若提供大量采样点,可使其实时输出高精度的任意波形。当然,利用DSP强大的运算处理能力,也可用软件计算出所需波形的各点采样值,这样可以节省存储空间,降低系统硬件成本。

波形发生器范文篇3

关键词:声卡数据采集频率测量

一、概述

数据采集是信号分析与处理的一个重要环节,在许多工业控制与生产状态监控中,都需要对各种物理量进行数据采集与分析。但是,专用数据采集卡的价格一般比较昂贵,而我们PC机的声卡就是一个很好的双通道数据采集卡。实际测量中,在满足测量要求的前提下,可以充分利用计算机自身资源,完成数据采集任务,从而节省成本。

本文利用vc编程实现了声卡的双通道数据采集,并且对信号进行频谱分析同时实时测量出信号的频率。还利用声卡的DA通道,实现了正弦波、方波、三角波输出的信号发生器。波形发生器产生的信号同时还可以作为内部测试用信号,检验数据采集的准确性。

二、声卡数据采集系统硬件组成

LineOut

图1声卡数据采集的硬件组成图

利用声卡进行数据采集的硬件组成如图1所示。通常,利用声卡的LineIn端作为信号输入端口,两路被测的模拟信号经过左右声道,A/D转换进入计算机,通过vc编写的虚拟仪器界面显示出来。声卡一般都具有单、双声道输入,从而可实现单双通道的采集.双通道采集时,声卡采用并行采集,并具有采样保持功能,两个通道的数据不存在时间差,第一通道和第二通道数据存储在同一个数据缓冲区中,且等间隔存储,奇数序列是一个通道数据,偶数序列为另一个通道数据.读取数据时,将缓冲区中的数据全部读入到一个数组中,然后对该数组数据,采用隔一点取一点的方法,将数据分开并分别存到另外的两个数组中,即将两个通道的数据分开,从而实现了双通道的采集.单通道采集时,缓冲区中仅仅是一个通道的数据,直接保存到一个数组即可。同时,信号发生器产生的波形也可经过Lineout端输出。

为了保护声卡,被测信号并不是直接进入声卡,而是先经过一个信号调理电路,对信号进行放大或限幅,滤波等处理,信号调理电路如图2所示。(a)图是直流电平叠加模块:C1代表信号的输入,D1代表叠加直流电平后信号的输出,电位器R8控制输入直流电平的大小;(b)图是信号叠加模块:A1、A2代表叠加信号的输入,B1代表叠加后信号的输出;(c)图是模拟滤波模块:LPIN代表滤波器的输出,LPOUT代表滤波器的输出,调节R6可以控制输出的、幅度大小。当然可以根据需要在调理电路中加入一些其它的模块。

图2信号调理电路

三、声卡采集系统的软件编程

微软公司已经提供了一系列API函数用于对声卡的操作,为了将需要用到的函数封装成了一个类,编程时只需直接调用。使用的API函数有:

waveInGetDevCaps实现声卡的性能测试

waveInOpen打开波形输入设备

waveInPrepareHeader为波形输入准备缓冲区

waveInAddBuffer将数据缓存发送给波形输入设备驱动

waveInStart启动向波形输入缓冲区存储数据

waveInUnprepareHeader释放波形输入缓冲区

waveInStop停止向波形输入缓冲区存储数据

waveInClose关闭波形输入设备

设计的软件界面如图3所示。目前所实现的功能有:

图3软件界面设计

1.两路波形发生器。可产生正弦波、方波和三角波,并且频率和幅值可调。

2.频谱分析仪。可以对采集的信号进行频谱分析。频谱分析采用了快速傅立叶变换(FFT)算法,并且将其封装成独立的函数,方便调用。

3.频率计。同时还可以实时地测量出采集到的信号的频率。在利用程序计算频率时,一般采用两种方法。一种是利用快速傅立叶变换,它的优点是不仅能对标准的周期波形进行测量,而且能够计算出各种复杂波形和信噪比非常低的信号的频率值,缺点是分辨率受到限制。另一种计算频率的方法是采用脉冲计数法。它的优点是测量低频信号时精度高,但它不适合波形复杂和信噪比低的信号频率测量。所以在测量过程中,程序先判断信号上述的性质,根据信号的性质,自动地采用相应的测量方法。

四、小结

采用声卡制作的信号采集系统,具有廉价、方便等优点,它可用于振动、噪声、位移、温度、压力等各种物理量的测试。但是一般的声卡支持的采样频率有11025、22050和44100,对高频信号的采集会出现失真。总之,运用廉价的声卡,辅以适当的软件编程,可以构成一个较高采样精度,中等采样频率且具有很大灵活性的数据采集系统。

参考文献

[1]种兰祥,阎丽,张首军.基于计算机声卡的多通道数据采集系统.西北大学学报,2002.

[2]云升,姚晓,夏志忠.vc++声卡低层音频服务的编程技术.计算机应用,2002.

波形发生器范文篇4

关键词:数控电位器;磁共振成像;涡流;梯度预加重

问题的提出

在磁共振成像(MRI)系统中,梯度磁场被用来编码空间位置。它是由梯度波形发生器根据成像序列要求输出梯度波形,激励梯度放大器输出梯度电流,驱动梯度线圈形成的。理想的梯度波形发生器输出、梯度放大器输出和梯度磁场波形见图1(a)(b)(c)。但在实际系统中由于铁磁性物质的存在,梯度电流跳变形成的梯度磁场的变化会在其中产生感应电流,即涡流。涡流衍生出的磁场方向总是与梯度磁场建立的方向相反,因此会延缓梯度磁场的建立,见图1(d)。这种延缓会对MRI系统成像的性能产生较大的影响。

克服涡流的影响、改善梯度磁场的建立波形有许多种方法。其中之一是梯度预加重(pre-emphasis)。梯度预加重是在梯度波形发生器的输出波形上(图1(e))或梯度放大器的输出电流上(图1(f))预先加上一个过冲,该过冲抵消涡流场的影响,加速了梯度磁场的建立,见图1(g)。为了适应不同涡流场的情况,该过冲的幅度和时间常数都是可调的。

