水利工程论文范文10篇

时间:2023-03-22 14:00:39

水利工程论文

水利工程论文范文篇1

论文摘要:阐述水利工程与水域生态的关系,介绍了生态水利规划的基本原则:工程安全性与经济性原则;提高河流形态的空间异质性原则;生态系统自设计与自我恢复原则;景观尺度与整体修复原则;反馈和调整设计原则。

1水利工程对河流生态系统的影响

在社会生产过程中水利工程对经济与社会有着巨大的作用,同时也要看到水利工程对河流生态系统造成了不同程度的影响。人类整治河道修筑堤坝等活动人为的改变了河流的多样性、连续性和流动性,使水域的流速、水深、水温、自水流边界、水文规律等自然条件发生重大改变。这些改变对河流生态系统造成的影响是不容忽视的。未来的水利工程在权衡社会经济需求与生态系统健康需求这二者关系方面,似应强调水利工程在满足人类社会需求的同时,兼顾水域生态系统的健康和可持续性。

2生态水利工程

从学科发展角度看,现在的水利工程学的学科基础主要是工程力学和水文学,水利工程规划设计主要对象是水文系统,往往忽视生命系统的现状和未来风险等问题。学科的进一步发展应吸收生态学理论及方法,促进水利工程学与生态学的交叉融合,用以改进和完善水利工程的规划及设计理论,形成水利工程学新的学科分支——生态水利工程学。生态水利工程学作为水利工程学的一个新的分支,是研究水利工程在满足人类社会需求的同时,兼顾水域生态系统健康与可持续性需求的原理与技术方法的工程学。生态水利工程的内涵是:对于新建工程,是指进行传统水利建设的同时(如治河、防洪工程),兼顾河流生态修复的目标。对于已建工程,则是对于被严重干扰河流重点进行生态修复。生态水利工程将与传统治污技术、清洁生产(生态产业)及环境立法和资源管理一起,成为河流生态建设的主要手段之一。

3生态水利工程的规划设计原则

3.1工程安全性和经济性原则

生态水利工程是一项综合性工程,在河流综合治理中既要满足人的需求,包括防洪、灌溉、供水、发电、航运等需求,也要兼顾生态系统的可持续性。生态水利工程既要符合水利工程学原理,也要符合生态学原理。生态水利工程的工程设施必须符合水文学和工程力学的规律,以确保工程设施的安全、稳定和耐久性。工程设施必须在设计标准规定的范围内,能够承受洪水、侵蚀、风暴、冰冻、干旱等自然力荷载。按照河流地貌学原理进行河流纵、横断面设计时,必须充分考虑河流泥沙输移、淤积及河流侵蚀、冲刷等河流特征,动态地研究河势变化规律,保证河流修复工程的耐久性。

对于生态水利工程的经济合理性分析,应遵循风险最小和效益最大原则。由于对生态演替的过程和结果事先难以把握,生态水利工程往往带有一定程度的风险。这就需要在规划设计中进行方案比选,更要重视生态系统的长期定点监测和评估。另外,充分利用河流生态系统自我恢复规律,是力争以最小的投入获得最大产出的合理技术路线。

3.2提高河流形态的空间异质性原则

一个地区的生境空间异质性越高,就意味着创造了多样的小生境,能够允许更多的物种共存。反之,如果非生物环境变得单调,生物群落多样性必然会下降,生物群落的性质、密度和比例等都会发生变化,造成生态系统某种程度的退化。由于人类活动,特别是大规模治河工程的建设,造成自然河流的渠道化及河流非连续化,使河流生境在不同程度上单一化,引起河流生态系统的不同程度退化。生态水利工程的目标是恢复或提高生物群落的多样性,但是并不意味着主要靠人工直接种植岸边植被或者引进鱼类、鸟类和其他生物物种,生态水利工程的重点应该是尽可能提高河流形态的异质性,使其符合自然河流的地貌学原理,为生物群落多样性的恢复创造条件。

在确定河流生态修复目标以后,就应该对于河流进行生物调查、地貌历史和现状进行勘查和评估,建立河流地貌数据库和生物资源数据库。遥感技术和地理信息系统(GIS)是水文、河流地貌和生物调查的有力工具。关键的工作步骤是在以上两种调查工作的基础上,确定环境因子与生物因子的相关关系,必要时建立某种数学模型。河流环境因子包括河流河势、蜿蜒度、横断面形状及材料、流速、水位、水质、水温、泥沙、营养盐的迁移转化、水文周期变化等。研究的内容包括:调查单个生物因子的基本需求,评估各种生物因子的相互关系和制约条件,对于“关键种”或标志性生物的环境因子进行分类和评估。在众多的环境因子中,识别那些对于系统的结构和功能具有重要意义的环境因子,在此基础上进行河流地貌学设计和生物栖息地的设计。

3.3生态系统自设计、自我恢复原则

生态系统的自组织功能表现为生态系统的可持续性。自组织的机理是物种的自然选择,也就是说某些与生态系统友好的物种,能够经受自然选择的考验,寻找到相应的能源和合适的环境条件。

将自组织原理应用于生态水利工程时,生态工程设计与传统水工设计有本质的区别。像设计大坝这样的人工建筑物是一种确定性的设计,建筑物的几何特征、材料强度都是在人的控制之中,建筑物最终可以具备人们所期望的功能。河流修复工程设计与此不同,生态工程设计是一种“指导性”的设计,或者说是辅助性设计。依靠生态系统自设计、自组织功能,可以由自然界选择合适的物种,形成合理的结构,从而完成设计和实现设计。成功的生态工程经验表明,人工与自然力的贡献各占一半。

传统的水利工程设计的特征是对于自然河流实施控制。而设计生态水利工程时,要求工程师必须放弃控制自然界的动机,树立新的工程理念。因为依靠人力和技术控制自然界是不可能的。人们要善于利用生态系统自组织、自设计这个宝贵财富,实现人与自然的和谐。需要强调的是,地球上没有两条相同的河流,每一条河流的特点都是各不相同的。因此,每一项生态水利工程必须因地制宜,充分尊重每一条河流的自然属性和美学价值,寻求最佳的生态工程方案。

自设计理论的适用性还取决于具体条件。包括水量、水质、土壤、地貌、水文特征等生态因子,也取决于生物的种类、密度、生物生产力、群落稳定性等多种因素。在利用自设计理论时,需要注意充分利用乡土种。引进外来物种时要持慎重态度,防止生物入侵。

3.4景观尺度及整体性原则

河流生态修复规划和管理应该在大景观尺度、长期的和保持可持续性的基础上进行,而不是在小尺度、短时期和零星局部的范围内进行。在大景观尺度上开展的河流生态修复效率要高。小范围的生态修复不但效率低,而且成功率也低。整体性是指从生态系统的结构和功能出发,掌握生态系统各个要素间的交互作用,提出修复河流生态系统的整体、综合的系统方法,而不是仅仅考虑河道水文系统的修复问题,也不仅仅是修复单一动物或修复河岸植被。

景观则是指生态学中的景观尺度。景观尺度包括空间尺度和时间尺度。为什么在景观的大尺度上进行河流修复规划?首先,水域生态系统是一个大系统,其子系统包括生物系统、广义水文系统和人造工程设施系统。广义水文系统又与生物系统交织在一起,形成自然河流生态系统。而人类活动和工程设施作为生境的组成部分,形成对于水域生态系统的正负影响。水域生态系统受到胁迫时,需要对于各种胁迫因素之间的相互关系进行综合、整体研究。其次,必须重视水域生境的易变性、流动性和随机性的特点,这些特点决定了生物种群的基本生存条件。水域生态系统是随着降雨、水文变化及潮流等条件在时间与空间中扩展或收缩的动态系统。再者,河流生态系统是一个开放的系统,与周围生态系统随时进行能量传递和物质循环,一条河流的生态修复活动不可能是孤立的,还需要与相邻的流域的生态修复活动进行协调。最后,河流生态修复的时间尺度也十分重要。河流系统的演进是一个动态过程。每一个河流生态系统都有它自己的历史。河流生态修复是靠时间做工作的。有研究指出,湿地重建或修复需要大约15~20a的时间。因此对于河流生态修复项目要有长期准备,同时进行长期的监测和管理。

3.5反馈调整式设计原则

生态系统的成长是一个过程,河流修复工程需要时间。从长时间尺度看,自然生态系统的进化需要数百万年时间。进化的趋势是结构复杂性、生物群落多样性、系统有序性及内部稳定性都有所增加和提高,同时对外界干扰的抵抗力有所增强。从较短的时间尺度看,生态系统的演替,即一种类型的生态系统被另一种生态系统所代替也需要若干年的时间,期望河流修复能够短期奏效往往是不现实的。

生态水利工程规划设计主要是模仿成熟的河流生态系统的结构,力求最终形成一个健康、可持续的河流生态系统。在河流工程项目执行以后,就开始了一个自然生态演替的动态过程。这个过程并不一定按照设计预期的目标发展,可能出现多种可能性。

意识到生态系统和社会系统都不是静止的,在时间与空间上常具有不确定性。除了自然系统的演替以外,人类系统的变化及干扰也导致了生态系统的调整。这种不确定性使生态水利工程设计不同于传统工程的确定性设计方法,而是一种反馈调整式的设计方法。是按照“设计—执行(包括管理)—监测—评估—调整”这样一种流程以反复循环的方式进行的。在这个流程中,监测工作是基础。监测工作包括生物监测和水文观测。评估的内容是河流生态系统的结构与功能的状况及发展趋势。常用的方法是参照比较方法,一种是与自身河流系统的历史及项目初期状况比较,一种是与自然条件类似但未进行生态修复的河流比较。

在反馈调整式设计过程中,提倡科学家、管理者和当地居民及社会各界的广泛参与,通过对话、协商,以寻求共同利益。提倡多学科的交流和融合,提高设计的科学性。

参考文献:

[1]董哲仁.水利工程对生态系统的胁迫[J].水利水电技术,2003,(7):1~5.

[2]董哲仁.生态水工学的理论框架[J].水利学报,2003,(1):1~6.

[3]董哲仁.河流形态多样性与生物群落多样性[J].水利学报,2003,(11):1~7.

[4]MitschW.J.,JorgensenSE..EcologicalEngineeringandEcosystemRestoration[M].PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey,2004:134~137.

[5]董哲仁.荷兰围垦区生态重建的启示[J].中国水利,2003,(11A):45~47.

[6]O’NeillR.V.,D.L.DeAngelis,J.B.Waide,etal.AHierarchicalCon-ceptofEcosystems[M].PrincetonUniversityPress,Princeton,NJ.1986:153.

[7]GosselinkJ.G.LandscapeConservationinaforestedWetlandWater-shed[J].Bioscience,1990,40:588~600.

