生产技术论文范文10篇

时间:2023-04-01 11:33:52

生产技术论文

生产技术论文范文篇1

1.1近10年玉米生产在塔城盆地粮食生产中的变化

从2005年到2014年10年间,塔城盆地作物总播面积从2005年的17.219万hm2,增加到2014年的28.665万hm2,增加了11.446万hm2,年均增长44.66%;粮食作物种植面积从2005年的6.731万hm2,增加到2014年的24.399万hm2,年均增长了40.55%;小麦面积从2005年的4.827万hm2,增加到2014年的9.888万hm2,增加了5.053万hm2,年均增长16.36%;玉米面积从2005年的1.579万hm2,增加到2014年的14.393万hm2,增加了12.814万hm2,年均增长了23.88%。小麦面积占盆地粮食面积的比重从2005年的71.72%,到2014年下降到40.49%,下降了31.23个百分点;玉米面积占盆地粮食面积的比重从2005年的23.46%,上升到2014年的58.99%,上升了35.53个百分点,从2012年开始玉米面积占盆地粮食面积比重超过小麦。

1.210年间玉米面积、单产的变化

近10年,塔城盆地玉米面积和单产水平总体呈现明显增长趋势。玉米面积增幅23.88%;同期,玉米单产由9677.3kg/hm2,增至12391.8kg/hm2,提高了2714.6kg/hm2,增幅28.1%。

2近10年塔城盆地玉米生产技术变化的特点

2.1玉米主栽品种的变化

近10年塔城盆地主栽玉米品种经历了延续80年代后期,以选用高产、中晚熟、稀植大穗玉米品种为主,至以选用中熟、大穗、高产的玉米品种为主,到以选用早中熟、高产、耐密、抗茎折、中穗、适宜机械化收获的玉米品种为主的三个阶段。第一个阶段,至2007年,塔城盆地玉米主栽品种为sc704,由于该品种属中晚熟品种,全生育期130~150d,对塔城盆地玉米的种植区域限制很大,此阶段盆地内玉米的主要种植区域集中在海拔500m左右的区域;第二阶段,至2010年,塔城盆地主栽品种为sc704和登海3672,由于登海3672属中熟品种,成熟期比sc704早熟7~9d,该品种的引进,使塔城盆地地膜覆盖玉米的种植区域扩大至海拔650m左右的区域;第三阶段,中早熟品种kws3376、kws9384,中晚熟品种kws2564、kws3564、农润919等耐密、抗茎折品种的引进,塔城盆地玉米的种植区域进一步得到扩大,种植范围延伸到海拔800m左右的区域。

2.2玉米种植模式和播种技术的变化

在播种技术上,2009年以前,主要采用鸭嘴式半精量点播机,每穴下种2~3粒,近几年盆地玉米播种主要采用气吸式精量单粒播种技术。该项技术的应用,要求种子质量高,整地质量高,土壤墒情好,最大的优点是节省人工(可不进行人工田间间定苗),减少了大小苗。

2.3玉米收获技术的变化

近10年,玉米收获技术经历了人工收获果穗—果穗人工脱苞叶码垛自然风干—机械脱粒、机械收获果穗—果穗晾晒—机械脱粒、玉米站秆籽粒脱水,机械收获直接脱粒—籽粒烘干的三个发展阶段。第一个阶段至2006年,玉米收获采用人工作业,贮存风干过程中浪费大,收获期玉米籽粒含水量一般在45%左右,此阶段由于消耗人力太大,费工,玉米的种植面积扩大速度不高;第二个阶段至2009年,玉米收获技术发展到半机械化作业,此阶段玉米收获时籽粒含水量一般在40%左右,此阶段玉米种植面积有了一定的扩大,但由于果穗凉晒过程中,需要一定的凉晒场地,防水防霉措施要求严格;第三个阶段,2010年至今,玉米收获全部机械化,该项技术要求玉米品种具有成熟后期脱水快,玉米站秆脱水,茎秆抗茎折,果穗不易脱落,一般玉米收获时,籽粒含水量在28%左右。由于目前玉米收获机械化,玉米收获期比2005年适时晚收10~15d,适时晚收技术的应用,玉米籽粒产量就可提高8%,目前,塔城盆地玉米机械化收获率已达100%。

2.4玉米膜下滴灌技术的发展

近10年间,玉米节水滴灌技术经历了膜间沟灌与膜下沟灌相结合到膜下滴灌技术的发展演变。2005年~2007年,塔城盆地玉米田间灌溉主要采用膜间沟灌辅助膜下沟灌的灌水技术。2007年塔城盆地裕民县开始示范推广打瓜膜下滴灌技术,盆地玉米膜下滴灌面积仅有60hm2,到2008年,玉米膜下滴面积发展到8.67千公顷,占盆地玉米种植面积的25.9%,到2011年盆地玉米膜下滴灌面积进入了快速发展时期,2011年盆地玉米膜下滴灌面积4.28万hm2,比2010年增加3.25万hm2,到2014年盆地玉米膜下滴灌面积已达14.132万hm2,占盆地滴灌面积的74%。玉米膜下滴灌技术由于省地、节水、省人工、增产、肥料利用率提高等优点,推广速度迅猛。

2.5玉米田除草技术的发展

近10年,塔城盆地玉米田除草技术经历了二个发展阶段,第一阶段,2007年以前,主要人工除草、机械中耕除草为主,辅助化学除草,此阶段,玉米田化学除草技术主要为苗前用金都尔、仲丁宁播前土壤封闭和苗后莠去津化学除草,苗前土壤封闭除草技术的制约因素是气候因素和土壤整地水平低影响了除草效果,苗后莠去津除草技术,用药量大,残效期长、除草谱窄,对后茬有些作物有一定影响;第二阶段,2007年至今,该阶段玉米田间除草技术主要采用苗后化学除草技术,主要采用烟嘧磺隆和莠去津的二元复配除草剂,近几年,还采用了烟嘧磺隆、莠去津和甲基磺草酮(或硝磺草酮,或氯氟吡氧酸)的三元复配除草剂,玉米田化学除草技术正逐步走向除草谱广、安全性强、机械化操作的技术路子上。

3今后塔城盆地玉米生产技术发展方向及建议

3.1加大塔城盆地玉米高产、抗逆综合配套栽培技术的集成与推广。目前,塔城盆地玉米栽培技术还存在播种质量差,导致玉米出苗不整齐,大小苗现象较突出,后期空秆率较高,影响玉米密植的成穗率;偏重化学除草,轻苗期中耕;灌头水过早,一般头水早灌10~15d,轻视玉米蹲苗,导致株高增加,穗位提高,根系深扎不够,气生根数量减少,增大玉米后期茎折风险,因此,要针对关键技术点,加大研究示范力度,组装配套,提高塔城盆地玉米单产水平。一是,提高种子质量,要求种子发芽率达到90%以上,净度达到99%;二是加大土壤秋耕深翻,严格按照农艺要求,做好整地平地工作,做到上虚下实,土地平整,无大坷垃;二是提高单粒精播技术,要加快对现有单粒播种机械操作人员的技术培训,做好播前播种机械的检查与调试,防止在播种过程中出现漏种、卡种和断条等现象,影响田间基本苗。

生产技术论文范文篇2

PVC精馏机制复杂,在进行工艺衡算时,需进行物料平衡、气液平衡、热量平衡及生产能力的衡算,这也是实际生产对各工艺参数设定和控制的重要依据。在氯乙烯精馏过程中,汽化的氯乙烯会改变塔顶冷凝器的热量平衡,而塔顶温度控制回路则通过增加塔顶冷凝器的冷冻量和液相氯乙烯的回流量反过来影响塔釜的热量平衡。实际控制中,塔顶和塔釜的物料和热量的交换存在一定的滞后性,为了克服扰动,通常在塔釜热量交换发生变化的同时,DCS就会对相关控制阀动作状态进行检测并采取相应的控制措施。实际生产中,参数设定正是基于相互间的逻辑关系,只有理清了这些制约因素,才能在实际操作中有的放矢,达到对产品质量的有效控制。

1.1物料平衡

实际生产中,正常的物料平衡一旦受到破坏,气液相平衡也就达不到理想效果。一定状态下,物料平衡是精馏塔生产能力的重要标志。通常物料平衡是通过进料量及塔顶和塔底的馏出量来调节的。当精馏塔的操作不符合物料平衡时,这些变化可以通过塔的压差直接体现出来,进料量多馏出量少,则塔压差上升。通常压差应在一定范围之内,压差过大说明塔内上升的蒸汽速度过快,雾沫夹带严重,甚至会发生液泛与返混现象;而压差过小则表明塔内上升蒸汽的速度过小,塔板上气液交换的量过低且传质效果差,塔板产生漏液最终使塔板效率降低。生产中物料平衡异常通常体现在以下2个方面:

(1)轻组分馏出量超过了物料平衡量。塔内重组分物料量急剧增加,进而导致塔温逐渐升高,塔顶馏出物中重组分含量增加,得到的产品质量不合格。

(2)重组分的馏出量超过了物料平衡量。塔内重组分物料量急剧下降,相应地导致塔温逐渐降低,使釜液中轻组分含量增加,得到的产品质量不合格。这2种现象的发生,均会使整个精馏塔的操作处于混乱状态而达不到分离效果。如果正常的物料平衡被打破,那么气液相也达不到分离效果,随之影响热量平衡。在实际控制中,在保证工艺指标的同时要使塔釜液面趋于稳定,最终达到动态的物料平衡。