梯度放大器中X、Y、Z三路梯度一般都加有模拟式梯度预加重(有时称为涡流补偿)电路。这种电路由一个可调增益的运算放大器+可调RC时间常数电路构成,见图2(三路相同,仅画出X路)。为了组合出任意的过冲波形,通常有多级这样的电路并联,每级具有不同的时间常数(图2电路具有4级)。增益和时间常数的调整采用手调多圈电位器。这种电路结构简单、无须做任何计算、成本较低。但它也有固有的缺点。由于全部采用模拟器件,不适合用任何数字器件来控制,多级增益和时间常数需人工用改锥作多维调整,工作量极大而一致性、可重复性很差,也不能由计算机闭环控制实现自动调整。

本文利用数控电位器(DCP)独特的性能,改进了上述模拟式梯度预加重电路,达到了数字控制梯度预加重的目的。

数控电位器

数控电位器是一种数模混合器件,示意图见图3。它内部有一个串联的电阻阵列(电阻的数量决定了DCP的分辨率,通常有32,64,100,256,1024等)。每两个电阻之间的连接点通过一个电子开关连接到中心抽头端。电子开关则由用户通过总线接口控制通断,通断的位置决定了中心抽头端在电阻阵列中的位置,因而可以决定中心抽头端距电阻阵列两端的电阻值。改变通断的位置就可以改变这个电阻值。因此从电阻阵列两端和中心抽头来看,DCP表现得就好象是一个普通的三端可调电位器一样,差别只在于普通的电位器是通过旋纽或工具手动连续可调的,而DCP是通过总线输入指令步进调节的。

DCP有不同的组态和形式。以本文使用的Xicor公司的X9250DCP为例,它在一个器件内封装了4个相同的DCP,每个DCP有256个抽头位置及4个非易失的数据寄存器,可以在DCP掉电后记住4个抽头位置,并在上电时自动将0#数据寄存器记载的抽头位置加载至抽头位置寄存器;它的控制接口为标准的SPI串行接口,控制指令由验证字节、指令字节和数据字节构成,见图4。阻值有100KΩ,50KΩ,数字端电源2.7~5.5V,模拟端电源为±2.7~5.5V。封装形式有SOIC和XBGA两种。

图1(a)理想梯度波形发生器输出(b)理想梯度放大器输出(c)理想梯度磁场波形(d)实际梯度磁场波形(e)有预加重的梯度波形发生器输出(f)有预加重的梯度放大器输出(g)有预加重的梯度磁场波形

数字控制梯度预加重电路设计与实现

DCP的这种工作方式为本文的设计提供了基础。其原理是用DCP来代替模拟式梯度预加重电路中手调电位器,用通用计算机、单片机、DSP等数字控制器通过DCP的总线接口来控制DCP的抽头位置,从而调节梯度预加重电路中过冲波形的幅度和时间常数。具体实现电路见图5。

和图2一样,图5中仅示出X路的电路,其余两路与此相同。在图5中,来自数字控制器件的控制信号XSI和XSCK分别给出SPI串行接口标准的数据位和时钟。数字控制器件根据用户输入的幅度和时间常数值,或根据MRI系统采集到的信号值,自动计算出幅度和时间常数的值,将这些数值转换成DCP的指令格式,送入相应的DCP中。经过幅度和时间常数处理后的梯度波形通过波形迭加电路U5与原梯度波形相加输出至梯度放大器。

一片X9250中包含有4个DCP,通过控制指令中指令字节的P0、P1位选择。它的引脚上还有两位器件选择位A0、A1,通过控制指令中验证字节的A0、A1位识别,因此通过A0、A1、P0、P1的组合,仅用控制指令就可寻址16个DCP中的任何一个。本设计仅用两片X9250,共8个DCP,故用A0选择器件,A1接地,P0、P1选择器件中4个DCP之一。在不超过16个DCP的情况下,不需要外加地址译码电路,CS端可以始终接地。数据字节给出中心抽头端的位置送入DCP中的中心抽头寄存器并写入0#数据寄存器。这样一旦调整好梯度预加重的波形,可以像模拟电位器一样永久保存。

本文的电路在应用时既可以作为一部分融合进入梯度波形发生电路或梯度放大器的涡流补偿电路中,也可以作为一个单独的部件串接在无梯度预加重电路的梯度波形发生器和梯度放大器之间。

结语

本文阐述并实现了一种用DCP实现的数字控制梯度预加重电路,它采用数字控制,模拟调整的方式,使得通过预加重改善MRI系统中梯度磁场建立波形的方法可以借助计算机等数字控制器件来完成。■

参考文献:

波形发生器范文篇5

关键词:VXIDDS任意波发生器调制

VXI总线是VMEbusextensionsforInstrumentation的缩写。VXI主机箱有13个插槽,其中,零槽控制器为系统的管理者。VXI模块根据其本身的性质、特点和所支持的通信规程可以分为寄存器基、消息基、存储器和扩展模块四种类型。每个模块的地址空间有A16、A16/A24和A16/A32三种类型。

本文介绍利用DDS(直接数字频率合成器)技术实现具有任意波发生以及调幅功能的模块。与传统的频率合成技术相比,DDS技术具有很多优点:频率切换时间短、工作频率范围宽、频率分辨率高、相位变化连续和容易对输出信号实现调制等。一些公司先后推出了各种各样的DDS专用芯片,这些DDS专用芯片为电路设计提供了很大方便,但是并不能满足所有要求。例如,在实现调频及调幅等复杂功能时,利用现有的DDS专用芯片就会很不方便。利用可编程逻辑器件(CPLD)或现场可编程门阵列(FPGA)实现DDS具有很大的灵活性,能够很好地满足电路设计要求。

1DDS基本原理

DDS在基本原理框图如图1所示。它主要由标准参考频率源、相位累加器、波形存储器、数/模转换器、低通平滑滤波器等构成。其中,参考频率源一般是一个高稳定度的晶体振荡器,其输出信号用于DDS中各部件同步工作。DDS的实质是对相位进行可控等间隔的采样。