水利工程论文范文篇2

在社会生产过程中水利工程对经济与社会有着巨大的作用,同时也要看到水利工程对河流生态系统造成了不同程度的影响。人类整治河道修筑堤坝等活动人为的改变了河流的多样性、连续性和流动性,使水域的流速、水深、水温、自水流边界、水文规律等自然条件发生重大改变。这些改变对河流生态系统造成的影响是不容忽视的。未来的水利工程在权衡社会经济需求与生态系统健康需求这二者关系方面,似应强调水利工程在满足人类社会需求的同时,兼顾水域生态系统的健康和可持续性。

2生态水利工程

从学科发展角度看,现在的水利工程学的学科基础主要是工程力学和水文学,水利工程规划设计主要对象是水文系统,往往忽视生命系统的现状和未来风险等问题。学科的进一步发展应吸收生态学理论及方法,促进水利工程学与生态学的交叉融合,用以改进和完善水利工程的规划及设计理论,形成水利工程学新的学科分支——生态水利工程学。生态水利工程学作为水利工程学的一个新的分支,是研究水利工程在满足人类社会需求的同时,兼顾水域生态系统健康与可持续性需求的原理与技术方法的工程学。生态水利工程的内涵是:对于新建工程,是指进行传统水利建设的同时(如治河、防洪工程),兼顾河流生态修复的目标。对于已建工程,则是对于被严重干扰河流重点进行生态修复。生态水利工程将与传统治污技术、清洁生产(生态产业)及环境立法和资源管理一起,成为河流生态建设的主要手段之一。

3生态水利工程的规划设计原则

3.1工程安全性和经济性原则

生态水利工程是一项综合性工程,在河流综合治理中既要满足人的需求,包括防洪、灌溉、供水、发电、航运等需求,也要兼顾生态系统的可持续性。生态水利工程既要符合水利工程学原理,也要符合生态学原理。生态水利工程的工程设施必须符合水文学和工程力学的规律,以确保工程设施的安全、稳定和耐久性。工程设施必须在设计标准规定的范围内,能够承受洪水、侵蚀、风暴、冰冻、干旱等自然力荷载。按照河流地貌学原理进行河流纵、横断面设计时,必须充分考虑河流泥沙输移、淤积及河流侵蚀、冲刷等河流特征,动态地研究河势变化规律,保证河流修复工程的耐久性。

对于生态水利工程的经济合理性分析,应遵循风险最小和效益最大原则。由于对生态演替的过程和结果事先难以把握,生态水利工程往往带有一定程度的风险。这就需要在规划设计中进行方案比选,更要重视生态系统的长期定点监测和评估。另外,充分利用河流生态系统自我恢复规律,是力争以最小的投入获得最大产出的合理技术路线。

3.2提高河流形态的空间异质性原则

一个地区的生境空间异质性越高,就意味着创造了多样的小生境,能够允许更多的物种共存。反之,如果非生物环境变得单调,生物群落多样性必然会下降,生物群落的性质、密度和比例等都会发生变化,造成生态系统某种程度的退化。由于人类活动,特别是大规模治河工程的建设,造成自然河流的渠道化及河流非连续化,使河流生境在不同程度上单一化,引起河流生态系统的不同程度退化。生态水利工程的目标是恢复或提高生物群落的多样性,但是并不意味着主要靠人工直接种植岸边植被或者引进鱼类、鸟类和其他生物物种,生态水利工程的重点应该是尽可能提高河流形态的异质性,使其符合自然河流的地貌学原理,为生物群落多样性的恢复创造条件。

在确定河流生态修复目标以后,就应该对于河流进行生物调查、地貌历史和现状进行勘查和评估,建立河流地貌数据库和生物资源数据库。遥感技术和地理信息系统(GIS)是水文、河流地貌和生物调查的有力工具。关键的工作步骤是在以上两种调查工作的基础上,确定环境因子与生物因子的相关关系,必要时建立某种数学模型。河流环境因子包括河流河势、蜿蜒度、横断面形状及材料、流速、水位、水质、水温、泥沙、营养盐的迁移转化、水文周期变化等。研究的内容包括:调查单个生物因子的基本需求,评估各种生物因子的相互关系和制约条件,对于“关键种”或标志性生物的环境因子进行分类和评估。在众多的环境因子中,识别那些对于系统的结构和功能具有重要意义的环境因子,在此基础上进行河流地貌学设计和生物栖息地的设计。

3.3生态系统自设计、自我恢复原则

生态系统的自组织功能表现为生态系统的可持续性。自组织的机理是物种的自然选择,也就是说某些与生态系统友好的物种,能够经受自然选择的考验,寻找到相应的能源和合适的环境条件。

将自组织原理应用于生态水利工程时,生态工程设计与传统水工设计有本质的区别。像设计大坝这样的人工建筑物是一种确定性的设计,建筑物的几何特征、材料强度都是在人的控制之中,建筑物最终可以具备人们所期望的功能。河流修复工程设计与此不同,生态工程设计是一种“指导性”的设计,或者说是辅助性设计。依靠生态系统自设计、自组织功能,可以由自然界选择合适的物种,形成合理的结构,从而完成设计和实现设计。成功的生态工程经验表明,人工与自然力的贡献各占一半。

传统的水利工程设计的特征是对于自然河流实施控制。而设计生态水利工程时,要求工程师必须放弃控制自然界的动机,树立新的工程理念。因为依靠人力和技术控制自然界是不可能的。人们要善于利用生态系统自组织、自设计这个宝贵财富,实现人与自然的和谐。需要强调的是,地球上没有两条相同的河流,每一条河流的特点都是各不相同的。因此,每一项生态水利工程必须因地制宜,充分尊重每一条河流的自然属性和美学价值,寻求最佳的生态工程方案。

自设计理论的适用性还取决于具体条件。包括水量、水质、土壤、地貌、水文特征等生态因子,也取决于生物的种类、密度、生物生产力、群落稳定性等多种因素。在利用自设计理论时,需要注意充分利用乡土种。引进外来物种时要持慎重态度,防止生物入侵。

3.4景观尺度及整体性原则

河流生态修复规划和管理应该在大景观尺度、长期的和保持可持续性的基础上进行,而不是在小尺度、短时期和零星局部的范围内进行。在大景观尺度上开展的河流生态修复效率要高。小范围的生态修复不但效率低,而且成功率也低。整体性是指从生态系统的结构和功能出发,掌握生态系统各个要素间的交互作用,提出修复河流生态系统的整体、综合的系统方法,而不是仅仅考虑河道水文系统的修复问题,也不仅仅是修复单一动物或修复河岸植被。

景观则是指生态学中的景观尺度。景观尺度包括空间尺度和时间尺度。为什么在景观的大尺度上进行河流修复规划?首先,水域生态系统是一个大系统,其子系统包括生物系统、广义水文系统和人造工程设施系统。广义水文系统又与生物系统交织在一起,形成自然河流生态系统。而人类活动和工程设施作为生境的组成部分,形成对于水域生态系统的正负影响。水域生态系统受到胁迫时,需要对于各种胁迫因素之间的相互关系进行综合、整体研究。其次,必须重视水域生境的易变性、流动性和随机性的特点,这些特点决定了生物种群的基本生存条件。水域生态系统是随着降雨、水文变化及潮流等条件在时间与空间中扩展或收缩的动态系统。再者,河流生态系统是一个开放的系统,与周围生态系统随时进行能量传递和物质循环,一条河流的生态修复活动不可能是孤立的,还需要与相邻的流域的生态修复活动进行协调。最后,河流生态修复的时间尺度也十分重要。河流系统的演进是一个动态过程。每一个河流生态系统都有它自己的历史。河流生态修复是靠时间做工作的。有研究指出,湿地重建或修复需要大约15~20a的时间。因此对于河流生态修复项目要有长期准备,同时进行长期的监测和管理。

3.5反馈调整式设计原则

生态系统的成长是一个过程,河流修复工程需要时间。从长时间尺度看,自然生态系统的进化需要数百万年时间。进化的趋势是结构复杂性、生物群落多样性、系统有序性及内部稳定性都有所增加和提高,同时对外界干扰的抵抗力有所增强。从较短的时间尺度看,生态系统的演替,即一种类型的生态系统被另一种生态系统所代替也需要若干年的时间,期望河流修复能够短期奏效往往是不现实的。

生态水利工程规划设计主要是模仿成熟的河流生态系统的结构,力求最终形成一个健康、可持续的河流生态系统。在河流工程项目执行以后,就开始了一个自然生态演替的动态过程。这个过程并不一定按照设计预期的目标发展,可能出现多种可能性。

意识到生态系统和社会系统都不是静止的,在时间与空间上常具有不确定性。除了自然系统的演替以外,人类系统的变化及干扰也导致了生态系统的调整。这种不确定性使生态水利工程设计不同于传统工程的确定性设计方法,而是一种反馈调整式的设计方法。是按照“设计—执行(包括管理)—监测—评估—调整”这样一种流程以反复循环的方式进行的。在这个流程中,监测工作是基础。监测工作包括生物监测和水文观测。评估的内容是河流生态系统的结构与功能的状况及发展趋势。常用的方法是参照比较方法,一种是与自身河流系统的历史及项目初期状况比较,一种是与自然条件类似但未进行生态修复的河流比较。

在反馈调整式设计过程中,提倡科学家、管理者和当地居民及社会各界的广泛参与,通过对话、协商,以寻求共同利益。提倡多学科的交流和融合,提高设计的科学性。

论文关键词:生态水利工程设计原则

论文摘要:阐述水利工程与水域生态的关系,介绍了生态水利规划的基本原则:工程安全性与经济性原则;提高河流形态的空间异质性原则;生态系统自设计与自我恢复原则;景观尺度与整体修复原则;反馈和调整设计原则。

参考文献:

[1]董哲仁.水利工程对生态系统的胁迫[J].水利水电技术,2003,(7):1~5.

[2]董哲仁.生态水工学的理论框架[J].水利学报,2003,(1):1~6.

[3]董哲仁.河流形态多样性与生物群落多样性[J].水利学报,2003,(11):1~7.

[4]MitschW.J.,JorgensenSE..EcologicalEngineeringandEcosystemRestoration[M].PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey,2004:134~137.

[5]董哲仁.荷兰围垦区生态重建的启示[J].中国水利,2003,(11A):45~47.

[6]O’NeillR.V.,D.L.DeAngelis,J.B.Waide,etal.AHierarchicalCon-ceptofEcosystems[M].PrincetonUniversityPress,Princeton,NJ.1986:153.

[7]GosselinkJ.G.LandscapeConservationinaforestedWetlandWater-shed[J].Bioscience,1990,40:588~600.

水利工程论文范文篇3

水利工程造价是指完成一个水利工程项目从筹建到竣工验收、交付使用全过程的全部建设费用,即业主的建设成本。水利工程造价的另一层含义是指水利工程的价格,其构成包括成本、利润和税金。

因为水利工程建设具有单件性、规模大、周期长等特点,因此水利工程造价的计价也具有单件性计价、多次性计价和按构成的分部计价等特点。

1.单件性计价,是指水利建设工程不能像一般的工业产品那样由国家或企业按品种、规格、质量等成批地规定统一的价格,而必须通过特殊的程序,如编制概算、预算来单独确定每一个项目的造价。

2.多次性计价,是指为了适应水利工程基本建设各阶段管理的需要,在基本建设程序的不同阶段,多次进行工程造价的确定工作。如可行性研究阶段通过编制投资估算确定工程造价、初步设计阶段编制设计概算、技术设计阶段编制修正概算、施工图阶段编制施工图预算、工程招标阶段编制标底和报价、施工阶段进行工程结算、竣工时编制竣工决算来多次确定工程造价。

3.按水利工程构成的分部组合计价,是指工程造价的确定是按照构成建设项目的单位工程、单项工程分别确定造价最后汇总而成的,而不能不进行分解一下子计算出来。

二、水利工程概预算编制发展过程及回顾

我国水利工程概预算的发展过程大致可分四个阶段:

(一)概预算制度的建立时期(1949~1957年)

新中国成立后,我国实行了以公有制为主体的经济体制。在国民经济恢复时期,我国还没有工程概预算制度,基本建设的工程费用实行实报实销的办法。在上世纪50年代中期,开始建立新的设计机构和着手建立计划体制性质的工程概预算制度。当时的这种概预算制度,是完全借鉴与前苏联的经验。这项制度的基本内容是:确定概预算在工程建设中的作用;规定在不同设计阶段必须编制概算或预算,以及概算、预算编制的原则、内容、方法;确定概预算的编制和审批、修正办法;确定概预算各种编制依据——概预算定额、费用标准、材料设备预算价格等制度,及相应的审定、管理权限等。