1.2液位的控制

一般通过调节塔釜再沸器热水给水量来调节塔釜液位,有时也采用排放釜液来降低液位的办法。实际生产中会出现以下5种情况。

(1)塔釜釜液组分变化。在压力不变的前提下,降低釜温就改变了塔釜气液平衡组成,相应地加大了釜液量及釜液中轻组分的浓度;在釜液排出量不变的情况下,将使塔釜液位升高,此时应及时提高釜温。对低沸塔来说,这种情况会使乙炔等轻组分含量上升,导致最终氯乙烯产品中低沸物含量上升;而对高沸塔来说,则会使氯乙烯分离不及时,不但造成高沸塔分离能力下降,而且排放的釜液中氯乙烯含量会急剧增加。

(2)进料组分变化。当进料中重组分的含量增加时,釜液量也增加,此时应加大塔釜排液量或提高釜温,否则液位会上升。若保持正常的釜液排出量,以加大釜温来控制塔釜液位,则塔釜蒸发量相应增加,极易在塔板之间产生雾沫夹带,并随着气体的流动馏出塔顶,造成产品质量下降。这种现象表现在高沸塔就是会将部分高沸物带出塔顶,最终进入成品氯乙烯中。

(3)进料量的变化。当进料量增大时,釜液排出量也要相应增加,才能维持液位,一般通过提高釜温来解决,但若只提高釜温,会造成成品中高沸物的增加;相反,当进料量减小时,则需降低温度、减少釜液排出量来控制液位,此时则会造成成品中乙炔含量增加。

(4)调节阀失控。调节阀失控是极为严重的生产异常,通常该阀设定为气开阀,目的是防止系统阻力增大而造成不安全事故的发生。一旦阀门失控应通知现场进行手动排液,并联系仪表部门进行校正。

(5)开停车。在开车初期,塔板上液体的量较少,还没有达到良好的气液接触状态,大量的轻组分进入塔釜后,被塔釜汽化的量还满足不了混合液之间的热传递要求。因此,对于刚开车的精馏塔,应在进料之前提前升温,在塔釜有液面显示时加大热水的循环量,否则塔釜温度不易提高,易导致塔釜液位升高甚至淹塔,这时釜液排出量就会增大,混合液中轻组分损耗就会增加。保持稳定的液面是维持精馏塔釜温恒定的首要条件。塔釜液面的变化主要取决于塔釜排液量的多少。当塔釜排液量过多时,会造成塔釜液位降低或将塔蒸干,此时再沸器的釜液循环量减少,从而导致传热效果差,轻组分蒸不出去,产品质量不合格;如果塔釜排液量过少,将会造成塔釜液位过高,增加釜液循环负荷。塔顶馏出量也是影响产品质量的一个重要因素,其主要取决于进料量的变化。当进料量不变时,塔顶馏出量增大,则回流比就会减少,从而造成塔板上的回流液量减少,气液接触面积小,传质效果差,塔板效率低,同时精馏塔压力也会下降,各塔板上的液体组成发生变化,重组分馏出塔顶,造成产品质量不合格。

1.3气液平衡

气液平衡主要靠调节塔的操作条件(温度、压力)及塔板上气液接触的情况来达到,只有在温度、压力一定时,才能确保气液平衡。当温度、压力发生变化时,气液组成就发生了改变,产品的质量或损耗也发生了变化。但是,气液平衡的组成又取决于每块塔板上的气液传质和传热情况,即气液相平衡和物料平衡是相互影响的。物料平衡控制得好,塔内上升蒸汽的速度合适,气液接触好,则传质效率高,每块塔板上的气液组成就越接近于平衡相,塔板效率也就越高。当然,温度、压力也会随着物料平衡的改变而变化。总之,气液平衡的组成与物料平衡有着密不可分的关系。反过来,温度、压力的改变又可造成塔板上气相和液相相对量的改变,从而破坏原来的物料平衡。例如,釜温低于指标,会使塔底的蒸发量减少,塔板上的液体量增加,釜液量增加,塔顶馏出量减少;当塔顶温度高于指标时,就会使塔板上的气体量增加,液体量减少,塔顶馏出量增加,釜液量减少。理论上,液体汽化要吸收热量,气体冷凝要放出热量,为了合理利用这部分热量,可以把气体冷凝时放出的热量供给液体汽化时使用,也就是使气液两相直接接触,在同一平行空间内进行传质、传热的过程。气液动态平衡具有以下特点:

(1)气液两相进行热交换。利用部分汽化所得的温度较高的气体来加热部分冷凝所得到的液体混合物。

(2)气液两相进行传质交换。温度低的液体混合物被温度高的气体混合物部分加热汽化,此时,混合物中各组分的沸点不同,表现为挥发能力的差异,低沸物要比高沸物易挥发得多,因而低沸物更易从液相转变为气相,气相中低沸物浓度增加;同理,温度较高的汽相混合物,因加热了温度较低的液相混合物而部分冷凝,同样因为挥发能力的差异,使高沸物从气相转为液相,这样液相中高沸物浓度就会增加。

1.4热量平衡

热量平衡是物料平衡和气液相平衡得以实现的基础。没有塔釜提供热量就没有上升蒸气,没有塔顶冷凝就没有回流液。热量平衡又是依附于物料平衡和气液相平衡的,例如,若进料量或组分发生了改变,则塔釜耗热量和塔顶冷凝量都会发生相应变化;若塔的操作压力、温度发生了改变,则每块板上气相冷凝的放热量和液体汽化吸收的热量也会发生改变。如果再沸器的循环量不够,就会造成釜温不达标,其对生产的影响表现在以下2个方面。

(1)物料平衡破坏,塔釜排液量增多,塔顶馏出量减少,塔的生产能力降低。

(2)气液平衡破坏,塔内上升蒸气量减少,气液接触面积变小,传质效率降低;同时,气相中重组分含量减少,液相中轻组分含量增加,生产过程中轻组分损耗增大。

2结语

生产技术论文范文篇3

1.1深入研究转炉低氧位控制技术,实现碳、氧全面降低

转炉低氧位控制技术是指顶底复吹转炉脱碳过程加强动力学条件,实现在1个大气压下碳氧反应平衡均匀进行,降低钢水冶炼终点氧含量,减小炉渣氧化性的一种冶炼技术。该技术采用以下两大控制方法。

1.1.1合理控制炉底涨幅,提高底吹效果

控制炉底涨幅不超过100mm,确保转炉底吹效果。动态掌握底吹供气效果,通过裸露数量判断底吹效果是否满足要求。

1.1.2优化转炉超低碳钢冶炼模式

对转炉冶炼超低碳钢操作过程进行优化:1)转炉造高碱度渣,碱度控制在3.5~4.0;2)采用高硅高温铁水,确保转炉操作热量富裕,过程矿石加入量达到5t以上,确保全程化渣效果;3)终点前加入一批石灰,稠化炉渣;4)终点前,提前测量TSO,根据TSO温度调整供氧量,保证转炉终点温度为1710℃左右,保证进RH炉温度满足生产要求,终点碳的质量分数控制在0.04%~0.05%,保证氧含量满足要求。

1.2优化改质剂配比,实现钢包顶渣改质的最优化

和顶渣低全铁含量控制目标改质剂的主要作用是降低钢包顶渣全铁含量,提高顶渣吸附夹渣的能力,提高钢水的纯净度。因铝镇静钢夹渣主要是Al2O3型,根据Al2O3—CaO—SiO2三元系相图分析,将渣成分控制在CaO饱和区,向低熔点区靠拢,具体做法是将炉渣CaO/Al2O3控制在1.7~1.9。优化前,改质剂中铝的质量分数控制在8%左右,改质后全铁的质量分数较高,达到13%左右,改质效果不明显。为深入研究改质剂配比,对改质剂铝含量进行准确计算:转炉终点炉渣全铁的质量分数按17%计算,改质后炉渣全铁的质量分数按5%计算,钢包顶渣按100mm厚度计算,钢包直径为3.3m,渣密度按3.4g/cm3计算。按照生产DDQ转炉加入改质剂300kg计算,对改质剂中铝配比按87/300=29%进行控制,根据理论计算,对改质剂进行了优化和成分调整,增加铝含量,提高炉渣的碱度。采用铝粒30%、颗粒石灰10%、预熔渣60%的混合配比,提高钢包顶渣改质效果。

1.3优化RH低氧位深脱碳技术,稳定控制钢中碳含量

冶炼SPHE,DDQ级冷轧钢等超低碳钢要求RH进行深脱碳处理,针对低氧位深脱碳技术要求,在保证终点碳含量稳定的前提下,对深脱碳冶炼过程进行低氧位控制,为此建立了RH低氧位深脱碳模型。利用该模型并结合RH气体分析仪,对终点碳含量可以进行准确预判。

1.4实施连铸机全保护浇注,提高铸坯质量

根据莱钢板坯连铸机现场实际情况,采用以下控制技术,对连铸机钢水进行全面保护。

1)设计全新中间包包盖,增加包盖吹氩功能,在浇注料内布有氩气管道。全新包盖设计成弧形,应用后具有防掉料、防变形、使用寿命高、密封效果好的优点。

2)对中间包冲击区进行全面改造,增加活动小包盖,大幅度减小了中间包冲击区与空气接触面积,进一步减少了钢水二次氧化。

3)在包沿与包盖接触处和块与块对接处垫约40mm厚的硅酸铝耐火纤维毡,并在中间包盖各孔处使用纤维盖板预制密封件,以增强中间包盖的密封隔热功能,达到全保护的目的。

4)中间包冲击区采用环形氩气装置。主要是在冲击区钢液面上形成氩气沉淀,防止因钢水裸露造成二次氧化。

2效果

解决了连铸机浇注过程中二次氧化大的问题,浇注过程增氮量明显减少,通过低倍检测分析,DDQ级冷轧料铸坯中心偏析、中心疏松、中间裂纹达到了“零”级。

3结论

1)采用转炉低氧位碳氧积控制技术、钢包顶渣低全铁含量控制技术,解决了超低碳钢钢水氧化性强、钢包顶渣改质效果不稳定等问题,获得了良好的效果。

2)采用精炼RH炉低氧位深脱碳处理模型预判终点碳技术,应用废气分析仪,准确判断终点碳含量,提高超低碳钢终点碳的命中率,缩短了脱碳时间,为生产超低碳钢提供了技术保障。