相位累加器的结构如图2所示。它是实现DDS的核心,由一个N位字长的加法器和一个由固定时钟脉冲取样的N位相位寄存器组成。将相位寄存器的输出和外部输入的频率控制字K作为加法器的输入,在时钟脉冲到达时,相位寄存器对上一个时钟周期内相位加法器的值与频率控制字K之和进行采样,作为相位累加器在此刻时钟的输出。相位累加器输出的高M位作为波形存储器查询表的地址,从波形存储器中读出相应的幅度值送到数/模转换器。

当DDS正常工作时,在标准参考频率源的控制下,相位累加器不断进行相位线性累加(每次累加值为频率控制字K),当相位累加器积满时就会产生一次溢出,从而完成一个周期性的动作,这个周期就是DDS合成信号的频率周期。输出信号波形的频率为:

显而易见,当K=1时输出最小频率,即频率分辨率为fmin=fc/2N。式中,fout为输出信号频率;K为频率控制字;N为相位累加器字长;fc为标准参考频率源工作频率。

2波形发生器模块的实现

2.1硬件部分

波形发生器模块结构框图如图3所示。

硬件主要可分为总线接口、DSP及逻辑控制电路、四通道DDS波形发生及调制电路、信号调理和输出接口等几部分。其中,零槽控制器与DSP之间用双口RAM作为通讯中介,双口RAM采用IDT709289L,其容量为64K×16Bit。

根据零槽控制器和模块交换信息的特点,本模块采用寄存器基的A16/A24的操作模式,数据为16Bit。在A16的寻址方式下,每个模块都具有一组配置寄存器,系统可以通过访问这些寄存器来获得器件的种类、型号、生产厂家、地址空间及存储器需求等。在A24模式下,零槽控制器可为一个模块配置的存储空间,最大为256n×223-m,其中,n在A32模式下为1,在A24模式下为0,m为器件型号寄存器高四位所定义的数值。在本模块中,m取值为6,存储器地址空间为128Kbyte。总线接口采用ALTERA公司的EPM3256A实现。板内接口逻辑和所有控制逻辑均采用Verilog硬件描述语言完成。

接口电路中的双口RAM用作命令、参数和数据传输,分为命令参数区和数据区。双口RAM被均分为16页,每页为4K×16Bit,前15页作为自定义的波形传输区,第16页为命令参数区。双口RAM的采用使模块的设计相对于VXI系统而言具有很大的独立性,从而使波形发生电路能够方便地移植到其它总线上。

板内主控CPU芯片选用了TI公司的TMS320F206。它主要起智能控制作用,接收通过VXI总线发来的各种命令,然后分析命令,执行命令,协调模块各部分的工作。与非智能模块相比,本模块具有明显的优越性。除了自定义波形以外,零槽控制器只需向模块发简单的命令和参数,DSP就能完成所有的功能。这样就大大减少了上位机和控制器的时间开销,使它们有更多的时间处理其它事件,有利于保证整个VXI系统可靠、协调地工作。

DSP外扩数据存储器包括一片IDT709289L和四片IDT7025S,IDT9289L的每一页映射到DSP数据区0x7000~0x7FFF,用于接口电路,页面的切换用DSP的I/O译码控制。4个IDT7025S均映射到DSP数据区0x8000~0x9FFF,分别用作四路DDS的波形存储器,4个IDT7025S的片选由DSP进行控制。DSP相关的译码及控制电路用一片EP1K10来实现。

图3

单个通道DDS波形发生及输出部分功能框图如图4所示。

每通道的累加器及逻辑控制电路均采用一片EP1K30,用于实现累加器和步长控制字寄存器并完成板上地址译码、两级DAC控制、波形抖动补偿以及本通道的继电器控制等功能。累加器字长32位,时钟基准源频率为DSP输出频率的两倍频。第一级DAC用于波形的产生,第二级DAC用于控制输出幅度和波形正反相,并对第二级DAC输出进行了平滑滤波和放大处理。

根据系统的性能要求,输出端采用了电压隔离放大器,与总线隔离,并且四个通道各自独立。本模块总共有一个数字地和四个模拟输出地。这样,既可以保证VXI系统和其它通道的安全,又减少了模块负载和VXI系统的相互干扰。

波形数据存储器IDT7025S被等分为A、B两页,可以实现不同波形之间的无抖动切换,每页为4k×16bit。当DDS开始工作时,DSP先锋主A页写入波形数据,并在DSP的控制下产生波形;当要切换到另一种波形时,只需往B页写入另一种波形的数据,将32位累加器所产生的地址(累加器高12位)切换到B页即可。这样,可实现幅值和相位均连续的波形无抖动切换。

每个通道采用两级12BitDAC,它们均设置为双极性电压输出。第一级DAC的参考电压源可以接内部基准或外部载波,第二级DAC的参考电压源可以接内部基准、外部载波或第一级DAC电压输出。通过对两级DAC所接参考电压源的不能设置(通过继电器进行切换),可以分别实现如下功能:

(1)用作直接输出,第二级DAC的参考电压源接内部基站。第二级DAC电压输出为:V2out=(Din2-2048)/212,可通过输入不同的Din2控制直流输出幅值和正负极性。

(2)用作函数发生器,第一级DAC参考电压源接内部基,第二级DAC参考电压源接第一级DAC电压输出,波形存储器存放不同函数波形数据可输出不同的函数波形。此时,第一级DAC输出电压为:V1out=Vref×(Din1-2048)/212,其中,Vlout为第一级DAC双向输出电压,Vref为DAC参考电压源,Dinl为第一级DAC输入数据。在这里Vref为常值2V,式中只有Dinl为变量,Din1对应波形存储器中4096个波形幅值数据(一个周期)。当波形数据以500kHz的速率依次装载到DAC时,由公式(1)得DAC输出波形的频率为:fout=K×(106/233)。第二级DAC输出电压为:V2out=Vlout×(Din2-2048)/212,其中,V2out为第二级DAC输出电压,Din2为第二级DAC输入数据。

