微生物油脂工艺研究论文

时间:2022-03-06 03:26:59

微生物油脂工艺研究论文

1材料与方法

1.1材料

微生物油脂(含43%ARA),嘉必优生物工程(武汉)有限公司赠送;固定化酶(LipozymeRMIM)购于北京诺维信公司;1,3-ARA-DAG、1,2-ARA-DAG购于瑞典Larodan公司;正己烷、乙酸乙酯、冰乙酸、甲醇均为色谱纯,购于德国CNW公司;氢氧化钠、尿素、无水硫酸镁、盐酸、乙醇、石油醚、甘油、无水乙醚、4A型分子筛均为分析纯,购于国药化学试剂集团。

1.2试验仪器

分析天平(AUY120,SHIMADZU,Japan);旋转蒸发仪(RE-52A,上海亚荣生化仪器);集热式恒温磁力搅拌水浴锅(DF-101S,巩义市予华仪器有限责任公司);气相色谱仪(Agilent7890A,美国Agilent公司);高效液相色谱仪(Agilent1200,美国Agilent公司);质谱仪(AB4000Q-Trap,美国AB公司);微型旋涡混合仪(WH-3,上海沪西分析仪器有限公司)。

1.3试验方法

1.3.1尿素包埋法纯化微生物油脂于500mL三口瓶中加入40g微生物油脂、200mL无水乙醇、30%氢氧化钠(以微生物油脂质量计),充氮气保护下,在恒温水浴加热搅拌器上80℃水浴回流2h,加入100mL的蒸馏水,搅拌均匀并冷却至室温,加盐酸酸化至pH=1~2左右[18]。用无水乙醚∶石油醚=1∶1(V/V)混合溶液萃取2~3次,将萃取液水洗至中性,并旋转蒸发除去有机相,得到游离形态的脂肪酸混合物。将其加入到尿素/乙醇溶液中,氮气保护下回流2h后,迅速转移到250mL的锥形瓶中,密封后于-20℃冰箱中结晶过夜。所得到的尿素包合物经抽滤,旋转蒸发和萃取后,经无水硫酸镁脱水得到纯化后的脂肪酸。称重并计算回收率。并取少量原样品和尿素包埋后的样品进行甲酯化衍生化处理,经GC检测尿素包埋前后ARA的含量变化。1.3.2酶法合成富含ARA的1,3-DAG按照一定的摩尔比准确称取ARA和甘油于20mL两口圆底烧瓶中,氮气保护条件下,将其置于一定温度的水浴锅中,待搅拌均匀后,加入一定量的固定化酶LipozymeRMIM和20%(占底物总质量)已活化的4A型分子筛,在200r/min的转速下搅拌反应,按一定的时间间隔取样,采用HPLC-MS-MRM分析酯化后产物及各组分的相对百分含量。1.3.3脂肪酸的GC检测脂肪酸的甲酯化衍生化处理采用本实验室建立的方法[19]。GC检测条件为色谱柱:HP-FFAP毛细管柱(Agilent,30m×0.25mm×0.5μm);检测器:氢离子火焰化检测器(FlameIonizationDetector,FID);以氮气为载气,进样口压力为25psi,进样量为1μL,分流比为1∶30;升温程序:初始温度210℃保持7min,以20℃/min升温至230℃并保持5min,总分析时间为12min;进样口和检测器温度分别为260℃和280℃。采用面积归一法计算脂肪酸的相对百分含量。1.3.4产物中1,3-DAG的HPLC-MS-MRM检测产物中1,3-ARA-DAG的HPLC检测条件为色谱柱:Agilent-SIL(5μm,2.0mm×250mm);流动相:正己烷/乙酸乙酯/乙酸=80∶20∶1,(V/V/V);流速:0.5mL/min;柱温:40℃;进样量:10μL;总时间:20min。检测器MS的条件为APCI模式:正离子;CUR:137.9kPa;CAD:medium;NC:27.38kPa;温度(TEM):450℃;扫描模式:MRM-EPI;扫描速度:1000u/s;离子源气体1(ionsourcegas1,GS1)∶344.75kPa;辅助加热(interfaceheater,ihe):开;DP:80V;CE:35V和55V;碰撞电压摆幅(collisionenergyspread,CES):5V;碰撞室输出电压(collisioncellexitprotential,CXP)17V;质量范围:500~1000m/z。采用面积归一法计算产物中1,3-DAG的相对百分含量。1.3.5数据分析本实验采用SAS(statisticalanalysissystem)9.0统计软件进行数据处理,实验重复三次,取其平均值。用Origin作图工具,对结果进行分析。