3)应用连铸机全保护浇注技术,钢水在浇注过程中二次氧化明显减少,过程增氮量减少,保护效果显著。

生产技术论文范文篇4

无公害蔬菜是指没有受有害物质污染的蔬菜,是集安全、优质、营养为一体的蔬菜总称。现根据北方地区进行无公害蔬菜生产的实践经验,将其生产技术要点总结如下。

1生产条件

无公害蔬菜生产基地选择在远离工厂、医院等污染源3000m以外,水质、大气、土壤无污染的地域,能有山、河隔离带更为理想。农田灌溉水、土壤、大气、生活饮用水、水土保持综合治理等环境质量应符合国家有关标准。基地面积应大于5hm2,土地连片便于轮作,运输方便。基地选定后还应合理规划,完善排灌设施,健全田间道路网络,培肥土壤等,创造一个优质、高效、低耗的无公害蔬菜生产生态环境。

2细化栽培

细化栽培技术就是要根据蔬菜病虫无害化治理的要求,研究蔬菜生长发育的规律、环境调控与产量形成规律,研究无土栽培、设施栽培、节水灌溉及这些技术的应用与病虫消长的关系;研究不同科蔬菜之间轮作技术、茬口安排技术、清洁田园技术和引种试验推广抗病虫品种技术的综合,因地制宜制定(设计)出一套适合当地不同类型菜地和不同蔬菜品种的生产技术规范,供基地生产应用。

3强化应用生物和物理防治技术

随着无公害蔬菜生产技术的不断演进,保护、利用天敌,苏云金杆菌、Bt与病毒复配的复合生物农药、爱比菌素、农抗120、农用链霉素、新植霉素等的应用,灯光诱杀、气味诱杀,利用害虫对颜色趋性进行诱杀及防虫网、特种性能膜防病虫等生物、物理防治技术已日益受到重视,部分已直接取代化学农药的使用。今后要充分应用已有的技术成果,进一步开发、推广生物和物理防治技术,力争扩大取代化学农药的使用面。

4病虫害化学防治技术

优化蔬菜病虫害化学防治技术,可大幅度提高农药药效,既控制病虫的为害,又可防止农药在蔬菜产品上的超标残留。可从以下几方面入手:

(1)按照国家有关规定,绝对禁止在蔬菜上使用剧毒、高毒、高残留农药。

(2)加强病虫测报,掌握防治适期。蔬菜病虫种类繁多,发生复杂,要抓住主要病虫和病虫发生的主要时期开展测报,一般害虫的低龄阶段和病害的发生初期为防治适期。

(3)对症下药。据中国蔬菜病虫原色图谱记载,我国有蔬菜病害1133种、蔬菜虫害334种,但各地主栽的蔬菜种类和主要病虫发生种类并不很多,防治前一定要确诊后对症下药。

(4)讲究施药技术。实施化学防治时必须把农药施用到目标物上才能有效地控制蔬菜病虫的发生、发展,才能保护蔬菜的正常生长,若施药“脱靶“就会降低防治效果和造成环境污染。

(5)严格按照有关规定控制农药的使用浓度、使用量、剂型、使用次数、使用方式和依法执行农药的安全间隔期。

5施肥措施

(1)重施有机肥,少施化肥。充足的有机肥,能不断供给蔬菜整个生育期对养分的需求,有利于蔬菜品质的提高。农作物秸秆和畜禽粪污要加入发酵剂经过高温堆积发酵,使其充分腐熟方可施入菜田。发酵时将新鲜的粪污装入塑料袋中堆放或装入缸中,加入热水封口,在15℃以上的环境湿度下自然发酵。农作物秸秆加入速腐剂可直接还田,但将其粉碎后,堆腐发酵效果更好。堆腐的方法是每100kg粉碎的秸秆加入速腐剂1~2kg,堆垛后,表面用泥封严,一般20d左右成肥。

(2)重施基肥,少施追肥。实践证明,在相同基肥条件下,追肥用量越大,绿色蔬菜生产要施足基肥,控制追肥,一般施用纯氮225kg/hm2,2/3作基肥,1/3作追肥,深施。

(3)重视化肥的科学施用。一是禁止施用硝态氮肥。二是控制化肥用量,一般施氮量应控制在纯氮2250kg/hm2以内。三是要深施、早施。一般氨态氮肥施于6cm以下土层,尿素施于l0cm以下土层。早施有利于作物早发快长,延长肥效,减少硝酸盐积累。实践证明,尿素施用前经过一定处理,还可在短期内迅速提高肥效,减少污染。处理方法为:取1份尿素,8~10份干湿适中的田土,混拌均匀后堆放于干爽的室内,下铺上盖塑料薄膜,堆闷7~10d即可做穴施追肥。四是要与有机肥、微生物肥配合施用。

(4)施肥因地、因苗、因季节而异。不同的地质,不同的苗情,不同的季节施肥种类,施肥方法要有所不同,低肥菜地,可施氮肥和有机肥以培肥地力。蔬菜苗期施氮肥利于蔬菜早发快长。夏秋季节气温高,硝酸盐还原酶活性高,不利于硝酸盐积累,可适量施用氮肥。

摘要:总结了北方无公害蔬菜的生产技术要点,如生产条件的选择,进行细化栽培,推广应用病虫害生物和物理防治技术、慎用化学防治技术,以及合理施肥,以期指导北方地区蔬菜无公害生产。

生产技术论文范文篇5

1.1配合料及碎玻璃

玻璃配合料中CoO用量很少,为了提高称量精确性,有利于与其他原料混合均匀,应该在配料前制备混合钴。先将氧化钴与干方解石粉或长石粉按0.5%或1%比例预混均匀过筛。配料时,按氧化钴被稀释的比例称取混合钴,再称取氧化铜和部分方解石粉或长石粉进行小料预混,仔细搅拌混和均匀,防止出现着色剂聚集的状况,然后与其他原料混合。玻璃瓶生产中加入相当比例的碎玻璃能节约资源,减少熔制耗能。生产海蓝色玻璃瓶同样可以大量使用碎玻璃,包括回炉的海蓝色碎玻璃和无色钠钙玻璃碎玻璃。这两种碎玻璃可以按任何比例加入使用,碎玻璃总量可达60%或更多。引入大量碎玻璃时,要注意以下几点:

(1)使用无色碎玻璃时,在配合料中应补充足量的着色剂,补充量与碎玻璃加入有关。

(2)在熔制过程中,以碳酸钠形式引入Na2O时,Na2O挥发量约1.2%,以硫酸盐形式引入Na2O时,Na2O挥发量约6%。回炉碎玻璃的化学成分会与玻璃设计成分有所不同。当碎玻璃引入量超过20%时,需要补足氧化钠。

(3)使用外购无色钠钙碎玻璃时,应制订外购碎玻璃质量标准,选用与海蓝色玻璃设计成分接近的高白料瓶罐玻璃,货源要相对稳定,防止金属物、泥土、混凝土块、砂子、耐火材料、塑料、煤灰和纸屑等杂物混入。分析外购碎玻璃成分,按外购碎玻璃引入量计算SiO2、Al2O3、CaO、Na2O等成分的调整量,对配合料组成作相应调整,使混合玻璃成分符合海蓝色玻璃设计成分要求。

(4)碎玻璃比例增加会带来澄清困难,在经过前述化学成分方面的调整,玻璃黏度—温度关系已经满足要求后,玻璃配合料中还要补充澄清剂用量。100kg碎玻璃补充复合澄清剂0.5~0.6kg。

(5)碎玻璃加入比例高达50%~60%时,必须把碎玻璃看成是组成玻璃的主要原料,十分重视对碎玻璃的管理。碎玻璃要经过拣选、清洗、破碎成5~30mm小块,干燥、除铁后储存在碎玻璃库备用。

(6)外购碎玻璃可能长期与大气中的水汽作用,表面受到侵蚀风化,风化形成的风化产物与内部成分不均匀;玻璃内部因以往成型降温过程形成的潜晶和微晶造成结构不均匀;这些都会导致玻璃强度下降,玻璃发脆,为此碎玻璃在入窑前要与配合料充分混和,熔化温度适当提高5~10℃,将潜晶和微晶熔透使碎玻璃和配合料成为成分和结构均一的玻璃液。

1.2熔制

海蓝色玻璃的熔化温度不宜过高,熔窑气氛要保持氧化气氛。比较钴蓝色玻璃、铜天蓝色玻璃和海蓝色玻璃三者的光谱曲线,可以看到海蓝色玻璃与铜天蓝色玻璃的光谱曲线相似,这是因为海蓝色玻璃着色剂以氧化铜为主。两者都与钴蓝色玻璃的光谱曲线有显著区别。钴蓝色玻璃在780~2526nm红外区中仅在1250~1750nm有部分吸收,其余都有高的透过率;海蓝色玻璃和铜天蓝玻璃红外区的吸收带一直延伸到2500nm。它们在780~2526nm红外区的透过率约比钴蓝色玻璃低46%,比高白料玻璃低53%。这就导致熔制海蓝色玻璃的熔窑中在熔化池深度方向玻璃液降温比较快,靠池底玻璃液温度要比高白料玻璃或钴蓝色玻璃低得多。池窑熔制玻璃时,配合料层漂浮在玻璃液面上。在上部火焰辐射加热和下部玻璃液传导加热的共同作用下,热量从配合料层上、下两个方向向中心层传递。配合料温度升高,熔制过程得以展开。海蓝色玻璃的透热性差,其表面层以下玻璃液温度比高白料玻璃和钴蓝色玻璃低,不但使玻璃液向配合料的传导加热比较弱,影响到配合料熔化速度,还使玻璃液黏度增大,澄清速度减缓。海蓝色玻璃液相对较低的池底温度,决定了熔窑熔化池的深度不能太深。熔化池玻璃液容量偏少,也影响到熔窑取用比、出料量和熔化率。经验证明,海蓝色玻璃熔窑熔化池深度以1.3m左右为好。我们在熔化面积30m2的燃发生炉煤气马蹄焰池窑中熔制海蓝色玻璃,熔化温度1560~1570℃(辐射高温计),熔化率1.2t/m2•d。