(3)用作自定义波形发生器,第一级DAC和第二级DAC的设置为(2)所述,不同的是波形存储器的内容。零槽控制器按一定的规约向双口RAM(IDT709289L)的前15页写入自定义的波形数据,DSP亦按一定的规约取出数据并送往指定通道的IDT7025S,IDT7025S的A和B两页进行交替切换,从而连接输出自定义波形。

(4)外加载波进行调制,第一级DAC参考电压源接外部载波,第二级DAC参考电压源接第一级DAC电压输出。外加载波为正弦信号Vsin(αx+θ),其中,V为载波最大电压值,α为自变量x的系数,θ为初始相位。第一级DAC电压输出为:Vlout=Vsin(αx+θ)×Dinl/212,这样即实现了载波的幅度调制。第二级DAC用来控制整个幅度,其输出电压V2out=Vsin(αx+θ)×Din1/212×(Din2-2048)/212,Din2为第二级DAC的输入数据。

(5)载波直接输出,只需第二级DAC的参考电压源接外部载波,第二级DAC电压输出为:V2out=Vsin(αx+θ)×(Din2-2048)/212。

由于隔离放大器有一定的输出噪声,所以把信号放大器放在隔离放大器之前,低通滤波器放在隔离放大器之后,这样,既避免把隔离入大器的噪声放大,又有效地进行了平滑滤波。

电压输出采用功率运放OPA445进行放大,实现±12V输出。而电流输出则采用电压/电流转换器AD694实现,电流输出量程为0~20mA或4~20mA。

2.2软件部分

软件主要包括两部分:DSP程序和VXI系统主机底层驱动函数及测试程序。

DSP程序采用C语言和汇编语言混合编程。控制部分的程序采用了汇编语言,提高了程序的效率。而数据的产生部分采用了实现起来比较简单的C语言,避免了采用汇编处理数据的复杂编程。

上位机测试程序采用NI公司的LabWindows/CVI编制。LabWindows/CVI基于C语言的编程环境,具有丰富的用户界面控件和VXI总线系统函数,使编程简捷方便。面向本模块的操作函数打包生成.dll文件即可供系统调用。

3实现结果及分析

图5所示为输出频率为10kHz的方波、锯齿波、正弦波和三角波的输出波形,其峰-峰值均为24V。图6所示为调制波输出波形,10kHz外部正弦波作为载波信号,1kHz正弦波信号作为调制信号,峰-峰值为24V。图5和图6均由Tektronix公司的TDS210型示波器采样所得。

经实验所得的波形输出的频率分辨率为0.1%左右,显然大于理论的频率分辨率fmin=106/233=0.0001164Hz。经分析,系统误差包括:(1)相位截尾误差;(2)电路板布局布线因素带来的干扰而导致的误差;(3)标准参考频率源稳定性的影响带来的误差;(4)D/A转换器引入的误差;(5)波形幅值存储数据有限字长引入的量化误差。

波形发生器范文篇6

关键词:PWM发生器;SA8282;微处理器

1SA8282的功能特点

PWM控制技术是通过控制电路按一定规律来控制开关管的通断,以得到一组等幅而不等宽的矩形脉冲波形并使其逼近正弦电压波形。其方法有模拟方法和数字方法两种,其中模拟方法的电路比较复杂,且有温漂现象,会影响精度,降低系统的性能。数字方法则是按照不同的数字模型用计算机算出各切换点并将其存入内存,然后通过查表及必要的计算生成PWM波,因此数字方法受内存影响较大,且与系统精度之间存在着矛盾。SA8282是英国MITEL公司生产的全数字化三相PWM发生器,它频率范围宽、精度高,并可与微处理器进行接口,同时能够完成控制功能,因而可实现智能化。

SA8282采用28脚DIP封装。图1是其引脚排列图,其各引脚的功能说明如下:

AD0~AD7:八位地址与数据复用总线,用于从微处理器接受地址与数据信息。

WR(R/W、RD(DS)、ALE(AS):此三个引脚为Intel(MOTOROLA)控制模式;SA8282在工作时可自动适应Intel或MOTOROLA控制模式,当ALE(AS)管脚变为高电平时,SA8282内部检测电路将自动锁存RD(DS)线上的状态,如果检测结果为低电平,则采用MOTOROLA控制模式;如果检测结果为高电平,则采用Intel控制模式。

RST:复位端,低电平有效;

CS:片选输入该控制线可使SA8282与其它接口芯片共享同一组总线。

RPHT、RPHB、YPHT、YPHB、BPHT、BPHB:标准TTL电平输出端口(即PWM驱动信号)可分别驱动三相逆变器的六个功率开关器件。

TRIP:输出封锁状态指示用于表明输出是否被锁存,低电平有效。

SETTRIP:关断触发信号输入端,当输入为高时,TRIP及六个PWM输出端将被迅速锁存在低电平状态,且只有在,RST复位时才能解除。

WSS:波形采样同步端口;

ZPPB、ZPPY、ZPPR:分别是三相信号的零相位脉冲输出端。

CLK:时钟信号输入端。

VDD:+5V偏置电源。

VSS:接地端。

此外,SA8282芯片还具有以下特点:

(1)全数字化

SA8282与微处理器相连时可自动适应Intel和MOTOROLA两种总线接口而且编程简捷方便。其全数字化的脉冲输出具有很高的精度和稳定性。

(2)工作方式灵活

SA8282具有六个标准的TTL电平输出端,可以驱动逆变器的六个功率开关器件。电路的载波频率、调制频率、调制比、最小脉宽、死区时间等工作参数均可直接通过软件设定,而不需要任何外接电路,从而降低了硬件成本。