2结果与分析

2.1尿素包埋法纯化微生物油脂中的ARA

尿素包埋法作为一种普遍的富集LC-PUFAs的方法,一直受到人们的青睐[21]。本实验中,当尿素∶混合脂肪酸∶甲醇比为2g∶1g∶20mL,结晶温度为-20℃时,经GC检测分析后,ARA的相对百分含量由原来的43%(如图1中A)提高到83%,且回收率为54.35%。力为25psi,进样量为1μL,分流比为1∶30;升温程序:初始温度210℃保持7min,以20℃/min升温至230℃并保持5min,总分析时间为12min;进样口和检测器温度分别为260℃和280℃。采用面积归一法计算脂肪酸的相对百分含量。1.3.4产物中1,3-DAG的HPLC-MS-MRM检测产物中1,3-ARA-DAG的HPLC检测条件为色谱柱:Agilent-SIL(5μm,2.0mm×250mm);流动相:正己烷/乙酸乙酯/乙酸=80∶20∶1,(V/V/V);流速:0.5mL/min;柱温:40℃;进样量:10μL;总时间:20min。检测器MS的条件为APCI模式:正离子;CUR:137.9kPa;CAD:medium;NC:27.38kPa;温度(TEM):450℃;扫描模式:MRM-EPI;扫描速度:1000u/s;离子源气体1(ionsourcegas1,GS1)∶344.75kPa;辅助加热(interfaceheater,ihe):开;DP:80V;CE:35V和55V;碰撞电压摆幅(collisionenergyspread,CES):5V;碰撞室输出电压(collisioncellexitprotential,CXP)17V;质量范围:500~1000m/z。

2.2产物中1,3-DAG的HPLC-MS-MRM检测

脂肪酸与甘油酯化反应的产物中有TAG、1,2-DAG、1,3-DAG、1(2)-MAG和未反应的脂肪酸及甘油。本实验就产物中主要的产物TAG、1,2-DAG、1,3-DAG进行定量检测,通过优化色谱条件,最终确定流动相:正己烷/乙酸乙酯/乙酸=80∶20∶1,(V/V/V);流速:0.5mL/min;进样量:10μL;总时间:20min时,分离效果较好。

2.3脂肪酶催化合成

1,3-DAG的单因素实验2.3.1反应时间对酶促酯化合成1,3-DAG的影响本实验在甘油与ARA摩尔比为1∶2,脂肪酶添加量为5%(以底物总质量计),反应温度为50℃的条件下,定期取样分析产物中1,3-DAG含量的变化。结果如图3所示,随着反应时间的延长,底物中1,3-DAG的相对百分含量呈现先增加后减小的趋势,并在2h时,达到最大值68.9%;2h后,1,3-DAG的相对百分含量明显下降,到10h时降为16.1%并趋于稳定。这可能是因为随着反应时间的延长,1,3-DAG发生了酰基转移,进而转化为1,2-DAG或者TAG,从而使反应产物中1,3-DAG的含量降低。因此,2h为最佳的反应时间。2.3.2反应温度对酶促酯化合成1,3-DAG的影响本实验在反应时间(2h)、脂肪酶添加量(5%)和底物摩尔比(甘油/ARA=1∶2)一定的条件下来优化温度对酯化合成1,3-DAG的影响。由图4可知,随着反应温度的升高,1,3-DAG的相对百分含量呈现先增加后减小的趋势,并在50℃时达到最大,为68.3%。随着温度的继续升高,其含量呈现递减的趋势。这可能是由于温度的升高促使脂肪酶的活力逐渐提高,而且温度升高有利于底物混合均匀,降低反应体系的黏度,从而更有利于酯化反应的进行。然而,随着温度进一步升高,酰基转移率也相应的增加,从而使1,3-DAG的相对百分含量降低;此外,长时间的高温反应环境条件会造成部分酶活力丧失,甚至会造成ARA发生氧化,均可能导致1,3-DAG相对百分含量的降低。因此,综合考虑以上因素,50℃作为反应温度较佳。2.3.3不同底物摩尔比对酶促酯化合成1,3-DAG的影响在反应温度50℃、反应时间2h及脂肪酶添加量为5%的条件下,考察不同底物摩尔比对反应结果的影响。由图5可知,在一定范围内,随着体系中ARA含量的增加,产物中1,3-DAG的相对百分含量逐渐增加,并在甘油/ARA为1∶2时,1,3-DAG的相对百分含量最高达72.1%。然而随着ARA的继续增加,产物中1,3-DAG的量开始降低,这可能是过量的ARA与产物中的1,3-DAG进一步发生反应生成了TAG。因此综合考虑,反应体系中底物摩尔比甘油/ARA采用1∶2为宜。2.3.4脂肪酶添加量对酶促酯化合成1,3-DAG的影响在反应时间2h、反应温度50℃和底物摩尔比(甘油/ARA)为1∶2的条件下,设计实验考察脂肪酶添加量对产物中1,3-DAG的影响。如图6所示,脂肪酶的添加量对反应有显著影响。脂肪酶添加量在1%~5%的范围内,1,3-DAG的相对百分含量随着脂肪酶添加量的增加而增加,并在酶添加量为5%时,1,3-DAG相对百分含量达到最大值82.8%;当继续增加酶量到10%时,1,3-DAG的含量有所降低,这可能是因为底物已经被脂肪酶分子所饱和,且随着脂肪酶添加量的增加,一定程度上也增加了发生酰基转移的几率,将1,3-DAG转化为1,2-DAG或者TAG。综合考虑以上因素,最佳的脂肪酶添加量为5%。