1.3成型

海蓝色玻璃的成型工艺基本上与其它玻璃相近,但是海蓝色玻璃较差的透热性,关系到玻璃液辐射传热的能力,一定程度上对成型工艺产生影响。高水平的制瓶作业依赖于获得优质的料滴,所以有“优质料滴是得到优质制品的一半”的说法。得到优质料滴的前提是供料道内玻璃液的温度均匀、稳定。供料道分为冷却段(包括后冷却段、前冷却段)和调节段。来自工作池或分配料道的玻璃液,在冷却段逐步降温。在调节段入口处达到略低于料滴成型的温度,再通过调节段的适当加热,使进入料盆的玻璃液温度达到料滴成型所需要的温度。海蓝色玻璃透热性差,造成表面冷而中心层温度偏高,容易在调节段和料盆中出现温度不均状态,供料道长度不宜太短。配置给1台6组单滴料行列式制瓶机的供料道长度约5m,宽660mm,玻璃液深度不大于160mm。在玻璃成型阶段,料滴内部及料滴与模具之间的传热方式主要是辐射和传导。颜色玻璃成型时存在“传热差异”。成型过程中,热量不断从料滴内部向玻璃表层转移,再经过玻璃外表面向模具传递热量。海蓝色玻璃红外透过率低,热辐射性差,传热速度比较慢。瓶子表面硬化速度比较慢,出模时瓶体温度比较高。因此,海蓝色玻璃瓶制瓶机机速要适当慢一些,模具的冷却风要小一些,以减少瓶子可能出现的炸口、冷斑等缺陷。

2常见缺陷及其解决方法

2.1析晶

玻璃处于介稳状态,在一定条件下存在自发析晶倾向。钠钙硅酸盐玻璃中常见的析晶晶相是β-硅灰石(β-CaO•SiO2)、透辉石(CaO•MgO•2SiO2)和失透石(Na2O•3CaO•6SiO2)。根据马丁•赫泼许的结晶速度—温度关系图[6],失透石的析晶温度范围是780~930℃,β-硅灰石的析晶温度范围是800~1030℃,透辉石的析晶温度范围是825~1000℃。相对结晶速率最大的温度分别是900℃,930℃和950℃。失透石的相对结晶速率最大,β-硅灰石和透辉石的最大结晶速率分别为失透石的41%和15%。海蓝色玻璃基本化学组成和高白料玻璃相近,CaO质量分数约8%~9%,玻璃的析晶倾向并不大,在正常的玻璃瓶生产工艺条件下不会出现析晶。但是A厂生产海蓝色玻璃瓶时曾发生严重的析晶现象,它的特征是“白色条状结晶物”,无论把熔化温度升到1590℃,还是降到1565℃,始终没能使结晶物症状变轻,在1570℃勉强维持生产。据了解A厂出现严重析晶现象的36m2窑,熔化池深1200mm,澄清池深1500mm;50m2窑,熔化池深1400mm,澄清池深1900mm。有人把白条状结晶物当成徐州鑫汇耐火材料厂电熔AZS砖被蚀损的产物,怀疑电熔砖质量有问题。恰好该厂另一座用郑州远东耐火材料厂电熔AZS砖的26m2窑,熔化池深1100mm,澄清池深1200mm,没有出现析晶现象,似乎证实了这个判断,实际不然。B厂熔制海蓝色玻璃30m2窑,熔化池深1300mm,同样选用徐州鑫汇耐火材料厂电熔AZS砖,却从未出现析晶现象。所以造成析晶现象的原因不是耐火材料的质量问题,而是36m2窑和50m2窑不恰当的熔化池(澄清池)深度造成的。A厂原设计熔窑用于熔化高白料,熔化池(澄清池)深度较大是合理的,但是转换成熔化海蓝色玻璃,池深就显得过深,致使靠池底玻璃液温度过低,在下层产生一层高黏度不流动玻璃液,此层玻璃液因停留不动,不仅会溶解大量耐火材料而改变成分,还会因处于析晶温度范围而析晶。当池窑温度波动时会使这些变质玻璃进入成型流,使制品出现条纹、结石和析晶。析晶现象还可能发生在供料道中,大多与不正确的供料道冷却方式有关,如供料道某些部位,特别是料盆区域温度过低等。需要注意的是当工作池温度偏高,流入供料道的玻璃液温度太高,增加了供料道冷却玻璃液的难度,迫使在供料道进行高强度冷却,可能造成料盆等部位温度过低而出现析晶。消除析晶的方法:

(1)熔化池(澄清池)深度不可太深,以1.3m左右为宜。

(2)制定正确的熔制温度制度,熔化温度要稳定,防止温度过高和大的波动。

(3)制定正确的从工作池到料盆区域的温度制度,重视供料道温度调节操作,加强冷却段的冷却作用,务必不让料盆区上部空间温度过低。

(4)检查玻璃化学组成,必要时适当减少氧化钙含量,增加氧化铝、氧化镁含量来降低玻璃析晶能力。

2.2结石海蓝色玻璃中的结石主要有两类:粉料结石和耐火材料结石。

(1)粉料结石,通常是未熔石英。玻璃工厂采购湿式生产石英砂的最大颗粒直径小于20目(0.85mm),在正常情况下不会出现未熔石英结石。有些购入的石英砂粒度分布可能不合乎要求(小于0.1mm的极细小颗粒比例较大)或石英砂储存条件不好,雨天石英砂含水量超标仍勉强使用,都会使熔制状况恶化而出现粉料结石。未熔石英结石大都是小于0.85mm的,呈分散状,有时也有1~3mm聚集状。出现大于1mm聚集的大颗粒未熔石英结石的原因是石英砂中小于160目(0.097mm)的极细小颗粒结成团粒。石英岩在机械能的作用下,粉碎成为具有较高自由表面能的小颗粒。具有巨大表面能的极细小颗粒有强烈的降低内能的倾向,呈现出强烈的聚集作用,因此砂子愈细愈容易结团。石英砂含水量大,使砂子结团加剧。极细小砂粒聚集成的团粒结构,在混料中部分遭到破坏,部分保留下来。纯碱只能包裹在砂团粒的外面。随着配合料温度下降,纯碱和水生成碳酸钠水化物Na2CO3•nH2O,会吸干配合料中全部水份,配合料变得干燥,表面被纯碱包裹的砂团因失水变得坚硬。熔制时砂团内部二氧化硅无法与氧化钠等成分反应生成硅酸盐。在长时间高温和周围高黏度玻璃液作用下,由于体积扩散和表面扩散作用,发生粘滞流动而完成了空隙的排除,颗粒之间产生粘合或聚集,再结晶成为大颗粒石英。其边缘由于逐步熔化而变圆。因为其比重较小,大部分会浮在玻璃液表面,形成石英浮渣,部分夹杂在玻璃液中流向成型区,成为石英结石[9]。解决未熔石英结石的方法是:①制订合理的石英砂质量标准:≥20目的石英砂含量为0,20目~40目石英砂含量小于%,40目~120目石英砂含量大于85%,120目~160目石英砂含量小于15%,<160目的石英砂含量为0,石英砂含水量(6±1)%。②配合料中加入0.5%芒硝(Na2SO4)可以消除石英浮渣。

(2)耐火材料结石。随着玻璃熔窑技术进步,熔窑中与玻璃液接触部位已普遍使用电熔锆刚玉砖,熔窑运行中窑内高温、火焰、粉料、玻璃液流对耐火材料的蚀损过程,孙承绪教授已有专门论述。在正常的生产过程中,耐火材料被蚀损的过程是持续、均匀的,不会引起玻璃产品中的耐火材料结石缺陷。海蓝色玻璃中的耐火材料结石有时非常严重的原因是某些工艺制度不合理。海蓝色玻璃的工艺特性已说明其熔化率会低于高白料玻璃。如果不恰当地试图用提高熔化温度的方法为追求高熔化率,结果可能会适得其反。孙承绪教授指出“玻璃液温度升高时,蚀损会加快,温度升高50~60℃,电熔砖寿命约缩短一半”。前述两家生产海蓝色玻璃瓶的工厂,同样使用徐州鑫汇耐火材料厂生产的同型号电熔锆刚玉砖。A厂熔化温度1590℃,从2011年5月9日改换蓝料生产到2012年3月停止生产,均没有摆脱结石困扰。流液洞进口上方池壁砖液面处不到14个月被侵蚀穿孔[7]。B厂熔化温度1560~1570℃,耐火材料结石废品率平均0%~1%。当不恰当地提高熔化温度到1570~1580℃时,耐火材料结石废品率上升到2%~5%,该窑使用约27个月停窑大修时看到小炉舌头碹损坏塌落,因火焰长引起部分花格墙熔流,工作池碹严重损坏,而熔化池池壁砖和流液洞状况良好。在修复熔窑上部的部分结构后,该窑很快重新启动投入运行,预计可以继续使用18个月左右。两家玻璃厂耐火材料结石废品率和熔窑寿命相差巨大,验证了过高的玻璃液温度会使耐火材料蚀损加快的科学论断。A厂简单化的认为出现耐火材料结石就是耐火材料质量有问题,而忽视了不合理的熔制方法也会导致大量耐火材料结石产生,熔窑结构某些不合理设计及池壁冷却风缺失也是产生耐火材料结石的重要原因。解决耐火材料结石的方法是设计合理的熔窑结构和工艺规程,科学地确定熔化温度指标,改善熔窑运行管理。改进池壁冷却风的配置,加强冷却效果,减弱玻璃液对耐火材料的蚀损。