(3)工作频率范围宽、精度高

SA8282的三角载波频率可调,当时钟频率为12.5MHz时,载波频率最高可达24kHz,输出调制频率最高可达4kHz,输出频率的分辨率为12位。

2工作原理

SA8282的内部原理结构框图如图2所示。它主要包括初始化命令和控制命令寄存部分、从ROM中读取及产生PWM调制波形部分以及三相输出控制电路等三个功能部分。

图3

2.1命令寄存部分

该部分由总线控制、地址/数据总线、暂存器R0~R2、虚拟寄存器R3~R4及24位初始化寄存器和24位控制寄存器构成。该部分在工作时应首先进行初始化(从微处理器向初始化寄存器和控制寄存器输入控制字进行系统参数设置),然后由微处理器向两个24位寄存器输入命令字,这两个寄存器分别被称为初始化寄存器和控制寄存器。由于总线的数据宽度被限制在8位字长,因此要想把数据送到一个24位寄存器,应先分三次分别送到三个暂存寄存器R0、R1、R2中。而数据由暂存寄存器R0、R1、R2送到初始化寄存器或控制寄存器是通过虚拟寄存器R3、R4的送数写指令来实现的,R3、R4实际上不存在,它们只在指令中出现。往R3送数的写指令用于将数据从R0、R1、R2传送到控制寄存器,而往R4送数的写指令则可将数据从R0、R1、R2传送到初始化寄存器。

2.2读取及产生PWM调制波形部分

该部分由地址发生器、波形R0M及相位和控制逻辑构成。由于调制波形关于90°、180°、270°对称所以波形ROM中仅保存了0~90°的波形瞬时值。工作时,SA8282可根据地址发生器的信号直接从波形ROM中读取波形数据,然后通过相位控制逻辑将其组成0~360°的完整波形和三相波形,而不需要处理器进行处理。

2.3三相输出控制电路

SA8282中的每相输出控制电路均由脉冲取消和脉冲延时电路构成。脉冲取消电路用于去掉脉冲宽度小于取消时间的脉冲,以保证最小输出脉冲宽度大于器件的开关周期。延时电路可保证死区间隔,其作用是在改变任一相中两个开关器件的状态时提供一个较短的延迟时间,以使这段时间里的两个开关都处于关状态,从而防止在转换瞬间桥臂开关元件出现共通(两个开关在状态转换期间造成直通短路)现象。

3用SA8282组成的静止逆变器

3.1硬件组成

由SA8282组成的静止逆变器的硬件结构如图3所示,该电路主要由以下几个部分组成:

(1)控制电路

该逆变器的控制电路主要由MCS-51单片机最小系统、少量的扩展芯片和SA8282三相PWM发生器构成。单片机用于完成对SA8282的初始化和输出脉宽控制、频率控制,同时完成开环、闭环控制算法的运算及数据处理、模拟信号与数字信号的检测以及保护功能的逻辑判断等。由于SA8282和单片机共用一个石英晶体振荡器,故同步性能稳定,漂移小。

(2)驱动电路

驱动电路由EXB840构成。SA8282输出的PWM信号经驱动模块EXB840可直接驱动IGBT,且隔离性能好,抗干扰能力强,同时具有过流检测及电路关断等功能。一旦EXB840检测到过流信号,它将迅速向SA8282发出高电平保护信号同时封锁IGBT的驱动信号并高速切断电路,低速关断IGBT。

(3)主电路

本系统的主电路为AC-DC-AC逆变电路。输入的三相交流电压经整流、滤波后将直流电压供给逆变器。主开关器件用六单元IGBT模块和缓冲电路来构成三相逆变器。其输出则采用隔离降压变压器,因此可满足不同输出电压的要求。

3.2软件设计

软件程序设计是整个逆变器控制的核心,它决定着逆变器的输出特性,如电压、频率范围、稳定度、谐波含量、保护功能和可靠性等。图4为本系统的程序流程框图。

波形发生器范文篇7

1.1电路的组成该多路数字信号发生器主要由四个部分组成:(1)电源电路。(2)输入选择电路。(3)输出驱动电路。(4)主机电路。

1.2电源电路其中电源电路主要是给整机电路提供稳定的电压和电流的,能够让电路工作在抗干扰能力强的电源电路环境下;该工作电路的电压通常给单片机能够提供正常工作的+5V电压(TTL电路电平),并且能够提供18V(CMOS电路电平)电压,考虑到整机的用电电压、电流以及单片机的抗干扰要求,采用一般的三端稳压器组成电源电路,再外加滤波措施,这种电路更能保证电路稳定、长时间工作。

1.3输入选择电路输入电路选择和控制信号来自于工作参数设置开关和工作状态控制开关。输入信号为直流电平,幅度为5V。根据所需的选择控制方式和数量,拟采用独立式非编码的键盘电路实现输入信号的选择;具体选择和控制开关设计如下:(1)工作状态控制开关K0;(2)信号序列选择开关K1、K2;其中K1—代表穷举测试序列的选择开关。其中K2—代表走步测试序列的选择开关。(3)输出频率选择开关KF(在主机电路中)分别为100KHZ、10KHZ、1KHZ三个档位。(4)输出信号幅度选择开关Ku(在输出驱动电路中)分别为5V、18V两档。

1.4输出驱动电路输出驱动电路首先要把单片机给出的两个8位的信号组合成16位电路信号输出,再根据输出信号幅度选择开关的设置输出相应的信号电平。其中,根据输出信号的电平变化和驱动能力要求,输出的两个8位信号通过锁存器实现8到16的组合,用高压输出驱动器完成电平变化和驱动要求。

1.5主机部分主机电路根据信号序列和频率变化的要求,拟采用单片机AT89C51实现所需的控制处理功能,通过软件编程的方法实现电路所要达到的功能。

2电路的主要实现原理

多路数字信号发生器是一个能够输出16位的数字信号源,它能够产生满足数字电路检测用的多路数字序列信号。通过AT89C51单片机为核心部分,通过单片机控制电路输出的序列,本电路可以产生两种序列,一种是‘穷举’测试信号序列,这种序列即为216个16路信号;一种是‘走步’测试信号序列,即为每路逐个输出“0”,与每路逐个输出“1”组合。这些序列通过单片机I/O口输出,在经过地址锁存器将所输出的信号进行锁存输出,就得到想要的16位数字信号。如果我们需要模拟信号,可经过将正弦波,三角波波形数据做成波形表,用查表法来输出波形数据。经D/A(DAC0832)转换输出波形。AT89C51有4KB的程序内存可以用来存储运行程序,而128B的RAM则可用来保存波形参数及用户自定的外部波形的数据。由于是数字合成技术,因此该信号源可以产生多种波形。在频率的选择上多路数字信号发生器通过AT89C51单片机和电路,通过软件编程的方法控制频率的输出,输出的频率分别为1KHz、10KHz、100KHz三个档位。

