超低碳钢生产技术论文

时间:2022-05-23 08:46:54

超低碳钢生产技术论文

1生产技术优化

1.1深入研究转炉低氧位控制技术,实现碳、氧全面降低

转炉低氧位控制技术是指顶底复吹转炉脱碳过程加强动力学条件,实现在1个大气压下碳氧反应平衡均匀进行,降低钢水冶炼终点氧含量,减小炉渣氧化性的一种冶炼技术。该技术采用以下两大控制方法。

1.1.1合理控制炉底涨幅,提高底吹效果

控制炉底涨幅不超过100mm,确保转炉底吹效果。动态掌握底吹供气效果,通过裸露数量判断底吹效果是否满足要求。

1.1.2优化转炉超低碳钢冶炼模式

对转炉冶炼超低碳钢操作过程进行优化:1)转炉造高碱度渣,碱度控制在3.5~4.0;2)采用高硅高温铁水,确保转炉操作热量富裕,过程矿石加入量达到5t以上,确保全程化渣效果;3)终点前加入一批石灰,稠化炉渣;4)终点前,提前测量TSO,根据TSO温度调整供氧量,保证转炉终点温度为1710℃左右,保证进RH炉温度满足生产要求,终点碳的质量分数控制在0.04%~0.05%,保证氧含量满足要求。

1.2优化改质剂配比,实现钢包顶渣改质的最优化

和顶渣低全铁含量控制目标改质剂的主要作用是降低钢包顶渣全铁含量,提高顶渣吸附夹渣的能力,提高钢水的纯净度。因铝镇静钢夹渣主要是Al2O3型,根据Al2O3—CaO—SiO2三元系相图分析,将渣成分控制在CaO饱和区,向低熔点区靠拢,具体做法是将炉渣CaO/Al2O3控制在1.7~1.9。优化前,改质剂中铝的质量分数控制在8%左右,改质后全铁的质量分数较高,达到13%左右,改质效果不明显。为深入研究改质剂配比,对改质剂铝含量进行准确计算:转炉终点炉渣全铁的质量分数按17%计算,改质后炉渣全铁的质量分数按5%计算,钢包顶渣按100mm厚度计算,钢包直径为3.3m,渣密度按3.4g/cm3计算。按照生产DDQ转炉加入改质剂300kg计算,对改质剂中铝配比按87/300=29%进行控制,根据理论计算,对改质剂进行了优化和成分调整,增加铝含量,提高炉渣的碱度。采用铝粒30%、颗粒石灰10%、预熔渣60%的混合配比,提高钢包顶渣改质效果。

1.3优化RH低氧位深脱碳技术,稳定控制钢中碳含量

冶炼SPHE,DDQ级冷轧钢等超低碳钢要求RH进行深脱碳处理,针对低氧位深脱碳技术要求,在保证终点碳含量稳定的前提下,对深脱碳冶炼过程进行低氧位控制,为此建立了RH低氧位深脱碳模型。利用该模型并结合RH气体分析仪,对终点碳含量可以进行准确预判。

1.4实施连铸机全保护浇注,提高铸坯质量

根据莱钢板坯连铸机现场实际情况,采用以下控制技术,对连铸机钢水进行全面保护。

1)设计全新中间包包盖,增加包盖吹氩功能,在浇注料内布有氩气管道。全新包盖设计成弧形,应用后具有防掉料、防变形、使用寿命高、密封效果好的优点。

2)对中间包冲击区进行全面改造,增加活动小包盖,大幅度减小了中间包冲击区与空气接触面积,进一步减少了钢水二次氧化。

3)在包沿与包盖接触处和块与块对接处垫约40mm厚的硅酸铝耐火纤维毡,并在中间包盖各孔处使用纤维盖板预制密封件,以增强中间包盖的密封隔热功能,达到全保护的目的。

4)中间包冲击区采用环形氩气装置。主要是在冲击区钢液面上形成氩气沉淀,防止因钢水裸露造成二次氧化。

2效果

解决了连铸机浇注过程中二次氧化大的问题,浇注过程增氮量明显减少,通过低倍检测分析,DDQ级冷轧料铸坯中心偏析、中心疏松、中间裂纹达到了“零”级。

3结论

1)采用转炉低氧位碳氧积控制技术、钢包顶渣低全铁含量控制技术,解决了超低碳钢钢水氧化性强、钢包顶渣改质效果不稳定等问题,获得了良好的效果。

2)采用精炼RH炉低氧位深脱碳处理模型预判终点碳技术,应用废气分析仪,准确判断终点碳含量,提高超低碳钢终点碳的命中率,缩短了脱碳时间,为生产超低碳钢提供了技术保障。

3)应用连铸机全保护浇注技术,钢水在浇注过程中二次氧化明显减少,过程增氮量减少,保护效果显著。

4)多项技术的开发应用,使钢水夹杂物明显减少,铸坯表面质量明显改善,提高了钢水的可浇注性,解决了连铸机套眼问题,提高了超低碳钢的钢水质量。

作者:邹春锋郭伟达张佩韩蕾蕾高志滨单位:山东钢铁集团莱芜股份有限公司