2.3气泡

海蓝色玻璃在合理的熔制工艺制度下,玻璃液得到良好的澄清,基本上不存在气泡缺陷。偶然出现气泡时,往往与熔窑熔化温度波动、玻璃液液面波动或不恰当的加料方法有关。当石英砂太湿造成熔制困难时,未熔石英、条纹、气泡会同时出现。某玻璃厂生产海蓝色玻璃瓶时出现以下现象:该窑配置2条供料道,其中1条供料道玻璃液中没有密布小气泡,证明熔化池玻璃液澄清已经完成,而另一条供料道玻璃液中经常出现针尖状或放大的密布小气泡,其成因与工作池温度有关。由于该窑熔化池和工作池上部空间采用花格墙分隔,熔化温度和火焰长度对工作池影响很大。一侧小炉喷出的火焰长度比另一侧的长,在一侧花格墙上流挂的熔滴明显多于另一侧,工作池该侧的温度明显高于另一侧。经流液洞冷却的玻璃液在过热的工作池一侧被重新加热,出现二次气泡。大量细小的二次气泡不可能在供料道中消失,从而造成气泡废品。当降低熔化温度、缩短火焰长度后,随着工作池温度下降,这些细小气泡直径变小,直至消失。解决二次气泡产生的根本措施是把熔窑熔化部和工作部上部空间全分隔,使工作池温度可以单独调整,保持在1250℃以下。按照从流液洞到料盆逐步降低玻璃液温度的要求,制定合理的温度制度。

3提高海蓝色玻璃瓶生产技术水平的建议

(1)根据海蓝色玻璃特性,设计合理的熔窑结构,包括熔化池(澄清池)的深度不宜过深,熔化池与工作池(分配料道)上部空间全分隔。为整个生产过程制定合理的工艺规程,包括配合料组成和制备,碎玻璃处理及成分调整,熔窑运行及制瓶等各个环节。

(2)提高海蓝色玻璃熔窑熔化率,不能过分依赖于提高熔化温度。除了本文提到的各种改进方法以外,如果把海蓝色玻璃配合料进行压块密实,能够较大幅度地提高熔化率。

生产技术论文范文篇6

1.1培养基准备

基本培养基为PP,添加6-BA0.05mg/L、白砂糖20g/L、琼脂粉4.5g/L,将各种物质混合后定容,pH调节至6.0,分装到350mL广口瓶中,每瓶装50mL,在压力0.1MPa、温度121℃下灭菌15min,冷却后备用。

1.2材料采集和消毒

本试验取尚未木质化的亳菊茎尖作外植体。选取长2cm左右的嫩芽,去掉外边叶片后,用洗衣粉水浸洗1~2min,然后用流水冲洗30min。在超净工作台上用75%酒精消毒30s,再用0.05%升汞溶液消毒10min,无菌水冲洗6次,用无菌纱布把材料表面水吸干后,置于已消毒的烧杯中备用。

1.3茎尖剥取和培养

在解剖显微镜下,左手拿镊子将芽夹住,右手用解剖针逐层剥取外层叶片,直至留1~2个叶原基。将茎尖迅速切下,接种到茎尖生长培养基PP+6-BA0.05mg/L+2%糖上,每瓶接种1个茎尖。为确保茎尖的成活率,整个剥取过程应在较短时间内完成。茎尖培养分2个过程,先置于温度23~25℃下暗培养3d,再在光照强度2200~2500lux的培养室中培养,光照时间12h/d。培养10d后,茎尖开始长大,并逐渐转绿,30d后长成小植株,每个成活的茎尖单独建系。

2增殖培养

亳菊组培苗增殖采用2种方式。第1种方式是采用芽繁芽的方式进行增殖,将启动培养中获得的小芽接种到培养基PP+6-BA0.1~0.5mg/L+2%糖中,在温度23~25℃、光照强度2200~2500lux、光照时间12h/d的条件下培养30d,增殖比例达1∶4以上。这种增殖方法使培养基中的细胞分裂素含量相对较高,极易出现弱苗,且玻璃苗的比例较高。第2种增殖方式是通过单株切段的方式进行微扦插,将培养的单株切割成1cm左右的顶芽和茎段,茎段带1~2片叶,接种到培养基PP+6-BA0.02mg/L+2%糖中,顶芽和茎段分开接种。顶芽接种7d后开始生长,30d后芽生长至5~6cm;茎段接种后10d左右,侧芽开始生长,培养30~35d后,侧芽生长至4~5cm,然后进行重复微扦插,平均继代增殖比例可达1∶3.5以上。在实际生产中一般采取第2种增殖方式。

3生根培养

将顶芽或茎段接种到生根培养基PP+IBA0.05mg/L+2%糖中,接种后10d开始陆续长根,同时芽开始生长,培养30d后,长至高度4~5cm、根3~5条、根长2~3cm,生根率可达100%。

4脱毒组培苗移栽

将长好根的试管苗取出,洗掉根部的培养基,再移栽到装好基质(泥炭和珍珠岩以体积比3∶1拌匀)的50孔穴盘中。组培苗移栽至穴盘后浇透水,苗床应搭小管棚覆膜,保持80%~90%的空气湿度,并覆盖防虫网。7d后逐渐掀开薄膜放风,然后浇1次透水,15d后完全除去薄膜,并视基质的干湿程度浇水。30d左右完成组培苗的驯化过程,使成活率达90%以上。

5病毒检测

生产技术论文范文篇7

实验在朝阳县南双庙乡槐树洞村设施农业园区进行,试验品种为美香莎,于2013年9月初开始移栽。试验采用中国农科院果树研究所研制生产的氨基酸硒叶面肥和辽宁凯驰农化有限公司生产的富硒有机无机复混肥。在温室内将试验区域设计成为12个大小规模相同的小区,每个小区3个垄台,采用双行的栽植方式,垄高30~40厘米,上宽50~60厘米,下宽70~80厘米,垄沟宽20厘米。株距15厘米,小行距25厘米。棚内每个垄台定植60株。采用4种不同的施肥模式,进行3次重复处理,随机排列,其它管理措施相同。2013年8月下旬开始施基肥,9月上旬移栽。施肥方法有以下几种:处理一,基肥为普通有机无机复混肥80千克/亩腐熟鸡粪3000千克/亩,氨基酸硒叶面肥稀释500倍后,分别从草莓缓苗后每周一次进行叶面喷施,每次每亩使用量150千克,一个生长期喷施20次,按常规方法追肥;处理二,以富硒有机无机复混肥做基肥,每亩用量80千克,按常规方法追肥;处理三,以处理一方式喷施叶面肥,以处理二方式使用基肥,按常规方法追肥;处理四为对照,基肥为鸡粪5000千克/亩,复合肥50千克/亩,按常规方法追肥。其余管理完全相同。在草莓成熟后采集样品,检测果实含硒量、叶片厚度、枝条成熟度、果实品质等指标。

二、结果与分析

1.不同处理方式对草莓果实硒累积量的影响

处理一从缓苗后开始喷施氨基酸硒叶面肥,果实内硒含量达到48.4微克/千克;处理二使用富硒有机无机复混肥做基肥,果实内硒含量达到36.5微克/千克;处理三使用富硒有机无机复混肥做基肥,从缓苗后开始喷施氨基酸硒叶面肥,果实内硒含量达到61.8微克/千克;三个处理分别是未使用含硒肥料(对照)硒含量(6.8微克/千克)的7.11、5.37、9.09倍,可见温室草莓使用含硒肥料对提高果实含硒量试验效果明显。从试验结果看,单纯使用富硒有机无机复混肥做基肥,能够提高果实含硒量,但不如单纯使用氨基酸硒叶面肥的效果好,说明叶面吸收硒的能力超过根部的吸收能力。而同时使用富硒有机无机复混肥做基肥,从缓苗后开始喷施氨基酸硒叶面肥,成熟时果实内硒含量最高。说明通过根系和叶面同时吸收硒元素,生产出的草莓含硒量最高。

2.使用含硒肥料对草莓生长和品质的影响

生产技术论文范文篇8

目前FPR工业生产工艺路线有溶液聚合法、悬浮聚合法和气相聚合法三种。下面将分别详细论述其技术状况及待点,并进行技术经济比较。

1、溶液聚合工艺

1.1技术状况

60年代初实现工业化,经不断完善和改进,技术己成熟,为许多新建装置所使用,是工业生产的主导技术,约占FPR总生产能力的77.6%。

该工艺是在既可以溶解产品、又可以溶解单体和催化剂体系的溶剂中进行的均相反应,通常以直链烷烃如正己烷为溶剂,采用V一A1催化剂体系,聚合温度为30~50C,聚合压力为0.4~0.8MPa,反应产物中聚合物的质量分数一般为8%~10%。工艺过程基本上由原材料准备、化学品配制、聚合、催化剂脱除、单体和溶剂回收精制以及凝聚、干燥和包装等工序组成,但由于各公司在某部分或控制方面有自己的专利技术,因而各具独特的工艺实施方法。代表性的公司有DSM、Exxon、uniroya1、DuPont、日本三井石化和JSR公司。其中最典型的代表是DSM公司,它不仅是全球最大的EPR生产者,而且在荷兰、美国、日本、巴西所拥有的四套装置均是采用溶液聚合工艺,占世界溶液聚合工艺生产EPR总能力的1/4.下面将以该公司为例进行说明。