从1951~1952年,国家先后颁布了《基本建设工作程序暂行办法》和《基本建设工作暂行办法》,这些办法都明确规定,工程建设概预算文件是设计文件的重要组成部分,要求设计单位在初步设计和技术设计阶段,分别编制初步设计概算和技术设计预算。概预算文件经相应机关批准后,即成为基本建设的基本文件。在这一阶段,根据全国统一集中管理为主的原则,水电部先后颁发了《中水定额》及《水总定额》,并初步制定了取费标准和重要材料预算价格,初步建立了计划经济体制下的概预算管理制度。

(二)概预算管理制度的削弱时期(1958~1976年)

1958~1976年是我国现代史上一个特殊的历史阶段。从1958年“”开始,经济指导思想出现了“左”的错误政策,不讲经济效益,甚至只算“政治帐”,不算经济帐,把概预算制度说成是“繁琐哲学”而加以破除。刚刚建立起来的概预算管理制度被削弱了。设计单位在初步设计和施工设计阶段不再编制工程概预算。其结果是“设计无概算,施工无预算,竣工无决算”,“投资大敞口,花钱大撒手,吃大锅饭”之风盛行。

1966年我国爆发了“”,直到1976年,全国上下处于动乱之中。“十年动乱”使国家经济建设遭到严重破坏,概预算制度和定额被当作资本主义复辟的基础来批判,我国从上到下管理概预算工作的机构和设计单位编制概预算的专业组织被撤销,概预算专业人员改行,大量的资料流失,我国的概预算管理制度遭到严重破坏,水利行业也不例外。

(三)概预算管理制度恢复重建时期(1977~1991年)

“十年动乱”结束后,我国实行改革开放政策,随着经济体制改革的深入,投资体制也进行了一系列的改革。

从1977年开始,国家基本建设委员会就着手整顿、健全概预算制度,组织概预算定额编制和修订工作。1978年,国家建设部、国家计委、财政部共同制定和颁发了《关于加强基本建设概、预、决算管理工作的几项规定》,重申设计要有概算、施工要有预算、竣工要有决算。指出“三算”的管理工作是基本建设管理工作的重要组成部分,必须认真整顿和加强,要加强责任制,提高“三算”的编制质量,以达到合理使用建设资金,降低建设成本、提高投资效益的目的。

1982年国家计委颁发了《关于加强基本建设经济定额、标准、规范等基础工作的通知》,强调各主管部和各省、自治区、直辖市管理基本建设的综合部门,应建立、健全基础工作的管理和研究机构,加强概预算工作和编制依据的制定与管理。当时的水利电力部全面部署了这一工作,于1986年起陆续编制颁发了《水利水电建筑工程预算定额》、《水利水电设备安装工程预算定额》、《水利水电建筑工程概算定额》、《水利水电设备安装工程概算定额》、《水利工程设计概(估)算费用构成及计算标准》,为水利概预算管理制度的恢复、重建和水利工程造价管理打下了基础。

(四)造价管理制度改革与发展时期(1992年以来)

以1992年邓小平同志南方谈好为标志,我国实行社会主义市场经济。工程造价管理进入了一个完善发展和改革的新时期,其间进行了一系列的重大改革。水利工程建设全面推行项目法人责任制、招标投标制、建设监理制及合同管理制。随着社会主义市场经济的逐步建立和完善,我国水利工程造价管理也在管理体系、计价方法、计价依据及管理手段等方面做了许多改革,使沿用多年的概预算定额从指令性转变成指导性,根据市场价格和科学合理的资源配置来预测工程造价,在工程建设实施阶段引入竞争和激励机制,以节约投资,降低造价。特别是1996年后,我国引入工程造价咨询中介服务,建立了造价工程师执业资格和工程造价咨询单位资质管理制度。1999年水利行业组织了全国统一的水利造价工程师资格考试,实现水利工程造价工程师资格注册管理。1999年,水利部颁发《水利工程造价管理暂行规定》,标志着我国水利工程造价管理步入规范化、法制化轨道。为了保证水利工程的安全运行,充分发挥水利工程的效益,促进水资源的可持续利用,保证经济社会的可持续发展,2002年9月3日,国务院体改办出台了水利工程管理体制改革实施意见,提出水利工程管理改革的目标、原则和主要内容。

三、研究展望

在经济全球化和我国加入WTO的今天,我国水利工程造价管理体制改革将根据WTO的基本原则及国际社会工程造价管理的惯例,建立新的水利工程造价管理体系,实现在政府的宏观指导下,通过市场竞争形成工程造价,以期达到与国际接轨。但是,目前我国水利工程建设市场工程竞争的环境尚待进一步完善,还有许多深层次的问题有待解决。因此,从现在起,直到完全与国际接轨还需要一个较长的过渡时期。在这个过渡时期内,要实行“调放结合,循序渐进”的方针,采取多种措施加快与国际接轨的步伐,创造条件,加快新旧体制的转换,缩短过渡期,使水利工程造价管理的概念、方法和手段尽快融入世界经济。

论文关键词:水利工程;工程概算;工程造价;概预算制度

论文摘要:文章论述了水利工程造价的概念及其特点,阐明了水利工程概预算编制发展过程及回顾,并对今后我国水利工程概算的发展进行了展望,以期对我国当前的水利工程概算发展有一定的借鉴意义。

参考文献

[1]李俊锋.浅谈《水电建筑工程预算定额》2004版[J].水利水电工程造价,2006,(3).

水利工程论文范文篇4

1.1建设过程中的问题当前,在很多的小型农田水利工程建设过程中,承包单位没有完善的制度,规范的操作要求,没有安排专业的监督检测人员,透明度不高等问题在建设工程中存在着。招投标制度不能完全的贯彻,以及强有力的执行,部分进行小型农田水利工程建设的承包单位,没有资质证明,没有专业的技术人员,以及没有配套的建设设备,缺乏保障工程质量的意识,同时受到经济利益的诱惑,致使在小型农田水利工程施工时使用劣质材料,材料达不到国家要求标准,必然导致工程质量的下降。另外,在小型农田水利工程施工之前,都会制定建设周期,但执行力薄弱,不能依据标准规范施工,不注重管理,没有针对出现特殊情况时的预防措施,问题出现了才去处理,施工方法不规范,势必影响着工程质量。

1.2管理存在的问题小型农田水利工程管理方面存在的问题表现在,管理不到位效率低,运营方式单一不合理,管理体制不完善权责不明,农民参与程度低等。目前我国在小型农田水利工程建设中,几乎没有专业规范的管理机构对其实施管理,很少进行全方位的、深入细致的管理,工程的建设完全由承包商自主,自主性强,小型农田水利工程建设不按施工计划施工,不标准、不规范地进行,这种情况下不仅降低工程质量,还浪费工程建设成本。即使对小型农田水利工程开展了管理工作,也存在着权责不明的问题,责任没有落实到个人,职责划分不清,究其根本原因,我国并没有设立专职负责水利工程的监督检测、管理养护、运行安全的相关部门。

2小型农田水利工程建设与管理措施

2.1加大农田水利工程的资金投入小型农田水利设施是农业的基础设施,所以必须加强小型农田水利工程的建设,水利工程的建设则需要资金的支持,需要大量资金的投入。因此,政府应加强对农田水利工程建设的资金投入,通过各种渠道筹集资金,推动水利建设。近年来,我国已不同程度的加大了对水利工程建设资金的投入,但真正投入到水利工程建设的却寥寥无几,且资金利用率低。鉴于当前这种情况,应开设绿色通道,以便于水利工程资金的申请,涉及到水利工程建设的申请文件,有关部分应尽快审核批准,进一步落实运行,加大力度管理建设资金,杜绝资金缺乏的现象发生,做好资金使用过程的监督管理,充分利用资金创造价值。另外,政府要做好四个方面的工作,即指引、扶持、监管和服务,以谁投资、谁所有、谁受益、谁负担为原则,调动社会各界,开辟筹集渠道,吸纳社会资金,用于小型农田水利工程建设,推动水利工程建设的发展。

2.2完善农田水利工程的管理健全的管理体制和运行机制是建设工程的前提,是工程发挥效益的关键。小型农田水利工程建设的管理工作应做好以下几点:第一,保障小型农田水利工程建设的基础条件,需要制定健全的水利工程管理体制,结合以往管理经验,做好水利工程建设的管理改革,制定明确的工程所有权,权责落实到位,保障小型农田水利工程稳定、有序、科学合理地运行。工程所有权的明晰,对农民使用的小型工程,产权归个人,乡镇人民政府要予以产权证明;对人民大众受益的工程,组建用水合作组织管理,国家补助形成的资产划归用水合作组织;经营性工程,引进市场机制,筹集社会资本,建立法人实体,实施企业化运营,国家补助形成的资产由乡镇委托水管站等单位,持股运行,也可通过拍卖形式,拍卖给个人经营。以合同为依据,通过用水合作组织拍卖、租赁、承包、管理、股份合作等形式,将小型农田水利工程管理体制法制化。第二,真正的实施落实我国国务院办公厅颁布的《水利工程管理体制改革实施意见》制度,改革管理体制,提升管理水平,提高小型农田水利工程质量。

3结语:

水利工程论文范文篇5

论文摘要:县(区)以下水利主管部门组织建设的工程多以小型为主,工程质量管理常常不被重视,参与建设的各方资质较低或根本无资质。而全面质量管理包括纵、横两个方面,"纵"即自始至终,"横"即全面覆盖,不能因小而不为。县(区)级水利部门因处特殊位置,兼有监督、设计、监理、施工等多种职能,需参照国家的有关规定,建立适合自身情况的质量保证体系。

1国家的有关规定

为了加强对工程建设的管理,控制工程质量、工期、造价,提高经济效益,国家自八十年代中期起,先后出台了一系列针对大中型水利工程质量管理的改革措施,已显示出较强的优越性和生命力,其核心内容可归纳为:

1.1工程建设质量分工负责

工程建设质量管理由项目法人(建设单位)负责、监理单位控制、施工单位保证和政府部门监督。项目法人对工程质量负全面责任,监理、设计、施工单位按照合同及有关规定对各自承担的工作负责,质量监督机构履行政府部门监督职能。

1.2注重科技进步和质量管理

有关工程建设的单位都要推行全面质量管理,采用先进的质量管理模式和管理手段,推广先进的科学技术和施工工艺,依靠科技进步和加强管理,努力创建优质工程。

1.3工程建设实行招投标制

大中型水利工程以及配套和附属工程,要按水利部“水利工程建设项目施工招标投标管理规定”进行公开招投标;地方小型工程,由省水行政主管部门制定具体管理办法。

2基层水利常见的问题

基层水利部门是实施小型水利工程的主体,肩负的任务既虚又实,常见存在的问题有:

2.1技术力量单薄业务水平偏低

设计或监理工作多由县(区)级以上相应单位负责,基层水利人员从思想上有了靠山并产生了惰性,致使整体技术水平徘徊不前,有的还出现下降趋势。

另一方面,基层水利技术人员从事上传下达等事物性工作较多,没有或很少有时间进行深造,技术水平提高的速度慢,更缺乏深层次的实践经验,难于承担有一定深度的工作。

2.2技术资质不具备多种职能融一身

设计单位按其资质等级及业务范围承担勘测设计任务,监理单位依照核定的业务范围承担相应的监理任务。

基层水利部门管理范围窄、级别低、直接面向农村,其职能不单纯是行政管理,技术服务也是一项很重要的内容,兼有设计、监理、施工、政府监督等多种职能,但一般不具备相应资质。

