新建公路对铁路隧道的影响

时间:2022-05-19 11:09:13

新建公路对铁路隧道的影响

公路施工对隧道影响的三维有限元分析

整个三维有限元计算模型共437369个单元,80161个节点,山体、隧道、挖方、填方、公路及隧道模型如图1、图2所示。施工步涉及复杂的开挖、填方过程,地层环境也很复杂,公路与隧道为空间斜交状态,这些都决定了必须用更为复杂的处理方法进行研究,方能得到可信度高的分析结果[8-9]。结合ANSYS软件的“生死单元”技术及网格自适应功能可有效、准确计算具有复杂几何边界及多种介质条件下的岩土、结构等二维、三维力学问题,对非均质地层的复杂三维应力场、位移场进行计算是可靠的。本次分析采用ANSYS软件中提供的“生死单元”技术及网格自适应功能来进行整体模型上的全施工过程计算。因某一施工步之外的单元不起作用,故首先可直接将未填筑的单元网格“杀死”,然后施加相应边界条件,进行原状计算;再将开挖的单元杀死,进行开挖计算;最后把填筑单元“激活”,进行填方计算。通过不断运用网格自适应功能使系统作出调整,即根据施工步局部调整单元网格的“生死”,相应修正边界条件后重新计算,直到满足计算精度要求。本研究采用了参数化设计分析手段进行处理,将变化的参量定义成参数,建立分析过程命令流文件,由计算机自动地完成分析工作。另外,鉴于“生死单元”技术的基本对象是单元,为求得足够光滑的应力等值线,采用ANSYS的网格自适应功能在挖、填交界附近以及地层变化较大区域进行局部网格加密以适应精度要求。计算模拟施工步骤如图3所示。明确原状情况下隧道状态是进一步评估施工影响和进行判断的基础,施加重力进行计算,得到隧道受力情况,同时也得到初始位移,在后续施工步中刨除已经图3主要施工步完成的这部分位移;而内力结果则在模型中与附加作用进行叠加,分析隧道的综合受力状态。工况1计算结果,如图4~图7所示。

开挖与填方对隧道影响的综合分析

分析施工过程整体沉降位移云图、水平位移云图,及隧道变形云图、内力图等,取典型位置提取结果如(1)从有限元的计算结果来看,公路修筑至隧顶附近时,隧道拱顶与原状态相比,呈略微的上拱趋势,为0.438mm左右。这是因为开挖卸荷的作用,且由于隧道埋深超过2倍洞径,因此上部开挖对下部隧道虽有影响,但其量值并不大。挖方施工引起隧道的最大附加位移在1mm以内,隧道的最大附加应力为1810kN•m/m,小于强度控制标准。(2)填筑其他段路基后,拱顶又产生新的下沉,且不对称,这是因为单侧填土的加载作用。正上方公路施工对隧道的影响要大于较远处的其他段的影响。公路的横向影响区域主要在以隧道正上方位置点为中心的40m范围内,靠山体较高一侧隧道的变形最大。(3)公路路堑开挖面沿法线方向位移明显,最大水平位移为41.0mm左右,位于坡面的最上方,相对是较大的,可能超过了边坡稳定要求,对铁路隧道洞口有潜在影响,涉及的边坡稳定问题需进行专项分析。(4)公路施工对隧道产生的附加应力是有限的,且在极限强度允许值范围内。但是仍需注意加强临近隧道部分地基的监测,尤其是洞口边坡的监测;隧道内部有条件时应布设应力计和收敛观测仪。

通过对新建新站北路施工对下方赣龙铁路隧道影响的理论分析,笔者认为,施工对隧道影响总体上不大,在做好有效施工组织和监控量测的前提下,可以确保上跨高速公路顺利施工,也可以保证隧道的运营安全。同时建议施工中应尽量分段、分区、分层、对称地进行路堑开挖,减小一次性大面积卸载引起的既有隧道结构的上抬,同时根据监测数据进行施工步的适当调整,以进一步降低施工带来的不利影响。为了既能确保下部隧道建筑物的安全,又能检验设计的方案,应加强对隧道的监测,及时反馈结果。

本文作者:姚捷工作单位:中铁第四勘察设计院集团有限公司