DSM公司采用己烷为溶剂,乙叉降冰片烯(ENB)或双环戊二烯(DCPD)为第三单体,氢气为分子量调节剂,VOCL3一1/2AL2Et3CL3为催化剂。此外,为提高催化剂活性及降低其用量,还加入了促进剂。催化剂的配比用量、预处理方式、促进剂类型是DSM公司的专有技术。反应物料二级预冷到一500C,根据生产的牌号,单釜或两釜串联操作。聚合釜容积大约为6m3.聚合反应条件为:温度低于650C,压力低于2.5MPa,反应热用于反应器绝热升温。在碱性脱钒剂和热水作用下,聚合物胶液中残留的钒催化剂进入水相,经两次转相过程被彻底脱除。未反应单体经二次减压闪蒸回收并循环使用。此时向胶液中加入稳定剂等助剂(生产充油牌号时加入填充油)。汽提蒸出残存的乙烯、丙烯和大部分溶剂后撇液送至两台串联的凝聚釜进行凝聚,并进一步蒸出回收残余己烷溶剂循环使用,JC胶粒浆液脱水后进入干燥系统,然后压块或粉料包装。含ENB的废热空气送至焚烧炉焚烧,含钒污水送至污水脱钒单元,在脱钒剂的中和絮凝作用下,钒进入钒渣中,定期送堆埋场掩埋,经脱钒的污水排至污水处理厂处理。

DSM公司EPR溶液聚合工艺技术成熟,比较先进,有下列优点:

(1)投资低,工艺最佳化。反应器的优比设计能满足反应物料混合要求,能准确控制聚合反应工艺参数和产品质量,聚合物胶液浓度高而循环溶剂量少,聚合釜体积小但生产强度高,原料和循环单体不需要精制,催化剂效率高,三废中钒含量低,生产弹性大。

(2)生产操作费用低,装置年操作时间长,原料和催比剂的消耗低,采用先进控制系统对生产进行控制。

(3)产品质量具有极强的竞争力。产品中催化剂残渣含量低,生产中次品少,产品牌号切换灵活,切换废品量少,产品特性能够按用户要求进行调整,产品牌号多,门尼值可在20~160宽范围内调节,质量稳定,重复性好,产品规格指标变化幅度窄和产品加工性能优异。

1.2技术特点

技术比较成熟,操作稳定,是工业生产EPR的主要方法;产品品种牌号较多,质量均匀,灰分含量较少,应用范围广泛;产品电绝缘性能好。但是由于聚合是在溶剂中进行,传质传热受到限制,聚合物的质过分数一般控制在6%~9%,最高仅达11%~14%,聚合效率低。同时,由于溶剂需回收精制,生产流程长,设备多,建设投资及操作成本较高。

2悬浮聚合工艺

2.技术状况

EPR悬浮聚合工艺产品牌号不多,其用途有局限性,主要用作聚烯烃改性,目前只有Enichem公司和Bayer公司两家使用,占EPR总生产能力的13.4%.该工艺是根据丙烯在共聚反应中活性较低的原理,将乙烯溶解在液态丙烯中进行共聚合。丙烯既是单体又兼作反应介质,靠其本身的蒸发致冷作明控制反应温度,维持反应压力。生成的共聚物不溶于液态丙烯,而呈悬浮于其中的细粒淤浆。又可分为一般悬浮聚合工艺和简化悬浮聚合工艺。

2.1.1一般悬浮聚合工艺

Enichem公司采用此工艺:以乙酰丙酮钒和AlEt2Cl为催化剂,二氯丙二酸二乙酯为活化剂,HNB或DCPD为第三单体,二乙基锌和氢气为分子量调节剂。视所生产产品牌号的不同,将乙烯、丙烯、第三单体以及催化剂加入具有多桨式搅拌器的夹套式聚合釜中,反应条件为:温度一20~20oC,压力0.35~1.05MPa.反应热借反应相的单体蒸发移除。反应相中悬浮聚合物的质量分数控制在30%~35%,整个聚合反应在高度自动控制下进行,生成的聚合物丙烯淤浆间歇地(10~15次/h)送入洗涤器,用聚丙二醇使催化剂失活,再用NaOH水溶液洗涤。悬浮液送入汽提塔汽提,未反应的乙烯、丙烯和ENB分别经回收系统精制后循环使用。胶粒一水浆液经振动筛脱水、挤压干燥、压块和包装即得成品胶。该工艺特点是聚合精制不使用溶剂,聚合物浓度高,强化了设备生产能力,同时省略了溶剂循环和回收,节省了能量。

2.1.2简化悬浮聚合工艺

该工艺是在一般悬浮聚合工艺基础上开发成功的,主要是采用高效钛系催化体系,不必进行催化剂的脱除,未反应单体不需处理即可返回使用。通常用于生产EPM,这是因为闪蒸不易脱除未反应的第三单体。其工艺流程为:反应在带夹套的搅拌釜中进行,采用TiC1、一MgC12一A1(i一Bu),催化剂体系,催化剂效率为50kg聚合物/g钛,反应温度27C,压力1.3MPa,聚合物的质量分数为33%。反应釜出来的蒸汽物料压缩到2.7MPa并冷却后返口反应釜。聚合物淤浆经闪蒸脱除未反应单体,不需精制处理,压缩和冷却后直接循环到反应釜使用。脱除单体的聚合物不必净化处理即可作为成品。产品可以为粉状、片状或颗粒状。近年来,Enichem公司采用改进后的V一A1催化体系,催化剂效率提高到30~50kg聚合物/g钒,省去了洗涤脱除催化剂工序,同样简化了工艺流程。

2.2技术特点

EPR悬浮聚合工艺的特点是:聚合产物不溶于反应介质丙烯,体系粘度较低,提高了转化率,聚合物的质量分数高达30%~35%,因而其生产能力是溶液法的4~5倍;无溶剂回收精制和凝聚等工序,工艺流程简化,基建投资少;可生产很高分子量的品种;产品成本比溶液法低。而其不足之处是:由于不用溶剂,从聚合物中脱离残留催化剂比较困难;产品品种牌号少,质量均匀性差,灰分含量较高;聚合物是不溶于液态丙烯的悬浮粒子,使之保持悬浮状态较难,尤其当聚合物浓度较高和出现少量凝胶时,反应釜易于挂胶,甚至发生设备管道堵塞现象;产品的电绝缘性能较差。

3气相聚合工艺

3.1技术状况

EPR的气相聚合工艺是由Himont公司率先于20世纪80年代后期实施工业化的。UCC公司则于90年代初宣布气相法EPR中试装置投入试生产,其9.1万吨/年的气相法EPR工业装置于1999年正式投产。目前,该工艺占EPR总生产能力的9%。UCC公司的EPR气相聚合工艺最具代表性,它分为聚合、分离净化和包装三个工序。质量分数为60%的乙烯、35.5%的丙烯、4.5%的ENB同催化剂、氢气、氮气和炭黑一起加入流比床反应器,在50~65C和绝对压力2.07kPa下进行气相聚合反应。乙烯、丙烯和ENB的单程转化率分别为5.2%。0.58%和0.4%。来自反应器的未反应单体经循环气压缩机压缩后进入循环气冷却器除去反应热,与新鲜原料气一起循环回反应器。从反应器排出的EPR粉未经脱气降压后进入净化塔,用氮气脱除残留烃类。来自净化塔顶部的气体经冷凝回收ENB后用泵送回流比床反应器。生成的微粒状产品进入包装工序。

3.2技术特点

与前两种工艺相比,气相聚合工艺有其突出的优点:工艺流程简短,仅三道工序,而传统工艺有七道工序;不需要溶剂或稀释剂,毋需溶剂回收和精制工序;几乎无三暖排放,有利于生态环境保护。但其产品通用性较差,所有的产品皆为黑色。这是由于为避免聚合物过粘,采用炭黑作为流态化助剂之故。虽然开发成功了用硅烷粘土和云母代替炭黑生产的白色和有色产品,但第一套工业化生产装置仍然只能生产黑色FPR.

4各种生产工艺的技术经济比较

在FPR的各种生产工艺路线中,溶液聚合工艺投资和成本最高。投资高是因为流程长,高粘度散热难,设备生产强度低,反应后聚合物流浓度太稀(仅为6%~14%,悬浮聚合工艺为33%),单体、溶剂回收需较高的费用;成本高主要是因为公用工程费、折旧费、固定成本费用高。这是由于生产过程中消耗较高的电和蒸汽所致。

悬浮聚合工艺的投资与成本工艺分别相当于相同规模溶液聚合工艺的77%和88%,具有投资少、原料消耗和能耗低、生产成本低、三废处理费用少等特点。

气相聚合工艺的投资和产品成本最低,分别相当于同等规模溶液聚合工艺的42%和68%。

生产技术论文范文篇9

土洋结合法生产工艺流程,主要包括以下技术环节。即原种筛选及固定、初级原种培养、中期菌液扩大、固体料扩大、高孢粉干燥、原粉提取、成品检验和包装。

1.1原种筛选及固定

人工选育或在林区选定被菌粉感染的僵虫或僵蛹,通过培养、分离和转种,即可得到高品质菌原种。

1.2原种培养

1.2.1营养料的配制

取米粉35份、糖4份、琼脂4份、水适量(pH值自然),将米粉放入清水中煮沸,继之选用干净纱布过滤去剩余物残渣,然后加入琼脂、糖,经过充分搅拌,等待琼脂溶化后再装入试管内,盖好试管塞;营养料灌入量以试管容积的1/5为宜,5~10支一捆放人高压灭菌锅中进行高温灭菌30min,并将其趁热摆成斜面,以便于后面的接种。

1.2.2转种和培养

严格要求在无菌条件下操作,于配制好的试管培养基中接入高品质菌原种,将其置于25℃温度下培养。经过1~2d后,菌丝即可基本布满料面;3~5d后开始形成孢子,此时可适当调高培养室温度,以加速其高品质菌原种孢子的形成,大约有6~8d的时间即可完成孢子发育。