2.3设计施工不规范因陋就简意识浓

小型水利工程立项很少组织可行性论证,工程建设常常不合理或不规范。国家或水利部已经出台了一系列法律法规、技术标准和规范,但很多水利基层单位和个人并没有掌握并付诸实施。小型水利工程多以民办公助为主,建设资金较为紧张,存在能省则省、因陋就简的意识。

基层水利技术人员由于缺乏足够的建筑学知识和艺术训练,往往只注重功能的需求而甚少涉及艺术和美观的需要,使得大部分水利建筑给人们的印象是粗老本重。

2.4监控措施不完善检测手段太落后

多数基层水利部门没有建立起完善的质量保证体系,也没有行之有效的质量监控措施,有的甚至从思想意识上就根本没有这根弦,出现工程质量问题也就在所难免了。

对小型工程施工质量的监控多停留在目测上,凭直观印象下结论,很少有先进的监测设备、仪器,更缺乏监测人才,在实施质量监控活动时没有强有力的说服力。

3.几点建议

鉴于基层水利部门的现状,短期内在县(区)内成立具有法人资格的水利设计、水利监理单位也有难度,但实行全面质量管理是大势所趋,不能含糊,小型水利工程也要参照国家有关规定做好全程质量监控工作。

3.1开发人力资源培养行家里手

高度重视基层水利行业整体人力资源的开发。要有计划、按步骤地选拔人才去深造,以适应岗位需要和市场需求;鼓励职工在职学习,不断提高整体素质,使基层水利人力资源切实得到保值和增值。

对县(区)现有水利技术人员进行适当分工,明确每个人的业务主攻方向,尽早造就农田水利、水土保持、水资源管理、地质及地下水、水行政执法、财务管理等方面的行家里手,并能统揽全局,承担起相应的工作。同时,加强对乡镇水利技术人员的培训,并向其做好技术交底工作,使他们也能独当一面。

3.2加强质量教育建立保证体系

“百年大计,质量第一”。要加强对全体水利职工质量意识和质量管理知识的培训,建立和完善质量管理的激励机制,积极开展群众性质量管理和合理化建议活动。国家兴建大中型水利工程前要组织专家审查论证,我们在小型工程立项时也应组织专家进行技术方案讨论,及时弥补设计中的不足,将隐患消灭在萌芽之中。

俗话说“麻雀虽小,五脏俱全”,质量管理决不能因小而不为。如果因陋就简,虽然一次投入较少,但将来的运行费用高,使用寿命短,结果并不节省投资,反而有可能劳民伤财。县(区)级水利部门需要综合监督、设计、监理、施工等多种职能,参照国家的有关规定,建立自己的质量保证体系。工程设计要符合国家及水利行业有关工程建设法规、工程勘测设计规程、技术标准的要求,加强设计过程质量控制,健全设计文件的审核、会签、批准制度。在工程施工时,做好“三控制”、“两管理”、“一协调”工作,用经济手段制约建设各方,确保工程质量达到优质的目的。

3.3改进监控方法提高检测水平

为了提高质量检测水平,需购置必要的检验、测试仪器和设备,对工程所用材料和施工质量进行全面检查或抽样检查。通过实测、实量、实敲、实弹等手段,获得准确、客观、公正的监控数据。该好就好,该孬就孬,增加质量监控的说服力和威慑力,减少或避免工程质量评价中的错误、纠纷和矛盾,减少“人情工程”、“关系工程”的弊端。

首先,严把材料、设备的进货关。批量购置的材料、设备等,要根据国家、部颁技术标准先检测后使用,不合格的不使用。

其次,加强施工质量监测。对重点工序和部位,设置质量监控重点;对关键工序实施旁站监理,严格监控施工质量;技术人员在施工现场要做到“腿勤、手勤、眼勤、嘴勤”。

3.4注重美学研究营造景观工程

水利工程与其它建筑工程一样,要注重美学研究与景观设计,这将会取得良好的社会效益和环境效益。人类已经从原始水利阶段、工程经济水利阶段进入生态经济水利阶段,水工建筑物的建设必须与维护生态和保护环境相协调。

在物质文明和精神文明飞速发展的现代社会中,各种建筑越来越多地开始注意视角效果,水利建筑也不应该例外,其外表形态应成为人类美学的载体。

3.5进行科学管理确保永续利用

要把小型水利工程管理作为一门科学来对待,注重向管理要效益,扭转重建轻管的局面。建后形成的小型水利资产要及时移交给有关单位和个人,向他们颁发产权或使用权证书,采取专业管护、拍卖经营、个人承包等形式,以便形成切实有效、适合当地社会情况和不同工程类型的运行管护模式,使新老水利工程都进入良性运行轨道。

4结语

水利工程质量包括“安全、适用、经济、美观”四个方面,只有四者全优,才是真正的优质工程,小型水利工程也必须遵照执行。

上级对水利工程质量管理的要求越来越细、越来越严,而基层水利技术现状远远不适应形势的变化。

实行全面质量管理包括“纵向”和“横向”两个方面,“纵向”即自始至终(全过程),“横向”即全面覆盖(大、中、小型),小型水利也不例外。

水利工程论文范文篇6

工程管理是整个管理工作的基础,也是一项技术性较强的管理工作,水利工程管理的内容一般包括工程的合理应用、工程的养护维修、工程的观测、工程的防汛抢险等。

1.1合理运用

水利工程与河川径流有着密切的关系,同河川径流一样其变化是随机的,具有多变性和复杂性,但径流在一定范围内有一定的变化规律。要根据其变化规律,对工程进行合理运用,以确保工程的安全和发挥最大效益。工程的合理运用主要是制定合理的工程防汛调度计划和工程管理运行方案等。

1.2养护和维修

由于各种主观原因和客观条件的限制,水工建筑物在规划、设计和施工过程中,难免会存在有薄弱环节,使其在运用过程中,出现这样或那样的缺陷和问题。特别是水利工程长期处在水下工作,自然条件的变化和管理运用不当,将会使工程发生意外的变化。所以,要对工程进行长期的监护,发现问题及时维修,消除隐患,保持工程的完好状态和安全运行,以发挥其应有的作用。

1.3检查和观测

水工建筑物的检查和观测工作,是工程管理工作中的耳目,也是一项极为重要的基本工作。建筑物在运用过程中,其状态和工作情况随时都在发生变化,有的是正常变化,对建筑物安全影响不大;但是,也有的属于异常现象,一旦处理不及时或不当会引起失事。为了及时掌握水工建筑物的变化状况、性质及其规律,应对建筑物进行经常的、系统的、全面的检查和观测,并及时分析处理,改善和提高工程运用条件,验证设计情况,从而不断提高科学技术管理水平。

1.4防汛抢险

防汛抢险工作是全社会的公益事业。《中华人民共和国水法》第三十八条规定:“各级人民政府应当加强领导,采取措施,做好防汛抗洪工作。任何单位和个人,都有参加防汛抗洪的义务”。《中华人民共和国防洪法》中也规定:“各级人民政府应当组织有关部门、单位,动员社会力量,做好防汛抗洪和洪涝灾害后的恢复与救济工作”,“任何单位和个人都有保护防洪工程设施和依法防汛抗洪的义务”。

在水利工程管理中,对于存在隐患的建筑物,应及时作好防汛的准备工作,特别是大中型病险工程,更应注意日常的管理。因为水利工程一旦失事,将引起毁灭性的灾难,给国民经济和人民生命财产带来难以估量的损失。防汛抢险工作中,应立足于大洪水,做好防汛抢险的各项准备,防患于未然,确保工程的安全运用。

1.5扩建和改建

对于原有水工建筑物不能满足新技术、新设备、新的管理水平的要求时,在运用过程中发现建筑物有重大缺陷需要消除时,应对原有建筑物进行改建和扩建,从而提高工程的基础能力,满足工程的运行管理的发展和要求。

2用水管理

用水管理是整个管理工作的一个中心环节,用水管理工作的好坏,将直接影响到工程效益和工农业的发展。一般情况下,用水管理的内容主要包括计划用水、量水管理、水量调度等内容。

2.1计划用水

计划用水主要是有计划地进行蓄、引、提、调和分配水量。实行计划用水,必须在用水之前,根据水源情况、工程条件、工农业生产安排等方面编制用水计划。实际上,用水计划就是合理地安排引水、输水、配水和用水等工作的计划。编制的用水计划需要结合当地的实际情况,制定的工作方案、计划表、工作图等,应当通俗易懂,便于工作人员实际应用。

2.2渠系测水

渠系测水是灌区管理工作中实行计划用水、准确地掌握引水、输水、配水等情况的重要手段,也是节水、节能和提高水利用率的一项必要措施。通过测水工作,可以为保证正确执行用水计划和编制用水计划提供可靠的资料;可以按照用水计划的规定和水量调配组织的指导,调节、控制水量,准确地从水源引水、输水和按定额向用水单位供水;可以检查水质和水的利用率,并指导和改进用水工作;可以为设计和科研工作提供资料。

2.3减少水量损失

对灌区灌溉而言,自水源引水到田间,其中一部分水灌到田间用于作物生长所需,而一部分水量则在各级渠道中损失掉了。因此,减少渠道水量损失提高灌溉水的利用率是一项极为重要的工作。其主要措施包括轮灌、改善灌水技术、严格控制水量、增设渠道防渗措施等内容。2.4用水试验

为了正确地拟定和执行计划用水,为水利工程规划、设计、管理运用提供科学依据,应根据灌区的特点进行灌、排和盐碱地改良等试验研究工作。通过试验探索水分与土壤、作物、气候及农业技术措施等因素之间的关系,找出合理的灌排方法和制度,以达到科学用水,实现农业增产的目的。一般灌区灌排试验主要内容包括作物需水量试验、田间排水标准、田间排水效果和用水管理试验等。

3组织管理

为了正确处理用水单位之间在用水利益上的关系,合理使用水利设施,水利工程管理组织一般实行“统一管理,分级负责”的原则,采取专业管理机构和群众性管理组织相结合的办法进行管理。国有管理的灌区,属哪一级行政单位领导,即由哪一级人民政府负责建立专管机构,根据灌区规模,分别设管理局、处或所。集体管理的灌区,由乡、镇设专管机构或专人管理。

工程专管机构的主要任务是贯彻执行有关方针、政策,上级有关部门的指示;建立健全灌区群众性民主管理组织;进行工程设施的维修养护,确保工程安全和正常运行;实行计划用水,开展有关试验工作;组织水费计收,健全财务制度;开展多种经营,加强经营管理等各项工作。

建立健全管理机构是落实管理工作的组织保证。机构建立后,还必须配备一支有技术、懂业务的管理队伍,这是搞好管理工作的重要力量和决定因素。

组织管理是做好工程管理、用水管理、经营管理等各项管理工作的关键,是贯彻各项方针政策和具体执行各种管理制度、措施的组织保证。因此,应该注重运用组织管理手段,做好水利工程管理中的工作。

4经营管理

经营管理是在保证工程安全,充分发挥工程效益的前提下,结合工程管理、用水管理开展的综合利用、多种经营以及水费征收等工作。它是充分利用水土资源和水利工程设施以创造财富、增加收入,从而促进工程管理、用水管理的必要环节。

在以上四方面管理中,工程管理是基础,用水管理是中心,组织管理是开展这些工作的组织保证,经营管理则是促进、巩固与发展以上三方面管理的重要手段,也是采用经济手段发挥工程最大效益的关键。根据新形势下的经济社会发展要求,加强水利工程管理,把水利工作的重点转移到管理工作上来,确保工程的安全运行和提高发挥工程的综合效益,是水利管理工作永恒的主题。

论文关键词水利工程;管理;探讨

水利工程论文范文篇7

论文摘要:水利工程造价控制,是一项系统工程,它贯穿于投资决策阶段、设计阶段、招投标阶段、施工阶段以及竣工阶段等各个环节,作为投资方要加强管理,以保证项目投资控制目标的实现,从而取得较好的投资效益和社会效益。