3总结

波形发生器范文篇8

目前国内大学通信专业的实验教学中,如通信原理和数字信号处理的实验课等,都以虚拟仪器作为示例,对信号进行分析。但往往由于信号生成、显示和分析仪器的成本比较高,尤其是带有频谱分析和测量功能的仪器价格尤为昂贵,使得这部分的实验无法普遍实施。PC机声卡具有两路AD和两路DA,采样率最高可达到44100Hz,采样深度可达到16bit。由于其成本低廉且功能强大。由于PC机声卡只适用于音频领域,即输入信号频率必须处于20~20000Hz的音频范围内,这个系统在处理速度和带宽方面也具有一定的局限性。如果利用PC机声卡作为音频数据采集处理设备,使用适当的虚拟仪器软件编程技术就可以组成一个低成本高性能的信号采集与分析处理系统,方便学生理解理论内容,简化了课程的实验,甚至能够让有兴趣的学生对现有虚拟仪器系统进行升级改造。这是我们研究该课题的意义之所在,希望通过我们的研究,能够建立一个性价比较高的音频信号分析系统,并将该结果应用于大学通信专业及相关专业的实验教学中,从而让学生理解信号分析的概况。

1基于声卡的音频虚拟仪器系统

之所以对音频信号感兴趣,是因为日常生活中存在着大量的音频信号,比如:话音信号。另外,在通信专业的实验教学中,以音频信号作为示例,足以让学生理解信号分析的概况。本文介绍一套基于Labwindows/CVI的音频处理系统,LabWindows/CVI是NationalInstruments公司推出的一套面向测控领域的软件开发平台。它以ANSIC为核心,将功能强大、使用灵活的C语言平台与数据采集、分析和表达的测控专业工具有机地结合起来。它的集成化开发平台、交互式编程方法、丰富的控件和库函数大大增强了C语言的功能,为熟悉C语言的开发人员建立检测系统、自动测量环境、数据采集系统和过程监控系统等提供了一个理想的软件开发环境[3]。本系统实现了示波器、信号发生器、频率计的功能,在音频范围内可完全替代成型的音频信号分析仪器。这并不是仿真软件,而是实用的工具,这些虚拟仪器可以很好的工作。使用起来也很方便,只需要一根音频电缆,一头接入声卡LineIn口,一头接入声卡SpeakOut口。系统框图如图1所示。

1.1虚拟信号发生器虚拟音频信号发生器利用PC机声卡的耳机插孔发出信号,能够产生两路音频信号。频率范围在20~9999Hz,电压有效值为0~3V,信号类型有正弦波、方波、三角波、锯齿波和用户自定义5种波形。在“高级设置”中可对两路信号的同步进行调整,也就是设置两路信号的初始相位差,调整范围为0~2π。系统面板图如图2所示。一旦系统运行,就有声音信号生成并通过声卡通道输出,发生器1通过左声道输出,发生器2通过右声道输出,可以通过扬声器收听输出的音频信号的声音,也可以通过虚拟示波器或真实示波器对信号进行显示。

1.2虚拟示波器示波器通过声卡LineIn口输入音频信号,实现了双通道示波器的所有功能,包括时基调整、幅度调整、偏移调整、双通道组合显示等,普通实验室中双通道示波器具有的功能这个系统都能实现。最后这个系统还能对信号进行2048点的频谱分析,相当于一台简易频谱分析仪。通过对音频信号采集、分析信号可以显示其时域波形和频谱图。程序面板图如图3所示。信号分析部分充分利用模块化软件设计方法,开发了信号的波形、频谱分析。在这个基础上,通过程序的扩展,还可以开发诸如:FIR、IIR数字滤波器等其他的数字信号处理功能。总之,本虚拟信号采集与分析系统对信号采集与分析系统的各个环节进行了深入的探讨,完成了信号分析和信号处理的基本功能。分析仪界面友好,使用方便。

2具体实例分析

信号谱分析是数字信号处理课程中学生学习的重点,同时又是难点[4]。对于这些抽象的知识,老师在课堂上费尽心力讲解,学生依然很难理解。有些学生虽然学会信号频谱的计算方法,但对计算出的谱线形状只能凭空想象,缺少直观认识,久而久之,学生学习的积极性下降。通过此虚拟实验,可以解决这些问题,学生通过选择需要的的信号类型,设定信号的频率和幅值,就可观察到信号的时域波形和频谱图,这样学生不仅直观的了解谱线形状,而且对原信号频率和相位对谱线的影响有更深刻的理解。如图4所示产生一个频率1000Hz,幅度0.15V的单音频正弦波信号,并用示波器显示波形、频谱,测量电压峰峰值和频率值的过程。发生器1产生信号1000Hz,电压0.15V的单音频信号,通过左声道输出;示波器通道A测试左声道的信号,测得信号频率1000Hz,峰峰值电压0.42652V(有效值为0.15079V);并可以从扬声器中听到1000Hz的单音频信号的声音。

波形发生器范文篇9

关键词:软件无线电DSPDDS

软件无线电是一种无线电通信新的体系结构。在1992年5月美国电信系统会议上,JeoMitola首次提出了软件无线电概念,之后迅速引起了人们的关注,并开始对它进行广泛而深入的研究。具体地说,软件无线电是以可编程的DSP或CPU为中心,将模块化、标准化的硬件单元以总线方式连接起来,构成通用的基本硬件平台,并通过软件加载来实现各种无线通信功能的开放式的体系结构。它使得通信系统摆脱了面向设计思想,被认为是无线通信从模拟到数字、从固定到移动之后的又一次突破。