1.2.3质量检查

高品质菌原种,其菌丝呈白色茸毛状,生长丰满,菌苔光滑平坦,孢子形成快且孢子层厚实,轻轻碰敲试管壁可发现有很多孢子粉掉落或飞扬。

1.3初级菌种培养

营养料的配制与前期相同,将培养好的菌原种接入三角烧瓶中,放在摇床上震动,温度控制在25~28℃,培养48h。

1.4中期菌液扩大

1.4.1营养液的配制

按照玉米面∶麦麸∶水=2∶3∶10的比例,放入铁制培养罐中搅拌均匀后煮熟、过滤,再将其装入60只铝制罐中(每只铝制罐10~12kg),采用高压灭菌30min后备用。

1.4.2转种培养

在确保无杂菌污染的条件下,将优质菌种接入已经准备好的营养液中,完成接种后将瓶子放置于25~28℃条件下进行培养,环境温度不得超过32℃,否则易造成所接种的菌种死亡;培养48h待菌丝长满瓶壁,良好的菌液呈显酱红色、粘稠状,此时结束培养,将其移放到比较安全的地方待用。

1.5固体转种生产

1.5.1固体基料的配制

按麸皮∶谷壳∶大米=4∶4∶2比例,拌匀后装入线制麻袋(每袋15~25kg为宜)扎紧袋口,加温加压灭菌(100℃、2~3h)。

1.5.2转种生产

将灭菌后的固体基料,放入已经过充分消毒的培养生产室内,待料温下降至到25~28℃之间,可在一般的自然环境中进行接种。接种量:菌种和固体基料的比例通常控制在15∶100。接种时需要多人配合,1人操作倒出菌种,多人辅助进行手工拌料,菌种和固体基料经过充分手工拌匀后倒入木质或塑料盘中拌好、铺平,厚度要求控制在3~4cm之间。

1.5.3白僵菌生长期间管理

白僵菌生长期间,根据其不同的生长阶段,要合理控制好温度,这是大床发酵成败与否的关键,适时进行上下调盘,保证菌丝生长均衡匀称。

1.5.3.1孢子产生期间

其孢子产生前期最合适的温度是在24~26℃,在生长的第1阶段(即孢子萌芽前期),必须将环境温度控制在21~23℃范围内,因为此阶段不产生热量,所以室温约高于料温2~3℃,从而满足了此期间对温度的要求。到了孢子萌芽阶段,特别是在转种24h之内,一定要严格控制料温,维持在25℃以下就能有效地阻止杂菌污染。

1.5.3.2菌丝生长中期

当孢子萌芽后,其芽管迅速增长而转入菌丝生长中期,若条件适宜接种48h菌丝快速生长,可以布满整个料盘,此时固体料开始凝结成块;由于菌丝生长产生较多热量,会导致料温快速上升,48h达30~35℃,达到最高峰值;以后稳定至72h左右,菌丝生长基本结束。料盘内外都呈现出一片白色菌丝层。此阶段应严格控制温度在33℃以下,一旦超过33℃虽然菌丝生长旺盛,但会导致菌丝死亡或固化,不产生孢子或孢子量少。

1.5.3.3孢子生长阶段

菌丝生长发育结束(即接种72h)后,很快转入孢子生长阶段。孢子产生的最适温度为26℃左右,此阶段培养室温度应控制在26~28℃;因为此时料温已经恒定,约高于室温2~3℃,固体菌料会逐渐变干,通常在第7d即可出料。将固体菌料倒扣在铺有报纸的竹席上,放置于室温30~35℃的干燥通风房间内,至第10d孢子达到充分发育,固料呈现白色松散状态,即可进行下一步的干燥处理。

1.6高孢粉干燥

通常放在室内或大棚通风处阴干,或在室内低温干燥,时间约为7~10d。

1.7原粉提取

利用负压原理,将干燥好的混合菌料进行一、二、三级提取,一级分离稻壳、麦麸,二级分离破碎稻壳、麦麸及其它细料,三级收集高孢粉(孢子含量1000亿个/g)

1.8产品质量检查

1.8.1直观检查

用手指接触到高孢粉产品时有光滑感,白色略黄粉雾飞扬,粉雾越浓,说明孢子含量越高、质量越好。

1.8.2镜检

在显微镜下检查高孢粉产品的孢子含量,成品含活孢子数1000亿/g以上为好。

1.9产品包装

高孢粉产品干燥后,要求用双层塑料袋密封包装,以防其回潮;要将其放在低温干燥处或冷藏,不能多层叠放,以免因孢子的吸呼作用增温而引起孢子死亡。

2白僵菌高孢粉在生物防治中的应用

利用白僵菌高孢粉防治或预防农林业害虫,已有较长的历史。白僵菌的孢子能够在任何条件通过感染达到杀灭害虫的目的。据调查,白僵菌在我国可寄生15个目、159个科的800余种昆虫,对自然环境比较安全,长期使用害虫也产生不了抗药性,并可与许多化学农药(杀虫剂、杀螨剂、杀菌剂等)同时或混合使用。目前白僵菌已广泛用于松毛虫、玉米螟、蛴螬、蝗虫、马铃薯甲虫、松褐天牛、茶蝉、桃小食心虫等农林害虫防治。

2.1白僵菌对森林害虫的感染机理

白僵菌感染害虫的方式主要通过皮肤而进入体内,但个别也通过消化道或气孔感染虫体。白僵菌孢子附着于寄主表皮,当满足条件时就开始感染,生出芽管,同时分泌胞外蛋白酶等多种酶溶解昆虫表皮,以利于芽管的侵入。渐渐生长为菌丝,直接吸取昆虫体内养分而生长,菌丝又生长出新的孢子。如此反复感染、循环,使昆虫血淋巴中到处游离着这种菌丝和孢子,从而中断昆虫体内的血液循环。菌丝代谢产物草酸盐类在血液中渐渐积累,造成血液的酸碱度下降,引起理化性质的改变,最终导致昆虫的死亡和干枯。

2.2白僵菌高孢粉在林业害虫防治中应用(以皖东马尾松毛虫防治为例)

2.2.1施菌季节和天气

白僵菌在22~28℃、相对湿度80%的条件下生长、发育良好,为此皖东地区主要选择在4月份至越冬代幼虫期使用,以及第一代幼虫(6月上旬)、第二代幼虫(9月下旬)发生时使用。施菌时间一般在阴雨天后或早晨露水未干时或傍晚时分,微风有利于菌粉扩散、释放。

2.2.2施菌方式和用量

白僵菌可重复扩散、感染、蔓延,施菌时,首先要摸清虫情,找准虫源地,根据虫口密度和虫株率大小,分别采取机械或人工全面喷洒、带状喷洒、点状喷洒,原粉用量10~15g/667m2,可稀释后使用。

2.2.3防治效果

根据滁州市采用我厂生产的白僵菌高孢粉防治马尾松毛虫试验,松毛虫能持续、重复感染,造成不同虫龄的活体松毛虫大量死亡,并且安全、无污染,对人蓄无害,防治效果一般可达85%以上,局部可达100%,连续使用效果更佳。可用于长期防治大面积、低虫口密度马尾松林松毛虫危害,做到有虫不成灾。

2.3白僵菌高孢粉在农业害虫防治中的应用(以吉林玉米螟防治为例)

2.3.1菌种剂型筛选

根据不同地区玉米螟田间发生、危害规律及各种因素的影响,可选择不同的剂型。目前有4种粉、液剂剂型可用于大田玉米种植区选择;有2种粉、液剂剂型可供玉米(甜、粘玉米)分期播种田防治玉米螟选择。

2.3.2防治方法

防治方法有2种,分别是喷粉和喷雾。一是封垛(秸秆垛)防治法,主要是针对玉米秸秆垛内的越冬代老熟幼虫,杀死越冬玉米螟老熟幼虫,降低化蛹率。在冬末春初越冬幼虫刚刚复苏化蛹前(有越冬幼虫爬出洞口活动中),对残存的秸秆,逐垛喷撒高孢原粉封垛进行防治。用量是每m2垛面用含1000亿/g孢子的菌粉10~15g喷一个点,方法是将喷粉管插入垛内,摇动,当垛面冒出菌粉即可。也可用含1000亿/g孢子的白僵菌粉加滑石粉或草木灰按1∶100充分混匀,每667m22~3kg,用机动或手摇喷粉器喷粉。二是在玉米生长心叶末期,应用高孢粉粉剂或液剂向植株喷粉或喷雾,防治玉米螟第一代幼虫。三是释放颗粒剂防治,在田间玉米螟幼虫蛀茎危害前释放,以达到杀死田间玉米螟幼虫的目的。2.3.3防治效果使用高孢粉原粉防治玉米螟防治效果可达80%以上,方法简单易行,防治效果极佳,能保护害虫天敌,无环境污染,对人蓄安全,同时节约成本,增产显著。

3白僵菌在农林有害生物防治中的应用前景展望

生产技术论文范文篇10

目前FPR工业生产工艺路线有溶液聚合法、悬浮聚合法和气相聚合法三种。下面将分别详细论述其技术状况及待点,并进行技术经济比较。

1、溶液聚合工艺

1.1技术状况

60年代初实现工业化,经不断完善和改进,技术己成熟,为许多新建装置所使用,是工业生产的主导技术,约占FPR总生产能力的77.6%。

该工艺是在既可以溶解产品、又可以溶解单体和催化剂体系的溶剂中进行的均相反应,通常以直链烷烃如正己烷为溶剂,采用V一A1催化剂体系,聚合温度为30~50C,聚合压力为0.4~0.8MPa,反应产物中聚合物的质量分数一般为8%~10%。工艺过程基本上由原材料准备、化学品配制、聚合、催化剂脱除、单体和溶剂回收精制以及凝聚、干燥和