一、项目决策阶段

水利工程投资决策阶段是工程投资控制的重要阶段,造价工程师应对拟建项目的各建设方案从技术和经济两方面进行综合评价,并在优化方案的基础上,确定高质量的投资估算,它是工程建设中在各阶段预控制项目总投资的依据。在投资决策阶段,合理选择建设地点,科学确定建设标准水平,以及选择适当的工艺设备,必须做好投资估算的审查工作,对其完整性、准确性、进行公正的评价。

二、设计阶段

(一)采用设计标准和标准设计

大量成熟的、行之有效的实践经验和科技成果纳入标准规范和标准设计加以实施,是科学技术转化为生产力的一条重要途径。另一方面,工程建设标准规范又是衡量工程建设质量的尺度,符合标准规范的建设项目质量有保证,不符合标准规范的项目质量差。

(二)推行限额设计

限额设计是设计过程中行之有效的控制方法。在初步设计阶段,各专业设计人员应掌握设计任务书的设计原则、各项经济指标,方案的比选,把初步设计造价严格控制在限额内。施工图设计应按照批准的初步设计,其限额的重点应放在工程量的控制上,将上阶段设计审定的投资额和工程量分解到各个专业,然后再分解到各个单位工程和分部工程上。设计人员必须加强经济观念,在整个设计过程中,经常检查本专业的工程费用,切实做好控制造价工作。

(三)实行工程设计招投标

鼓励竞争、促使设计单位改进管理,采用先进技术,降低工程造价,缩短工期,提高投资效益。有利于设计多方案的选择和竞争,从而择优确定最佳设计方案,达到优化设计方案的目的;有利于控制建设工程造价,中标项目一般作出的投资估算能接近招标文件所确定的投资范围;有利于加快设计进度、提高设计质量、降低设计费用。

(四)审查设计概算

看它是否在批准的投资估算内,如发现超估算,应找出原因,修改设计,调整概算,力争科学经济合理。推行设计收费与工程设计成本节约相结合办法,制定设计奖惩制度,对节约成本设计者给予一定比例分成,从而鼓励设计者寻求最佳设计方案,防止不顾成本,随意加大安全系数现象。

三、招、投标阶段对工程造价的控制和管理

水利工程招标投标定价程序是我国用法律方式规定的一种定价方式,是由招标人编制招标文件,投标人进行报价竞争,中标人中标后与招标人通过谈判签订合同,以合同价格为建设工程价格的定价方式,这种定价方式属于市场调节价,也是企业自主定价。因此,严格衡量和审定投标人的投标报价,是水利工程招标工作能否达到预期目标的关键,也是对工程造价进行有效控制的关键。在本阶段建设方必须做到:(1)严格审查施工单位资质,必要时进行实地考察,了解和熟悉投标人工程投标报价的形成和计算方法,防止施工质量差、财务状况差、信誉差的施工单位参加投标;(2)建设方对项目的合理低价应做到心中有数,避免投标单位以低于成本价恶意竞标;(3)签订合同时,合同条款格式要规范、文字要严谨,避免留下日后扯皮、索赔的伏笔,以利于工程建设的投资控制工作。

四、施工阶段对工程造价的控制和管理

在工程施工阶段影响工程造价的可能性只有5%-10%,节约投资的可能性已经很小,但是工程投资却主要发生在这一阶段,浪费投资的可能性很大。因此,建设方在施工阶段对工程造价的管理除了加强合同管理、工程结算管理外,重点应加强施工现场管理,以杜绝投资浪费。

(一)全面预算管理

实行全面预算管理已经成为产权制度变革的必然趋势,改善网络信息质量的重要措施,科学管理的有效工具,预算管理是信息社会对时空管理控制的客观要求。

全面预算管理模式是一套由预算的编制、执行、内审、评估与激励为组成的可运行、可操作的管理控制系统。外部环境:当今水电建设企业大多采取短、平、快的发展模式,单纯讲究建设速度、低投入、早产出,货币紧缩,导致施工企业相应投入大,造成资金短缺,利润低,导致运转困难。内部环境:各种机械费用增加、原材料费用上涨、人员工资费用增加。同时由于管理人员自身管理控制意识淡薄,导致精神成本指标上升等。全面预算管理的实施要点:建立全面预算管理体系,规范企业治理机构;战略细化,指标分解;同步控制,管理纠偏;绩效考核,奖惩兑现。

(二)工程变更价款的控制与管理

在工程项目实施过程中,引起设计变更的原因,一方面是由于勘察设计工作不细,以致在施工过程中发现招标文件中没有考虑或估算不准确的工程量,因而不得不改变施工项目或增减工程量;另一方面是由于发生不可预见的事件,如自然或社会原因引起的停工或工期拖延等等。工程量变更有可能会使项目投资超出原来的预算投资,所以必须严格予以控制。

(三)索赔的控制与管理

索赔是工程承包中经常发生并随处可见的正常现象。由于施工现场条件、气候条件的变化、施工进度的变化及合同条款、规范、标准文件和施工图纸的变更、差异、延误等因素的影响,使工程承包中不可避免地出现索赔,进而导致工程的投资发生变化。

(四)工程结算的控制与管理

首先,应核对工程内容是否符合合同条款要求,工程是否经验收合格,只有按合同要求完成工程并验收合格才能进行工程结算;其次,应按规定的结算方法、计价定额、取费标准、主材价格和优惠条款等,对工程结算进行审核;三是检查隐蔽工程验收记录,所有隐蔽工程均需进行验收、签证;四是按图核实工程数量,并按国家统一规定的计算规则计算工程量;五是落实设计变更签证,设计变更应由原设计单位出具设计变更通知单和修改的设计图纸、校审人员签字并加盖公章,经建设单位和监理工程师审查同意、签证;重大设计变更应经原审批部门审批,否则不应列入结算;六是结算单价应按合同约定或招标规定的计价原则执行。

五、竣工阶段对工程造价的控制和管理

竣工决算是水利工程经济效益的全面反映,是项目法人办理工程交付使用的依据。通过竣工决算,一方面能够正确反映建设工程的实际造价和投资结果;另一方面可以通过竣工决算与概算、预算的对比分析,考核投资控制的工作成效,总结经验教训,积累技术经济方面的基础资料,提高未来建设工程的投资效益。

综上所述,影响水利工程造价的原因很多,在工程建设的各个阶段,时时要有控制投资的经济头脑,充分利用和认真分析建设中的重要信息,减少或避免建设资金的流失,最大限度地提高建设资金的投资效益。

参考文献

[1]水电工程造价中国水利水电出版社

水利工程论文范文篇8

1.概述

我国地处世界上两个最大地震集中发生地带——环太平洋地震带与欧亚地震带之间,地震较多,大多是发生在大陆的浅源地震,震源深度在20km以内。位于青藏高原南缘的川滇地区,主要发育有北西向的鲜水河-安宁河-小江断裂、金沙江-红河断裂、怒江-澜沧江断裂和北东向的龙门山-锦屏山-玉龙雪山断裂等大型断裂带[1]。该区新构造活动剧烈,绝大多数属构造地震,地震活动频度高、强度大,是中国大陆最显著的强震活动区域[2]。

而西南地区蕴藏了我国68%的水力资源,水利工程较多,且主要集中在川滇地区。据

2005年数据,四川省有大中小型水库约6000余座[3]。2008年5月12日的四川省汶川大地震,初步统计,已导致803座水库出险,受损的大型水库有紫坪铺电站和鲁班水库,中型水

库36座,小一型水库154座,小二型水库611座[3]。此外,地震还致使湖北和重庆地区各

79座水库出现险情[4,5]。为保证水利工程的安全运行,地震之后及时对水利工程进行检测,并对受损工程进行监

测和修复是必要的。有关震灾受损水利工程修复方面的文献不多,散见于各种期刊或研究报告,为便于应用参考,本文搜集、筛选了一些震灾受损水利工程的案例,并对一些实用技术进行了介绍。

2.地震对水利工程的危害

由于地震烈度、地震形态以及水库本身工程质量的不同,地震对于水利工程的危害也有所区别。高建国[6]对我国因地震受损水利工程进行分类整理,认为水库坝体险情主要可分为

3级:1级,一般性破坏,不产生渗漏;2级,严重性破坏,坝体开裂渗漏;3级,垮坝(崩塌),水库水全部流走。

我国因地震引起的水库垮坝并不多见,总结国内外地震对水利工程的危害,主要有以下几种形式:

2.1坝体裂缝

地震作为外力荷载将会导致大坝尤其是土石坝整体性降低,防渗结构破坏,引起大量裂缝。地震会产生水平和垂直两个方向的运动,并使周期性荷载增大,坝体和坝基中可能会形成过高的孔隙水压力,从而导致抗剪强度与变形模量的降低,引起永久性(塑性)变形的累积,进而导致坝体沉降与坝顶裂开。

2003年10月甘肃民乐—山丹6.1级地震引起双树寺水库大坝、翟寨子水库大坝,坝顶

均出现一条纵向裂缝,长约401~560m,最大宽度2cm左右,并有多处不同长度断续裂缝,

防浪墙局部错动约0.5cm。大坝右侧出现山体滑坡,形成长条带及凹陷,滑坡长37m左右,凹陷坑深2.5~3m、宽7m左右,凹陷处上部山体有多条斜向裂缝,缝宽20cm左右。李桥水库坝顶有纵向裂缝,多处缝宽在2~5mm,其中一条长约100m左右,出现横向贯通裂缝,防浪墙出现多处竖向裂缝。这些裂缝在坝体漏水、自然降水和温度作用下,又将产生新的冻融、冻胀破坏,影响大坝的整体性和稳定[7]。

托洪台水库位于新疆布尔津县境内,1995年被列为险库,1996年新疆阿勒泰地震(6.1级),使拦水坝出现10处横向裂缝,3处纵向裂缝,最宽处达16cm,长17m,防浪墙垂直裂缝27处。经评估,水库震后只能在低水位运行,致使发电系统瘫痪,同时对于下游构成潜在威胁[6]。

岷江上的紫坪铺水利工程位于都江堰市与汶川县交界处,2006年投产,是中国实施西部大开发首批开工建设的十大标志性工程之一。2008年5月12日的汶川地震造成紫坪铺大坝面板发生裂缝,厂房等其他建筑物墙体发生垮塌,局部沉陷,整个电站机组全部停机。[3]。此外,地震对泄水输水建筑物也将造成巨大危害。2003年8月16日赤峰发生里氏5.9级地震,使沙那水库混凝土泄洪灌溉洞产生纵向裂缝,长15m,最大裂缝15mm;环向裂缝

22m,最大裂缝宽度1.8mm;洞出口消力池两侧边墙产生竖向裂缝,总长15m,最大裂缝宽

度25mm。大冷山水库溢洪道两侧导流墙产生裂缝,以纵向裂缝为主,最大缝宽12mm[8]。

2.2坝体失稳

地震可能引起坝基液化,从而导致大坝失稳。地震时,受到周期性或波动性荷载作用,土石坝内土体将产生递增的孔隙水压力和递增的变形。粘性土体构成的土石坝在地震中相对安全。但相对密度低于75%的粉砂土和砂土,在几个循环之后孔隙水压力就会显著上升,当达到危险应力水平时,土体在周期性荷载作用下显示出极大的变形位移,坝内土体就会呈现出液化的流态,导致坝体失稳[9]。