在软件无线电的研究过程中,调制解调技术是移动通信系统空中接口的重要组成部分。在不同的蜂窝半径和应用环境下,移动通信的信道呈现不同的衰落特性,根据移动信道的衰落情况,自动地改变调制方式,从而提高传输效率并保证传输性能。那么,一个通用的信号源是必不可少的。

图1多制式信号发生器硬件原理图

作者设计了一个基于DSP+DDS结构的可编程调制器的硬件平台,并在此硬件平台上实现了各种模拟调制和数字调制的通用软件算法。当改变调制制式时,无需再次下载程序,而且调制制式、比特速率、输出中频均可调。

1硬件结构

通常,信号源输出的波形多数是对周期的01序列进行调制,输出波形单一,只能作为解调输入信号的一种特例,缺少通用性。而许多专用芯片采用的调制方式也是有限的。用DSP+DDS构成的通用多制式信号发生器不仅可以实现模拟调制,而且可以实现各种数字调制。DSP利于基带信号的实时处理,可以实现高速调制,而DDS具有频率分辨率高、频率变化速度快、相位连续、易于数字控制等特点。图1给出多制式信号发生器硬件原理图。

信号发生器主要由三部分构成:控制单元、数字信号处理器(DSP)、正交数字上变频器(QuadratureDigitalUpconverter)。

DSP采用TI公司的TMS320VC5402,它独特的哈佛结构、硬件密集型方案和灵活的指令系统可以满足对信号的实时处理,它的高性能、低功耗及低价位使其得到广泛应用。

正交数字上变频器采用AD公司的AD9857。AD9807最高工作频率为200MHz,输出中频频率范围为0~80MHz。AD9807内部集成半带滤波器、CIC(ascadedIntegratorComb)滤波器、反SINC滤波器、高速的14位是一个相位连续的直接数字频率合成器DDS(DirectDigitalSynthesizer)。在该方案中,AD9857工作在正交调制模式。它的32位频率控制字使输出频率的最高精确度为:SYSCLK(系统时钟)除以232。

控制单元决定采用哪一种调制制式、比特速率及输出中频频率。

DSP读入控制单元的数据,然后经过串口向AD9857发送控制字。原始信息数据(是由DSP产生的伪随机序列)首先在DSP中进行编码、调制等处理后得到基带信号。基带处理得到正交信号的I/Q分量交替进入AD9857,经过串并变换,转换成两路并行的I/Q数据,进行内插和上变频运算,然后通过D/A变换直接输出模拟中频信号,从而将基带处理和中频调制合二为一。

AD9857对输入的数字信号进行采样和内插,降低了DSP的处理负担,使整个系统的性能达到较好的程度。

2软件算法

软件无线电具有完全的可编程性。它采用数字信号处理技术,在可编程控制的通用硬件平台上,利用软件来定主实现无线电台的各部分功能,包括对无线波段、信道调制、接入方式、数据速率的编程等。因此通过程序进行控制和操作,是软件无线电最突出的特点之一。软件算法的设计直接关系到电台软件的实现。软件无线电台对信号的处理都是实时的,因此对算法的时间及空间的复杂性都提出了很高的要求。

为节省有限的DSP运算资源,软件无线电软件算法研究中大量采用查表法来提高处理速度,通常在调制过程中使用波形存储法。编写软件算法程序时,只要某一调制方式及其对应的输出状态数目是有限的,就可以借助表法来实现。查表法避免了大量的中间运算,简单易行,唯一的缺点是占用了大量的存储空间。因此,需要建立一张通用的表格,该表格存储了经过量化的14位有符号的二进制数。表格的设计应达到查表过程简单,同时满足不同的调制方式。用这个表还可以实现正弦函数的计算,只需将当前相位移相π/2。

除了一张通用的余弦表,针对不同的调制方式还需分别建立对应的调制星座图映射表,按照调制方式分类组成一个相位表格库。对于差分相位调制,该表格为差分相位表格。当调制方式确定后,根据得到的码元,查表计算当前相位Φk。

图2以(π/4)DQPSK调制方式为例,介绍差分相位调制软件算法。数字存储区存储的是一个周期的余弦函数波形样点,设存储区的采样点数为N,表格的移动步长为d。原始调制每两个比特一组,通过表1中的调制星座图映射成差分相位ΔΦk与前一码无的相位进行模2π相加得到当前码元的绝对相位Φk,计算Φk在余弦表中的偏移地址,根据偏移地址调制信号的数据。

设f(i)=cos(id),其中0≤i<N,d=2π/N

那么,当前相位Φk(0≤Φk<2π)的偏移地址为:Φk×N/2π。

(π/4)DQPSK对应的绝对相位Φk的可能取值有:0°、45、90°、135°、180°、225°、270°、315°。如果N=144,即d=2.5,则Φk在余弦表中对应的偏移地址为:0°、18°、36°、54°、72°、90°、108°、126°。

表1调制星座图

xk0011

yk0110

Δφk-135°135°45°-45°

3调制信号波形

波形发生器范文篇10

关键词:负载串联谐振;频率跟踪;延时补偿

1概述

逆变电路根据直流侧储能元件形式的不同,可划分为电压型逆变电路和电流型逆变电路。电流型逆变器给并联负载供电,故又称并联谐振逆变器。电压型逆变器给串联负载供电,故又称串联谐振逆变器。

串联谐振逆变器在感应加热领域应用非常广泛,图1是它的基本原理图。它包括直流电压源,开关S1~S4和RLC串联谐振负载。

由于设计的是电压型负载高频逆变器,而达到高频,则要减小开关损耗。减小开关损耗的方法之一就是采用零电流开关。对于串联RLC电路,只有在LC串联谐振时,使得流过电阻R的电流iR和加在RLC两端的电压URLC同步,才能达到零电流开关要求。为此在全桥电路控制方式中,我们选取双极性控制方式。即开关管Sl和S3,S2和S4同时开通和关断,其开通时间不超过半个开关周期,即它们的开通角小于180°。