包装等工序组成,但由于各公司在某部分或控制方面有自己的专利技术,因而各具独特的工艺实施方法。代表性的公司有DSM、Exxon、uniroya1、DuPont、日本三井石化和JSR公司。其中最典型的代表是DSM公司,它不仅是全球最大的EPR生产者,而且在荷兰、美国、日本、巴西所拥有的四套装置均是采用溶液聚合工艺,占世界溶液聚合工艺生产EPR总能力的1/4。下面将以该公司为例进行说明。

DSM公司采用己烷为溶剂,乙叉降冰片烯(ENB)或双环戊二烯(DCPD)为第三单体,氢气为分子量调节剂,VOCL3一1/2AL2Et3CL3为催化剂。此外,为提高催化剂活性及降低其用量,还加入了促进剂。催化剂的配比用量、预处理方式、促进剂类型是DSM公司的专有技术。反应物料二级预冷到一500C,根据生产的牌号,单釜或两釜串联操作。聚

合釜容积大约为6m3。聚合反应条件为:温度低于650C,压力低于2.5MPa,反应热用于反应器绝热升温。在碱性脱钒剂和热水作用下,聚合物胶液中残留的钒催化剂进入水相,经两次转相过程被彻底脱除。未反应单体经二次减压闪蒸回收并循环使用。此时向胶液中加入稳定剂等助剂(生产充油牌号时加入填充油)。汽提蒸出残存的乙烯、丙烯和大部分溶剂

后撇液送至两台串联的凝聚釜进行凝聚,并进一步蒸出回收残余己烷溶剂循环使用,JC胶粒浆液脱水后进入干燥系统,然后压块或粉料包装。含ENB的废热空气送至焚烧炉焚烧,含钒污水送至污水脱钒单元,在脱钒剂的中和絮凝作用下,钒进入钒渣中,定期送堆埋场掩埋,经脱钒的污水排至污水处理厂处理。

DSM公司EPR溶液聚合工艺技术成熟,比较先进,有下列优点:(1)投资低,工艺最佳化。反应器的优比设计能满足反应物料混合要求,能准确控制聚合反应工艺参数和产品质量,聚合物胶液浓度高而循环溶剂量少,聚合釜体积小但生产强度高,原料和循环单体不需要精制,催化剂效率高,三废中钒含量低,生产弹性大。(2)生产操作费用低,装置年操作时间长,原料和催比剂的消耗低,采用先进控制系统对生产进行控制。(3)产品质量具有极强的竞争力。产品中催化剂残渣含量低,生产中次品少,产品牌号切换灵活,切换废品量少,产品特性能够按用户要求进行调整,产品牌号多,门尼值可在20~160宽范围内调节,质量稳定,重复性好,产品规格指标变化幅度窄和产品加工性能优异。

1.2技术特点

技术比较成熟,操作稳定,是工业生产EPR的主要方法;产品品种牌号较多,质量均匀,灰分含量较少,应用范围广泛;产品电绝缘性能好。但是由于聚合是在溶剂中进行,传质传热受到限制,聚合物的质过分数一般控制在6%~9%,最高仅达11%~14%,聚合效率低。同时,由于溶剂需回收精制,生产流程长,设备多,建设投资及操作成本较高。

2悬浮聚合工艺

2.技术状况

EPR悬浮聚合工艺产品牌号不多,其用途有局限性,主要用作聚烯烃改性,目前只有Enichem公司和Bayer公司两家使用,占EPR总生产能力的13.4%。该工艺是根据丙烯在共聚反应中活性较低的原理,将乙烯溶解在液态丙烯中进行共聚合。丙烯既是单体又兼作反应介质,靠其本身的蒸发致冷作明控制反应温度,维持反应压力。生成的共聚物不溶于液态丙烯,而呈悬浮于其中的细粒淤浆。又可分为一般悬浮聚合工艺和简化悬浮聚合工艺。

2.1.1一般悬浮聚合工艺

Enichem公司采用此工艺:以乙酰丙酮钒和AlEt2Cl为催化剂,二氯丙二酸二乙酯为活化剂,HNB或DCPD为第三单体,二乙基锌和氢气为分子量调节剂。视所生产产品牌号的不同,将乙烯、丙烯、第三单体以及催化剂加入具有多桨式搅拌器的夹套式聚合釜中,反应条件为:温度一20~20oC,压力0.35~1.05MPa。反应热借反应相的单体蒸发移除。反应相中悬浮聚合物的质量分数控制在30%~35%,整个聚合反应在高度自动控制下进行,生成的聚合物丙烯淤浆间歇地(10~15次/h)送入洗涤器,用聚丙二醇使催化剂失活,再用NaOH水溶液洗涤。悬浮液送入汽提塔汽提,未反应的乙烯、丙烯和ENB分别经回收系统精制后循环使用。胶粒一水浆液经振动筛脱水、挤压干燥、压块和包装即得成品胶。该工艺特点是聚合精制不使用溶剂,聚合物浓度高,强化了设备生产能力,同时省略了溶剂循环和回收,节省了能量。

2.1.2简化悬浮聚合工艺

该工艺是在一般悬浮聚合工艺基础上开发成功的,主要是采用高效钛系催化体系,不必进行催化剂的脱除,未反应单体不需处理即可返回使用。通常用于生产EPM,这是因为闪蒸不易脱除未反应的第三单体。其工艺流程为:反应在带夹套的搅拌釜中进行,采用TiC1、一MgC12一A1(i一Bu),催化剂体系,催化剂效率为50kg聚合物/g钛,反应温度27C,压力1.3MPa,聚合物的质量分数为33%。反应釜出来的蒸汽物料压缩到2.7MPa并冷却后返口反应釜。聚合物淤浆经闪蒸脱除未反应单体,不需精制处理,压缩和冷却后直接循环到反应釜使用。脱除单体的聚合物不必净化处理即可作为成品。产品可以为粉状、片状或颗粒状。近年来,Enichem公司采用改进后的V一A1催化体系,催化剂效率提高到30~50kg聚合物/g钒,省去了洗涤脱除催化剂工序,同样简化了工艺流程。

2.2技术特点

EPR悬浮聚合工艺的特点是:聚合产物不溶于反应介质丙烯,体系粘度较低,提高了转化率,聚合物的质量分数高达30%~35%,因而其生产能力是溶液法的4~5倍;无溶剂回收精制和凝聚等工序,工艺流程简化,基建投资少;可生产很高分子量的品种;产品成本比溶液法低。而其不足之处是:由于不用溶剂,从聚合物中脱离残留催化剂比较困难;产品

品种牌号少,质量均匀性差,灰分含量较高;聚合物是不溶于液态丙烯的悬浮粒子,使之保持悬浮状态较难,尤其当聚合物浓度较高和出现少量凝胶时,反应釜易于挂胶,甚至发生设备管道堵塞现象;产品的电绝缘性能较差。

3气相聚合工艺

3.1技术状况

EPR的气相聚合工艺是由Himont公司率先于20世纪80年代后期实施工业化的。UCC公司则于90年代初宣布气相法EPR中试装置投入试生产,其9.1万吨/年的气相法EPR工业装置于1999年正式投产。目前,该工艺占EPR总生产能力的9%。UCC公司的EPR气相聚合工艺最具代表性,它分为聚合、分离净化和包装三个工序。质量分数为60%的乙烯、35.5%的丙烯、4.5%的ENB同催化剂、氢气、氮气和炭黑一起加入流比床反应器,在50~65C和绝对压力2.07kPa下进行气相聚合反应。乙烯、丙烯和ENB的单程转化率分别为5.2%。0.58%和0.4%。来自反应器的未反应单体经循环气压缩机压缩后进入循环气冷却器除去反应热,与新鲜原料气一起循环回反应器。从反应器排出的EPR粉未经脱气降压后进入净化塔,用氮气脱除残留烃类。来自净化塔顶部的气体经冷凝回收ENB后用泵送回流比床反应器。生成的微粒状产品进入包装工序。

3.2技术特点

与前两种工艺相比,气相聚合工艺有其突出的优点:工艺流程简短,仅三道工序,而传统工艺有七道工序;不需要溶剂或稀释剂,毋需溶剂回收和精制工序;几乎无三暖排放,有利于生态环境保护。但其产品通用性较差,所有的产品皆为黑色。这是由于为

避免聚合物过粘,采用炭黑作为流态化助剂之故。虽然开发成功了用硅烷粘土和云母代替炭黑生产的白色和有色产品,但第一套工业化生产装置仍然只能生产黑色FPR。

4各种生产工艺的技术经济比较

FPR各种生产工艺技术经济比较如表:所示。

由表1可以看出,在FPR的各种生产工艺路线中,溶液聚合工艺投资和成本最高。投资高是因为流程长,高粘度散热难,设备生产强度低,反应后聚合物流浓度太稀(仅为6%~14%,悬浮聚合工艺为33%),单体、溶剂回收需较高的费用;成本高主要是因为公用工程费、折旧费、固定成本费用高。这是由于生产过程中消耗较高的电和蒸汽所致。

悬浮聚合工艺的投资与成本工艺分别相当于相同规模溶液聚合工艺的77%和88%,具有投资少、原料消耗和能耗低、生产成本低、三废处理费用少等特点。

气相聚合工艺的投资和产品成本最低,分别相当于同等规模溶液聚合工艺的42%和68%。

表:EPR各种生产工艺的技术经济比较

项目溶液聚合悬浮聚合气相聚合

生产能力/(万t/a)4.54.59.1

投资,/百万美元

界区内690052506000

界区外251020201900

总投资941072707900

相对单位投资/%1007742

生产成本/(美元/t)

原料691688686

公用工程17810334

其它353513

可变成本/(美元/t)904826733

固定成本/(美元/t)20016883

总现金成本/(美元/t)1104994816

折日费/(美元/t)261201109

总成本(美元/t)13651195925

相对总成本/%1008868

5结论