喀什一级大坝1982年施工时,其坝体及防渗墙都未进行碾压,致使密实度降低,1985

年地震时,由于液化和沉陷,导致该坝整体失稳破坏。

美国加州的Sheffield坝,1917年建成,坝高7.63m,坝顶宽6.1m,长219.6m,水库库

容17万m3。1925年6月距坝11.2km处发生里氏6.3级地震,长约128m的坝中段突然整体滑向下游。事后,经调查研究发现,坝体溃决的主要原因是地震使饱和土内的孔隙水压力增大,造成坝下部和坝基内的细颗料无凝聚性土发生液化。

地震还会造成土石坝体脱落或堆石体沉陷,从而引起坝体失稳。在库水位较高的情况下,堆石体沉陷会造成坝体受力不均,更严重的会引起库水漫顶,引发坝体垮塌。1961年4月

13日在距西克尔水库库区约30km处发生里氏6.5级地震,该水库位于VIII度区[10],坝体出现了严重的堆石体沉陷现象,一段220m长的坝体沉陷值达到2~2.5m,崩塌范围在从坝轴线上游3~10m到下游的35~50m[11]。

前面述及的沙那水库土坝和朝阳水库因地震致使土坝排水体砌石脱落,经抗震复核下游坝坡不稳定[8]。

2.3岸坡坍塌

若水库两岸有高边坡和危岩、松散的风化物质存在,地震发生后,造成的岩体松动,可诱发产生崩塌、滑坡和泥石流,甚至形成堰塞湖等现象。

乌江渡水库处于地震多发区,1982年6月地震中,化觉乡东部厚层灰岩和白云岩地层

中发生大面积崩塌。同年8月,化觉、柏坪一带又发生较大规模的地层滑动,影响面积约

18km2[12]。

5•12汶川大地震造成四川多处山体滑坡,堵塞河道,形成34处堰塞湖。其中唐家山堰塞湖蓄水过1亿m3,另外水量在300万m3以上的大型堰塞湖有8处[13],对下游地区造成严重威胁。

另外,地震还可能对水利工程一些其它部分造成损坏。如1995年1月日本阪神淡路7.2

级地震[14,15]中,使堤防基础液化发生侧向流动,造成堤防破坏以及护岸受损。我国历次地震中,出现较严重险情的多为土石坝,且多为年代较久远的土石坝,如果发

生强地震就更容易造成损坏[16]。

3.震灾受损水利工程的修复技术

地震后受损水利工程修复措施主要包括以下几个方面:

3.1坝体监测

地震后,对于受损水利工程,应及时降低水库运行水位,并进行充分的坝体探测。对土石坝,可开挖土坑检测,对混凝土坝,则可用无损探伤检测[17]。包括使用地震波法、地质雷达、水下声纳法检测侵蚀程度,必要时还需要采取槽探、钻孔、孔内地球物理方法进行检测。根据地震前后大坝监测结果的对比分析,判明是否存在普遍的结构损伤迹象。尤其需要加强对坝体变形和渗透的观测,防止裂缝前后贯通,内部发育,产生渗漏通道。同时,加强对输水洞漏水、溢洪道裂缝的监测,以防渗漏进一步扩大[18]。

震后坝体探测中,作为一种非破坏性的探测技术,地质雷达具有探测效率高、分辨率高、抗干扰能力强等特点,可以快捷、安全地运用于坝体现状检测和隐患探查[1

9]。

2003年甘肃山丹地震后,利用地质雷达对双树寺、瞿寨子、瓦房城等水库的震后坝体裂缝、坝基渗透、溢洪道、高边坡开裂和库岸道路滑坡等进行了探测[20],效果很好。

3.2裂缝修复

对于已经出现的裂缝,要对其分布、走向、长度和开度等进行定时观测和检测。在大坝主裂缝部位设置标志,缝口要覆盖塑料布,防止雨水流入加速其恶化。对受洪水威胁的建筑物,要采取临时措施(如围堰)进行保护。

裂缝的修补应从实际出发,在安全可靠的基础上,同时考虑技术和施工条件的可行性,力求施工及时、简单易行、经济合理。常用的有以下几种处理方法:

3.2.1表面处理法

表面处理法[21]主要适用于对结构承载能力没有影响或者影响很小的表面裂缝及深层裂缝,同时还可以处理大面积细裂缝的防渗防漏。常用的有表面涂抹水泥砂浆、表面涂抹环氧胶泥以及表面涂刷油漆、沥青等防腐材料等,从而达到封闭裂缝和防水的作用。在防护的同时应当采取在裂缝的表面粘贴玻璃纤维布等措施,这样可以防止混凝土在各种作用下继续开裂。

3.2.2灌浆法

灌浆法主要应用于对结构整体有影响或有防水防渗要求的混凝土裂缝的修补。经修补

后,能恢复结构的整体性和使用功能,提高结构的耐久性。

灌浆法[22]分水泥灌浆和化学灌浆。水泥灌浆适用于裂缝宽度达到1mm以上时的情况;裂缝较窄的情况下宜采用化学灌浆。此外,工程经验表明水泥浆适于稳定裂缝的灌浆处理,不适用于活缝或伸缩缝的处理。化学灌浆也存在类似问题,应用最广的环氧树脂浆固结体是脆性材料,因此对活缝应选用弹性材料。部分化学灌浆还有毒性,应加强施工人员的保护措

施。

大量实践证明,灌浆法是目前最有效的裂缝修补处理方法。

3.2.3结构加固法

危及结构安全的混凝土裂缝都需作结构补强。结构加固法适用于对整体性、承载能力有较大影响的较深裂缝及贯穿性裂缝的加固处理。混凝土结构的加固,应在结构评定的基础上进行,以达到结构强度加固、稳定性加固、刚度加固或抗裂性加固的目的。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。结构加固法还适用于处理对结构的承载能力、整体性、耐久性有较大影响的不均匀沉陷裂缝和较为严重的张拉裂缝

[23]。

3.3滑坡处理

土坝滑坡有剪切破坏、塑流破坏、液化破坏三种形式[24]。可采用“上部减载”与“下部压重”法来处理。“上部减载”就是在滑坡体上部的裂缝上侧削坡,以保持稳定;“下部压重”就是放缓下部坝坡,在滑坡体下部做压坡体等。当滑坡稳定后,应当及时进行滑坡处理[17]。主要处理方法介绍如下:

3.3.1放缓坝坡

若滑坡由于剪切破坏造成,则放缓坝坡为最好的处理方法。可填入土体将坝坡放缓,或是先削掉滑动面上坝顶的土体,使滑动面坝坡变缓,然后再加大未滑动面的断面[24]。

对存在失稳危险的土石坝也可采用水上抛石法放缓上游坝坡,施工方法简单,且不受季节和水位的变化。加固工程不破坏原坝体结构,减去拆除原有的坝体护坡石和反滤料工序,对保护原坝体非常有利。石料渗透系数大,在库水位降落时,新筑部分的自由水面线,几乎与库水位重合,这样就造成新增断面和原有断面共同承担原有坝壳中库水位降落时产生的渗透水压力及地震产生的超隙孔压力,起到压重的作用,从而有利于大坝的稳定[25]。

3.3.2压重固脚

若滑坡体底部滑出坝趾以外,则需要在滑坡段下部采取压重固脚的措施,以增加抗滑力。压重固脚的材料最好用砂石料。在砂石料缺乏的地区,也可用土工织物,代替反滤,以达到排水的要求[17]。

通过在坝体上加压盖重,或对坝体培厚加固处理,可以进一步提高防渗流土、坝体抗裂和抗渗性能,同时增加坝体稳定性。

实例:1999年山西大同堡村发生5.6级地震,对位于震中附近的册田水库造成VII度影响,坝体产生结构变形[26]。震后对主坝和北副坝下游坝坡采用石渣进行培厚加固处理。主坝所在956m高程以下石渣培厚体,坝坡分别为1:2.75,在956m高程设12m宽的平台,在

949m高程、940m高程设3.0m宽的马道,并在石渣体与原坝体设置反滤层。培厚坝体后,

即使再次遭遇地震,由于坝体在正常水位下(956m高程)宽度增加,也可避免大坝整体失

稳,从而保证大坝的安全[27]。

3.3.3库岸岩体加固

对于地震中松动的库岸岩体,应采取工程措施进行加固。地震后,首先需要对库岸岩石情况进行重新评估,选择加固方式。库岸加固通常采取锚固、支挡、排水相结合的方式。锚固措施是利用预应力锚索和锚杆固定不稳定岩层,适用于震后加固岩体滑坡和不稳定的局部岩体。通过一端与建筑物结构相连,一端打入岩体内部,在增强岩体抗拉强度的同时,

改善库岸岩体的完整性[28]。该方法在高切坡中被广泛应用。支挡方法是通过支挡体来平衡滑坡体的下滑力,确保滑坡体的稳定安全。支挡结构能有

效地改善滑坡体的力学平衡条件,阻止滑坡、泥石流等。常用的方法有重力式挡墙、拉钉挡墙、加筋土挡墙、抗滑桩等[29]。

此外,由于地震过后经常伴随暴雨,更易在松动岩石处产生滑坡、泥石流等灾害,因此需及时排水,包括地表水和地下水。可设置截水沟排除地表水;排除地下水可用廊道、竖井和水泵等。在美国、加拿大和日本等国家较多采用专用钻机打水平孔的办法排地下水[28]。

3.4渗漏修复

应根据具体情况降低库水位或放空水库,彻底修复防渗体,对由于浸润线过高而逸出坡面或者由于大面积散浸引起的滑坡,除结合下游导渗设施外,还应考虑加强防渗。

3.4.1劈裂灌浆

对于土石坝较严重的渗漏破坏,可以采取劈裂灌浆或加强防渗斜墙等方式解决。劈裂灌浆是指在垂直渗流的方向沿坝轴线劈开坝体,灌入稠泥或水泥砂浆,截断渗流通道,可以在短时间内坝体内的渗流,使大坝转危为安。

采用劈裂灌浆技术的岭澳水库具体做法如下:根据坝长选用适量的灌浆机,多台灌浆机同时开灌,为使浆液尽快硬化固结,所用浆料为掺入速凝剂的水泥加粘土。在灌浆工艺上,连续的多次复浆,使混凝土或泥浆墙尽快加厚,并使贯通的漏水通道通过灌浆压力和多次灌浆挤压膨胀与原坝土体紧密结合,最终形成垂直连续的防渗混凝土砂浆墙,防止再次出现漏水通道的可能[30]。

3.4.2开挖置换

置换技术是土石坝震后修复中的一种重要手段,尤其对于心墙开裂的土石坝具有重要意义。首先需要通过探测技术检测到侵蚀的区域,然后在心墙的下游侧补填塑性混凝土,并用颗粒反滤层加以支持。最后使用水泥膨润土混合物进行灌浆。置换技术可以有效阻止土石坝心墙的进一步破坏,达到防渗漏的目的[18]。

实例:新西兰的马拉希纳坝,在经历埃奇克姆地震后,初期表现稳定,在1987年12月后出现水位明显下降的现象。通过详细的监测发现,虽然大坝没有遭受严重的渗漏,但左坝肩心墙和下游副心墙出现明显的开裂和侵蚀,且侵蚀依然在继续发展。持续不断的侵蚀导致库水位不断下降,因而采取心墙置换的方式,即对左右岸坝肩进行开挖,喷上混凝土,置换开挖出来的材料。水库再次蓄水时没有出现新的事故[18]。

3.4.3排水设施

在阻止渗流发生的同时,需要做好排水工作,通过设置宽敞的排水带,使渗流能顺利排走,降低坝体内的浸润线,减小孔隙水压力。

4.典型水利工程抗震抢险及修复实例

4.1美国Hebgen坝

Hebgen土石坝[31]位于美国Montana州,1915年建成,1959年8月遭受里氏7.1级的强烈地震,坝和水库所在地变形并整体下沉约3.1m,右岸溢洪道严重损坏,坝体沉陷开裂,水库岸坡坍塌,库水震荡并漫溢坝坝。当时此坝并无抗震设计,承受地震对其的各种危害而未垮坝,其破坏模式和耐震经验极有借鉴意义。