2.4响应面试验结果与分析

2.4.1回归方程的建立与分析基于单因素试验结果,选取温度(X1)、时间(X2)、酶加量(X3)及底物摩尔比(X4)为自变量,以产物中1,3-DAG相对百分含量(以峰面积表示)Y为响应值,采用中心组合设计实验,对所获得的单因素条件进行响应面优化。以Box-Benheken实验设计获得数据为基础,在此基础上利用SAS9.0软件对获得的数据进行拟合分析,得到1,3-DAG含量的动态参数方程如下:Y=152300+20562.58X1+36337.5X2+47125X3+1780.25X4-20213.37X1X1+1502.25X1X2+12545X1X3-12985X1X4-38758.75X2X2+10302.5X2X3+12946.75X2X4-30572.5X3X3+15107.5X3X4-20180.37X4X4。从回归方程模型系数的方差分析结果(表3)可以看出,模型P=0.0063<0.01,说明回归模型方程极显著。模型的R2值为0.8407,表明优化好的参数值有大约84.07%来源于回归方程模型,同时模型的失拟项P=0.544869>0.05,符合失拟项不显著的要求。这表明此模型可以很好的用来预测最优化条件。且根据方差分析可知,各因子对1,3-DAG的影响主次关系为X3>X2>X1>X4,即酶添加量最大,其次为时间、温度,底物摩尔比最小。2.4.2响应面优化及模型验证为了更直观地显示各因素之间的关系,对经响应面法优化后的结果进行规范分析,考察SAS9.0所拟合的响应曲面形状,获得响应面立体图及对应的等高线图,如图7所示,模型具有稳定点,各因素间的交互作用较明显。经拟合分析后,得出酶促酯化合成1,3-DAG的稳定值及最优条件,最佳工艺参数为:X1(温度)57℃,X2(时间)2.7h,X3(酶量)7.9%,X4(摩尔比)2.5∶1。在此最优条件下,进行三次重复验证实验,1,3-DAG的实际平均峰面积为9.8×104,与理论值(1.0×105)非常接近,说明该预测模型是可靠的;并且,此时1,3-DAG在整个DAG和TAG混合物中的相对百分含量为73.5%,且1,3-ARA-DAG含量为38.1%。

3结论

本文系统地研究了无溶剂体系中,以富含ARA的微生物油脂为原料,通过酶促酯化反应合成富含ARA的1,3-DAG的工艺。得出合成富含ARA的1,3-DAG的最佳工艺条件为:反应温度57℃,反应时间2.7h,酶添加量7.9%,ARA与甘油的底物摩尔比为2.5∶1,在此最优条件下,1,3-DAG在反应产物中DAG和TAG混合物中的相对百分含量为73.5%,且1,3-ARA-DAG含量为38.1%,结果较为理想。本研究所建立的酶法合成富含ARA的1,3-DAG的工艺研究,对进一步开发利用微生物油脂资源,提高微生物油脂的附加值有着非常重要的实际意义。这方面研究将在今后生产有利于人体健康和食品加工的专用油脂、富含LC-PUFA的功能性油脂和结构脂质产品的研发等领域有着广阔的应用前景。

作者:刘四磊刘伟董绪燕魏芳王湘吕昕钟娟吴琳陈洪单位:中国农业科学院油料作物研究所湖北省脂质化学与营养重点开放实验室华中科技大学生命科学学院