2逆变控制电路的设计

控制电路原理框图如图2所示。从图2可以看出,逆变电路可以工作在他激和自激两种状态。当逆变电路工作在他激状态时,控制信号从他激信号发生器发出,电路工作频率固定,由他激信号发生器控制。当逆变电路工作在自激状态时,电路的输出电流信号经过电流互感器采样,通过波形变换把正弦波变成方波,然后方波信号经单稳态电路防止干扰,接着送到频率跟踪电路,使得开关管的工作频率能够跟踪电流反馈信号。工作在自激状态时,逆变电路的工作频率由负载本身的固有频率决定。本电路中逆变电路的工作频率由放电负载和变压器漏感组成的串联谐振电路的自然频率决定。

2.1限幅、整形和单稳态电路

如图3所示,从电流互感器CT取出的反馈信号,通过电阻R6引入控制电路。引入控制电路的信号跟负载电流的大小,电流互感器的变比以及取样电阻R6的大小有关。在实际应用中,这个引入控制电路的信号可能会超过CMOS的最大工作电压而导致器件的损坏,因而有必要在这个信号后面加一个限幅电路。二极管D1及D2就起到这个作用。电流反馈信号近似正弦波,经过D1及D2和比较器以后,就变成了有正负的方波信号,经过D4把负的部分去掉,整形成占空比为50%的方波信号。

图4

电路在工作过程中不可避免地受到各种各样的外部干扰,加上其本身元器件的分布参数,使得电流反馈信号并不是理想的波形。由于后级电路的锁相环用的是边沿触发,如果前面的方波信号不好,会导致后级频率跟踪电路跟踪失败,从而导致了电路无法正常工作。所以,在电路中必须加入一个具有特定功能的电路,将有干扰的波形重新整形,然后输入后一级电路。单稳态触发器就实现这种功能,它在外部脉冲的作用下,输出具有特定宽度和幅值的矩形脉冲,经过一定时间,又自动回复到初始状态。

2.2频率跟踪电路

由电路的负载特性分析可知,电路的负载不是固定的负载。当电压升高,功率增大以后,负载固有的自然谐振频率会发生改变。这个时候如果逆变电路工作在开环状态下,由于电路的工作频率偏离了负载的自然谐振点,这就使得电路的输出功率不能随着直流母线电压的升高而同步升高,输出功率达不到要求。因此,必须使得逆变电路工作在闭环状态,实现频率的自动跟踪。

频率跟踪电路如图4所示。电路启动的时候,先开控制电路,此时电流反馈信号没有建立,逆变电路不能工作在自激状态。在图4中,控制电路开机后,电流反馈信号为0,比较器U1B输出为高电平,电子开关4066导通,Vcc通过R8与RP1分压以后供给4046的压控振荡器输入端,这个电压用来控制压控振荡器的频率,调节RP1,就可以得到他激电路所需要的频率。一般都把他激信号发生器的输出频率调得跟负载的自然谐振频率相差不大,这样有利于电流反馈快速建立,让逆变电路尽快进入自激工作状态。

在主电路开机时,可控整流电路输出电压调得比较低,这时候电流反馈信号比较小,随着直流母线电压慢慢升高,电流反馈信号逐步增大。在这个信号经过半波整流以后得到的直流电平(C2上的电压)没有超过R6两端电压以前,电路还是工作在他激状态。当电流反馈信号达到一定的值使得C2上的电压超过了R6两端电压以后,比较器U1B输出为低电平,把4066关断,RP1分压为0,没有办法通过二极管影响压控振荡器,这样压控振荡器的电压就由低通滤波器提供,逆变器工作在自激状态。由于电容C3的存在,使得电路在他激转自激的过程中,能够平稳地过渡,不至于出现压控振荡器输入为0的情况。

当逆变器工作在自激状态,其工作频率随着负载自然谐振频率的变化而变化。此时从前面的单稳态电路引入电流反馈信号,让锁相环输出的方波频率跟踪输出电流的频率。在这种状态下,锁相环的控制框图如图5所示。相位比较器PC2输出为两个信号的相位差,经过低通滤波器(LPF)以后,得到了反映两个输入信号上升时间差的直流电压,然后送入压控振荡器(VCO),将VCO的输出信号分频以后(信号的1/2分频是为了使得信号的占空比能严格达到50%),延迟td时刻送到PC2中,与电流反馈信号进行相位比较。PC2进入锁相工作以后,电流反馈信号和延迟电压驱动信号的上升沿就被锁相至同步。

2.3延迟补偿电路

在自激信号发生器的设计过程中,没有考虑电路信号传输中的延时。实际上控制电路、驱动电路以及芯片都有延时,因此,电路的延时不能忽略。延时导致负载的输出电压滞后于输出电流δ角度,负载工作于容性状态,如图6所示。由于存在延时,工作在容性状态时的开关管软开关条件就被破坏了,导致开通损耗大大增加。图7是控制信号的补偿电路。

当输入到R,L,C上的电压与电阻R上的电流波形有相位差时,通过调节Rp,使iR与输入电压同步。

3实验结果和波形分析

3.1频率跟踪电路的输入输出波形

频率跟踪电路的输入、输出波形如图8所示。

3.2延时补偿电路的波形

延时补偿电路的波形如图9所示。图中3个波形自上而下分别是图7延时补偿电路中结点2,3,4的波形。其中的t为放电时间,通过改变变阻器Rp可以调节放电时间t的快慢。

3.3开关管S4两端与负载R两端的电压波形

图10波形中,上面的波形是S4两端的电压,下面的是电阻两端的电压,S4与电阻两端的电压同相,此时电感电容串联谐振。但是,仔细观察两个波形可以发现,两个波形之间在过零点有些毛刺。其原因可以从图11得到说明。

图11中下面两个波形是S1及S2的驱动波形,可以发现他们之间存在死区。理论上,如果S1,S3与S2,S4的驱动波形为互补的话,则电阻R的电压与输入RLC两端的电压在LC发生串联谐振时应该是没有相位差的。由于驱动波形并非理想,所以造成电阻R的电压与输入RLC两端的电压并非完全没有相位差。

从图12中可以看出4046芯片跟踪,但是由于芯片和电路存在延时等原因,uRLC与4046的脚14波形之间存在相位差,而且很明显是滞后的。