当时业主Montana电力公

司采取的紧急抢救措施包括:

(1)立即将泄水底孔进水口原用迭梁封闭的二个孔口开启,以80m3/s的流量泄水降低库水位。

(2)对半角沉陷区和被流冲蚀的坝下游面填土修复。检查表明,心墙与溢洪道连接处的漏水并非通过心墙上的裂缝而是从破坏的溢洪道流出。

(3)在心墙的大裂缝处下游,打竖井检查和修补。同时对下游河岸坍方区进行了修整。此后于1960年4月开始对溢洪道、坝体心墙和上游面进行了全面的修复和加固工作。

至今运行完好。

4.2美国LowerSanFernando坝

LowerSanFernando坝[31]位于美国加州洛杉矶市北,1912年动工,最大坝高43.2m,坝顶宽6m,长634m。1971年2月在坝东北12.9km处发生里氏6.6级地震,致使主坝发生巨大滑坡,坝的上游部分带动坝上部9.2m高的坝体和坝顶一起坍落滑向水库20多米远。

事故发生后,救援人员立即采取了如下措施:一方面立即运来砂袋加固筑高坝的低陷部位;另一方面紧急撤离坝下游地区8万居民;此外,通过2条泄水道和3条引水管排放水库中的水。

经初步调查和后期进一步挖槽、钻孔取样研究得出,坝内有大范围土区在地震后液化,但液化区被强度较高的非液化土约束住,因而直到液化区内有足够扩张力,促使土向外和向下移动时,才出现大规模滑动。

4.3新疆西克尔水利工程

西克尔水库[10,11]位于新疆伽师县东北西克尔镇,1959年建成使用,为均质土坝,设计库容10053万m3,属大型拦河式平原水库。该工程自建成以来共经历了15次地震,其中较严重的有3次:1961年4月13日发生6.5级地震,震中距水库约30km,致使220m长的坝出现沉陷崩塌,余坝产生165条裂缝;1996年3月19日发生6.4级地震,坝段出现涌沙,裂缝,局部产生沉陷;2002年3月3日,阿富汗发生里氏7.1级地震,造成水库副坝段出现决口,并迅速扩大到50m左右,决口流量约120m3/s,损失惨重。

由于西克尔水库运行年限长,且早年建设时没有进行地质勘探,因此极易糟受地震破坏。多次地震后,主要采取的措施有:

(1)加高坝顶,坝后设置压重,并铺设无纺布反滤。

(2)大坝决口后,进行抢险封堵,修复缺口。

(3)按库区基本烈度八度进行设计校核,对西克尔水库主坝、副坝和其它建筑物进行加固修复。针对部分坝段坝基地震液化问题,主坝采用压盖重措施,以进一步提高防渗流土、坝体抗裂和抗渗性能。副坝部分改线,采用粘料含量高的土进行填筑,加固填筑总方量为

58.59万m3,其中粘土39.29万m3,占60%。

4.4北京密云水库

密云水库位于北京密云县城北13km处,库容43.8亿m3,是北京市民用、工业用水的主要来源。水库始建于1958年9月,分白河、潮河、内湖三个库区,主要建筑有白河主坝

(高66m,长1100m)、潮河主坝(高56m,长960m)和5道副坝等。

1976年7月28日,河北唐山发生里氏7.8级强烈地震,白河主坝发生强烈扭动,主坝水面以下6万m2的块石坡和砂砾保护层滑落,受损严重。地震后,采取的主要措施[6]有:

(1)及时探测大坝裂缝,并派潜水员进行水下探测。

(2)通过筑堰建闸,把密云水库分隔成两个库区,放空库水后,进行全面检查加固。清除白河主坝上的砂砾保护层,加厚铺盖粘土斜墙,改用碴石保护层,往水下填粘土及砂石

达20万m2。随后,打通白河廊道、削坡清基,进行坝体加固。

(3)加固了3座副坝,并增建了3条泄水隧洞、1座溢洪道等。

白河主坝加固工程于1977年11月21日完成,达到了国家一级工程标准,至今完好。

5.小结

地震后受损水利工程修复是项复杂的工作,要因地制宜尽快采取最合适的方法进行修复。几条主要结论如下:

(1)地震发生后,各级水行政主管部门应该对境内的水利工程,尤其是堤防、水库大坝、水闸等工程进行排查,及时掌握工程破坏的情况及其隐患,有针对性地制定抢修方案。对地位重要、关系重大、危险性高的受损水利工程,要抓紧修复,确保度汛安全。

(2)坝和地基土料的液化,是导致垮坝或严重破坏的主要原因,此外,较普遍的震害有滑坡、开裂、沉陷和位移。

(3)尽可能保证水坝顺利泄水,降低蓄水位,避免出现垮坝事故。

(4)目前对于水利工程一般都有相应的突发事故(如地震、洪水等)预警机制,但对于如何应对出现的险情,采取必要的工程措施,尚是一个薄弱环节,宜提高认识,加强要应的工作。

(5)对山区河流因沿岸崩山、泥石流等形成的堰塞湖,要当机力断主动尽早清除,以避免水位升高,堰塞湖溃决形成洪灾。

参考文献

[1]苏有锦,秦嘉政.川滇地区强地震活动与区域新构造运动的关系[J].中国地震,2001,17(1):24~34.

[2]龙小霞,延军平,孙虎,等.基于可公度方法的川滇地区地震趋势研究.灾害学,2006,21(3):81~84

[3]任波,徐凯.四川已发现803座水库受损[OL].[2008.5.14].

/20080514/61586.shtml

[4]孙又欣.汶川地震造成我省水利工程新隐患[OL].[2008.5.14].

/iNews/Index/Catalog1/8493.aspx

[5]中评社.汶川地震灾后余波!重庆79座水库出现险情[OL].[2008.5.17].

/doc/1006/4/7/9/100647908.html?coluid=45&kindid=0&docid=100647908&mdate

=0517123254

[6]高建国.中国因地震造成的水库险情及其防治对策[J].防灾减灾工程学报.2003,9:80~91

[7]王东明,丁世文,等.对甘肃民乐—山丹6.1级地震震害的几点认识[J].自然灾害学报,2004,13(3):

122~126

[8]王艳梅,李俊,等.赤峰市“8•16”地震对震区水利工程的危害及应急措施[J].内蒙古水利,2003,(4):

66~68

[9]K.维克塔乔姆,R.K.基特里亚.与土石坝有关的地震问题[J].水利水电快报,1999,11:5~7

[10]库尔班阿西木.地震对西克尔水库大坝工程的影响和抗震加固[J].大坝与安全,2006,6:64~68

[11]库尔班阿西木.地震对平原水库大坝的影响和抗震加固[J].地下水,2006,8:82~85

[12]覃子建.乌江渡电站水库地震灾害[J].地震学刊,1994,3:42~49

[13]吴胜芳.唐家山堰塞湖库容逼近1亿立方米,3万人转移.[OL].[2008.5.23].

[14]张敬楼.日本兵库地震及水利工程震害综述[J].水利水电科技发展,1995,10:17~19

[15]史鉴,汤宝澍;从日本阪神淡路大地震——谈我省水利工程抗震加固问题,陕西水利,1999,(Z1):

50~51

刘真道.浅谈灾后小型水库工程安危状况与对策[J].浙江水利科技,2001,(sup):118

水利部国际合作与科技司编.抗震救灾与灾后重建水利实用技术手册.2008.5.15

M.D.吉隆,C.J.牛顿.地震对新西兰马塔希纳坝的影响[J].水利水电快报,1995,4:1~8

杨金山,卢建旗.地质雷达技术在水利工程中的应用[J].地质装备,2001,12:7~9

马国印.地质雷达在水库震后病害检测中的应用[J].甘肃水利水电技术,2007,3:47~48

喻文莉.浅议混凝土裂缝的预防与处理措施[J].重庆建筑,2007,(4):36~38

鞠丽艳.混凝土裂缝抑制措施的研究进展[J].混凝土,2002,(5):11~14

陈璐,李风云.混凝土裂缝的预防与处理[J].中国水利,2003,(7):53~54

肖振荣.水利水电工程事故处理及问题研究[M].北京:中国水利水电出版社:2004

杜智勇,李贵智,等.柴河水库除险加固综述[A].全国病险水库与水闸除险加固专业技术论文集[C].

北京:中国水利水电出版社,2001.212

[26]贾文.册田水库大坝工程场地地震地质灾害评价[J].山西水力,2004,6:67~68

[27]朱宏官,陈连瑜.中强地震对册田水库大坝造成的危害及安全预防处理[J].山西水利科技,2001,(1):

71~73

[28]吴凤英.浅谈水库库岸滑坡[J].广州水利水电,2007,4:17~18

[29]王连新.水库滑坡治理[N].长江咨询周刊,2007,6:B01

[30]白永年.劈裂灌浆技术在岭澳水库大坝防渗加固中的应用[A].全国病险水库与水闸除险加

固专业技术论文集[C].北京:中国水利水电出版社.2001

[31]中国水力发电工程学会史料信息组,上海大科科技咨询有限公司.国外土石坝地震震害实例和统计[R].

2001.2

Casestudiesandrepairingtechniquesrelatedtohydraulic

engineeringprojectsdamagedbyearthquakes

MaJiming,ZhengShuangling

DepartmentofHydraulicEngineering,TsinghuaUniversity,Beijing(100084)

Abstract

EarthquakesfrequentlyoccurinChina,especiallyintheSichuan-Yunnanregionwheredensehydro

projectsareconstructed.Actingasexternalforces,earthquakescandecreasetheintegrityofthedams,causedamcracks,landslide,settlementanddisplacement,foundationliquefaction,resultingindaminstabilityorevendamfailure,aswellasthedamageofoutletstructures.Besidesthedamageofhydroprojects,seismicactivitiesalsothreatenthedownstreamarea.Basedontheexistingliteraturedataindomesticandabroad,thispaperintroducestheseismicdisastersregardinghydroprojects,especiallythesoilandrockfilldams.Somepracticalremedialmeasuresandrepairingtechniquesaresummarized

水利工程论文范文篇9

防渗墙一般要求墙体厚度小、渗透系数低、柔性强、耐久性好及单位面积造价低。防渗墙施工有多头深层搅拌水泥土、锯槽法、链斗法、薄型抓斗、射水法和倒挂井法等成墙工艺。

(一)多头深层搅拌水泥土成墙工艺

多头深层搅拌桩机一次多头钻进,把水泥浆喷入土体并搅拌,使土体与水泥浆液混合固结成一组水泥土桩,桩与桩搭接形成水泥土防渗墙,目前最大成墙深度为22m,水泥土渗透系数<10cm/s,抗压强度>0.3MPa。其优点是施工简便、无泥浆污染、造价较低,适用于粘土、砂土、淤泥和砂砾层(砂砾直径小于5cm)。实践证明,多头深层搅拌水泥土防渗墙防渗效果明显,在地下防渗工程中质量可靠,投资最经济、最有效,具有一定发展前景。

(二)锯槽法成墙工艺

在先导孔中,锯槽机的刀杆以一定的倾角一边作上下往复切割运动,一边以0.8-1.5m/h的速度(根据地层状况)向前移动开槽;被锯切割下来的土体可由反循环或正循环方式的排渣系统排出槽外,并采用泥浆护壁。浇筑塑性混凝土,形成宽度为0.2-0.3m的防渗墙体。锯槽机由行走底盘、动力及传动系统、刀杆及支架加压系统、排渣系统、起重设施及电气控制系统组成;传动方式有机械式与液压式2种。以不同规格的刀杆进行组合,开槽宽度可达0.2-0.5m、深度达到40m。锯槽法的优点是连续成槽、工效高、墙体连续、质量好,并且成墙深,适应于粘土、砂土和卵石粒径小于100mm的砂砾石地层;还可以采用自凝灰浆、固化灰浆形成不同强度和抗渗指标的防渗墙。

