智能体水产养殖论文

时间:2022-01-28 05:09:01

智能体水产养殖论文

1智能体系统设计

1.1信息采集智能体设计信息采集智能体由信息采集模块和CC2530芯片组成,两者通过CC2530芯片的通用I/O口相连接,结构如图2所示。其控制核心为CC2530芯片,该芯片内部集成有A/D转换器、增强型8051处理器和ZigBee无线单元,负责对各类传感器进行管理,实现环境因子信息的采集、预处理和发送。信息采集模块中的温度传感器、溶解氧传感器、pH传感器等采集到的环境因子数据,通过调理电路,进行滤波和电压整定,并通过I/O口送入A/D转换器;增强型8051处理器读取A/D转换器数字化处理后的环境因子信息,最终送入ZigBee无线单元,该单元通过射频信号将数据传给该养殖池内的信息汇聚智能体。每个养殖池内可以在不同区域设有多个信息采集智能体,供信息汇聚智能体读取数据,以保证采集数据的可信度。

1.2信息汇聚智能体设计信息汇聚智能体结构如图3所示。该结构具有两项功能:一方面起到环境因子数据的中转作用,按现场监控智能体的要求,采用轮询的方式读取本池中各信息采集智能体发送来的数据,并发送给现场监控智能体;另一方面兼有图像采集与发送功能,利用串口CMOS摄像头进行养殖物图像采集,摄像头通过RS232与CC2530中的无线单元ZigBee相连,由无线单元ZigBee完成图像向现场监控智能体的传输。

1.3环境调节智能体设计环境调节智能体由无线收发模块和工控机组成,两者通过RS485相连,如图4所示。无线收发模块负责接收现场监控智能体通过无线通信发送过来的环境因子数据,进行解调,最终上传给工控机。工控机接收到数据后,首先根据其具备的知识对数据进行推理(推理模块),并将推理结果(调节任务)交给决策模块进行评价和决策。决策模块利用已有的知识和各种状态数据对推理结果进行评价和决策,如果具备执行该任务的能力,则交给控制模块去执行,否则启动通信模块与现场监控智能体进行协商。控制模块通过设备接口把任务交给执行机构去完成。决策模块还能通过人机界面向操作员分发报警、决策请求等事件,并接收操作员的输入信息。工控机强大的控制功能和可扩展性,使得一个环境调节智能体能够对所有养殖池的环境参数进行调节。系统中的执行机构主要有电磁阀(温度和pH调节)、水泵、增氧机、搅拌机等,用于调节养殖池中各环境因子,以提供养殖物生长的最佳环境。环境调节智能体对养殖环境的调节采取闭环控制,即执行机构在进行环境调节的同时,该智能体中的无线收发模块实时读取养殖池中的各项环境参数,并进行判断,任一项参数达到调节要求即关闭相应的执行机构。

1.4现场监控智能体设计现场监控智能体由信息收发单元和监控计算机组成,两者之间通过RS232/485总线连接,其功能结构与环境调节智能体基本相同。信息收发单元负责接收各养殖池中的IGA上传来的信号,并传送给监控计算机进行保存,监控计算机通过比较判断,如需要对环境进行调节,则通过信息收发单元以无线方式通知环境调节智能体工作,实现对养殖环境的闭环控制。监控计算机的另一项任务,是通过信息汇聚智能体定期采集养殖物质体的图像(此时信息采集智能体处于休眠状态),并利用专用软件对采集到的图像进行处理与诊断,如发现有病变嫌疑则及时报警,避免重大损失的发生。

1.5各智能体间的协作基于多智能体的协同水产养殖监控系统,通过多智能体之间的相互协作,来增强系统的监控能力,系统具有更好的灵活性和鲁棒性,便于适应多变的养殖环境,其协作模型如图5所示。下级智能体接收到上级智能体的任务请求后,根据自身的能力描述和当前状态,判断任务是否可以接受:如果处于故障状态或忙碌状态,则对该请求进行回绝;如果能接受这项请求,则返回接受信号,对请求的任务进行评

2监控软件设计

现场监控智能体的监控软件采用C语言编制,具有参数配置、实时监控、历史数据和系统说明4个模块的功能。实时监控模块用于对养殖水体的溶解氧、温度、pH以及水位等关键因子进行自动监测。每台计算机同时监测6个养殖池,分池、分监测点以数值的形式显示关键因子,并通过算法综合判断,给出养殖环境状态的提示。如图6所示为1号池的实时监控界面。历史数据模块用于对历史数据进行查询。参数配置模块用于对各养殖池的理想参数进行设置。系统说明模块提供相关信息服务,并对软件的使用提供帮助。

3现场试验

试验现场选在山东省日照市的某水产养殖有限公司,试验鱼池规格为6m×6m,水深0.5m。鱼池中养殖大菱鲆,其适宜的养殖环境为:温度10~20℃,溶解氧大于6mg/L,pH为7.6~8.2。据此,试验鱼池的初始环境因子参数设置为:温度17℃,溶解氧7mg/L,pH为7.9。试验以温度值的变化为观测点,以验证环境调节智能体的工作性能。

(1)系统的测量精度满足要求。

(2)通过人工措施在10:30的时候使水体温度降低到15.7℃,此时环境调节智能体开始工作,起动加热系统给水体加热,11:21池中的测量温度为16.6℃。试验测得加热时间约为56min42s,水温达到设定温度要求,加热系统自动停止。系统工作效率高于一般的在线监测系统,满足环境调节要求。

4结论与讨论

市场对水产品的个性化需求,使得规模化水产养殖向着多样化发展。基于现有监控系统在自学习能力和监控范围方面的局限,结合多智能体系统的功能特点,将多智能体技术引入到规模化水产养殖监控系统中,提出了一种基于多智能体的无线传感网络协同水产养殖监控系统。通过无线传感网络进行环境信息的采集与传输,依靠多智能体间的协作,实现信息的处理与反馈。智能体的自学习能力使系统的监控能力得以增强,便于适应多变的养殖环境。同时,系统扩充了图像处理功能,用于对养殖物质体进行监测,以避免病变带来的重大损失。试验结果表明系统的测量精度和调节功能均满足要求。进一步的研究工作主要在系统的优化、路由改进以及推理与决策算法等方面进行,以期能够设计出更具实用性的监控系统。

作者:赵明光张贤单位:淮海工学院