(三)链斗法成墙工艺

由链斗式开槽机排桩上的旋转链斗取土,同时将斜放的排桩下放到成墙深度,开槽机前进开挖沟槽,并采用泥浆护壁,其浇筑混凝土方法类似锯槽法。链斗式开槽机的开槽宽度为16-50cm,深度可达10-15m。适应于粘土、砂土和粒径小于槽厚的、含量小于30%的砂砾石地层。

(四)薄型抓斗成墙工艺

采用斗宽为0.3m的薄型抓斗挖土开槽,泥浆护壁,浇筑塑性混凝土或用自凝灰浆形成薄壁防渗墙,最大成墙深度可达40m。适用于粘土、砂土及卵石和砂砾的含量与粒径在一定范围内的土层。

(五)射水法成墙工艺

射水法成墙设备主要由造孔机、混凝土搅拌机和浇筑机组成。利用造孔机成型器内的喷嘴,射出高速水流来切割土层,成型器上下运动切割修整孔壁,采用泥浆护壁,正循环或反循环出渣。槽孔形成后,浇筑水下混凝土或塑性混凝土,形成薄壁防渗墙。成墙厚度为0.22-0.45m,深度可达30m.成墙垂直精度可达1/300,适应于粘土、砂土和粒径小于100mm的砂砾石地层。在1998年历史罕见的特大洪水过后,在长江、赣江、鄱阳湖等国内重要堤防加固工程中,射水法得到广泛采用,取得了较好的社会经济效益。二、灌浆类型及其特点

土石坝坝体、坝基防渗处理中灌浆方法主要有均质土坝及宽心墙坝的坝体劈裂灌浆、高压喷射灌浆、坝基卵砾石层防渗帷幕灌浆等。

(一)土坝坝体劈裂灌浆

土坝坝体劈裂式灌浆是运用坝体应力分布规律,用一定的灌浆压力,将坝体沿坝轴线方向劈裂,同时灌注合适的泥浆,形成铅直连续的防渗泥墙,从而堵塞漏洞、裂缝或切断软弱层,提高坝体的防渗能力,并通过浆、坝互压和湿陷,使坝体内部应力重分布,提高坝体变形稳定性。针对裂缝的局部灌浆,在可能有裂缝的区域,均匀布置类似固结灌浆的灌浆孔群;对坝体施工质量差,甚至出现上下游贯通的横缝,一般应做全线的劈裂灌浆。我国广东省宝树水库用土坝坝体劈裂灌浆技术来解决土坝坝体的渗漏问题,结果表明灌浆后坝体密实度得到提高,渗透系数降低,背水坡湿润渗水现象消失,坝体渗流量减少70%以上。

(二)高压喷射灌浆

高压喷射灌浆防渗是借助于高压水泥浆液射流冲击破坏被灌地层结构,使水泥浆液与被灌地层土颗粒掺混,形成壁状固结体而起防渗作用。根据被灌地层结构和防渗要求不同,又分为定喷、摆喷和旋喷。高压喷射灌浆防渗处理的优点是:设备简单、工效高、料源广、造价低,搭接防渗的效果好。缺点是:机具较多、对地质条件的要求较高,控制不好易在较大(>200mm)颗粒背后形成漏喷现象。

(三)卵砾石层防渗帷幕灌浆

卵砾石层的防渗帷幕灌浆大都采用粘土为主加少量水泥的混合浆液进行灌注,不同于在岩石中灌浆。卵砾石层灌浆难以形成自立的钻孔,故常采用套阀式灌浆、循环钻灌阀跟管灌浆、打管灌浆的方法。因受地质条件的限制,不能有效控制浆液的填充范围,为达到相对较高的防渗标准,常需采用3排以上的灌浆孔。随着防渗墙技术的日益成熟,目前较少采用该方法,仅用于当灌浆作为补充勘探的手段,同时兼顾防渗处理,可以更加准确地针对发生集中渗漏的地点,通过少量的灌浆使问题得到解决的情况下。

(四)控制性灌浆

控制性灌浆是近年来提出的一种改进型灌浆工艺,是对传统灌浆工艺的一种调整,通过控制浆液压力和流量,在保证质量和效果的前提下,有效控制灌浆范围,节约时间和投资。

三、结论

综上所述,小型水利水电枢纽工程除险加固,多可以采用防渗、灌浆的方法得到有效处理。针对小型水利水电枢纽工程的不同特点,采取不同的方法。高压喷射灌浆技术具有开挖量小、占地少、设备简单、灌浆工效高、造价低、对临近建筑物影响小的特点,应用较广。

水利工程论文范文篇10

[论文摘要]渠道是常见的水利工程,它包括一系列配套建筑物。渠道测量要把这些建筑物的中心线位置和特征高程按一定的标准实测出来,为渠道设计提供充分的测量资料。

渠道测量的目的,是在地面上沿选定中心线及其两侧测出纵、横断面,并绘制成图,以便在图上绘出设计线;然后,计算工程量,编制概算或预算,作为方案比较或施工的依据。渠道工程的勘察放线,是与工程设计密切相关的。只有在现场放线位置合适、测量数据准确的基础上才能因地制宜的做出经济合理的工程设计来。

一、渠道现状(树形)导线图的绘制

首先考虑由建设单位代表提供精确的可满足测量要求的渠道现状(树形)导线图;若设有,再考虑由建设单位代表提供渠道导线图的草图,根据草图出本次测量人员会同三方(建设单位、测量、设计)一起完善渠道现状导线图;如若连草图都设有,则由本次测量人员会同三方一起用手持GPS测定渠道现状导线图。渠道现状导线图应明确标出渠道各个拐角、拐点及起点、终点的位置,分水闸、节制闸、桥涵等渠道配套建筑物的位置,上下级渠道和各个建筑物的名称。各个建筑物的使用要求也要标明,如不同渠段的设计流量(加大流量),节制闸、分水闸的流量,交通桥的过荷要求等。渠道现状导线图的绘制目的是便于这次渠道测量和绘制渠道设计导线图。使用渠道现状导线图可以使渠道测量工作真正做到有的放矢,因地制宜,从而从根本上保证渠道测量的准确性。

渠道上的闸、桥、涵等交叉建筑物称为其配套建筑物。渠道测量的技术要求应按《水利水电工程测量规范(规划设计阶段)(SLJ3-81DLJ201-81CH2-601-81)》执行。渠道测量的内容主要包括:渠道及配套建筑物平面位置的测定、渠道纵断面高程测量、渠道横断面测量等三部分。

二、渠道纵断面高程测量

为了绘制渠道设计导线图,应当精确的把其位置都在渠道设计导线图中标出来。这项工作主要是使用GPS来完成的,主要测出渠道拐角和渠道始点、终点及其配套建筑物中心位置点的坐标,并在图纸上用适当的比例和图例明确表示出来。渠道纵断面高程测量是利用间视法测量路线中心线上里程桩和曲线控制桩的地面高程,以便进行渠道纵向坡度、闸、桥、涵等的纵向位置的设计。为便于计算渠道长度、绘制纵断面图,沿渠道中心线从渠首或分水建筑物的中心,或筑堤的起点,不论直线或曲线,均应用小木桩标定里程,这些木桩称为里程桩。木桩的间距一股为100m或50m,自上游向下游累积编号。这种按相等间隔设置的木桩称为整桩。在实际工作,遇到特殊情况应设加桩。整桩和加桩均属于里程桩。

1.下列情况应设置加桩:中心线上地形有显著起伏的地点;转弯圆曲线的起点、终点和必要的曲线桩;拟建或已建建筑物的位置;与其它河道、沟渠、闸、坝、桥、涵的交点;穿过铁路、公路、和乡村干道的交点;中心线上及其两侧的居民地、工矿企业建筑物处;由平地进入山地或峡谷处;设计断面变化的过渡段两端。为了注记地表性质和中心线经过的主要建筑物,必要时要绘制路线草图。

2.纵断面测量时需要连带测定的数据和注意事项

(1)渠首交上级渠道的桩号,及交点处的坐标和渠底高程、水位高程;(2)已建节制闸、分水闸应测出闸底、闸顶、闸前闸后水位高程,闸孔宽度和孔数;(3)已建桥(或渡槽)应测出桥顶、桥底高程;桥面(路面)宽度和其跨度;(4)已建涵洞或倒虹吸应测出其跨度和顶部高程;(5)已建跌水或陡坡应测出其宽度、长度、落差和级数:(6)渠道拐角、拐点及翼再睽邕施物的中点坐标;(7)与河沟、排渠、道路和匕下级苴的交角;(8)渠道穿过铁路时应测出轨面高程;穿过公路时应测出路面高程;同时应测出道路宽度;(9)渠道沿线所留的BM点的高程和位置坐标;(10)渠道末端坐标,及其所灌溉的农田地面控制高程;(11)如果大段的渠、堤中心线在水内,为便于测量工作,可以平行移开,选择辅助中心线。三、渠道横断面高程测量

对垂直于路线中线方向的地面高低所进行的测量工作称为横断面测量。横断面图是确定渠道横向施工范围、计算土石方数量的必须资料。横断面测量的精度要求:横断面地形点的精度,包括地形点对中心线桩的平面位置中误差。平地、丘陵地应±1.5m,山地、高地应≤±2.0m,地形点对邻近基本高程控制点的高程中误差应≤±0.3m。横断面测量的测设要求:

1.中心线与河道、沟渠、道路等交叉时,应测出中心线与其交角。当交角大于85°、小于95°时,可只沿中心线施测一条所交渠、路的横断面;当交角小于85°或大于95°时,应垂直于所交渠、路和沿中心线方问各测一条断面。

2.横断面通过居民地时,一侧测至居民地边缘,并注记村名,另一侧应适当延长。横断面遇到山坡时,一侧可测至山坡上l-2点,另一侧适当延长。

3.横断面上地形点密度,在平坦地区最大点距不得大于30m。地形变化处应增加测点,提高横断面的精度。

4.渠道沿线察看。渠道放线测量的f司时应注意观察沿线的地形地貌、植被情况,并以桩号为准做好记录。新建渠道应察看是否穿越农出或林带、居民点等;老渠道应查看已建建筑物的使用状况,并应做好记录。注意查看渠道沿线是否有可供渠道施工用的道路、水源和料场。较重要的交叉建筑物还要测大比例尺地形图。

四、提交测量成果

测量外业工作结束后,经过资料整理、数据计算、计算机绘图等内业工作后,最终应向设计人员提供测量成果。设计所需要的测量成果包括渠道导线图、渠道纵、横断面图及其软档文件,其技术要求均应以满足设计需要为准。

1.对渠道导线图的要求:应包括上下级渠道中心线(及辅助中心线)、渠道拐角、拐点及渠道配套建筑物的中心点位置和坐标,渠道与河沟、排渠、道路和上下级渠道的交角等实测数据;渠道及其配套建筑物名称;制图比例和指北针等。

2.对渠道纵断面图的要求:渠道纵断面图要比例适当;标明拐点桩号及拐角;标明已建或拟建渠道配套建筑物的主要特征高程、其中心点的桩号;标明渠道沿线的BM点的位置坐标和高程;其它关键数据也部要标出。

3.对渠道横断面图的要求:渠道横断面图要比例适当;横断面图上应标出渠道中心线桩的桩号、高程和在横断面上的位置。